diff options
author | kinitrupti | 2017-05-12 18:53:46 +0530 |
---|---|---|
committer | kinitrupti | 2017-05-12 18:53:46 +0530 |
commit | 6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d (patch) | |
tree | 22789c9dbe468dae6697dcd12d8e97de4bcf94a2 /Fluid_Mechanics_by_John_F._Douglas/Chapter_5.ipynb | |
parent | d36fc3b8f88cc3108ffff6151e376b619b9abb01 (diff) | |
download | Python-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.tar.gz Python-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.tar.bz2 Python-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.zip |
Removed duplicates
Diffstat (limited to 'Fluid_Mechanics_by_John_F._Douglas/Chapter_5.ipynb')
-rwxr-xr-x | Fluid_Mechanics_by_John_F._Douglas/Chapter_5.ipynb | 517 |
1 files changed, 517 insertions, 0 deletions
diff --git a/Fluid_Mechanics_by_John_F._Douglas/Chapter_5.ipynb b/Fluid_Mechanics_by_John_F._Douglas/Chapter_5.ipynb new file mode 100755 index 00000000..b12249f7 --- /dev/null +++ b/Fluid_Mechanics_by_John_F._Douglas/Chapter_5.ipynb @@ -0,0 +1,517 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:04c1d9ce4358772aaf36727d98b4d1c000b18de791fe80fc4e6e1ac3cabc0050" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 5: The Momentum Equation and its Applications" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.1, Page 119" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import math\n", + "\n", + " #Initializing the variables \n", + "\n", + "l = 60 ; #Length of pipeline\n", + "rho = 1000; # Density of liquid\n", + "a = 0.02; #Acceleration of fluid\n", + "\n", + " #Calculations\n", + "delP = rho*l*a; #Change in pressure\n", + "print \"Increase of pressure difference required (kN/m2):\",delP/1000" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Increase of pressure difference required (kN/m2): 1.2\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.2, Page 121" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import math\n", + "\n", + " #Initializing the variables \n", + "v = 5; #Velocity of jet \n", + "rho = 1000; #density of water\n", + "d = 0.025; #Diameter of fixed nozzle\n", + "\n", + " #Calculations\n", + " #--Part(a) Variation of force exerted normal to the plate with plate angle--//\n", + "header = \"Theta\\t vcos(x)\\t pAv\\t Force\"\n", + "unit = \"deg\\t m/s\\t kg/s\\t N\"\n", + "\n", + "A = math.pi*d**2/4;\n", + "x = range(0,91,15);\n", + "for c in range(len(x)):\n", + " x[c]=1.0*x[c]\n", + "m = round(rho*A*v,2);\n", + "ma = [m,m,m,m,m,m,m];\n", + "vcomp=[]\n", + "force=[]\n", + "for c in x:\n", + " vcomp.append(round(v*math.cos(math.radians(c)),2))\n", + " force.append(round((rho*A*v**2)*math.cos(math.radians(c)),2))\n", + "\n", + "print header\n", + "print unit\n", + "for c in range(len(x)):\n", + " mm=str(x[c])+' \\t '+str(vcomp[c])+' \\t'+str(ma[c])+' \\t'+str(force[c])\n", + " print mm\n", + "##value = [x,vcomp,ma,force]\n", + "##print value,unit, header\n", + "\n", + " #--Part(b) Variation of force exerted normal to the plate with plate velocity--// \n", + "header =\"Theta\\t v\\t u\\t v-u\\t pA(v-u)\\t Force\\t\"\n", + "unit =\"deg\\t m/s\\t m/s\\t m/s\\t kg/s\\t N\\t\"\n", + "x = [0,0,0,0,0]\n", + "v = [5,5,5,5,5]\n", + "u = range(2,-3,-1);\n", + "D=[]\n", + "Prod=[]\n", + "Force=[]\n", + "for c in range(5):\n", + " D.append(v[c]-u[c])\n", + " Prod.append(round((rho*A*D[c]),2))\n", + " Force.append(round((rho*A*D[c]**2),2))\n", + " \n", + "print '\\n',\"(b)\",\"\\n\",header\n", + "print unit\n", + "for c in range(len(x)):\n", + " mm=str(x[c])+' \\t '+str(v[c])+' \\t '+str(u[c])+' \\t '+str(D[c])+' \\t '+str(Prod[c])+' \\t '+str(Force[c])\n", + " print mm\n", + " \n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Theta\t vcos(x)\t pAv\t Force\n", + "deg\t m/s\t kg/s\t N\n", + "0.0 \t 5.0 \t2.45 \t12.27\n", + "15.0 \t 4.83 \t2.45 \t11.85\n", + "30.0 \t 4.33 \t2.45 \t10.63\n", + "45.0 \t 3.54 \t2.45 \t8.68\n", + "60.0 \t 2.5 \t2.45 \t6.14\n", + "75.0 \t 1.29 \t2.45 \t3.18\n", + "90.0 \t 0.0 \t2.45 \t0.0\n", + "\n", + "(b) \n", + "Theta\t v\t u\t v-u\t pA(v-u)\t Force\t\n", + "deg\t m/s\t m/s\t m/s\t kg/s\t N\t\n", + "0 \t 5 \t 2 \t 3 \t 1.47 \t 4.42\n", + "0 \t 5 \t 1 \t 4 \t 1.96 \t 7.85\n", + "0 \t 5 \t 0 \t 5 \t 2.45 \t 12.27\n", + "0 \t 5 \t -1 \t 6 \t 2.95 \t 17.67\n", + "0 \t 5 \t -2 \t 7 \t 3.44 \t 24.05\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.3, Page 123" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import math\n", + "\n", + " \n", + "\n", + " #Initializing the variables \n", + "x = 60; #Angle of deflection theta\n", + "rho = 1000; # Density of liquid\n", + "V1 = 30; #Acceleration of fluid\n", + "V2 = 25;\n", + "m = .8; #Discharge through A\n", + "\n", + " #Calculations\n", + "def Reaction(Vin , Vout):\n", + " R = m*(Vin -Vout) ;\n", + " return R\n", + "Rx = Reaction(V1,V2*math.cos(math.radians(x)));\n", + "Ry = -Reaction(0,V2*math.sin(math.radians(x)));\n", + "print \"Reaction in X-direction (N) :\",Rx\n", + "print \"Reaction in Y-direction (N) :\",round(Ry,2)\n", + "print \"Net Reaction (N) :\",round((Rx**2 +Ry**2)**0.5,2)\n", + "print \"Inclination of Resultant Force with x-direction (Degrees):\",round(180/math.pi*math.atan(Ry/Rx),2)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Reaction in X-direction (N) : 14.0\n", + "Reaction in Y-direction (N) : 17.32\n", + "Net Reaction (N) : 22.27\n", + "Inclination of Resultant Force with x-direction (Degrees): 51.05\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.4, Page 125" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import math\n", + "\n", + "\n", + "\n", + " #Initializing the variables \n", + "v1 = 36 ; #Exit velocity\n", + "u = 15; #Velocity of vane\\\n", + "x = 30; # Angle between vanes and flow\n", + "rho = 1000; # Density of water\n", + "d = .1; # Diameter of jet\n", + "\n", + " #Calculations\n", + "alp = (180/math.pi)*math.atan((v1*math.sin(math.radians(x))/(v1*math.cos(math.radians(x))-u)));\n", + "v2 = 0.85*v1*math.sin(math.radians(x));\n", + "bta = (180/math.pi)*math.acos((u*math.sin(math.radians(alp))/v2));\n", + "m = (rho*math.pi*v1*d**2)/4;\n", + "Vin = v1*math.cos(math.radians(x));\n", + "Vout = v2*math.cos(math.radians(90));\n", + "Rx = m*(Vin-Vout);\n", + "\n", + "\n", + "print \"Inlet Angle (Degrees) :\", round(alp,2)\n", + "print \"Outlet Angle (Degrees) :\", round(bta,2)\n", + "print \"Force exerted by vanes (N) :\", round(Rx) \n", + " " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Inlet Angle (Degrees) : 48.05\n", + "Outlet Angle (Degrees) : 43.18\n", + "Force exerted by vanes (N) : 8815.0\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.5, Page 127" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import math\n", + "\n", + "\n", + "\n", + " #Initializing the variables \n", + "rho = 850 ; # Density of liquid\n", + "a = 0.02 #Acceleration of fluid\n", + "x = 45 ;\n", + "d1 = .5 ;\n", + "d2 = .25;\n", + "p1 = 40*10**3;\n", + "p2 = 23*10**3;\n", + "Q = .45;\n", + " \n", + " #Calculations\n", + "A1 = (math.pi*d1**2)/4;\n", + "A2 = (math.pi*d2**2)/4;\n", + "v1 = Q/A1;\n", + "v2 = Q/A2;\n", + "\n", + "Rx = p1*A1 - p2*A2*math.cos(math.radians(x)) - rho*Q*(v2*math.cos(math.radians(x))-v1);\n", + "Ry = p2*A2*math.sin(math.radians(x)) + rho*Q*v2*math.sin(math.radians(x));\n", + "\n", + "print \"Resultant force on the bend (kN) :\",round((Rx**2 +Ry**2)**0.5/1000,3)\n", + "print \"Inclination of Resultant Force with x-direction (Degrees):\",round(math.atan(Ry/Rx)*180/math.pi)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Resultant force on the bend (kN) : 6.362\n", + "Inclination of Resultant Force with x-direction (Degrees): 31.0\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.6, Page 129" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import math\n", + "\n", + "\n", + "\n", + " #Initializing the variables \n", + "v = 4.9; #Velocity of Jet\n", + "rho = 1000; # Density of water\n", + "d = 0.05;\n", + "u = 1.2 # Velocity of tank\n", + " #Calculations\n", + "Vout = v;\n", + "Vin = 0;\n", + "m = rho*math.pi*d**2*v/4;\n", + "R = m*(Vout-Vin);\n", + "print \"Reaction of jet on tank (N) :\",round(R,2)\n", + "print \"Work done per second (W) :\",round(R*u,2)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Reaction of jet on tank (N) : 47.14\n", + "Work done per second (W) : 56.57\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.7, Page 130" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import math\n", + "from scipy import integrate\n", + " \n", + " \n", + "\n", + " #Initializing the variables \n", + "Vj = 5*10**6; # Velocity of Jet\n", + "Mr = 150000; # Mass of Rocket\n", + "Mf0 = 300000; # Mass of initial fuel\n", + "Vr = 3000; # Velocity of jet relative to rocket\n", + "g = 9.81; # Acceleration due to gravity\n", + "\n", + " #Calculations\n", + "m = Vj/Vr; #Rate of fuel consumption\n", + "T = Mf0/m; # Burning time\n", + "\n", + "def f(t,m,Vr,Mr,Mf0,g):\n", + " return m*Vr /(Mr + Mf0 - m*t) - g;\n", + " \n", + "args = (5000/3,3000,150000,300000,9.81)\n", + "Vt = integrate.quad(f, 0.0, 180, args)\n", + "\n", + "def h(t,Vr,g):\n", + " return -g*t - Vr*math.log(1 - t/269.95);\n", + " \n", + "args = (3000,9.81)\n", + "Z1 = integrate.quad(h, 0.0, 180, args)\n", + "Z2 = Vt[0]**2/(2*g);\n", + "\n", + "print \"(a)Burning time (s) :\",T\n", + "print \"(b)Speed of rocket when all fuel is burned (m/s):\",round(Vt[0],2)\n", + "print \"(c)Maximum height reached (km) :\",round((Z2+Z1[0])/1000,1)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a)Burning time (s) : 180.0\n", + "(b)Speed of rocket when all fuel is burned (m/s): 1530.04\n", + "(c)Maximum height reached (km) : 203.8\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.8, Page 134" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import math\n", + "\n", + "\n", + " #Initializing the variables \n", + "V = 200; #Velocity in still air\n", + "Vr = 700; #velocity of gas relative to engine\n", + "mf = 1.1; # Fuel Consumption\n", + "r = 1/40 ; \n", + "P1 =0;\n", + "P2 = 0;\n", + "\n", + " #Calculations\n", + "m1 = mf/r;\n", + "T = m1*((1+r)*Vr -V);\n", + "print \"(a)Thrust (kN) :\",T/1000\n", + "\n", + "W = T*V;\n", + "print \"(b)Work done per second (kW) :\",W/1000\n", + "\n", + "Loss = 0.5*m1*(1+r)*(Vr-V)**2;\n", + "print \"(c)Efficiency (%) :\",round(W/(W+Loss)*100,1) " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a)Thrust (kN) : 22.77\n", + "(b)Work done per second (kW) : 4554.0\n", + "(c)Efficiency (%) : 44.7\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5.10, Page 140" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import math\n", + "\n", + " #Initializing the variables \n", + "rho = 1000; # Density of water\n", + "Q = 10; #Acceleration of fluid\n", + "r2 = 1.6;\n", + "r1 = 1.2;\n", + "V1 = 2.3;\n", + "V2 = 0.2;\n", + "rot = 240; \n", + "\n", + " #Calculations\n", + "Tf = rho*Q*(V2*r2 - V1*r1);\n", + "T = -Tf;\n", + "n = rot / 60;\n", + "P = 2*round(math.pi,3)*n*T;\n", + "\n", + "print \"Torque exerted by fluid (N.m):\",T\n", + "print \"Theoretical power output (kW) :\",round(P/1000,2)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Torque exerted by fluid (N.m): 24400.0\n", + "Theoretical power output (kW) : 613.32\n" + ] + } + ], + "prompt_number": 9 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |