summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_K._Rajagopal/Chapter_11.ipynb
diff options
context:
space:
mode:
authorhardythe12014-08-06 16:41:00 +0530
committerhardythe12014-08-06 16:41:00 +0530
commit34887da4e2731004f7cf208ae59b72f2e27b33cf (patch)
tree2307457b57ed3ee1049504cf4440d9f06e08c017 /Engineering_Physics_by_K._Rajagopal/Chapter_11.ipynb
parent7876eeaf85f7c020ec1f3530963928cd2bc26a66 (diff)
downloadPython-Textbook-Companions-34887da4e2731004f7cf208ae59b72f2e27b33cf.tar.gz
Python-Textbook-Companions-34887da4e2731004f7cf208ae59b72f2e27b33cf.tar.bz2
Python-Textbook-Companions-34887da4e2731004f7cf208ae59b72f2e27b33cf.zip
adding books
Diffstat (limited to 'Engineering_Physics_by_K._Rajagopal/Chapter_11.ipynb')
-rwxr-xr-xEngineering_Physics_by_K._Rajagopal/Chapter_11.ipynb413
1 files changed, 413 insertions, 0 deletions
diff --git a/Engineering_Physics_by_K._Rajagopal/Chapter_11.ipynb b/Engineering_Physics_by_K._Rajagopal/Chapter_11.ipynb
new file mode 100755
index 00000000..857307a9
--- /dev/null
+++ b/Engineering_Physics_by_K._Rajagopal/Chapter_11.ipynb
@@ -0,0 +1,413 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 11: Semiconductors"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.1, Page 343"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "Pi=0.47;#given resistivity of intrinsic germanium\n",
+ "sigmai=1/Pi;#conductance\n",
+ "e=1.6*1e-19;#charge of electron\n",
+ "ue=0.38;#electron mobility\n",
+ "up=0.18;#hole mobility\n",
+ "\n",
+ "#Calculation\n",
+ "ni=sigmai/(e*(ue+up));#intrinsic carrier density at 300K \n",
+ "\n",
+ "#Result\n",
+ "print 'intrinsic carrier density at 300K temp= %.2f*10^19 m^-3'%(ni/1e+19)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "intrinsic carrier density at 300K temp= 2.37*10^19 m^-3\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.2, Page 343"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "e=1.6*1e-19;#charge of electron\n",
+ "ue=0.39;#electron mobility\n",
+ "up=0.19;#hole mobility\n",
+ "ni=2.4*1e19;#intrinsic carrier density \n",
+ "\n",
+ "#calculation\n",
+ "sigma=ni*e*(up+ue);\n",
+ "\n",
+ "#Result\n",
+ "print 'conductivity of intrinsic semiconductor= %.2f ohm^-1*m^-1'%sigma"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "conductivity of intrinsic semiconductor= 2.23 ohm^-1*m^-1\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.3, Page 343"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi,exp\n",
+ "\n",
+ "#Variable Declaration\n",
+ "m0=9.1*1e-31;\n",
+ "me=0.12*m0;\n",
+ "mp=0.28*m0;\n",
+ "Eg=0.67*1.6*1e-19\n",
+ "k=1.38*1e-23;#boltzman constant\n",
+ "h=6.62*1e-34;#plank's constant\n",
+ "T=300;\n",
+ "\n",
+ "#Calculations\n",
+ "ni=2*((2*pi*k*T/h**2)**(3./2))*((me*mp)**(3./4))*exp(-Eg/(2*k*T));#intrinsic carrier concentration\n",
+ "\n",
+ "#Result\n",
+ "print 'intrinsic carrier concentration is= %.1f *10^18 m^-3'%(ni/1e18)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "intrinsic carrier concentration is= 4.7 *10^18 m^-3\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.4, Page 343"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import exp\n",
+ "\n",
+ "#Variable Declaration\n",
+ "Eg1=0.36*1.6*1e-19;\n",
+ "Eg2=0.72*1.6*1e-19\n",
+ "k=1.38*1e-23;#boltzman constant\n",
+ "T=300;#tempreture in kelvin\n",
+ "\n",
+ "#Calculation\n",
+ "#in this formula ni=2*((2*%pi*k*T/h^2)^(3/2))*((me*mp)^(3/4))*exp(-Eg/(2*k*T))ratio of nip/niq is given by:\n",
+ "x=exp((Eg2-Eg1)/(2*k*T));#ratio of nip/niq\n",
+ "\n",
+ "#Result\n",
+ "print 'ratio of nip/niq is= %.f '%x\n",
+ "#Incorrect answer in the textbook\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "ratio of nip/niq is= 1050 \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.5, Page 344"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "e=1.6*1e-19;#charge of electron\n",
+ "ue=0.39;#electron mobility\n",
+ "up=0.19;#hole mobility\n",
+ "ni=2.5*1e19;#intrinsic carrier density \n",
+ "l=1e-2;#length of Ge rode\n",
+ "a=1e-4;#area of Ge rode\n",
+ "\n",
+ "#Calculations&Results\n",
+ "sigma=ni*e*(up+ue);#conductivity of intrinsic semiconductor\n",
+ "print 'conductivity of intrinsic semiconductor= %.2f ohm^-1*m^-1'%sigma\n",
+ "P=1/sigma;\n",
+ "R=P*l/a;#resistance of Ge rode\n",
+ "print 'resistance of Ge rode =%.1f ohm'%R\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "conductivity of intrinsic semiconductor= 2.32 ohm^-1*m^-1\n",
+ "resistance of Ge rode =43.1 ohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.6, Page 347"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "ue=3850;#mobility of electron\n",
+ "sigma=5;#conductivity of ntype semiconductor\n",
+ "e=1.6*1e-19;#charge of electron\n",
+ "\n",
+ "#Calculation\n",
+ "Nd=sigma/(e*ue);#density of donor atoms\n",
+ "\n",
+ "#Result\n",
+ "print 'density of donor atoms is= %.2f*10^16 cm^-3'%(Nd/1e16)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "density of donor atoms is= 0.81*10^16 cm^-3\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.7, Page 351"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log\n",
+ "\n",
+ "#Variable Declaration\n",
+ "#let Ef-Ev=0.4eV=x and Ef1-Ev=y\n",
+ "x=0.4;#Ef-Ev in eV\n",
+ "k=1.38*1e-23;#boltzmann constant\n",
+ "T=300;#tempreture in kelvin\n",
+ "\n",
+ "#Calculations\n",
+ "#now p=Nv*exp(-x/(k*T))=Na and p'=Nv*exp(-y/(k*T))=2Na so ratio of this 2 is 2=exp(x-y/(k*T))\n",
+ "y=x-((k*T*log(2))/1.6e-19);#Ef1-Ev in eV\n",
+ "\n",
+ "#Result\n",
+ "print 'Ef1-Ev in eV is= %.4feV'%y\n",
+ "#Answer varies due to rounding-off errors"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Ef1-Ev in eV is= 0.3821eV\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.8, Page 352"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "#let Ec1-Ef=0.3eV=x and Ec2-Ef=y\n",
+ "x=0.3;#Ec-Ef in eV\n",
+ "T1=300.;#tempreture in kelvin\n",
+ "T2=330.;#tempreture in kelvin\n",
+ "\n",
+ "#Calculation\n",
+ "#Ec-Ef=k*T*log(Nc/Nd) so..\n",
+ "y=T2*x/T1;#Ec2-Ef in eV\n",
+ "\n",
+ "#Result\n",
+ "print 'Ec2-Ef in eV is= %.2f eV'%y\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Ec2-Ef in eV is= 0.33 eV\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.9, Page 356"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "B=0.5;#given flux density\n",
+ "d=3*1e-3;#given thickness\n",
+ "J=500.;#given current density\n",
+ "n=1e21;#given donor density\n",
+ "e=1.6*1e-19;#charge of electron\n",
+ "\n",
+ "#Calculation\n",
+ "Vh=(B*J*d)/(n*e);#hall voltage\n",
+ "\n",
+ "#Result\n",
+ "print 'hall voltage is= %.1f mV'%(Vh/1e-3)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "hall voltage is= 4.7 mV\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.10, Page 357"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi\n",
+ "\n",
+ "#Variable Declaration\n",
+ "P=8.9*1e-3;#resistivity of doped sillicon\n",
+ "Rh=3.6*1e-4;#hall coefficient\n",
+ "e=1.6*1e-19;#charge of electron\n",
+ "\n",
+ "#Calculations&Results\n",
+ "ne=(3*pi)/(8*Rh*e);#carrier density of electron\n",
+ "print 'carrier density of electrons = %.3f*10^22 m^-3'%(ne/1e22)\n",
+ "ue=1./(P*ne*e);#mobility of electon\n",
+ "print 'mobility of charges = %.4f m^2*V^-1*s^-1'%ue\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "carrier density of electrons = 2.045*10^22 m^-3\n",
+ "mobility of charges = 0.0343 m^2*V^-1*s^-1\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file