summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_G._Vijayakumari
diff options
context:
space:
mode:
authorThomas Stephen Lee2015-08-28 16:53:23 +0530
committerThomas Stephen Lee2015-08-28 16:53:23 +0530
commitdb0855dbeb41ecb8a51dde8587d43e5d7e83620f (patch)
treeb95975d958cba9af36cb1680e3f77205354f6512 /Engineering_Physics_by_G._Vijayakumari
parent5a86a20b9de487553d4ef88719fb0fd76a5dd6a7 (diff)
downloadPython-Textbook-Companions-db0855dbeb41ecb8a51dde8587d43e5d7e83620f.tar.gz
Python-Textbook-Companions-db0855dbeb41ecb8a51dde8587d43e5d7e83620f.tar.bz2
Python-Textbook-Companions-db0855dbeb41ecb8a51dde8587d43e5d7e83620f.zip
add books
Diffstat (limited to 'Engineering_Physics_by_G._Vijayakumari')
-rw-r--r--Engineering_Physics_by_G._Vijayakumari/Chapter1.ipynb684
-rw-r--r--Engineering_Physics_by_G._Vijayakumari/Chapter10.ipynb627
-rw-r--r--Engineering_Physics_by_G._Vijayakumari/Chapter11.ipynb613
-rw-r--r--Engineering_Physics_by_G._Vijayakumari/Chapter12.ipynb351
-rw-r--r--Engineering_Physics_by_G._Vijayakumari/Chapter13.ipynb243
-rw-r--r--Engineering_Physics_by_G._Vijayakumari/Chapter15.ipynb71
-rw-r--r--Engineering_Physics_by_G._Vijayakumari/Chapter2.ipynb156
-rw-r--r--Engineering_Physics_by_G._Vijayakumari/Chapter3.ipynb1072
-rw-r--r--Engineering_Physics_by_G._Vijayakumari/Chapter4.ipynb499
-rw-r--r--Engineering_Physics_by_G._Vijayakumari/Chapter5.ipynb193
-rw-r--r--Engineering_Physics_by_G._Vijayakumari/Chapter6.ipynb267
-rw-r--r--Engineering_Physics_by_G._Vijayakumari/Chapter7.ipynb781
-rw-r--r--Engineering_Physics_by_G._Vijayakumari/Chapter8.ipynb669
-rw-r--r--Engineering_Physics_by_G._Vijayakumari/Chapter9.ipynb585
-rw-r--r--Engineering_Physics_by_G._Vijayakumari/README.txt10
-rw-r--r--Engineering_Physics_by_G._Vijayakumari/screenshots/11.pngbin0 -> 29561 bytes
-rw-r--r--Engineering_Physics_by_G._Vijayakumari/screenshots/22.pngbin0 -> 40473 bytes
-rw-r--r--Engineering_Physics_by_G._Vijayakumari/screenshots/33.pngbin0 -> 37318 bytes
18 files changed, 6821 insertions, 0 deletions
diff --git a/Engineering_Physics_by_G._Vijayakumari/Chapter1.ipynb b/Engineering_Physics_by_G._Vijayakumari/Chapter1.ipynb
new file mode 100644
index 00000000..aea79a8c
--- /dev/null
+++ b/Engineering_Physics_by_G._Vijayakumari/Chapter1.ipynb
@@ -0,0 +1,684 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#1: Acoustics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 1.1, Page number 2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The sound intensity level is imcreased by 13.01 dB when the intensity is doubled\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "i=20; #the intensity of a source is increased 20 times\n",
+ "\n",
+ "#Calculation\n",
+ "I=(10*(math.log10(i))); #intensity of sound(dB)\n",
+ "\n",
+ "#Result\n",
+ "print \"The sound intensity level is imcreased by\",round(I,2),\"dB when the intensity is doubled\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 1.2, Page number 2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The sound intensity level is increased by 6 dB\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "i=4; #the intensity of a source is increased 4 times\n",
+ "\n",
+ "#Calculation\n",
+ "I=(10*(math.log10(i))); #intensity of sound(dB)\n",
+ "\n",
+ "#Result\n",
+ "print \"The sound intensity level is increased by\",int(I),\"dB\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 1.3, Page number 2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The intensity level of a plane just leaving the runway is 150.0 dB\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "I=1000; #sound intensity of plane leaving the runway(Wm**-2)\n",
+ "Io=10**-12; #threshold intensity of sound(Wm**-2)\n",
+ "\n",
+ "#Calculation\n",
+ "IL=(10*math.log10(I/Io)); #The intensity level of a plane just leaving the runway(dB)\n",
+ "\n",
+ "#Result\n",
+ "print \"The intensity level of a plane just leaving the runway is\",IL,\"dB\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 1.4, Page number 2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The intensity level is 60.0 dB\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "I=10**-6; #intensity of sound during heavy traffic(Wm**-2)\n",
+ "Io=10**-12; #threshold intensity of sound(Wm**-2)\n",
+ "\n",
+ "#Calculation\n",
+ "IL=(10*math.log10(I/Io)); #The intensity level(dB)\n",
+ "\n",
+ "#Result\n",
+ "print \"The intensity level is\",IL,\"dB\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 1.5, Page number 3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The intensity level is -48.9994 dB\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Q=3.56; #rate of energy radiates(W)\n",
+ "r=15; #distance of intensity level(m)\n",
+ "Io=100; #reference intensity(Wm^-2)\n",
+ "\n",
+ "#Calculation\n",
+ "A=4*math.pi*r**2; #Area(m^2)\n",
+ "I=(Q/A); #sound intensity(Wm^-2)\n",
+ "IL=(10*math.log10(I/Io)); #The intensity level(dB)\n",
+ "\n",
+ "#Result\n",
+ "print \"The intensity level is\",round(IL,4),\"dB\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 1.6, Page number 3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The resultant sound level is 80.41 dB\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Il1=70; #sound(dB)\n",
+ "Il2=80; #sound(dB)\n",
+ "\n",
+ "#Calculation\n",
+ "I1=10**(Il1/10); #ratio of intensity\n",
+ "I2=10**(Il2/10); #ratio of intensity\n",
+ "I=I1+I2; #intensity of sound(dB)\n",
+ "Il=10*math.log10(I); #resultant intensity(dB)\n",
+ "\n",
+ "#Result\n",
+ "print \"The resultant sound level is\",round(Il,2),\"dB\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 1.7, Page number 4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The noise level at the point when 4 such drills are working at the same distance away is 101.02 dB\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "i=4; #the intensity of a source\n",
+ "I1=95; #The noise level of sound from a drill(dB)\n",
+ "\n",
+ "#Calculation\n",
+ "I2=(10*(math.log10(i))); #intensity of source(dB)\n",
+ "IL=I1+I2; #The noise level at this point(dB)\n",
+ "\n",
+ "#Result\n",
+ "print \"The noise level at the point when 4 such drills are working at the same distance away is\",round(IL,2),\"dB\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 1.8, Page number 4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The flow of energy across 1m^2 per second is 6.638 *10**4 Wm**-2\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "f=426; #frequency of sound(Hz)\n",
+ "a=0.65*10**-2; #amplitude of sound wave(m)\n",
+ "A=1; #area(m^2)\n",
+ "v=340; #velocity of sound in air(ms^-1)\n",
+ "d=1.29; #density of air(Kgm^-3)\n",
+ "\n",
+ "#Calculation\n",
+ "I=(2*math.pi**2*f**2*a**2*d*v); #The flow of energy across 1m^2 per second(Wm^-2*10^4)\n",
+ "\n",
+ "#Result\n",
+ "print \"The flow of energy across 1m^2 per second is\",round(I/10**4,3),\"*10**4 Wm**-2\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 1.9, Page number 12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The reverberation time of the hall is 2.087 sec\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "V=1000; #volume of hall(m^3)\n",
+ "S=400; #sound absorbing surface of area(m^2)\n",
+ "a=0.2; #average absorption coefficient(sabine)\n",
+ "\n",
+ "#Calculation\n",
+ "T=(0.167*V)/(a*S); #The reverberation time of the hall(sec)\n",
+ "\n",
+ "#Result\n",
+ "print \"The reverberation time of the hall is\",round(T,3),\"sec\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 1.10, Page number 12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The average absorbtion coefficient is 0.2374 O.W.U\n",
+ "Total sound absorbtion of the room is 128.2 O.W.U m^2\n",
+ "answer varies due to rounding off errors\n",
+ "The reverberation time is 1.954 sec\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "V=1500; #volume of room(m^3)\n",
+ "a1=0.03; #average sound coefficient for wall(sabine)\n",
