diff options
author | hardythe1 | 2015-07-03 12:23:43 +0530 |
---|---|---|
committer | hardythe1 | 2015-07-03 12:23:43 +0530 |
commit | 5a86a20b9de487553d4ef88719fb0fd76a5dd6a7 (patch) | |
tree | db67ac5738a18b921d9a8cf6e86f402703f30bdf /Engineering_Physics_by_Uma_Mukherji/Chapter3.ipynb | |
parent | 37d315828bbfc0f5cabee669d2b9dd8cd17b5154 (diff) | |
download | Python-Textbook-Companions-5a86a20b9de487553d4ef88719fb0fd76a5dd6a7.tar.gz Python-Textbook-Companions-5a86a20b9de487553d4ef88719fb0fd76a5dd6a7.tar.bz2 Python-Textbook-Companions-5a86a20b9de487553d4ef88719fb0fd76a5dd6a7.zip |
add/remove books
Diffstat (limited to 'Engineering_Physics_by_Uma_Mukherji/Chapter3.ipynb')
-rwxr-xr-x | Engineering_Physics_by_Uma_Mukherji/Chapter3.ipynb | 112 |
1 files changed, 112 insertions, 0 deletions
diff --git a/Engineering_Physics_by_Uma_Mukherji/Chapter3.ipynb b/Engineering_Physics_by_Uma_Mukherji/Chapter3.ipynb new file mode 100755 index 00000000..e34bf801 --- /dev/null +++ b/Engineering_Physics_by_Uma_Mukherji/Chapter3.ipynb @@ -0,0 +1,112 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:5501457babf7cd881ef81ebc39845c677f30b7398a16e9160a7f32cf8c277a73"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "3: Thermionic Emission"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 3.1, Page number 67"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "S=2*10**-6; #tungsten filament(m**2)\n",
+ "T=2000; #temperature(K)\n",
+ "A=60.2*10**4; #value of A(amp/m**2 K) \n",
+ "b=52400; #value of b \n",
+ "e=1.6*10**-19; #electron charge(c)\n",
+ "\n",
+ "#Calculation\n",
+ "I=A*S*(T**2)*(math.exp(-(b/T))); #electronic emission current(amp)\n",
+ "J=A*(T**2)*(math.exp(-b/T)); #emission current density(A/m**2)\n",
+ "no=J/e; #no. of electrons emitted per unit area per sec(per m**2 sec)\n",
+ "\n",
+ "#Result\n",
+ "print \"maximum obtainable electronic emission current is\",round(I*10**6,3),\"micro amp\"\n",
+ "print \"emission current density is\",round(J,5),\"A/m**2\"\n",
+ "print \"no. of electrons emitted per unit area per sec is\",round(no/10**19,3),\"*10**19 per m**2 sec\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "maximum obtainable electronic emission current is 20.145 micro amp\n",
+ "emission current density is 10.07259 A/m**2\n",
+ "no. of electrons emitted per unit area per sec is 6.295 *10**19 per m**2 sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 3.2, Page number 67"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Ip1=20; #plate current(mA)\n",
+ "Ip2=30; #changed plate current(mA) \n",
+ "Vp1=80; #plate voltage(V)\n",
+ "\n",
+ "#Calculation\n",
+ "#Ip=K*(Vp^(3/2))\n",
+ "Vp2=((((Vp1)**(3/2))*Ip2)/Ip1)**(2/3); #changed plate voltage(V)\n",
+ "\n",
+ "#Result\n",
+ "print \"plate voltage for 30mA current is\",round(Vp2,2),\"V\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "plate voltage for 30mA current is 104.83 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |