summaryrefslogtreecommitdiff
path: root/Fiber_Optics_Communication_by_H._Kolimbiris/chapter1.ipynb
diff options
context:
space:
mode:
authorThomas Stephen Lee2015-08-28 16:53:23 +0530
committerThomas Stephen Lee2015-08-28 16:53:23 +0530
commit4a1f703f1c1808d390ebf80e80659fe161f69fab (patch)
tree31b43ae8895599f2d13cf19395d84164463615d9 /Fiber_Optics_Communication_by_H._Kolimbiris/chapter1.ipynb
parent9d260e6fae7328d816a514130b691fbd0e9ef81d (diff)
downloadPython-Textbook-Companions-4a1f703f1c1808d390ebf80e80659fe161f69fab.tar.gz
Python-Textbook-Companions-4a1f703f1c1808d390ebf80e80659fe161f69fab.tar.bz2
Python-Textbook-Companions-4a1f703f1c1808d390ebf80e80659fe161f69fab.zip
add books
Diffstat (limited to 'Fiber_Optics_Communication_by_H._Kolimbiris/chapter1.ipynb')
-rw-r--r--Fiber_Optics_Communication_by_H._Kolimbiris/chapter1.ipynb807
1 files changed, 807 insertions, 0 deletions
diff --git a/Fiber_Optics_Communication_by_H._Kolimbiris/chapter1.ipynb b/Fiber_Optics_Communication_by_H._Kolimbiris/chapter1.ipynb
new file mode 100644
index 00000000..090338c5
--- /dev/null
+++ b/Fiber_Optics_Communication_by_H._Kolimbiris/chapter1.ipynb
@@ -0,0 +1,807 @@
+{
+ "metadata": {
+ "celltoolbar": "Raw Cell Format",
+ "name": "",
+ "signature": "sha256:14402c55600f1e126f448a3051d0be67f94e08a364b1fb28e55e9829f2141c24"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 1: Elements of Optics And Quantum Physics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.1,Page number 5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Given\n",
+ "\n",
+ "print\"(i) t1=d/c\";\n",
+ "print\"(ii) t2=[(d-5)/c]+[5/v2]\";\n",
+ "print\" v2=c/n2\";\n",
+ "print\" t2=(d+2.5)/c\";\n",
+ "print\"(iii)delta_t=t2-t1=(d+2.5-d)/c\";\n",
+ "c=3*10**8; #Speed of light in m/s\n",
+ "delta_t=2.5*10**-2/c; #converted 2.5 cm into meters\n",
+ "print\"The time difference\",\"{0:.3e}\".format(delta_t),\"s\" ;\n",
+ "print\"Arrival time difference of two monochromatic beams is\",delta_t*10**12,\"ps\";\n",
+ "# Answer misprinted in the book\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) t1=d/c\n",
+ "(ii) t2=[(d-5)/c]+[5/v2]\n",
+ " v2=c/n2\n",
+ " t2=(d+2.5)/c\n",
+ "(iii)delta_t=t2-t1=(d+2.5-d)/c\n",
+ "The time difference 8.333e-11 s\n",
+ "Arrival time difference of two monochromatic beams is 83.3333333333 ps\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.2,Page number 5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given \n",
+ "\n",
+ "#Applying Snell's law\n",
+ "a=1*math.sin(428)/1.333; #a=sin(w2)\n",
+ "print\"Angle of refraction is\",round(math.degrees(math.asin(a)),3),\"degree\";\n",
+ "\n",
+ "c=3*10**8; #speed of light in m/s\n",
+ "n2=1.333; #refractive index of 2nd medium\n",
+ "v2=c/n2; #velocity in second medium in m/s\n",
+ "n1=1; #refractive index of 1st medium\n",
+ "l1=620; #in nm wavelength\n",
+ "\n",
+ "print\"Velocity of optical ray through medium second\",\"{0:.3e}\".format(v2),\"m/s\";\n",
+ "\n",
+ "l2= (n1*l1)/n2; #wavelength in 2nd medium in nm\n",
+ "print\"Wavelenght of optical ray through medium second\",round(l2,4),\"nm\"; #Result\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Angle of refraction is 30.512 degree\n",
+ "Velocity of optical ray through medium second 2.251e+08 m/s\n",
+ "Wavelenght of optical ray through medium second 465.1163 nm\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.3,Page number 5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given \n",
+ "\n",
+ "n1=1; #refractive index of air\n",
+ "n2=1.56; #refractive index of medium\n",
+ "w1=60; #in deg C\n",
+ "#using snell's law\n",
+ "a= n1*sin(w1*math.pi/180)/n2; #a=sin(w1)\n",
+ "w2=math.degrees(math.asin(a)); #in degree\n",
+ "print\"Angle of refraction is\",round(w2,4),\"degree\";\n",
+ "B=w1-w2; #in degree\n",
+ "print\"Angle of deviation is\",round(B,4),\"degree\";\n",
+ "# The answer doesn't match because of priting errorsin calculation as sin(608)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Angle of refraction is 33.7207 degree\n",
+ "Angle of deviation is 26.2793 degree\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.4,Page number 6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given \n",
+ "\n",
+ "print\"Solution (i)\";\n",
+ "w=5/12.5; #tan(w)=5/12.5;\n",
+ "print\"The value of tan(w2) is\",w;\n",
+ "w2=math.atan(w)*180/math.pi;\n",
+ "\n",
+ "print\"The value of w2 is\",round(w2,4),\"degree\";\n",
+ "print\"The value of sin(w2) is\",round(math.sin(w2*math.pi/180),4);\n",
+ "\n",
+ "print\"Solution (ii)\";\n",
+ "#Applying snell's law\n",
+ "n1=1.05;\n",
+ "n2=1.5;\n",
+ "w1=(n2*sin(w2*math.pi/180))/n1; #a=sin(w1)\n",
+ "print\"The value of sin(w1) is\",round(w1,4);\n",
+ "print\"The value of w1 is\",round(math.degrees(math.asin(w1)),4),\"degree\";\n",
+ "#value of w1\n",
+ "#tan(w1)=(p-x)12.5;\n",
+ "k=0.62*12.5;\n",
+ "d=1.05*((12.5)**2+(k)**2)**0.5 +1.5*(12.5**2+5**2)**0.5; #d=1.05[(h1)^2+(k)^2]^0.5 +n2(h2**2+x**2)^0.5;\n",
+ "print\"The optical distance is\",round(d,4),\"cm\";\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Solution (i)\n",
+ "The value of tan(w2) is 0.4\n",
+ "The value of w2 is 21.8014 degree\n",
+ "The value of sin(w2) is 0.3714\n",
+ "Solution (ii)\n",
+ "The value of sin(w1) is 0.5306\n",
+ "The value of w1 is 32.0432 degree\n",
+ "The optical distance is 35.6373 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.5,Page number 11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given \n",
+ "\n",
+ "c=3*10**8;\n",
+ "print\"Solution (i)\";\n",
+ "ri=1.5; #refractive index\n",
+ "u=830; # in nm\n",
+ "l=u/ri; #in nm\n",
+ "print\"Wavelength is\",round(l,4),\"nm\\n\";\n",
+ "\n",
+ "print\"Solution (ii)\";\n",
+ "l=round(l); # rounding to nearest integer\n",
+ "f=c/(l*10**-9)*10**-12; #in THz\n",
+ "print\"frequency is\",round(f,4),\"THz\\n\";\n",
+ "\n",
+ "print\"Solution (iii)\";\n",
+ "f=round(f); #rounding to nearest integer\n",
+ "v=l*10**-9*f*10**12; #in m/s\n",
+ "print\"phase velocity is\",\"{0:.3e}\".format(v),\"m/s\";\n",
+ "\n",
+ "#answer is getting rounding off due to larger calculation\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Solution (i)\n",
+ "Wavelength is 553.3333 nm\n",
+ "\n",
+ "Solution (ii)\n",
+ "frequency is 542.4955 THz\n",
+ "\n",
+ "Solution (iii)\n",
+ "phase velocity is 2.997e+08 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.6,Page number 12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given \n",
+ "\n",
+ "print\"Solution (i)\";\n",
+ "l=720; #wavelength in nm\n",
+ "n=1.5; #refractive index\n",
+ "lm=l/n;\n",
+ "print\"Wavelenth is\",lm,\"nm\"; #result\n",
+ "\n",
+ "print\"Solution (ii)\";\n",
+ "c=3*10**8; #in m/s speed of light\n",
+ "u=c/n;\n",
+ "print\"Velocity is\",\"{0:.3e}\".format(u),\"m/s\"; #result\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Solution (i)\n",
+ "Wavelenth is 480.0 nm\n",
+ "Solution (ii)\n",
+ "Velocity is 2.000e+08 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.7,Page number 12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given \n",
+ "\n",
+ "print\"Solution (i)\";\n",
+ "c=3*10**8; #in m/s speed of light\n",
+ "l=640; #in nm\n",
+ "u=2.2*10**8; #in m/s\n",
+ "lm=u*l/c; #wavelenth in medium\n",
+ "print\"The wavelength is\",round(lm,4),\"nm\"; #The answer in the book is misprinted\n",
+ "\n",
+ "print\"Solution (ii)\";\n",
+ "n=l/lm; #refractive index\n",
+ "print\"Refractive Index is\",round(n,4); #The answer in the book is misprinted\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Solution (i)\n",
+ "The wavelength is 469.3333 nm\n",
+ "Solution (ii)\n",
+ "Refractive Index is 1.3636\n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.8,Page number 12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given \n",
+ "\n",
+ "#k=aa+as=6.3;\n",
+ "#Given values from research\n",
+ "k=6.3; #combined attenuation due to absorption and scattering\n",
+ "d=25; #in cm\n",
+ "print\"Solution (ii)\";\n",
+ "#Io/Ii=exp(-(ao+ai)*d); d in m\n",
+ "j=math.e**(-(k)*d/100); #Io/Ii ratio\n",
+ "print\"Io is\",round(j,4),\"of Ii\"; #result"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Solution (ii)\n",
+ "Io is 0.207 of Ii\n"
+ ]
+ }
+ ],
+ "prompt_number": 30
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.9,Page number 13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given \n",
+ "\n",
+ "# Given formula Io/Ii=exp(-(ao+ai)*d);\n",
+ "# k=aa+as=63.1;\n",
+ "# Io/Ii=1.5\n",
+ "d=log(0.15)/-63.1; #length of tube\n",
+ "print\"Length of tube, d =\",round(d*100,4),\"cm\"; #Result\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Length of tube, d = 3.0065 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 32
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.10,Page number 26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given\n",
+ "\n",
+ "#p=m/{m+[2*n/(1-n)^2]^2};\n",
+ "\n",
+ "m=5; #no. of reflective plates\n",
+ "n=1.33; #refractive indices\n",
+ "p=m/(m+(2*n/(1-(n)**2))**2); #degree of polarisation\n",
+ "print\"The degree of polarisation is\",round(p,1);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The degree of polarisation is 0.3\n"
+ ]
+ }
+ ],
+ "prompt_number": 35
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.11,Page number 26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given\n",
+ "\n",
+ "#m= p*{m+[2*n/(1-n)^2]^2};\n",
+ "\n",
+ "n=1.5; #refractive indices\n",
+ "p=0.45; #degree of polarisation\n",
+ "m=(p*(2*n/(1-n**2))**2)/(1-p);\n",
+ "print\"Thus it will require\",round(m,4),\"reflective plate to achive a degree of polarization equal to 0.45\"; \n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Thus it will require 4.7127 reflective plate to achive a degree of polarization equal to 0.45\n"
+ ]
+ }
+ ],
+ "prompt_number": 41
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.12,Page number 27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given\n",
+ "#I1/I0=cos(w)^2\n",
+ "#k=I1/I0;\n",
+ "\n",
+ "w=30; #angle bw polarizer and analyser in degee\n",
+ "k=math.cos(w*math.pi/180)**2;\n",
+ "print\"The ratio of optical ray intensity ,I1/I0=\",k; #Result\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The ratio of optical ray intensity ,I1/I0= 0.75\n"
+ ]
+ }
+ ],
+ "prompt_number": 43
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.13,Page number 27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given data\n",
+ "\n",
+ "#I1/I0=cos(w)^2\n",
+ "#Given I1/I0=0.55\n",
+ "\n",
+ "k=math.sqrt(0.55); #from above formulae\n",
+ "\n",
+ "print\"The angle bw polarizer and analyser , w is\",round(math.degrees(math.acos(k)),4),\"degree\";\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The angle bw polarizer and analyser , w is 42.1304 degree\n"
+ ]
+ }
+ ],
+ "prompt_number": 48
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.14,Page number 29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given \n",
+ "\n",
+ "print\"Solution (i)\";\n",
+ "ne=1.4; #refractive index\n",
+ "no=1.25; #refractive index\n",
+ "c=3*10**8; #in m/s\n",
+ "T=2*10**-5; #in m\n",
+ "l=740; #in nm\n",
+ "t=(ne-no)*T/c; #time difference\n",
+ "print\"Time difference, t is\",t*10**12,\"ps\";\n",
+ "print\"Solution (ii)\";\n",
+ "le=l/ne; \n",
+ "lo=l/no;\n",
+ "fi=2*math.pi*T*(1/le-1/lo)*10**9;\n",
+ "print\"Phase difference is\",round(fi,4),\"rad\"; \n",
+ "# Answer misprinted in book"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Solution (i)\n",
+ "Time difference, t is 0.01 ps\n",
+ "Solution (ii)\n",
+ "Phase difference is 25.4724 rad\n"
+ ]
+ }
+ ],
+ "prompt_number": 51
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.15,Page number 31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given \n",
+ "\n",
+ "#E=h*v=h*c/l;\n",
+ "\n",
+ "E=3; #In KeV\n",
+ "#1eV=1.6*10^-19\n",
+ "h=6.63*10**-34; #plank constant in J/s\n",
+ "c=3*10**8; # speed of light in m/s\n",
+ "l=h*c/(E*10**3*1.6*10**-19); #wavelength in nm\n",
+ "print\"wavelength of a electromagnetic radiation is\",round(l*10**9,4),\"nm\";\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "wavelength of a electromagnetic radiation is 0.4144 nm\n"
+ ]
+ }
+ ],
+ "prompt_number": 53
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.16,Page number 31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given\n",
+ "\n",
+ "print\"Solution (i)\";\n",
+ "l=670 #in nm\n",
+ "h=6.63*10**-34; #plank constant in J/s\n",
+ "c=3*10**17 #speed of light in nm/sec\n",
+ "Ek=0.75 #In eV\n",
+ "phi=(h*c/l)/(1.6*10**-19) -Ek;\n",
+ "phi=round(phi*10)/10; #round to 1 decimal point\n",
+ "print\"Characteristic of material =\",phi,\"eV\";\n",
+ "\n",
+ "print\"Solution (ii)\";\n",
+ "fc=phi*1.6*10**-19/h*10**-12; #frequency in THz#result\n",
+ "fc=round(fc);\n",
+ "print\"Cuttoff frequency is =\",fc,\"THz\";\n",
+ "lc=c/(fc*10**12); #in nm\n",
+ "print\"Cuttoff wavelength is =\",round(lc,4),\"nm\";\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Solution (i)\n",
+ "Characteristic of material = 1.1 eV\n",
+ "Solution (ii)\n",
+ "Cuttoff frequency is = 265.0 THz\n",
+ "Cuttoff wavelength is = 1132.0755 nm\n"
+ ]
+ }
+ ],
+ "prompt_number": 62
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.17,Page number 31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given\n",
+ "\n",
+ "print\"Solution (i)\";\n",
+ "l=0.045; #wavelength in nm\n",
+ "h=6.63*10**-34; #planks constant in J/s\n",
+ "c=3*10**8; #speed of light in m/s\n",
+ "E=h*c/l/10**-9; #energy of photon in eV\n",
+ "print\"E =\",\"{0:.3e}\".format(E),\"J\";\n",
+ "\n",
+ "E1=E/(1.6*10**-19); # energy in joule\n",
+ "print\"E =\",\"{0:.3e}\".format(E1),\"eV\";\n",
+ " \n",
+ "e=1.6*10**-19; # charge of electron\n",
+ "\n",
+ "print\"Solution (ii)\";\n",
+ "V=E/e;\n",
+ "print\"Required voltage is =\",V/1000,\"KV\";\n",
+ "\n",
+ "#Value of wavelenght in problem is .45 but in the solution is .045 \n",
+ "#the value considered above is .045\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Solution (i)\n",
+ "E = 4.420e-15 J\n",
+ "E = 2.762e+04 eV\n",
+ "Solution (ii)\n",
+ "Required voltage is = 27.625 KV\n"
+ ]
+ }
+ ],
+ "prompt_number": 59
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1.18,Page number 36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#given\n",
+ "\n",
+ "print\"Solution (i)\";\n",
+ "x=620 # difference in particle momentum In nm\n",
+ "h=6.63*10**-34 # planks constant In J/s\n",
+ "#p=h/(4*pi*x);\n",
+ "#m*v=h/(4*pi*x);\n",
+ "m=9.11*10**-31 #mass of electron in kg \n",
+ "v=h /(4*math.pi* x *10**-9*m); #electron velocity\n",
+ "print\"The uncertanity in electron velocity is\",round(v,4),\"m/s\";\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Solution (i)\n",
+ "The uncertanity in electron velocity is 93.41 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 61
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file