diff options
author | hardythe1 | 2015-06-03 15:27:17 +0530 |
---|---|---|
committer | hardythe1 | 2015-06-03 15:27:17 +0530 |
commit | 47d7279a724246ef7aa0f5359cf417992ed04449 (patch) | |
tree | c613e5e4813d846d24d67f46507a6a69d1a42d87 /Fluid_Mechanics-Fundamentals_&_Applications/Chapter13_2.ipynb | |
parent | 435840cef00c596d9e608f9eb2d96f522ea8505a (diff) | |
download | Python-Textbook-Companions-47d7279a724246ef7aa0f5359cf417992ed04449.tar.gz Python-Textbook-Companions-47d7279a724246ef7aa0f5359cf417992ed04449.tar.bz2 Python-Textbook-Companions-47d7279a724246ef7aa0f5359cf417992ed04449.zip |
add books
Diffstat (limited to 'Fluid_Mechanics-Fundamentals_&_Applications/Chapter13_2.ipynb')
-rwxr-xr-x | Fluid_Mechanics-Fundamentals_&_Applications/Chapter13_2.ipynb | 493 |
1 files changed, 493 insertions, 0 deletions
diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter13_2.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter13_2.ipynb new file mode 100755 index 00000000..55eeb9db --- /dev/null +++ b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter13_2.ipynb @@ -0,0 +1,493 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:a6e557f5af6e8e42adcc2ea3a1c780397b983eb75c9ac0cc9aa8adb6e5b6328c" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 13:Open-Channel Flow" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 13.13-1,Page No:711" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#Variable Decleration\n", + "V_dot=0.2 #Volumetric flow rate in m^3/s\n", + "y=0.15 #Depth of flow in m\n", + "b=0.4 #Width in m\n", + "g=9.81 #Acceleration due to gravity in m/s^2\n", + "\n", + "#Calculations\n", + "V=V_dot/(y*b) #Velocity in m/s\n", + "yc=(V_dot**2/(g*b**2))**0.33 #Critical depth in m\n", + "\n", + "#Flow is supercritical\n", + "\n", + "Fr=V/((g*y)**0.5) #Froude Number\n", + "\n", + "Es1=y+(V_dot**2/(2*g*b**2*y**2)) #Specific Energy in m\n", + "#Alternate Depth\n", + "#Solving the Ploynomial Equation\n", + "\n", + "coeff=[1,-Es1,0,V_dot**2/(2*g*b**2)]\n", + "x=numpy.roots(coeff)\n", + "\n", + "#Result\n", + "print \"The velocity of flow is\",round(V,2),\"m/s\"\n", + "print \"As the froude number Fr\",round(Fr,2),\"> 1 the flow is supercritical\"\n", + "print \"The Alternate Depth is\",round(x[0],3),\"m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The velocity of flow is 3.33 m/s\n", + "As the froude number Fr 2.75 > 1 the flow is supercritical\n", + "The Alternate Depth is 0.69 m\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 13.13-2, Page No:716" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#Variable Decleration\n", + "b=0.8 #Bottom width of the trapezoidal channel in m\n", + "y=0.52 #Depth of flow in m\n", + "theta=60 #Angle in degrees\n", + "alpha1=0.3 #Slope angle in degrees\n", + "n=0.03 #Mannings Coefficient \n", + "a=1 #m^1/3/s\n", + "alpha2=1 #Slope in degrees\n", + "\n", + "#Calculations\n", + "Ac=y*(b+(y/tan((theta*pi)/180))) #Cross-sectional Area in m^2\n", + "p=b+((2*y)/sin((theta*pi)/180)) #Perimeter in m\n", + "Rh=Ac/p #Hydraulic Radius in m\n", + "S01=tan((alpha1*pi)/180) #Slope of the bottom channel \n", + "S02=tan((alpha2*pi)/180) #Slope of the bottom channel\n", + "V_dot1=(a/n)*(Ac*Rh**0.66*S01**0.5) #Volumetric Flow rate in m^3/s\n", + "V_dot2=(a/n)*(Ac*Rh**0.66*S02**0.5) #Volumetric Flow rate in m^3/s\n", + "\n", + "#Result\n", + "print \"The volumetric flow rate when alpha is 0.3 degrees is\",round(V_dot1,2),\"m^3/s\" \n", + "print \"The volumetric flow rate when alpha is 1 degrees is\",round(V_dot2,2),\"m^3/s\" " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The volumetric flow rate when alpha is 0.3 degrees is 0.6 m^3/s\n", + "The volumetric flow rate when alpha is 1 degrees is 1.1 m^3/s\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 13.13-4, Page No:718" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#Variable Decleration\n", + "S0=0.003 #Bottom slope\n", + "l1=3 #Length in m\n", + "p1= 10.486 #Perimeter in section 1 in m\n", + "p2=10 #Perimeter of section 2 in m\n", + "Ac1=21 #Area of section 1 in m^2\n", + "Ac2=16 #Area of section 2 in m^2\n", + "a=1 #m^1/3/s\n", + "n1=0.03 #Mannings coefficient for section 1\n", + "n2=0.05 #Mannings Coefficient for section 2\n", + "\n", + "#Calcualtions\n", + "Rh1=Ac1/p1 #Hydraulic Radius at section 1 in m\n", + "Rh2=Ac2/p2 #Hydraulic Radius at section 2 in m\n", + "Rh=(Ac1+Ac2)/(p1+p2) #Hydraulic Radius of the entire channel in m\n", + "\n", + "V_dot=a*S0**0.5*(((Ac1*Rh1**0.66)/n1)+((Ac2*Rh2**0.66)/n2)) #Volumetric Flow rate in m^3/s\n", + "n_eff=(a*(Ac1+Ac2)*Rh**0.66*S0**0.5)/V_dot #Effective Mannings Coefficient\n", + "\n", + "#Result\n", + "print \"The flow rate is\",round(V_dot),\"m^3/s\"\n", + "print \"The effective Mannings Coefficient is\",round(n_eff,3)\n", + "#The decimal point accuracy in python is the possible source of discrepancy in textbook and computed answer\n", + "#The answer computed is weel within the permissbile error limit\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The flow rate is 78.0 m^3/s\n", + "The effective Mannings Coefficient is 0.038\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 13.13-5, Page No:722" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#NOTE:Variable names have been changed\n", + "\n", + "#Variable Decleration\n", + "n=0.016 #mannings Coefficient\n", + "V_dot=2 #Volumetric Flow rate in m^3/s\n", + "S0=0.001 #Bottom Slope\n", + "theta=60 #Angle in degrees\n", + "\n", + "#Calculations\n", + "\n", + "#Part(a)\n", + "#Using the Mannings Equation\n", + "b1=((2*n*V_dot*4**0.66)/(a*S0**0.5))**0.375 #Width of the Rectangular section in m\n", + "Aca=b1**2*0.5 #Area of rectangular section in m^2\n", + "p=2*b1 #Perimeter in m\n", + "y1=b1/2 #Depth of flow in m\n", + "\n", + "#Part(b)\n", + "b2=((n*V_dot)/(0.75*3**0.5*((3**0.5/4)**0.66)*a*S0**0.5))**0.375 #Width in m\n", + "y2=((3**0.5)/2)*b2 #Depth of flow in m\n", + "\n", + "#Result\n", + "print \"The cross-section for rectangular section are b=\",round(b1,2),\"m y=\",round(y1,2),\"m\"\n", + "print \"The cross-section for trapezoidal section are b=\",round(b2,2),\"m y=\",round(y2,3),\"m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The cross-section for rectangular section are b= 1.84 m y= 0.92 m\n", + "The cross-section for trapezoidal section are b= 1.12 m y= 0.97 m\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 13.13-7, Page No:732" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#Variable Decleration\n", + "y=2 #Depth of Flow in m\n", + "b=6 #Bottom width in m\n", + "a=1 #m^1/3/s\n", + "S0=0.004 #Bed Slope\n", + "n=0.014 #Mannings Coefficient\n", + "g=9.81 #Acceleration due to gravity in m/s^2\n", + "\n", + "#Calculations\n", + "Ac=y*b #Area in m^2\n", + "p=b+2*y #Perimeter in m\n", + "Rh=(Ac*10**-1)/(p*10**-1) #Hydraulic Radius in m \n", + "\n", + "#Flow rate \n", + "V_dot=(a/n)*(Ac*Rh**0.66*S0**0.5) #Volumetric Flow rate in m^3/s\n", + "\n", + "#Critical Depth\n", + "yc=V_dot**2/(g*Ac**2) #Critical Depth in m\n", + "\n", + "#Result\n", + "print \"As yn=\",round(y,2),\"m < yc=\",round(yc,2),\"m the slope is STEEP\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "As yn= 2.0 m < yc= 2.65 m the slope is STEEP\n" + ] + } + ], + "prompt_number": 43 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 13.13-8,Page No:735" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#Variable Decleration\n", + "rho=1000 #Density of water in kg/m^3\n", + "g=9.81 #Accelration due to gravity in m/s^2\n", + "y1=0.8 #Pre jump height in m\n", + "V1=7 #Velocity in m/s pre jump\n", + "b=10 #Width of the channel in m\n", + "\n", + "#Calculations\n", + "#Part(a)\n", + "Fr1=V1/((g*y1)**0.5) #Froude Number pre Jump\n", + "\n", + "#Greater than 1 hence supecritical\n", + "\n", + "y2=0.5*y1*(-1+((1+8*Fr1**2)**0.5)) #Post Jump Height\n", + "V2=(y1/y2)*V1 #Velocity post jump in m/s\n", + "\n", + "Fr2=V2/((g*y2)**0.5) #Froude Number after Jump\n", + "\n", + "#Part(b)\n", + "h_L=y1-y2+(V1**2-V2**2)/(2*g) #Head Loss in m\n", + "\n", + "Es1=y1+V1**2/(2*g) #Specific Energy before jump in m\n", + "\n", + "Dissipation_Ratio=h_L/Es1 #Dissipiation Ratio\n", + "\n", + "#Part(c)\n", + "m_dot=rho*b*y1*V1 #Mass Flow rate in kg/s\n", + "\n", + "E_dissipiated=m_dot*g*h_L #Energy Dissipiated in kW\n", + "\n", + "#Result \n", + "print \"The Depth of flow after the Jump is\",round(y2,2),\"m and the Froude Number is\",round(Fr2,3)\n", + "print \"The head loss is\",round(h_L,3),\"m and the Energy Dissipation Ratio is\",round(Dissipation_Ratio,3)\n", + "print \"The energy wasted is\",round(E_dissipiated/1000),\"kW\"\n", + "#NOTE:Answer differ due to decimal point accuracy" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "56000.0\n", + "The Depth of flow after the Jump is 2.46 m and the Froude Number is 0.465\n", + "The head loss is 0.577 m and the Energy Dissipation Ratio is 0.175\n", + "The energy wasted is 317.0 kW\n" + ] + } + ], + "prompt_number": 57 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 13.13-9,Page No:738" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#Variable Decleration\n", + "y1=3 #Depth of flow in m\n", + "a=0.25 #Height of Sluice Gate in m\n", + "y2=1.5 #Depth of flow after the turbulence subsides in m\n", + "Cd=0.47 #Coefficient of Discharge\n", + "b=6 #Width of the channel in m\n", + "g=9.81 #Acceleration due to gravity in m/s^2\n", + "\n", + "#Calculations\n", + "depth_ratio1=y1/a #Depth ratio\n", + "depth_ratio2=y2/a #Depth ratio\n", + "V_dot=Cd*b*a*((2*g*y1)**0.5) #Volumetric Flow rate in m^3/s\n", + "\n", + "#Result\n", + "print \"The volumetric Flow rate is\",round(V_dot,2),\"m^3/s\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The volumetric Flow rate is 5.41 m^3/s\n" + ] + } + ], + "prompt_number": 58 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 13.13-10, Page No:745" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#Variable Decleration\n", + "V1=1.2 #Velocity in m/s\n", + "g=9.81 #Acceleration due to gravity in m/s^2\n", + "y1=0.8 #Depth of flow before encounternign the bump in m\n", + "delta_zb=0.15 # depth in m\n", + "\n", + "#Calculations\n", + "Fr1=V1/((g*y1)**0.5) #Froude Number\n", + "yc=((y1**2*V1**2)/g)**0.33 #Critical depth in m\n", + "\n", + "#Flow is subcritical\n", + "Es1=y1+(V1**2/(2*g)) #Specific Energy in m\n", + "\n", + "#Solving the equation\n", + "coeff=[1,-0.723,0,0.047]\n", + "y=numpy.roots(coeff) #Depth of flow in m\n", + "\n", + "Depression=y1-(y[0]+delta_zb)\n", + "\n", + "#Result\n", + "print \"The depression of the water surface is present and is\",round(Depression,2),\"m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The depression of the water surface is present and is 0.06 m\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 13.13-11, Page No:746" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import math\n", + "\n", + "#Variable Decleration\n", + "y1=1.5 #Depth of flow in m\n", + "Pw=0.6 #Height in m\n", + "b=5 #Width in m\n", + "g=9.81 #Acceleration due to gravity in m/s^2\n", + "\n", + "#Calculations\n", + "H=y1-Pw #Weir Head in m\n", + "\n", + "#Using the Discharge Coefficient Formula\n", + "Cwd_rec=0.598+(0.0897*(H/Pw)) #Coefficient of Discharge\n", + "\n", + "V_dot=(2*Cwd_rec*b*(2*g)**0.5*(H**1.5))/3 #Volumetric Flow rate in m^3/s\n", + "\n", + "#Result\n", + "print \"The Volumetric Flow rate is\",round(V_dot,2),\"m^3/s\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The Volumetric Flow rate is 9.23 m^3/s\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |