diff options
author | hardythe1 | 2014-08-06 16:41:00 +0530 |
---|---|---|
committer | hardythe1 | 2014-08-06 16:41:00 +0530 |
commit | 34887da4e2731004f7cf208ae59b72f2e27b33cf (patch) | |
tree | 2307457b57ed3ee1049504cf4440d9f06e08c017 /Engineering_Physics_by_K._Rajagopal/Chapter_11.ipynb | |
parent | 7876eeaf85f7c020ec1f3530963928cd2bc26a66 (diff) | |
download | Python-Textbook-Companions-34887da4e2731004f7cf208ae59b72f2e27b33cf.tar.gz Python-Textbook-Companions-34887da4e2731004f7cf208ae59b72f2e27b33cf.tar.bz2 Python-Textbook-Companions-34887da4e2731004f7cf208ae59b72f2e27b33cf.zip |
adding books
Diffstat (limited to 'Engineering_Physics_by_K._Rajagopal/Chapter_11.ipynb')
-rwxr-xr-x | Engineering_Physics_by_K._Rajagopal/Chapter_11.ipynb | 413 |
1 files changed, 413 insertions, 0 deletions
diff --git a/Engineering_Physics_by_K._Rajagopal/Chapter_11.ipynb b/Engineering_Physics_by_K._Rajagopal/Chapter_11.ipynb new file mode 100755 index 00000000..857307a9 --- /dev/null +++ b/Engineering_Physics_by_K._Rajagopal/Chapter_11.ipynb @@ -0,0 +1,413 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 11: Semiconductors" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.1, Page 343" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable Declaration\n", + "Pi=0.47;#given resistivity of intrinsic germanium\n", + "sigmai=1/Pi;#conductance\n", + "e=1.6*1e-19;#charge of electron\n", + "ue=0.38;#electron mobility\n", + "up=0.18;#hole mobility\n", + "\n", + "#Calculation\n", + "ni=sigmai/(e*(ue+up));#intrinsic carrier density at 300K \n", + "\n", + "#Result\n", + "print 'intrinsic carrier density at 300K temp= %.2f*10^19 m^-3'%(ni/1e+19)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "intrinsic carrier density at 300K temp= 2.37*10^19 m^-3\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.2, Page 343" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable Declaration\n", + "e=1.6*1e-19;#charge of electron\n", + "ue=0.39;#electron mobility\n", + "up=0.19;#hole mobility\n", + "ni=2.4*1e19;#intrinsic carrier density \n", + "\n", + "#calculation\n", + "sigma=ni*e*(up+ue);\n", + "\n", + "#Result\n", + "print 'conductivity of intrinsic semiconductor= %.2f ohm^-1*m^-1'%sigma" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "conductivity of intrinsic semiconductor= 2.23 ohm^-1*m^-1\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.3, Page 343" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import pi,exp\n", + "\n", + "#Variable Declaration\n", + "m0=9.1*1e-31;\n", + "me=0.12*m0;\n", + "mp=0.28*m0;\n", + "Eg=0.67*1.6*1e-19\n", + "k=1.38*1e-23;#boltzman constant\n", + "h=6.62*1e-34;#plank's constant\n", + "T=300;\n", + "\n", + "#Calculations\n", + "ni=2*((2*pi*k*T/h**2)**(3./2))*((me*mp)**(3./4))*exp(-Eg/(2*k*T));#intrinsic carrier concentration\n", + "\n", + "#Result\n", + "print 'intrinsic carrier concentration is= %.1f *10^18 m^-3'%(ni/1e18)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "intrinsic carrier concentration is= 4.7 *10^18 m^-3\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.4, Page 343" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import exp\n", + "\n", + "#Variable Declaration\n", + "Eg1=0.36*1.6*1e-19;\n", + "Eg2=0.72*1.6*1e-19\n", + "k=1.38*1e-23;#boltzman constant\n", + "T=300;#tempreture in kelvin\n", + "\n", + "#Calculation\n", + "#in this formula ni=2*((2*%pi*k*T/h^2)^(3/2))*((me*mp)^(3/4))*exp(-Eg/(2*k*T))ratio of nip/niq is given by:\n", + "x=exp((Eg2-Eg1)/(2*k*T));#ratio of nip/niq\n", + "\n", + "#Result\n", + "print 'ratio of nip/niq is= %.f '%x\n", + "#Incorrect answer in the textbook\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "ratio of nip/niq is= 1050 \n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.5, Page 344" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable Declaration\n", + "e=1.6*1e-19;#charge of electron\n", + "ue=0.39;#electron mobility\n", + "up=0.19;#hole mobility\n", + "ni=2.5*1e19;#intrinsic carrier density \n", + "l=1e-2;#length of Ge rode\n", + "a=1e-4;#area of Ge rode\n", + "\n", + "#Calculations&Results\n", + "sigma=ni*e*(up+ue);#conductivity of intrinsic semiconductor\n", + "print 'conductivity of intrinsic semiconductor= %.2f ohm^-1*m^-1'%sigma\n", + "P=1/sigma;\n", + "R=P*l/a;#resistance of Ge rode\n", + "print 'resistance of Ge rode =%.1f ohm'%R\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "conductivity of intrinsic semiconductor= 2.32 ohm^-1*m^-1\n", + "resistance of Ge rode =43.1 ohm\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.6, Page 347" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable Declaration\n", + "ue=3850;#mobility of electron\n", + "sigma=5;#conductivity of ntype semiconductor\n", + "e=1.6*1e-19;#charge of electron\n", + "\n", + "#Calculation\n", + "Nd=sigma/(e*ue);#density of donor atoms\n", + "\n", + "#Result\n", + "print 'density of donor atoms is= %.2f*10^16 cm^-3'%(Nd/1e16)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "density of donor atoms is= 0.81*10^16 cm^-3\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.7, Page 351" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import log\n", + "\n", + "#Variable Declaration\n", + "#let Ef-Ev=0.4eV=x and Ef1-Ev=y\n", + "x=0.4;#Ef-Ev in eV\n", + "k=1.38*1e-23;#boltzmann constant\n", + "T=300;#tempreture in kelvin\n", + "\n", + "#Calculations\n", + "#now p=Nv*exp(-x/(k*T))=Na and p'=Nv*exp(-y/(k*T))=2Na so ratio of this 2 is 2=exp(x-y/(k*T))\n", + "y=x-((k*T*log(2))/1.6e-19);#Ef1-Ev in eV\n", + "\n", + "#Result\n", + "print 'Ef1-Ev in eV is= %.4feV'%y\n", + "#Answer varies due to rounding-off errors" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Ef1-Ev in eV is= 0.3821eV\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.8, Page 352" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable Declaration\n", + "#let Ec1-Ef=0.3eV=x and Ec2-Ef=y\n", + "x=0.3;#Ec-Ef in eV\n", + "T1=300.;#tempreture in kelvin\n", + "T2=330.;#tempreture in kelvin\n", + "\n", + "#Calculation\n", + "#Ec-Ef=k*T*log(Nc/Nd) so..\n", + "y=T2*x/T1;#Ec2-Ef in eV\n", + "\n", + "#Result\n", + "print 'Ec2-Ef in eV is= %.2f eV'%y\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Ec2-Ef in eV is= 0.33 eV\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.9, Page 356" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable Declaration\n", + "B=0.5;#given flux density\n", + "d=3*1e-3;#given thickness\n", + "J=500.;#given current density\n", + "n=1e21;#given donor density\n", + "e=1.6*1e-19;#charge of electron\n", + "\n", + "#Calculation\n", + "Vh=(B*J*d)/(n*e);#hall voltage\n", + "\n", + "#Result\n", + "print 'hall voltage is= %.1f mV'%(Vh/1e-3)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "hall voltage is= 4.7 mV\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 11.10, Page 357" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import pi\n", + "\n", + "#Variable Declaration\n", + "P=8.9*1e-3;#resistivity of doped sillicon\n", + "Rh=3.6*1e-4;#hall coefficient\n", + "e=1.6*1e-19;#charge of electron\n", + "\n", + "#Calculations&Results\n", + "ne=(3*pi)/(8*Rh*e);#carrier density of electron\n", + "print 'carrier density of electrons = %.3f*10^22 m^-3'%(ne/1e22)\n", + "ue=1./(P*ne*e);#mobility of electon\n", + "print 'mobility of charges = %.4f m^2*V^-1*s^-1'%ue\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "carrier density of electrons = 2.045*10^22 m^-3\n", + "mobility of charges = 0.0343 m^2*V^-1*s^-1\n" + ] + } + ], + "prompt_number": 12 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |