diff options
author | debashisdeb | 2014-06-20 15:42:42 +0530 |
---|---|---|
committer | debashisdeb | 2014-06-20 15:42:42 +0530 |
commit | 83c1bfceb1b681b4bb7253b47491be2d8b2014a1 (patch) | |
tree | f54eab21dd3d725d64a495fcd47c00d37abed004 /Fluidization_Engineering/ch10.ipynb | |
parent | a78126bbe4443e9526a64df9d8245c4af8843044 (diff) | |
download | Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.tar.gz Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.tar.bz2 Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.zip |
removing problem statements
Diffstat (limited to 'Fluidization_Engineering/ch10.ipynb')
-rw-r--r-- | Fluidization_Engineering/ch10.ipynb | 10 |
1 files changed, 4 insertions, 6 deletions
diff --git a/Fluidization_Engineering/ch10.ipynb b/Fluidization_Engineering/ch10.ipynb index 6cd12465..40d88cd4 100644 --- a/Fluidization_Engineering/ch10.ipynb +++ b/Fluidization_Engineering/ch10.ipynb @@ -1,6 +1,7 @@ { "metadata": { - "name": "ch10" + "name": "", + "signature": "sha256:89c91579d721ed0f833b399593203d4eb19421ab1695bc830f1be612e46bd826" }, "nbformat": 3, "nbformat_minor": 0, @@ -48,7 +49,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Estimate Interchange Coefficients in Bubbling Beds\n", + "\n", "from numpy import *\n", "%pylab inline\n", "#Variable declaration\n", @@ -136,6 +137,7 @@ ] }, { + "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAD9CAYAAABdoNd6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYk/fBPvA7AZSgFo0g2qpUDgKpVSlI7FSMioAi4qpO\naVdstRt2q1it21Xb/lbbXa9bZ7fqWN+O9p2tCrzalU0oihR0iHYVcHX6ioCKMktbD0QLcjQhz++P\npwQi4RAIPIHcn+vK1RyexBsr9/fJ9znJBEEQQEREg5pc6gBERNT3WPZERHaAZU9EZAdY9kREdoBl\nT0RkB1j2RER2oMuyz8/PR0BAAHx9fZGYmGh2ma1bt8LLywtBQUEoLS01Pl9XV4c1a9Zg8uTJUKlU\nOHXqlPWSExFRt3VZ9hs3bkRSUhJyc3Px7rvvoqqqyuT1wsJCnDhxAqdPn8aWLVuwZcsW42uvv/46\nJk6ciHPnzuHcuXMICAiw/k9ARERd6rTsq6urAQChoaHw9PREeHg4CgoKTJYpKCjAihUroFQqERsb\ni5KSEuNrubm5eOWVV+Ds7AxHR0e4urr2wY9ARERd6bTsi4qK4O/vb3xsbiqmsLAQKpXK+Njd3R1X\nrlxBZWUlGhsb8fzzz0OtVuOtt95CY2OjleMTEVF3OPb2AwRBgLkzLjQ2NuLixYvYsWMHwsLCEB8f\nj48//hhxcXEmy8lkst5GICKyS5ac7abTNfsZM2aYbHAtLi7GzJkzTZZRq9W4cOGC8fGtW7fg5eUF\nHx8f+Pn5ITo6GgqFArGxscjKyuowsK3fXn/9dckzMCdzDuScAyHjQMppqU7LvmWOPT8/HxUVFcjJ\nyYFarW5X9mlpadBqtUhNTTXZCOvr64uCggIYDAYcOnQIYWFhFgckIqLe63IaZ+fOnYiPj4dOp0NC\nQgLc3NyQlJQEAIiPj0dISAhmz56N4OBgKJVKJCcnG9/79ttvIy4uDo2NjQgLC8Pq1av77ichIqIO\nyYSefB+wZgCZrEdfSfpbXl4eNBqN1DG6xJzWxZzWMxAyAgMnp6XdybInIhqALO1Oni6BiMgOsOyJ\niOwAy56IyA6w7ImI7ADLnojIDrDsiYjsAMueiMgOsOyJiOwAy56IyA6w7ImI7ADLnojIDrDsiYjs\nAMueiMgOsOyJiOwAy56IyA6w7ImI7ADLnojIDrDsiYjsAMueiMgOsOyJiOwAy56IyA6w7ImI7MCg\nK/ubdTeRfC5Z6hhERDZl0JV93b06/Oofv8Lb/3xb6ihERDZDJgiCIGkAmQzWjlBZU4kFexfgqUef\nwv8L/X+QyWRW/XwiIqlZ2p2DsuwB4EbtDYTtC8Ni38X47YLfsvCJaFBh2behrdciIjkCj094HLsi\nd0EuG3SzVkRkpyztzi7bLz8/HwEBAfD19UViYqLZZbZu3QovLy8EBQWhtLTU+PzDDz+MqVOnIjAw\nECEhId0OZS2jXUbjaNxRfPntl/jJpz9Bs6G53zMQEdmCLtfsAwMDsWvXLnh6eiIiIgInT56Em5ub\n8fXCwkJs3rwZGRkZyM7ORkpKCjIzMwEAkyZNwr/+9S8olcqOA/Thmn2L2nu1iNkfA49hHtizbA+c\nHJz69M8jIuprVl2zr66uBgCEhobC09MT4eHhKCgoMFmmoKAAK1asgFKpRGxsLEpKSkxel3iWCAAw\nfMhwZMZmorqpGj/65Edo0jdJHYmIqF91WvZFRUXw9/c3PlapVDh16pTJMoWFhVCpVMbH7u7uuHLl\nCgBx5Jk/fz6WLVuGjIwMa+a2mMJJgb+v+jvkMjmWHViGel29pHmIiPqTY28/QBCEDtfeP//8c4wb\nNw4lJSWIjo5GSEgIxo4d2265bdu2Ge9rNBpoNJrexjJriMMQHFhxAM8cfAZRqVHIWJ2BEUNH9Mmf\nRURkTXl5ecjLy+vx+zuds6+uroZGo8GZM2cAABs2bEBkZCSioqKMyyQmJkKv12PTpk0AAG9vb5SX\nl7f7rM2bNyMgIAA/+clPTAP0w5z9/ZoNzVh/aD3O3zyPrKeyMNJ5ZL/++UREvWXVOXtXV1cA4h45\nFRUVyMnJgVqtNllGrVYjLS0NWq0WqampCAgIAADU19fj7t27AIBbt24hOzsbkZGRFv0wfcVB7oD3\nl7yPkIdCMH/PfFTVV0kdiYioT3U5jbNz507Ex8dDp9MhISEBbm5uSEpKAgDEx8cjJCQEs2fPRnBw\nMJRKJZKTxfPSXL9+HU888QQAYPTo0XjppZcwYcKEPvxRLCOTybAzYidePfYqNB9pkPN0DsaNGCd1\nLCKiPjGoD6rqrv/K/y/sObsHR+OOYoKr7QxIREQdsbQ7e72BdjB4NfRVuDi5IPSjUOQ+nQtvpbfU\nkYiIrIpl/71Nj2+CwkkBzR5xSsffzb/rNxERDRAs+zbWB6+Hi5ML5u+Zj6ynsjBt7DSpIxERWQXL\n/j5x0+KgcFQgPDkcn8Z+ipCH+v+cPkRE1sayN2PlIyvh7OiMJalLkPajNMzxnCN1JCKiXuE5fzsQ\n7ReNlCdS8MTHTyD3Sq7UcYiIeoVl34mF3gvxtx/9DU+mPYnMi5lSxyEi6jGWfRfmeM5B5pOZWJex\nDn8t/qvUcYiIeoRz9t0Q8lAIPvvxZ4hMiUSDvgFx0+KkjkREZBGWfTdNGzsNx+KOITw5HA26BsQH\nx0sdiYio21j2FghwD0DemjyE7QtDva4emx7fJHUkIqJu4blxeuBa9TWE7Q1D3LQ4vDrnVchkMqkj\nEZGdsbQ7WfY99O3dbxG2LwxL/ZZi+/ztLHwi6lcs+35UVV+F8H3hmOM5B+9EvAO5jDs3EVH/YNn3\ns+8av8OilEWYMmYK/hz1ZzjIHaSORER2gGUvgbtNd7F0/1I8OOJB7Fm2B45ybvcmor5l1csSUveM\nGDoCh548BG29Fqs+WYV7zfekjkREZIJlbyUuTi5IX50Og2DAsv3L0KBrkDoSEZERy96KhjoOxccr\nPoarsyuiUqNQe69W6khERABY9lbn5OCE5B8mY9KoSYhIjkB1Y7XUkYiIWPZ9wUHugA+iP8Bj4x7D\ngr0LoK3XSh2JiOwcy76PyGVy/DHyj1jgtQCaPRpcr70udSQismMs+z4kk8nw2wW/xUrVSsz9aC4q\nayqljkREdopl38dkMhl+NfdX+OljP0Xoh6G4cueK1JGIyA7x6J9+8tIPXoLCSYG5H81FztM58Hfz\nlzoSEdkRln0/+tmMn8HFyQXz98zHkR8fwVSPqVJHIiI7wbLvZ89MfwYKRwXC94Uj88lMBD8YLHUk\nIrIDLHsJrJqyCgonBRanLMbfV/0dsybOkjoSEQ1yXW6gzc/PR0BAAHx9fZGYmGh2ma1bt8LLywtB\nQUEoLS01ea25uRmBgYGIjo62TuJBYqnfUiQ/kYxlB5bh6JWjUschokGuy7LfuHEjkpKSkJubi3ff\nfRdVVVUmrxcWFuLEiRM4ffo0tmzZgi1btpi8vmvXLqhUKl7cw4xw73Ck/SgNsWmxOHTxkNRxiGgQ\n67Tsq6vFQ/1DQ0Ph6emJ8PBwFBQUmCxTUFCAFStWQKlUIjY2FiUlJcbXKisrcfjwYTz33HMD/jTG\nfSXUMxSfxn6KtRlrkXYhTeo4RDRIdVr2RUVF8Pdv3UVQpVLh1KlTJssUFhZCpVIZH7u7u+PKFXFf\n8k2bNmHHjh2Qy7k7f2fU49XI/nE2Xsh6AcnnkqWOQ0SDUK830AqCYHatPTMzE2PGjEFgYCDy8vI6\n/Yxt27YZ72s0Gmg0mt7GGnCmj52Oo3FHEb4vHPW6evw06KdSRyIiG5KXl9dll3am0ytVVVdXQ6PR\n4MyZMwCADRs2IDIyElFRUcZlEhMTodfrsWnTJgCAt7c3ysvL8corr2Dfvn1wdHREY2MjampqsHz5\ncuzdu9c0wCC4UpU1Xb59GWF7w7Bp5iZsnLlR6jhEZKOseqUqV1dXAOIeORUVFcjJyYFarTZZRq1W\nIy0tDVqtFqmpqQgICAAAbN++HV999RWuXr2K/fv3Y/78+e2KntrzUfrg+DPH8aeiP2H7ie1SxyGi\nQaLLaZydO3ciPj4eOp0OCQkJcHNzQ1JSEgAgPj4eISEhmD17NoKDg6FUKpGcbH7OmXvjdJ/nSE8c\nf+Y4wvaGoV5Xj1/P+zX//oioV3jBcRt2q+4WwpPDoXlYgz+E/4GFT0RGlnYny97G3Wm4g0UpizB9\n7HT8d9R/Qy7jnk1ExLIflO423cWS/10CT1dP7I7ZDUc5z3JBZO+suoGWbMOIoSOQ9VQWbtTdQGxa\nLO4135M6EhENMCz7AcLFyQUZqzNwr/kenjjwBBr1jVJHIqIBhGU/gAx1HIpPVn6C4UOGI/p/o1F3\nr07qSEQ0QLDsBxgnByekPJGC8Q+MR2RKJGqaaqSOREQDAMt+AHKQO+AvS/+CqR5TsWDvAtxuuC11\nJCKycSz7AUouk+NPi/4EzcMazNszDzfrbkodiYhsGMt+AJPJZPhd2O/wQ/8fIvTDUHxd87XUkYjI\nRrHsBziZTIZtmm1YG7gWoR+FouK7CqkjEZEN4tE5g8QvZ/0SLk4uCP0wFLlxuZg8erLUkYjIhrDs\nB5EXQl6Ai5ML5u2Zh+wfZ2PKmClSRyIiG8GyH2TWBq6FwlGBsL1hOPTkIQQ9GCR1JCKyASz7QSj2\n0Vg4OzpjUcoiHFx9ED+Y8AOpIxGRxLiBdpD6YcAPsfeHexGzPwbHrh6TOg4RSYxlP4hF+kTiryv/\nilWfrELWpSyp4xCRhFj2g5zmYQ0yVmdgzcE1+FvJ36SOQ0QS4Zy9HXh8wuM48uMjWJyyGI36Rjz5\n6JNSRyKifsaytxOPjXsMuXG5iEiOQL2uHs899pzUkYioH7Hs7ciUMVPwjzX/MF7IPEGdIHUkIuon\nLHs7M3n0ZOQ/m48FexegXlePl2e/LHUkIuoHvAatnfq65muE7QvDStVKvKF5AzKZTOpIRGQBXnCc\nuu1m3U0s3LcQYV5heHvh2yx8ogGEZU8Wud1wG5HJkQh6MAjvLn4Xchn3xiUaCFj2ZLGaphpEpUbB\ne5Q3/mfp/8BRzk05RLaOZU89UnevDssOLINSoUTyD5Ph5OAkdSQi6oSl3cnv7AQAGDZkGD6N/RT1\nunos/3g5GvWNUkciIiti2ZORs6Mz0n6UBmdHZyz936Wo19VLHYmIrKTLss/Pz0dAQAB8fX2RmJho\ndpmtW7fCy8sLQUFBKC0tBQA0NjZCrVZj+vTpmDlzJt555x3rJqc+McRhCFKXp2Ls8LGITI5ETVON\n1JGIyAq6nLMPDAzErl274OnpiYiICJw8eRJubm7G1wsLC7F582ZkZGQgOzsbKSkpyMzMBADU19fD\nxcUFTU1NCAoKwsGDB+Hj42MagHP2NskgGPCzQz/DmetnkPVUFpQKpdSRiKgNq87ZV1dXAwBCQ0Ph\n6emJ8PBwFBQUmCxTUFCAFStWQKlUIjY2FiUlJcbXXFxcAAC1tbXQ6/UYOnRot4ORtOQyOd6Leg+z\nJszC/D3zcbPuptSRiKgXOi37oqIi+Pv7Gx+rVCqcOnXKZJnCwkKoVCrjY3d3d5SXlwMAmpubMW3a\nNHh4eOCFF17AhAkTrJmd+phMJsPvw3+PaL9ozP1oLr65+43UkYioh3q9Q7UgCO2+SrQcieng4ICz\nZ8+ioqICixcvxqxZsxAYGNjuM7Zt22a8r9FooNFoehuLrEQmk+HX834NF0cXhH4YiqNxR+E50lPq\nWER2Jy8vD3l5eT1+f6dz9tXV1dBoNDhz5gwAYMOGDYiMjERUVJRxmcTEROj1emzatAkA4O3tbVyz\nb2vLli3w8fHB+vXrTQNwzn7A2HVqF/5w6g/IfToXvqN9pY5DZNesOmfv6uoKQNwjp6KiAjk5OVCr\n1SbLqNVqpKWlQavVIjU1FQEBAQCAqqoqfPfddwAArVaLzz77DDExMRb9MGRbNs7ciNfmvAbNHg2K\nbxZLHYeILNDlNM7OnTsRHx8PnU6HhIQEuLm5ISkpCQAQHx+PkJAQzJ49G8HBwVAqlUhOTgYAfPvt\nt1izZg2am5sxduxYbNmyBePGjevbn4b63E+CfgKFkwIL9i5A1lNZCBzXflqOiGwPT5dAPZJ2IQ0/\nO/wzpK9Ox8zxM6WOQ2R3eG4c6jeHLx3GmoNr8MnKTzD34blSxyGyKzw3DvWbxb6LsX/5fqz46wpk\nX86WOg4RdYJlT72ywGsBDq46iKf//jTSS9OljkNEHeCJy6nXZk2chcNPHcaS1CVo0Ddg9ZTVUkci\novuw7Mkqgh8MRs7TOYhMiUSDrgHPBj4rdSQiaoNlT1bzqMejOBZ3DAv3LUS9rh4/D/m51JGI6Hss\ne7IqPzc/HH/mOBbsXYB6XT1+MesXUkciInDXS+ojlTWVCNsbhtgpsfjV3F8Zz5dERNbB/ezJZtyo\nvYGF+xYi0icSb4W9xcInsiKWPdkUbb0WkSmRUD+kxh8X/RFyGff2JbIGlj3ZnOrGakSlRmHy6Mn4\nIPoDOMgdpI5ENOCx7Mkm1d2rw9L9SzFm2BjsXbYXTg5OUkciGtB4ugSyScOGDENmbCZqmmqw8q8r\nUa+rlzoSkV1h2VO/UTgp8PdVf8cDQx/AuN+Pw/KPl2Pv2b3Q1muljkY06HEahyRxq+4WDl06hPSy\ndBy9chSPjXsMMX4xiPGPgdcoL6njEdk8ztnTgNOga0DulVwcLDuIT8s+hcdwD7H4/WIQ/GAwd9kk\nMoNlTwNas6EZpypPIb0sHell6eKGXb+liPGLgeZhDYY6DpU6IpFNYNnToFJaVYr0UrH4L9y6gAif\nCMT4xWCx72KMdB4pdTwiybDsadC6UXsDn178FOll6ThecRwhD4UY5/knuk6UOh5Rv2LZk12ou1eH\nz8o/w8Gygzh08RAmuE4wzvNPHzud8/w06LHsye7oDXp8fu1z4zy/3qA3Fn+oZygP4KJBiWVPdk0Q\nBBTfKjbO81++fRmLfBchxi8GkT6ReGDoA1JHJLIKlj1RG1/XfG2c5//82uf4wYQfIMYvBkv9luKh\nBx6SOh5Rj7HsiTpQ01SD7MvZSC9Lx+FLh+Gt9DZO90wZM4Xz/DSgsOyJukHXrMOJayfEef7SdDjI\nHYzFP2viLDjKeRE3sm0seyILCYKAszfOGuf5r1VfQ9TkKMT4xSDcOxzDhwyXOiJROyx7ol66Vn0N\nGWUZSC9LR0FlAUI9QxHjF4Nov2iMHT5W6nhEAFj2RFb1XeN3yLqUhfSydGSXZ8Pfzd843ePv5s95\nfpKM1c9nn5+fj4CAAPj6+iIxMdHsMlu3boWXlxeCgoJQWloKAPjqq68wb948PPLII9BoNEhNTe12\nKCJbMdJ5JGIfjcX+FftxY8sNvKF5A1/VfIWF+xbC709++EXOL3Dy2kk0G5qljkrUqS7X7AMDA7Fr\n1y54enoiIiICJ0+ehJubm/H1wsJCbN68GRkZGcjOzkZKSgoyMzNx/fp1XL9+HdOnT0dVVRVCQkJw\n9uxZjBgxwjQA1+xpABIEAV9++yXSy9JxsPQgrtdeR7RfNGL8YhDmFQYXJxepI9IgZ9VpnOrqamg0\nGpw5cwYAkJCQgIiICERFRRmXSUxMRHNzM1588UUAgLe3N8rLy9t9VnR0NDZv3ox58+b1KjCRLbp6\n56rxCN5/ffMvzJ80HzF+MVgyeQnch7lLHY8GIatO4xQVFcHf39/4WKVS4dSpUybLFBYWQqVSGR+7\nu7u3K/vLly+juLgYISEh3Q5GNJBMGjUJL858Ef9Y8w9UvFiB5QHLcejSIfgk+mDOh3Pw9j/fxiXt\nJaljkh3r9c7EgiC0G13abrS6e/cuVq1ahXfeeQfDhg0z+xnbtm0z3tdoNNBoNL2NRSQZpUKJp6c9\njaenPY1GfSOOXT2G9LJ0hH4UilHOoxDjL27gDXkoBHIZrwxK3ZOXl4e8vLwev9+iaZwNGzYgMjKy\n3TSOXq/Hpk2bAJhO4+h0OkRFRWHx4sXGaZ52ATiNQ3bCIBhQ9HWRcbrndsNtRE+OxjL/ZZg/aT6c\nHZ2ljkgDiFWncVxdXQGIe+RUVFQgJycHarXaZBm1Wo20tDRotVqkpqYiICAAgLjGv27dOkyZMqXD\noieyJ3KZHOrxamxfsB3FPytG/jP58Bvth9+c/A083vbAio9XYN/ZfbjdcFvqqDQIdbk3zvHjx7F+\n/XrodDokJCQgISEBSUlJAID4+HgAwMsvv4wDBw5AqVQiOTkZAQEBOHnyJEJDQzF16lTjtM5vfvMb\nREZGmgbgmj0RbtXdQubFTKSXpePY1WMIejDIuD//pFGTpI5HNogHVRENcPW6euReyUV6WTo+LfsU\nY4ePNc7zB40L4oFcBIBlTzSodHQB9mX+y6B5WIMhDkOkjkgSYdkTDWJtL8BeUlWCCG/xAuyLfBfx\nAux2hmVPZCeu1143zvMfrzgO9Xi18cIsvAD74MeyJ7JDtfdq8Vn5Z0gvS8ehi4cw0XWiuIHXPwbT\nPKZxnn8QYtkT2bn7L8DebGg2buCdM3EOL8A+SLDsicjo/guwl98pxyKf1guwjxg6ousPIZvEsiei\nDt1/AfZZE2cZ5/kfHPGg1PHIAix7IuqWmqYaHLl8BOll6ci6lAUfpY9xnv8R90c4z2/jWPZEZDFd\nsw75/8k3zvPLZXJM9ZiKyaMnw2+0n3hz84O7izsHARvBsieiXhEEAaVVpbhw6wIuai+iTFsm3qrK\nIEBoNwBMHj0ZvkpfKJwUUke3Kyx7IuoTgiCgqr6q3QBQpi3D1TtXMXb4WPi5iYOAcUBw88P4B8bz\nVM59gGVPRP1Ob9Cj4rsKY/kbB4SqMlQ3VcNX6SsOAN8PBi0Dgquzq9TRByy7L/vaWuA//wFUKoBT\ni0TSq2mqwUXtRZMBoGVAGDFkRLsBwM/ND5NGTuLxAF2w+7L/8kvgiScAQQAWLQIWLwbmzweGD7fa\nH0FEViAIAr6++7Wx/I3fCKrK8M3db/DwyIeN2wS4kbg9uy97QCz60lLg8GHxVlgIzJwpFv+iRYCf\nH9f6iWxZo74Rl29fRllVGTcSd4Blb8bdu8DRo2LxZ2UBTk6txT9vHuDi0qd/PBFZiSAI0DZoTb4N\ntAwIV+5csauNxCz7LggCcP68WPqHDwP/+hcwe3brlI+PT79FISIrsreNxCx7C1VXA7m5rWv9w4e3\nFv/cuYAzrwFNNOANxo3ELPteEATg7NnW4j97FggNbZ3ymcRLgRINKgN5IzHL3oru3AE++0ws/qws\nQKlsXeufMwcYOlTqhETUVyzdSOw32g8+Sp9+20jMsu8jBgNw5kzrHj4XLgAaTeta/0ReGIjILtjK\nRmKWfT+pqhLX+g8fBrKzAQ+P1uKfNQsYwutAE9mdthuJ7/82YO2NxCx7CTQ3A6dPt871X7wILFgg\nFv+iRcBDD0mdkIikVtNUg0vaS+3OK9TTjcQsextw86a4tn/4sLj2P2FC61z/448Djo5SJyQiW3H/\nRuK2ewx1tpHYY7gHy96W6PXiEbwtc/0VFUBYmFj8kZHA2LFSJyQiW9WykbhlD6G23wruvHyHZW/L\nvv0WOHJELP7cXMDLq3WuX60GHBykTkhEtk4QBMjlcpb9QKHTAV980Xo0b2UlEB4uln9EBDBmjNQJ\nichWcc5+AKusbF3rP3pUPGHb4sXiLTgYkA+uU3sQUS+w7AeJe/eAzz9vneu/eVOc41+0SFzrHz1a\n6oREJCVLu7PLdcX8/HwEBATA19cXiYmJZpfZunUrvLy8EBQUhNLSUuPza9euhYeHBx599NFuByLR\nkCHiGTl37ACKi8VdO2fNAg4cEE/b8IMfAL/+tXgiN4NB6rREZOu6XLMPDAzErl274OnpiYiICJw8\neRJubm7G1wsLC7F582ZkZGQgOzsbKSkpyMzMBACcOHECw4cPR1xcHP7v//7PfACu2VusqQnIz2+d\n6//uO3Gtf/FiYOFCYNQoqRMSUV+z6pp9dXU1ACA0NBSenp4IDw9HQUGByTIFBQVYsWIFlEolYmNj\nUVJSYnxtzpw5GMXmsbqhQ8VS/8MfxIu0/POfwIwZwJ494mkb5swBfvMb4N//Fk/uRkTUadkXFRXB\n39/f+FilUuHUqVMmyxQWFkKlUhkfu7u7o7y83MoxqTNeXsDPfw4cOiTO7b/6qriL54oVwPjxwLp1\nQFqaeDpnIrJPvT6WUxCEdl8lLD3157Zt24z3NRoNNBpNb2PZLYVCnNKJjAT++Efg0iVxqueDD4Bn\nngGCglr38HnkEV6ekWigyMvLQ15eXo/f3+mcfXV1NTQaDc6cOQMA2LBhAyIjIxEVFWVcJjExEXq9\nHps2bQIAeHt7m6zZV1RUIDo6mnP2NqCuDsjLa93DR69vLf4FC3hRdqKBxKpz9q6u4pnY8vPzUVFR\ngZycHKjVapNl1Go10tLSoNVqkZqaioCAgB7Epv4wbBgQFQW8+y5w5QqQkyPuy5+YCIwbJ57G4fe/\nB0pKONdPNNh0uTfO8ePHsX79euh0OiQkJCAhIQFJSUkAgPj4eADAyy+/jAMHDkCpVCI5OdlY+LGx\nsTh+/Di0Wi3GjBmDN998E88++6xpAK7Z24S7d4Fjx1r38HFwaD1527x54kBBRLaDB1VRrwmCuG9/\nS/GfPi3u199yDh9fX871E0mNZU9WV1PTelH2w4cBF5fWtX6NRtwoTET9i2VPfUoQgHPnWi/U8u9/\nA7Nnt27o9fKSOiGRfWDZU7+6c0fc0NtyUXZX19biDw3lRdmJ+grLniTTclH2lrn+8+fFaZ6WKR9P\nT6kTEg0eLHuyGVpt60XZjxwRz8/fUvxTpwJKJU/bTNRTdl/21xob8fGtW/BRKOCjUMDL2RkuvPyT\n5JqbxTN0thT/xYtAbS3g7g54eHR9Gz2aV/Eiasvuy768oQF/+vprXG5owOWGBlxtbISbkxN8FAr4\nfj8AtNy8FQoMZ4NIpqlJPJfPjRtd36qrxcL38BCv29vZwODuzoGBBj+7L/v7NQsCKpuacLmhAZe+\nHwBabuUNDRjp6GgyALQMCt4KBVwde33qILISnQ64dQu4fr3rgeHOHfE0z20HgI4GCHd3wMlJ6p+O\nyHIsewtqVebJAAANQklEQVQYBAHf3LtnMgBcbmjApfp6XG5owDAHh3YDQctNyYawWXo9UFUlFn9X\ng4NWK+5B1NG3hLaDxJgx4kVliGwBy95KBEHAdTMDQcs3BEeZzOzUkI9CATcnJ4vP/EnSaG4WC7/t\nANDRAHHrFjBiRNfbF1oGCO52Sn2JZd8PBEFAlU5ndmroUkMDDIJgOi3k4mK878GBYMAyGIDbt9sP\nAuYGh5s3xSONu7Px2cNDXJbIEix7G3D7+4HA3DeCBoOhw6mhB4cMgZwDwaAgCOK2g46mj+4fIIYO\n7f7AwFNRE8Cyt3nf6fUoNzMQXG5oQLVeD+8OBoLxQ4fCgQPBoCQI4t5GnW1baDs4yOXd2yvJw0Oc\nduI/m8GJZT+A1TY3GweC+6eHqnQ6THJ2NrudYKKzMxz5G20XBEE8HXVXeyS1DA4GQ/f2SvLwEDdU\n85/RwMGyH6Tqm5txpbHR7J5DN3Q6TBw61Ow3gknOznDiYap2q7a2e8cxXL8u7t46ZkzrnkcjRojX\nMWh7Gz68/XPmXnNx4dHRfY1lb4caDQZc7WBqqLKpCeM7GggUCjjzN5K+V19vuudRba14q6szf+vs\ntYYGwNnZ8kGiO69xIBGx7MnEPYMB//n+G8H9U0P/aWzE2CFDTPYW4mkmyBoMBnHw6MlA0dlrbQcS\naw4gA3EgYdlTt+kFAdfMTA21nGZi9PenmWh7ZDFPM0FS62wg6c0gUlsLNDaKF+Ox5gDS8ppCYd2B\nhGXf2Ah89514vDyPaumxtqeZuP9W3tAAVzOnmWi58TQTNFB1NJB0Z6Do6jVzA0lvBpBHH7X3sv/i\nC2DZMvHoFycnsfSVSvG/3b0/ahTAwuqQQRDwbZuji++fHlLI5WaPLOZpJsie9WQg6ey14mJ7L/sW\ngiD+jdy5Ixb/nTvt73f0WnW1OHln6QChVIr7rw2USb8+IAgCbnR0UFl9PRy+P82Eu5MThjk4wMXB\nAcPkcpP7Lg4O4uPvn297v+1zCrmcB6GR3eI0jjUYDOJVtrsaFMwNHnfvAg880PWgYO7+ID8CRhAE\naPV6XKqvR5VOh3qDAXXNza3/bW5G3X3365ubTZZpe7/RYIBzy+DQZpAwN2CYHTi68T4eyEa2imUv\nNb1e/GbQk28UTU3AyJGWDRAt9xWKQT1QmGMQBDS0DAgWDBKWDC5OMlmPBglzA425bzE8BoJ6imU/\nkN27ZzogdPcbxe3b4rSVpQNEy40bss0SBAGNBkOvv4F09j4Z0KNBoruDy1CZjCfeG6RY9vaqocHy\nKaeWx0OGdH+bRNv7I0dyQ3YvCIIAnSBY5RtIR+/TC0KPBgkXuRxD5HI4yWTGm6NMBqf7nmv72NHM\nc20fO8pknBazIpY9WaZlQ7alU0537oi7uA4b1rPtEy4u4t5SnMboU7rvv5n05BuIzmCA7vsBSScI\n0AtCu+faPtabee7+xzKgywHB3EDS8tjk9R4u09WgZcnA5ijhNyeWPfWf+zdkW/KNoqFBPBmLXC6W\nvpOT+A2j5X5nt+4u1xef2dFyPMisW5q7GBD0HQwSLY9NXjezTFcDkjUGrbYZmgXB7ADV1aBljYEt\nYcIEi7qT38Gp5+RycSpn5Ehg0iTL3y8I4qWi7t0Ti787t+4u23a5piZxh+XefmZnywK2NSj19DMd\nHPp0Q7/D91M5g+WcTIYOBqi+GLQamptR0+axpbpcs8/Pz0d8fDz0ej0SEhKwYcOGdsts3boVBw4c\nwKhRo5CSkgJ/f/9uv3egrNnn5eVBo9FIHaNLzGld3c7Z3Gz9AcSCZfMqK6FRKnv/mQaDafHL5eKt\nq/vdWDavthaaUaMsfp81/mxLPiPv0iVoVCpJ/uxu35fJIJPLrbtmv3HjRiQlJcHT0xMRERGIjY2F\nm5ub8fXCwkKcOHECp0+fRnZ2NrZs2YLMzMxuvXcgGXTlJLFBl9PBQbw5O/d5JnPytm2DZtu23n+Q\nwWBa/AaDOJDdf9/cc13cz/vLX6BZs6ZXn9GjHOZ+ls5yfvklNN98Y50/u68+owcryJ2WfXV1NQAg\nNDQUABAeHo6CggJERUUZlykoKMCKFSugVCoRGxuL1157rdvvJSIbI5eLu+L2xe64OTnA3LnW/1xr\n27ZNvNkyQbB454ZOly4qKjJOyQCASqXCqVOnTJYpLCyESqUyPnZ3d0d5eXm33ktERD3Qg+0qvd5A\nKwhCu3kjS3dFGigHfbzxxhtSR+gW5rQu5rSegZARGDg5LdFp2c+YMQO/+MUvjI+Li4sRGRlpsoxa\nrcaFCxcQEREBALh16xa8vLygVCq7fC+AAbFxlohooOt0GsfV1RWAuFdNRUUFcnJyoFarTZZRq9VI\nS0uDVqtFamoqAgICAAAjR47s8r1ERNQ/upzG2blzJ+Lj46HT6ZCQkAA3NzckJSUBAOLj4xESEoLZ\ns2cjODgYSqUSycnJnb6XiIgkIEhIr9cL06dPF5YsWSJljE7V1tYKcXFxgq+vrxAQECB88cUXUkcy\n6/333xcef/xx4bHHHhM2btwodRyjZ599VhgzZowwZcoU43M1NTXC0qVLhQkTJggxMTHC3bt3JUwo\nMpdzy5Ytgr+/vxAYGChs3LhRqK+vlzChyFzOFm+//bYgk8kErVYrQbJWHWXcvXu34O/vL6hUKuGX\nv/ylROlamctZXFwsREVFCdOmTROWLFkiXLhwQcKEomvXrgkajUZQqVTC3LlzhZSUFEEQLP89kvQw\ntl27dkGlUtn0BtrXX38dEydOxLlz53Du3DnjNJUtuX37NrZv346cnBwUFRXh4sWLyM7OljoWAODZ\nZ5/FkSNHTJ577733MHHiRFy6dAnjx4/Hn//8Z4nStTKXMzw8HMXFxTh9+jTq6uqQmpoqUbpW5nIC\nwFdffYWcnBx4enpKkMqUuYznz5/H+++/j4yMDBQXF2PLli0SpWtlLuebb76JuLg4/Pvf/8aTTz6J\nN998U6J0rZycnPDOO++guLgYn3zyCV577TXcvXvX4t8jycq+srIShw8fxnPPPWfTG2lzc3Pxyiuv\nwNnZGY6OjsbtGLZEoVBAEARUV1ejoaEB9fX1GDVqlNSxAABz5sxpl6WwsBDr1q3D0KFDsXbtWhQU\nFEiUrpW5nAsXLoRcLodcLkdERASOHz8uUbpW5nICwObNm/G73/1OgkTtmcuYlZWFdevWwdfXF4C4\ni7bUzOV0dXWFVquFwWCAVqu1id+jsWPHYvr06QAANzc3PPLIIygqKrL490iyst+0aRN27NgBuQ2f\nI6OyshKNjY14/vnnoVar8dZbb6GxsVHqWO0oFAq89957ePjhhzF27FjMmjULISEhUsfqUNtjMPz9\n/VFYWChxoq598MEHiI6OljqGWenp6Rg/fjymTp0qdZQOffbZZzh//jyCg4Px3HPP4cKFC1JHMmvH\njh3YtWsXRo0ahXfffRdvvfWW1JFMXL58GcXFxQgJCbH490iSps3MzMSYMWMQGBho02v1jY2NuHjx\nIpYvX468vDwUFxfj448/ljpWO7du3cLzzz+PCxcuoKKiAl988QUOHTokdawO2fL/c3PefPNNjBgx\nAitXrpQ6Sjv19fXYvn27yX7htvj329jYiNu3b+PEiROIiYnBCy+8IHUks9auXYsNGzZAq9Vi/fr1\nWLdundSRjO7evYtVq1bhnXfewfDhwy3+/yxJ2f/zn/9ERkYGJk2ahNjYWBw7dgxxcXFSROmUj48P\n/Pz8EB0dDYVCgdjYWGRlZUkdq53CwkLMnDkTPj4+GD16NFauXIn8/HypY3VoxowZKCkpAQCUlJRg\nxowZEifq2EcffYTs7GyTvcxsSXl5OSoqKjBt2jRMmjQJlZWVCAoKws2bN6WOZmLmzJlYtWoVFAoF\noqOjUVpaapPfkk+ePIm1a9fC0dER69ats5nfI51Oh+XLl+Ppp59GTEwMAMt/jyQp++3bt+Orr77C\n1atXsX//fsyfPx979+6VIkqXfH19UVBQAIPBgEOHDiEsLEzqSO3MmTMHp0+fxu3bt9HU1ISsrCyE\nh4dLHatDarUau3fvRkNDA3bv3o2ZM2dKHcmsI0eOYMeOHcjIyICzRCc468qjjz6KGzdu4OrVq7h6\n9SrGjx+PL7/8EmPGjJE6monHH38cWVlZEAQBBQUF8Pb2tsm/03nz5iEjIwOAOD22cOFCiROJ39TW\nrVuHKVOm4MUXXzQ+b/HvUV/uMtQdeXl5QnR0tNQxOlRWViao1Wph2rRpwksvvSTU1tZKHcmsDz/8\nUAgNDRWCg4OF1157TWhubpY6kiAIgrB69Wph3LhxwpAhQ4Tx48cLu3fvtsldL1tyOjk5CePHjxf+\n8pe/CD4+PsLEiROF6dOnC9OnTxeef/55qWOa/ftsa9KkSZLvemkuo16vF+Lj4wV/f39h2bJlQmFh\noaQZ2+Zs+X++e/du4fz588Lq1auFqVOnCk8++aRQUlIidUzhxIkTgkwmE6ZNm2b8t5iVlWXx75Hk\nV6oiIqK+Z7u7whARkdWw7ImI7ADLnojIDrDsiYjsAMueiMgOsOyJiOzA/wfai5Sp3wLX9AAAAABJ\nRU5ErkJggg==\n" }, @@ -165,9 +167,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Compare the Relative Importance of Kbc and Kce\n", "\n", - "#Variable declaration\n", "D=0.69; #Diffusion coefficient of gas in cm**2/s\n", "umf=1.0; #Velocity at minimum fluidization condition in cm/s\n", "ephsilonmf=0.5; #Void fraction at minimum fluidization condition\n", @@ -231,9 +231,7 @@ "cell_type": "code", "collapsed": false, "input": [ - "#Compare Interchange Rates for Adsorbed and Nonadsorbed Gases\n", "\n", - "#Variable declaration\n", "Kbe=[0.028,0.05]; #Reported range for gas interchange coefficient between bubble and emulsion\n", "uo=0.30; #Superficial gas velocity in m/s\n", "db=0.13; #Equilibrium bubble size in m\n", |