diff options
author | Thomas Stephen Lee | 2015-08-28 16:53:23 +0530 |
---|---|---|
committer | Thomas Stephen Lee | 2015-08-28 16:53:23 +0530 |
commit | 4a1f703f1c1808d390ebf80e80659fe161f69fab (patch) | |
tree | 31b43ae8895599f2d13cf19395d84164463615d9 /Engineering_Physics_by_P.K.Palanisamy/Chapter8_1.ipynb | |
parent | 9d260e6fae7328d816a514130b691fbd0e9ef81d (diff) | |
download | Python-Textbook-Companions-4a1f703f1c1808d390ebf80e80659fe161f69fab.tar.gz Python-Textbook-Companions-4a1f703f1c1808d390ebf80e80659fe161f69fab.tar.bz2 Python-Textbook-Companions-4a1f703f1c1808d390ebf80e80659fe161f69fab.zip |
add books
Diffstat (limited to 'Engineering_Physics_by_P.K.Palanisamy/Chapter8_1.ipynb')
-rwxr-xr-x | Engineering_Physics_by_P.K.Palanisamy/Chapter8_1.ipynb | 873 |
1 files changed, 873 insertions, 0 deletions
diff --git a/Engineering_Physics_by_P.K.Palanisamy/Chapter8_1.ipynb b/Engineering_Physics_by_P.K.Palanisamy/Chapter8_1.ipynb new file mode 100755 index 00000000..e6d0049e --- /dev/null +++ b/Engineering_Physics_by_P.K.Palanisamy/Chapter8_1.ipynb @@ -0,0 +1,873 @@ +{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#8: Semiconductors"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.1, Page number 8.11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistivity is 0.471 ohm m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "ni=2.37*10**19; #carrier density(per m**3)\n",
+ "mew_e=0.38; #electron mobility(m**2/Vs)\n",
+ "mew_h=0.18; #hole mobility(m**2/Vs)\n",
+ "e=1.6*10**-19; \n",
+ "\n",
+ "#Calculation\n",
+ "sigma_i=ni*e*(mew_e+mew_h); \n",
+ "rho=1/sigma_i; #resistivity(ohm m)\n",
+ "\n",
+ "#Result\n",
+ "print \"resistivity is\",round(rho,3),\"ohm m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.2, Page number 8.11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "position of fermi level is 0.576 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Eg=1.12; #band gap(eV)\n",
+ "T=300; #temperature(K)\n",
+ "m0=1; #assume\n",
+ "me=0.12*m0;\n",
+ "mh=0.28*m0;\n",
+ "k=1.38*10**-23; #boltzmann constant\n",
+ "e=1.6*10**-19; \n",
+ "\n",
+ "#Calculation\n",
+ "EF=(Eg/2)+(3*k*T*math.log(mh/me)/(4*e)); #position of fermi level(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"position of fermi level is\",round(EF,3),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.3, Page number 8.12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "concentration of intrinsic charge carriers is 33.48 *10**18 per m**3\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "T=300; #temperature(K)\n",
+ "k=1.38*10**-23; #boltzmann constant\n",
+ "m=9.109*10**-31; #mass(kg)\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "Eg=0.7; #energy(eV)\n",
+ "e=1.6*10**-19; \n",
+ "\n",
+ "#Calculation\n",
+ "x=(2*math.pi*m*k/h**2)**(3/2);\n",
+ "y=math.exp(-Eg*e/(2*k*T));\n",
+ "ni=2*x*(T**(3/2))*y; #concentration of intrinsic charge carriers(per m**3)\n",
+ "\n",
+ "#Result\n",
+ "print \"concentration of intrinsic charge carriers is\",round(ni/10**18,2),\"*10**18 per m**3\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.4, Page number 8.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistivity is 0.449 ohm m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "ni=2.4*10**19; #carrier density(per m**3)\n",
+ "mew_e=0.39; #electron mobility(m**2/Vs)\n",
+ "mew_h=0.19; #hole mobility(m**2/Vs)\n",
+ "e=1.6*10**-19; \n",
+ "\n",
+ "#Calculation\n",
+ "sigma_i=ni*e*(mew_e+mew_h); \n",
+ "rhoi=1/sigma_i; #resistivity(ohm m)\n",
+ "\n",
+ "#Result\n",
+ "print \"resistivity is\",round(rhoi,3),\"ohm m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.5, Page number 8.13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "resistance is 4.31 *10**3 ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "ni=2.5*10**19; #carrier density(per m**3)\n",
+ "mew_e=0.39; #electron mobility(m**2/Vs)\n",
+ "mew_p=0.19; #hole mobility(m**2/Vs)\n",
+ "e=1.6*10**-19; \n",
+ "l=1*10**-2; #length(m)\n",
+ "A=10**-3*10**-3; #area(m**2)\n",
+ "\n",
+ "#Calculation\n",
+ "R=l/(ni*e*A*(mew_p+mew_e)); #resistance(ohm)\n",
+ "\n",
+ "#Result\n",
+ "print \"resistance is\",round(R/10**3,2),\"*10**3 ohm\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.6, Page number 8.14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "conductivity is 1.578 *10**-3 ohm-1 m-1\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "T=300; #temperature(K)\n",
+ "k=1.38*10**-23; #boltzmann constant\n",
+ "m=9.109*10**-31; #mass(kg)\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "Eg=1.1; #energy(eV)\n",
+ "e=1.6*10**-19; \n",
+ "mew_e=0.48; #electron mobility(m**2/Vs)\n",
+ "mew_p=0.013; #hole mobility(m**2/Vs)\n",
+ "\n",
+ "#Calculation\n",
+ "C=2*((2*math.pi*m*k/h**2)**(3/2));\n",
+ "y=math.exp(-Eg*e/(2*k*T));\n",
+ "ni=C*(T**(3/2))*y; #concentration of intrinsic charge carriers(per m**3)\n",
+ "sigma_i=ni*e*(mew_e+mew_h); #conductivity(ohm-1 m-1)\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print \"conductivity is\",round(sigma_i*10**3,3),\"*10**-3 ohm-1 m-1\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.7, Page number 8.15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "concentration of intrinsic charge carriers is 3.35 *10**19 per m**3\n",
+ "conductivity is 3.589 ohm-1 m-1\n",
+ "answer in the book varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "T=300; #temperature(K)\n",
+ "k=1.38*10**-23; #boltzmann constant\n",
+ "m=9.109*10**-31; #mass(kg)\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "Eg=0.7; #energy(eV)\n",
+ "e=1.6*10**-19; \n",
+ "mew_e=0.48; #electron mobility(m**2/Vs)\n",
+ "mew_p=0.013; #hole mobility(m**2/Vs)\n",
+ "\n",
+ "#Calculation\n",
+ "C=2*((2*math.pi*m*k/h**2)**(3/2));\n",
+ "y=math.exp(-Eg*e/(2*k*T));\n",
+ "ni=C*(T**(3/2))*y; #concentration of intrinsic charge carriers(per m**3)\n",
+ "sigma_i=ni*e*(mew_e+mew_h); #conductivity(ohm-1 m-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"concentration of intrinsic charge carriers is\",round(ni/10**19,2),\"*10**19 per m**3\"\n",
+ "print \"conductivity is\",round(sigma_i,3),\"ohm-1 m-1\"\n",
+ "print \"answer in the book varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.8, Page number 8.15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "forbidden energy gap is 0.793 eV\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "e=1.6*10**-19; \n",
+ "mew_e=0.36; #electron mobility(m**2/Vs)\n",
+ "mew_h=0.17; #hole mobility(m**2/Vs)\n",
+ "rho=2.12; #resistivity(ohm m)\n",
+ "T=300; #temperature(K)\n",
+ "k=1.38*10**-23; #boltzmann constant\n",
+ "m=9.109*10**-31; #mass(kg)\n",
+ "h=6.626*10**-34; #plancks constant\n",
+ "\n",
+ "#Calculation\n",
+ "sigma=1/rho;\n",
+ "ni=sigma/(e*(mew_e+mew_h));\n",
+ "C=2*((2*math.pi*m*k/h**2)**(3/2));\n",
+ "y=C*T**(3/2)/ni;\n",
+ "z=math.log(y);\n",
+ "Eg=2*k*T*z/(1.6*10**-19); #forbidden energy gap(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"forbidden energy gap is\",round(Eg,3),\"eV\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.9, Page number 8.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "energy band gap is 0.452 eV\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "x=0.6532;\n",
+ "y=0.3010;\n",
+ "T1=273+20; #temperature(K)\n",
+ "T2=273+32; #temperature(K)\n",
+ "k=8.616*10**-5;\n",
+ "\n",
+ "#Calculation\n",
+ "dy=x-y;\n",
+ "dx=(1/T1)-(1/T2);\n",
+ "Eg=2*k*dy/dx; #energy band gap(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"energy band gap is\",round(Eg,3),\"eV\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.10, Page number 8.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "temperature is 1729.0 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "k=1.38*10**-23; #boltzmann constant\n",
+ "EF=0.18; #fermi shift(eV)\n",
+ "E=1.2; #energy gap(eV)\n",
+ "e=1.6*10**-19; \n",
+ "r=5; \n",
+ "\n",
+ "#Calculation\n",
+ "T=EF*e*4/(3*k*math.log(r)); #temperature(K)\n",
+ "\n",
+ "#Result\n",
+ "print \"temperature is\",round(T),\"K\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.11, Page number 8.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "electron concentration is 2.0 *10**9 per m**3\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Na=5*10**23; #number of atoms(atoms)\n",
+ "Nd=3*10**23; #number of atoms(atoms)\n",
+ "ni=2*10**16; #intrinsic charge carriers(per m**3)\n",
+ "\n",
+ "#Calculation\n",
+ "p=2*(Na-Nd)/2; #hole concentration(per m**3)\n",
+ "n=ni**2/p; #electron concentration(per m**3)\n",
+ "\n",
+ "#Result\n",
+ "print \"electron concentration is\",n/10**9,\"*10**9 per m**3\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.12, Page number 8.18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "conductivity is 0.432 *10**-3 ohm-1 m-1\n",
+ "conductivity is 10.38 ohm-1 m-1\n",
+ "conductivity is 3.99 ohm-1 m-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "ni=1.5*10**16; #carrier density(per m**3)\n",
+ "mew_e=0.13; #electron mobility(m**2/Vs)\n",
+ "mew_h=0.05; #hole mobility(m**2/Vs)\n",
+ "e=1.6*10**-19; \n",
+ "d=2.33*10**3; #density(kg/m**3)\n",
+ "n=28.1;\n",
+ "na=6.02*10**26; #number of atoms\n",
+ "\n",
+ "#Calculation\n",
+ "sigma=ni*e*(mew_e+mew_h); #conductivity(ohm-1 m-1)\n",
+ "Nd=d*na/(n*10**8);\n",
+ "p=ni**2/Nd; \n",
+ "sigma_ex1=Nd*e*mew_e; #conductivity(ohm-1 m-1)\n",
+ "n=p;\n",
+ "Na=Nd;\n",
+ "sigma_ex2=Na*e*mew_h; #conductivity(ohm-1 m-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"conductivity is\",sigma*10**3,\"*10**-3 ohm-1 m-1\"\n",
+ "print \"conductivity is\",round(sigma_ex1,2),\"ohm-1 m-1\"\n",
+ "print \"conductivity is\",round(sigma_ex2,2),\"ohm-1 m-1\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.13, Page number 8.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "conductivity is 0.4392 *10**-3 ohm-1 m-1\n",
+ "hole concentration is 2250000000.0 per m**3\n",
+ "conductivity is 2.16 *10**3 ohm-1 m-1\n",
+ "position of fermi level is 0.02 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "ni=1.5*10**16; #carrier density(per m**3)\n",
+ "mew_e=0.135; #electron mobility(m**2/Vs)\n",
+ "mew_h=0.048; #hole mobility(m**2/Vs)\n",
+ "e=1.6*10**-19; \n",
+ "Nd=10**23; \n",
+ "T=300; #temperature(K)\n",
+ "k=1.38*10**-23;\n",
+ "\n",
+ "#Calculation\n",
+ "sigma=ni*e*(mew_e+mew_h); #conductivity(ohm-1 m-1)\n",
+ "p=ni**2/Nd; #hole concentration(per m**3)\n",
+ "sigma_ex=Nd*e*mew_e; #conductivity(ohm-1 m-1)\n",
+ "x=3*k*T*math.log(mew_e/mew_h)/4;\n",
+ "\n",
+ "#Result\n",
+ "print \"conductivity is\",sigma*10**3,\"*10**-3 ohm-1 m-1\"\n",
+ "print \"hole concentration is\",p,\"per m**3\"\n",
+ "print \"conductivity is\",sigma_ex/10**3,\"*10**3 ohm-1 m-1\"\n",
+ "print \"position of fermi level is\",round(x/(1.6*10**-19),2),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.14, Page number 8.35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "diffusion coefficient is 49.162 *10**-4 m**2 s-1\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "mew_e=0.19; #electron mobility(m**2/Vs)\n",
+ "e=1.6*10**-19; \n",
+ "T=300; #temperature(K)\n",
+ "k=1.38*10**-23;\n",
+ "\n",
+ "#Calculation\n",
+ "Dn=mew_e*k*T/e; #diffusion coefficient(m**2 s-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"diffusion coefficient is\",round(Dn*10**4,3),\"*10**-4 m**2 s-1\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.15, Page number 8.44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "hall voltage is 1.83 mV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "RH=3.66*10**-4; #hall coefficient(m**3/coulomb)\n",
+ "I=10**-2; #current(amp)\n",
+ "B=0.5; #magnetic field(wb/m**2)\n",
+ "t=1*10**-3; #thickness(m)\n",
+ "\n",
+ "#Calculation\n",
+ "VH=RH*I*B*10**3/t; #hall voltage(mV)\n",
+ "\n",
+ "#Result\n",
+ "print \"hall voltage is\",VH,\"mV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.16, Page number 8.45"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "hall coefficient is 3.7e-06 C-1 m**3\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Vy=37*10**-6; #voltage(V)\n",
+ "t=10**-3; #thickness(m)\n",
+ "Bz=0.5; #magnetic field(wb/m**2)\n",
+ "Ix=20*10**-3; #current(A)\n",
+ "\n",
+ "#Calculation\n",
+ "RH=Vy*t/(Ix*Bz); #hall coefficient(m**3/coulomb)\n",
+ "\n",
+ "#Result\n",
+ "print \"hall coefficient is\",RH,\"C-1 m**3\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.17, Page number 8.46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "density of charge carriers is 9.124 *10**22 m**3\n",
+ "mobility of charge carriers is 17.125 *10**-3 m**2 V-1 s-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "RH=6.85*10**-5; #hall coefficient(m**3/coulomb)\n",
+ "e=1.6*10**-19; \n",
+ "sigma=250; #conductivity(m-1 ohm-1)\n",
+ "\n",
+ "#Calculation\n",
+ "n=1/(RH*e); #density of charge carriers(m**3)\n",
+ "mew=sigma/(n*e); #mobility of charge carriers(m**2/Vs)\n",
+ "\n",
+ "#Result\n",
+ "print \"density of charge carriers is\",round(n/10**22,3),\"*10**22 m**3\"\n",
+ "print \"mobility of charge carriers is\",mew*10**3,\"*10**-3 m**2 V-1 s-1\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.18, Page number 8.46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 48,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "hall voltage is 1.431 micro V\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "I=30; #current(A)\n",
+ "B=1.75; #magnetic field(T)\n",
+ "n=6.55*10**28; #electron concentration(/m**3)\n",
+ "t=0.35*10**-2; #thickness(m)\n",
+ "e=1.6*10**-19; \n",
+ "\n",
+ "#Calculation\n",
+ "VH=I*B*10**6/(n*e*t); #hall voltage(micro V)\n",
+ "\n",
+ "#Result\n",
+ "print \"hall voltage is\",round(VH,3),\"micro V\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.19, Page number 8.47"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 55,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "density of charge carriers is 1.708 *10**22 per m**3\n",
+ "mobility of charge carriers is 0.041 m**2 V-1 s-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "RH=3.66*10**-4; #hall coefficient(m**3/coulomb)\n",
+ "e=1.6*10**-19;\n",
+ "Pn=8.93*10**-3; #resistivity(ohm m)\n",
+ "\n",
+ "#Calculation\n",
+ "n=1/(RH*e); #density of charge carriers(per m**3)\n",
+ "mew_e=RH/Pn; #mobility of charge carriers(m**2/Vs)\n",
+ "\n",
+ "#Result\n",
+ "print \"density of charge carriers is\",round(n/10**22,3),\"*10**22 per m**3\"\n",
+ "print \"mobility of charge carriers is\",round(mew_e,3),\"m**2 V-1 s-1\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
|