+ "a2=0.06; #average sound coefficient for the ceiling(sabine)\n",
+ "a3=0.8; #average sound coefficient for the floor(sabine)\n",
+ "S1=260; #The wall area of the room(m^2)\n",
+ "S2=140; #The floor area of the room(m^2)\n",
+ "S3=140; #The ceiling area of the room(m^2)\n",
+ "\n",
+ "#Calculation\n",
+ "a=((a1*S1)+(a2*S2)+(a3*S3))/(S1+S2+S3); #The average absorbtion coefficient(O.W.U)\n",
+ "TS=S1+S2+S3; #total area of the room(m^2)\n",
+ "x=(a*TS); #Total sound absorbtion of the room(O.W.U m^2)\n",
+ "T=((0.167*V)/x); #The reverberation time(sec)\n",
+ "\n",
+ "#Result\n",
+ "print \"The average absorbtion coefficient is\",round(a,4),\"O.W.U\"\n",
+ "print \"Total sound absorbtion of the room is\",x,\"O.W.U m^2\"\n",
+ "print \"answer varies due to rounding off errors\"\n",
+ "print \"The reverberation time is\",round(T,3),\"sec\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 1.11, Page number 13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The area of interior surfaces is 3340.0 m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "V=12000; #volume of auditorium(m^3)\n",
+ "T=1.5; #The reverberation time of the auditorium(sec)\n",
+ "a=0.4; #average absorption coefficient(sabine)\n",
+ "\n",
+ "#Calculation\n",
+ "S=(0.167*V)/(a*T); #area of interior surfaces(m^2)\n",
+ "\n",
+ "#Result\n",
+ "print \"The area of interior surfaces is\",S,\"m**2\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 1.12, Page number 13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The total absorbtion in the hall is 835.0 sabine m^2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "V=7500; #volume of cinema hall(m^3)\n",
+ "T=1.5; #The reverberation time of the cinema hall(sec)\n",
+ "\n",
+ "#Calculation\n",
+ "TaS=(0.167*V)/(T); #The total absorbtion in the hall(sabine m^2)\n",
+ "\n",
+ "#Result\n",
+ "print \"The total absorbtion in the hall is\",TaS,\"sabine m^2\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 1.13, Page number 13"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The new reverberation time after placing the cushioned chairs is 1.3115 sec\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "V=12500; #volume of hall(m^3)\n",
+ "T1=1.5; #The reverberation time of the hall(sec)\n",
+ "a2S2=200; #The number of cushioned chairs are additionally placed in the hall(sabine-m^2)\n",
+ "\n",
+ "#Calculation\n",
+ "Ta1S1=(0.167*V)/T1; #The reverberation time before placed cushioned chairs(sabine m^2)\n",
+ "T2=(0.167*V)/(Ta1S1+a2S2); #The new reverberation time after placing the cushioned chairs(sec)\n",
+ "\n",
+ "#Result\n",
+ "print \"The new reverberation time after placing the cushioned chairs is\",round(T2,4),\"sec\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 1.14, Page number 14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The reverberation time for the hall is 1.2794 sec\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "V=475; #volume of hall(m^3)\n",
+ "a1=0.025; #absorbtion coefficient for wall(O.W.U)\n",
+ "a2=0.02; #absorbtion coefficient for the ceiling(O.W.U)\n",
+ "a3=0.55; #absorbtion coefficient for the floor(O.W.U)\n",
+ "S1=200; #The wall area of the room(m^2)\n",
+ "S2=100; #The floor area of the room(m^2)\n",
+ "S3=100; #The ceiling area of the room(m^2)\n",
+ "\n",
+ "#Calculation\n",
+ "TaS=((a1*S1)+(a2*S2)+(a3*S3)); #The average absorbtion coefficient(O.W.U-m^2)\n",
+ "T=((0.167*V)/TaS); #The reverberation time(sec)\n",
+ "\n",
+ "#Result\n",
+ "print \"The reverberation time for the hall is\",round(T,4),\"sec\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 1.15, Page number 14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The reverberation time in the hall without audience is 3.9879 sec\n",
+ "The reverberation time in the hall with audience is 1.99396 sec\n",
+ "Thus,the reverberation reduces to half of its initial value when the audience fill the hall\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "V=2265; #volume of hall(m^3)\n",
