summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_Rajendran/Chapter14.ipynb
diff options
context:
space:
mode:
authorhardythe12015-07-03 12:23:43 +0530
committerhardythe12015-07-03 12:23:43 +0530
commit5a86a20b9de487553d4ef88719fb0fd76a5dd6a7 (patch)
treedb67ac5738a18b921d9a8cf6e86f402703f30bdf /Engineering_Physics_by_Rajendran/Chapter14.ipynb
parent37d315828bbfc0f5cabee669d2b9dd8cd17b5154 (diff)
downloadPython-Textbook-Companions-5a86a20b9de487553d4ef88719fb0fd76a5dd6a7.tar.gz
Python-Textbook-Companions-5a86a20b9de487553d4ef88719fb0fd76a5dd6a7.tar.bz2
Python-Textbook-Companions-5a86a20b9de487553d4ef88719fb0fd76a5dd6a7.zip
add/remove books
Diffstat (limited to 'Engineering_Physics_by_Rajendran/Chapter14.ipynb')
-rwxr-xr-xEngineering_Physics_by_Rajendran/Chapter14.ipynb340
1 files changed, 340 insertions, 0 deletions
diff --git a/Engineering_Physics_by_Rajendran/Chapter14.ipynb b/Engineering_Physics_by_Rajendran/Chapter14.ipynb
new file mode 100755
index 00000000..b3653caa
--- /dev/null
+++ b/Engineering_Physics_by_Rajendran/Chapter14.ipynb
@@ -0,0 +1,340 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:ea49c9c54a7abfea63e3838cff940d23d5976ae6af1b86c7e497f10ce35239cd"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "14: Waves and Particles"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 14.1, Page number 17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "V=150; #potential difference(V)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "h=6.626*10**-34; #planck's constant\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=h/math.sqrt(2*m*e*V); #de broglie wavelength of electron(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"de broglie wavelength of electron is\",round(lamda*10**10,5),\"*10**-10 m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "de broglie wavelength of electron is 1.00256 *10**-10 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 14.2, Page number 17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "E=0.025; #energy of electron(MeV)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "h=6.626*10**-34; #planck's constant\n",
+ "\n",
+ "#Calculation\n",
+ "E=E*10**6*e; #energy of electron(J)\n",
+ "v=math.sqrt(2*E/m); #velocity of electron(m/s)\n",
+ "lamda=h/(m*v); #de broglie wavelength(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"de broglie wavelength is\",round(lamda*10**10,5),\"angstrom\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "de broglie wavelength is 0.07766 angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 14.3, Page number 18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "E=1; #kinetic energy of electron(MeV)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "h=6.626*10**-34; #planck's constant\n",
+ "\n",
+ "#Calculation\n",
+ "E=E*10**6*e; #energy of electron(J)\n",
+ "v=math.sqrt(2*E/m); #velocity of electron(m/s)\n",
+ "lamda=h/(m*v); #de broglie wavelength of electron(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"de broglie wavelength of electron is\",round(lamda*10**10,5),\"angstrom\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "de broglie wavelength of electron is 0.01228 angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 14.4, Page number 18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "V=100; #potential difference(V)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "h=6.626*10**-34; #planck's constant\n",
+ "c=3*10**8; #velocity of light(m/s)\n",
+ "\n",
+ "#Calculation\n",
+ "v=math.sqrt(2*e*V/m); #velocity of electron(m/s)\n",
+ "u=c**2/v; #phase velocity of electron(m/s)\n",
+ "lamda=h/(m*v); #de broglie wavelength of electron(m)\n",
+ "p=m*v; #momentum of electron(kg m/s)\n",
+ "vbar=1/lamda; #wave number of electron wave(per m)\n",
+ "\n",
+ "#Result\n",
+ "print \"velocity of electron is\",round(v/10**6,5),\"*10**6 m/s\"\n",
+ "print \"phase velocity of electron is\",round(u/10**10,4),\"*10**10 m/s\"\n",
+ "print \"de broglie wavelength of electron is\",round(lamda*10**10,3),\"angstrom\"\n",
+ "print \"momentum of electron is\",round(p*10**24,3),\"*10**-24 kg m/s\"\n",
+ "print \"wave number of electron wave is\",round(vbar/10**9,3),\"*10**9 per m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "velocity of electron is 5.92999 *10**6 m/s\n",
+ "phase velocity of electron is 1.5177 *10**10 m/s\n",
+ "de broglie wavelength of electron is 1.228 angstrom\n",
+ "momentum of electron is 5.396 *10**-24 kg m/s\n",
+ "wave number of electron wave is 8.144 *10**9 per m\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 14.5, Page number 19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "deltax=10**-14; #radius of nucleus(m)\n",
+ "m=1.67*10**-27; #mass of proton(kg)\n",
+ "h=6.626*10**-34; #planck's constant\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculation\n",
+ "deltap=h/(2*math.pi*deltax); #uncertainity in momentum of proton(kg m/s)\n",
+ "KE=deltap**2/(2*m); #minimum kinetic energy of proton(J)\n",
+ "KE=KE/(e*10**6); #minimum kinetic energy of proton(MeV)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in momentum of proton is\",round(deltap*10**20,4),\"*10**-20 kg m/s\"\n",
+ "print \"minimum kinetic energy of proton is\",round(KE,3),\"MeV\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "uncertainity in momentum of proton is 1.0546 *10**-20 kg m/s\n",
+ "minimum kinetic energy of proton is 0.208 MeV\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 14.6, Page number 20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "deltax=0.1*10**-10; #uncertainity in position of electron(m)\n",
+ "h=6.626*10**-34; #planck's constant\n",
+ "\n",
+ "#Calculation\n",
+ "deltap=h/(2*math.pi*deltax); #uncertainity in momentum of electron(kg m/s)\n",
+ "\n",
+ "#Result\n",
+ "print \"uncertainity in momentum of electron is\",round(deltap*10**23,4),\"*10**-23 kg m/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "uncertainity in momentum of electron is 1.0546 *10**-23 kg m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 14.7, Page number 20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "m=9.1*10**-31; #mass of electron(kg)\n",
+ "h=6.626*10**-34; #planck's constant\n",
+ "a=1*10**-10; #width of potential wall(m)\n",
+ "n1=1; \n",
+ "n2=2;\n",
+ "n3=3;\n",
+ "e=6.24*10**18; #conversion factor from J to eV\n",
+ "\n",
+ "#Calculation\n",
+ "En=(h**2)/(8*m*(a**2)); #energy of electron(J)\n",
+ "E1=En*n1**2; #energy of 1st excited state(J)\n",
+ "E1=E1*e; #energy of 1st excited state(eV)\n",
+ "E2=En*n2**2; #energy of 2nd excited state(J)\n",
+ "E2=E2*e; #energy of 2nd excited state(eV)\n",
+ "E3=En*n3**2; #energy of 3rd excited state(J)\n",
+ "E3=E3*e; #energy of 3rd excited state(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"first 3 permitted energy levels of electron are\",round(E1,2),\"eV\",round(E2,2),\"eV and\",round(E3,2),\"eV\"\n",
+ "print \"answers given in the book vary due to rounding off errors\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "first 3 permitted energy levels of electron are 37.63 eV 150.53 eV and 338.69 eV\n",
+ "answers given in the book vary due to rounding off errors\n"
+ ]
+ }
+ ],
+ "prompt_number": 30
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file