diff options
author | kinitrupti | 2017-05-12 18:40:35 +0530 |
---|---|---|
committer | kinitrupti | 2017-05-12 18:40:35 +0530 |
commit | 64d949698432e05f2a372d9edc859c5b9df1f438 (patch) | |
tree | 012fd5b4ac9102cdcf5bc56305e49d6714fa5951 /Fluid_Mechanics-Fundamentals_&_Applications/Chapter11_2.ipynb | |
parent | 9c6ab8cbf3e1a84c780386abf4852d84cdd32d56 (diff) | |
download | Python-Textbook-Companions-64d949698432e05f2a372d9edc859c5b9df1f438.tar.gz Python-Textbook-Companions-64d949698432e05f2a372d9edc859c5b9df1f438.tar.bz2 Python-Textbook-Companions-64d949698432e05f2a372d9edc859c5b9df1f438.zip |
Revised list of TBCs
Diffstat (limited to 'Fluid_Mechanics-Fundamentals_&_Applications/Chapter11_2.ipynb')
-rwxr-xr-x | Fluid_Mechanics-Fundamentals_&_Applications/Chapter11_2.ipynb | 328 |
1 files changed, 0 insertions, 328 deletions
diff --git a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter11_2.ipynb b/Fluid_Mechanics-Fundamentals_&_Applications/Chapter11_2.ipynb deleted file mode 100755 index 31185c9b..00000000 --- a/Fluid_Mechanics-Fundamentals_&_Applications/Chapter11_2.ipynb +++ /dev/null @@ -1,328 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:09f3cec4160faaa4e2a9f5ff2c23e2a27e23b91a36394dba268c313658b30c58" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 11:External Flow:Drag and Lift" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.11-1, Page No:589" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "Fd=300 #Drag Force in N\n", - "A=2.07 #Frontal Aera in m^2\n", - "rho=1.204 #denisty of air in kg/m^3\n", - "V=95 #Velocity of the fluid around the body in km/h\n", - "C=3.6 #Conversion factor \n", - "\n", - "#Calculations\n", - "Cd=(2*Fd*C**2)/(rho*A*V**2) #Coefficient of Drag of the Car\n", - "\n", - "#Result\n", - "print \"The Coefficient of Drag of the Car is\",round(Cd,2)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Coefficient of Drag of the Car is 0.35\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.11-2,Page No:599" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "W=1.85 #Width of the car in m\n", - "H=1.7 #Height of the car in m\n", - "Cd=0.3 #Drag Coefficient\n", - "rho=1.20 #Denisty of air in kg/m^3\n", - "V=95 #Velocity of the car in km/h\n", - "C=3.6 #Conversion Factor\n", - "L=18000 #Distance travelled by the car in one year in km\n", - "n_car=0.3 #Efficiency of the car in fraction\n", - "HV=44000 #Heating Value of the fuel in kJ/kg\n", - "rho_fuel=0.74 #Density of the fuel in kg/L\n", - "Unit_Cost=0.95 #Unit cost of fuel per litre in $\n", - "Hnew=1.55 #New design height in m\n", - "\n", - "#Calculation\n", - "#Drag Force before Redesigning\n", - "Fd=Cd*W*H*rho*V**2*0.5*(1/C) #Drag Force in N\n", - "W_drag=Fd*L #Work Done to overcome the drag force in kJ/year\n", - "E_in=W_drag/n_car #Energy required in kJ/year\n", - "#Amount of fuel\n", - "Amount_of_fuel=E_in/(HV*rho_fuel) #Amount of fuel required in L/year\n", - "Cost=Amount_of_fuel*Unit_Cost #Total cost per year in $/year\n", - "\n", - "#Reduction ratio\n", - "Reduction_Ratio=(H-Hnew)/H #Reduction ratio\n", - "#Fuel Reduction\n", - "Fuel_Reduction=Reduction_Ratio*Amount_of_fuel #Fuel reduced in L/year\n", - "Cost_Reduction=Reduction_Ratio*Cost #Cost Reduction in $/Year\n", - "\n", - "#Result\n", - "print \"The Reduction Ratio of the redesigned car is\",round(Reduction_Ratio,3)\n", - "print \"Therefore the cars height reduces the fuel consumption by\",round(Reduction_Ratio*100),\"%\"\n", - "\n", - "\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The Reduction Ratio of the redesigned car is 0.088\n", - "Therefore the cars height reduces the fuel consumption by 9.0 %\n" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.11-3,Page No:604" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "L=5 #Length on the flat plate in m\n", - "V=2 #Full stream velocity in m/s\n", - "v=2.485*10**-4 #Kinematic Viscosity in m^2/s\n", - "rho=876 #Density of the fluid in kg/m^3\n", - "\n", - "#Calculations\n", - "Rel=(V*L)/v #Reynolds Number\n", - "Cf=1.328*Rel**-0.5 #Average Friction Coefficient\n", - "\n", - "#As pressure drag is zero Cd=Cf\n", - "Fd=Cf*L*rho*V**2*0.5 #Drag Force in N\n", - "\n", - "#Result\n", - "print \"The total Drag Force per Unit Width is\",round(Fd),\"N\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The total Drag Force per Unit Width is 58.0 N\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.11-4,Page No:609" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "D=0.022 #Diameter of the pipe in m\n", - "rho=999.1 #Density of the fluid in kg/m^3\n", - "u=1.138*10**-3 #Dynamic Viscosity in kg/m.s\n", - "V=4 #Velocity in m/s\n", - "Cd=1 #Coefficent of Drag\n", - "L=30 #Width of the river in m\n", - "\n", - "#Calculations\n", - "Re=(rho*V*D)/u #Reynolds Number\n", - "Fd=Cd*D*L*rho*V**2*0.5 #Drag Force in N\n", - "\n", - "#Result\n", - "print \"The drag force on the pipe is\",round(Fd),\"N\"\n", - "#The answer in the textbook has been approximated to a large value" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The drag force on the pipe is 5275.0 N\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.11-5,Page No:616" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "m=70000 #Mass of the airplane in kg\n", - "g=9.81 #Acceleration due to gravity in m/s^2\n", - "V_k=558 #Velocity of the airplane in km/h\n", - "rho=1.2 #Denisty of air in kg/m^3\n", - "Cl_max1=1.52 #Coefficient of lift case 1\n", - "Cl_max2=3.48 #Coefficient of lift case 2\n", - "A=150 #Area in m^2\n", - "rho_h=0.312 #Density at crusing altitude in kg/m^3\n", - "Cd=0.03 #Coefficient of drag at crusing altitude\n", - "\n", - "#Calculations\n", - "W=m*g #Weight of the aircraft in N\n", - "V=V_k/3.6 #Velocity in m/s\n", - "\n", - "#Part (A)\n", - "V_min1=((2*W)/(rho*Cl_max1*A))**0.5 #Minimum stall speed in m/s without flap\n", - "V_min2=((2*W)/(rho*Cl_max2*A))**0.5 #Minimum stall speed in m/s with flap\n", - "V_min1_safe=1.2*V_min1 #Safe minimum velocity to avoid stall in m/s without flap\n", - "V_min2_safe=1.2*V_min2 #Safe minimum velocity to avoid stall in m/s with flap\n", - "\n", - "#Part(B)\n", - "Fl=W #Lift force required in N\n", - "Cl=(2*Fl)/(rho_h*A*V**2) #Coefficient of lift\n", - "\n", - "#Part(C)\n", - "Fd=Cd*A*rho_h*V**2*0.5*10**-3 #Drag Force in kN\n", - "Thrust=Fd #thrust Force in kN\n", - "Power=Thrust*V #Power required in kW\n", - "\n", - "#Result\n", - "print \"The safe speed limits without and with flaps are\",round(V_min1_safe,1),\"m/s and\",round(V_min2_safe,1),\"m/s\"\n", - "print \"The lift coefficient is\",round(Cl,2),\"and the corresponding angle of attack is 10\u02da\"\n", - "print \"The power required to provide enough thrust is\",round(Power),\"kW\"\n", - "#The final power answer has been rounded in the textbook" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The safe speed limits without and with flaps are 85.0 m/s and 56.2 m/s\n", - "The lift coefficient is 1.22 and the corresponding angle of attack is 10\u02da\n", - "The power required to provide enough thrust is 2614.0 kW\n" - ] - } - ], - "prompt_number": 15 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 11.11-6, Page No:618" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "import math\n", - "\n", - "#Variable Decleration\n", - "m=0.057 #mass of the tennis ball in kg\n", - "D=0.0637 #Diameter of the tennis ball in m\n", - "V_k=72 #Velocity with which th ball is hit in km/h\n", - "w_rpm=4800 #backspin given to the ball in rpm\n", - "Cl=0.21 #Coefficient of lift\n", - "rho=1.184 #Density of the fluid in kg/m^3\n", - "g=9.81 #Aceleration due to gravity in m/s^2\n", - "\n", - "#Calculations\n", - "V=V_k/3.6 #Velocity of the ball in m/s\n", - "w=(w_rpm*2*pi)/60 #Angular velocity in rad/s\n", - "\n", - "#non dimensional rate of rotation\n", - "#Changing the notation from the one used in the textbook to simplify\n", - "ror=(w*D)/(2*V) #Non dimnsional rate of rotation\n", - "A=4**-1*pi*D**2 #Frontal Area in m^2\n", - "Fl=Cl*A*rho*V**2*0.5 #Lift force in N\n", - "W=m*g #Weight of the ball in N\n", - "F=W-Fl #Combined force in N\n", - "\n", - "#Result\n", - "print \"The ball will drop due to a combined effect of lift and gravity with a force of\",round(W,3),\"N\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The ball will drop due to a combined effect of lift and gravity with a force of 0.559 N\n" - ] - } - ], - "prompt_number": 16 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file |