+ "Ta1S1=94.85; #The total absorbtion coefficient(m^2)\n",
+ "\n",
+ "#Calculation\n",
+ "T1=((0.167*V)/Ta1S1); #The reverberation time in the hall without audience(sec)\n",
+ "Ta2S2=2*Ta1S1; #The new absorbtion coefficient(m^2)\n",
+ "T2=((0.167*V)/Ta2S2); #The reverberation time in the hall with audience(sec)\n",
+ "\n",
+ "#Result\n",
+ "print \"The reverberation time in the hall without audience is\",round(T1,4),\"sec\"\n",
+ "print \"The reverberation time in the hall with audience is\",round(T2,5),\"sec\"\n",
+ "print \"Thus,the reverberation reduces to half of its initial value when the audience fill the hall\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 1.16, Page number 14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The average absorbing power of the surface is 0.48789 sabine\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "V=120000; #Volume of the hall(m^3)\n",
+ "T=1.55; #The reverberation time(sec)\n",
+ "S=26500; #The total absorbing surface(m^2)\n",
+ "\n",
+ "#Calculation\n",
+ "TaS=(0.167*V)/T; #The average absorbtion coefficient(sabine-m^2)\n",
+ "a=(TaS/S); #The average absorbing power of the surface(sabine)\n",
+ "\n",
+ "#Result\n",
+ "print \"The average absorbing power of the surface is\",round(a,5),\"sabine\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_G._Vijayakumari/Chapter10.ipynb b/Engineering_Physics_by_G._Vijayakumari/Chapter10.ipynb
new file mode 100644
index 00000000..d6847b23
--- /dev/null
+++ b/Engineering_Physics_by_G._Vijayakumari/Chapter10.ipynb
@@ -0,0 +1,627 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#10: Intrinsic Semiconductors"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.1, Page number 277"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The intrinsic carrier concentration at room temperature is 1.3889 *10**16 m^-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "ec=4*10**-4; #electrical conductivity of intrinsic silicon at room temperature(ohm^-1 m^-1)\n",
+ "me=0.14; #The electron mobility(m^2 V^-1 s^-1)\n",
+ "mh=0.04; #The hole mobility(m^2 V^-1 s^-1)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculation\n",
+ "ni=ec/(e*(me+mh)); #The intrinsic carrier concentration at room temperature(m^-3)\n",
+ "\n",
+ "#Result\n",
+ "print \"The intrinsic carrier concentration at room temperature is\",round(ni/10**16,4),\"*10**16 m^-3\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.2, Page number 277"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The resistivity of intrinsic carrier is 0.4709 ohm m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "d=2.37*10**19; #The intrinsic carrier density at room temperature(m^-3)\n",
+ "me=0.38; #The electron mobility(m^2 V^-1 s^-1)\n",
+ "mh=0.18; #The hole mobility(m^2 V^-1 s^-1)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculation\n",
+ "r=1/(d*e*(me+mh)); #The resistivity of intrinsic carrier(ohm m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The resistivity of intrinsic carrier is\",round(r,4),\"ohm m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.3, Page number 277"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The intrinsic carrier density at room tepmerature is 5.04 *10**21 m^-3\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "r=2*10**-4; #the resistivity of In-Sb(ohm m)\n",
+ "me=6; #The electron mobility(m^2 V^-1 s^-1)\n",
+ "mh=0.2; #The hole mobility(m^2 V^-1 s^-1)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculation\n",
+ "d=1/(r*e*(me+mh)); #The intrinsic carrier density at room tepmerature(m^-3)\n",
+ "\n",
+ "#Result\n",
+ "print \"The intrinsic carrier density at room tepmerature is\",round(d/10**21,2),\"*10**21 m^-3\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.4, Page number 278"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The electrical conductivity at room temperature is 1.4374 *10**-3 ohm^-1 m^-1\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Eg=1.1*1.6*10**-19; #The energy gap of silicon(J)\n",
+ "me=0.48; #The electron mobility(m^2 V^-1 s^-1)\n",
+ "mh=0.13; #The hole mobility(m^2 V^-1 s^-1)\n",
+ "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "m=9.11*10**-31; #mass of an electron\n",
+ "kb=1.38*10**-23; #Boltzmann's constant(m^2 Kg s^-2 k^-1)\n",
+ "t=300; #temperature(K)\n",
+ "\n",
+ "#Calculation\n",
+ "ni=2*(2*math.pi*m*kb*t/h**2)**(3/2)*math.exp(-Eg/(2*kb*t)); #intrinsic carrier concentration(m^-3)\n",
+ "ec=ni*e*(me+mh); #The electrical conductivity at room temperature(ohm^-1 m^-1 *10^-3)\n",
+ "\n",
+ "#Result\n",
+ "print \"The electrical conductivity at room temperature is\",round(ec*10**3,4),\"*10**-3 ohm^-1 m^-1\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.5, Page number 279"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The intrinsic carrier concentration is 1.983 *10**12 m^-3\n",
+ "The electrical conductivity at room temperature is 2.8239 *10**-7 ohm^-1 m^-1\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Eg=1.43*1.6*10**-19; #The energy gap of intrinsic GaAs(J)\n",
+ "xe=0.85; #The electron mobility(m^2 V^-1 s^-1)\n",
+ "xh=0.04; #The hole mobility(m^2 V^-1 s^-1)\n",
+ "me=0.068*9.11*10**-31; #effective mass of electron(m)\n",
+ "mh=0.5*9.11*10**-31; #effective mass of hole(m)\n",
+ "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "m=9.11*10**-31; #mass of an electron(kg)\n",
+ "kb=1.38*10**-23; #Boltzmann's constant(m^2 Kg s^-2 k^-1)\n",
+ "t=300; #temperature(K)\n",
+ "\n",
+ "#Calculation\n",
+ "ni=2*(2*math.pi*kb*t/h**2)**(3/2)*(me*mh)**(3/4)*math.exp(-Eg/(2*kb*t)); #intrinsic carrier concentration(m^-3)\n",
+ "ec=ni*e*(xe+xh); #The electrical conductivity at room temperature(ohm^-1 m^-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"The intrinsic carrier concentration is\",round(ni/10**12,3),\"*10**12 m^-3\"\n",
+ "print \"The electrical conductivity at room temperature is\",round(ec*10**7,4),\"*10**-7 ohm^-1 m^-1\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.6, Page number 279"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The position of the fermi level is 9.223086 *10**-20 J or 0.5764 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Eg=1.12*1.6*10**-19; #Energy gap of Si semi conductor(J)\n",
+ "me=0.12*9.11*10**-31; #The electron mobility(m^2 V^-1 s^-1)\n",
+ "mh=0.28*9.11*10**-31; #The hole mobility(m^2 V^-1 s^-1)\n",
+ "t=300; #temperature of fermi level(K)\n",
+ "kb=1.38*10**-23; #Boltzmann's constant(m^2 Kg s^-2 k^-1)\n",
+ "m=9.11*10**-31; #mass of an electron(Kg)\n",
+ "\n",
+ "#Calculation\n",
+ "Ef=(Eg/2)+((3*kb*t/4)*math.log(mh/me)); #position of the fermi level(J)\n",
+ "\n",
+ "#Result\n",
+ "print \"The position of the fermi level is\",round(Ef*10**20,6),\"*10**-20 J or\",round(Ef/(1.6*10**-19),4),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.7, Page number 280"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The Temperature of the fermi level shifted by 10% is 1115.127 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Eg=1*1.6*10**-19; #Energy gap(J)\n",
+ "E=0.1*1.6*10**-19; #Fermi level is shifted by 10%(J)\n",
+ "me=1*9.11*10**-31; #The electron mobility(m^2 V^-1 s^-1)\n",
+ "mh=4*9.11*10**-31; #Effective mass of holes is 4 times that of electrons(m^2 V^-1 s^-1)\n",
+ "m=9.11*10**-31; #mass of an electron(kg)\n",
+ "kb=1.38*10**-23; #Boltzmann's constant(m^2 Kg s^-2 k^-1)\n",
+ "\n",
+ "#Calculation\n",
+ "T=4*E/(3*kb*math.log(4)); #The Temperature of the fermi level shifted by 10%(K)\n",
+ "\n",
+ "#Result\n",
+ "print \"The Temperature of the fermi level shifted by 10% is\",round(T,3),\"K\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.8, Page number 281"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The resistance of an intrinsic Ge rod is 4310 ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "l=1*10**-2; #length of the intrinsic Ge rod(m)\n",
+ "b=1*10**-3; #breadth of the intrinsic Ge rod(m)\n",
+ "t=1*10**-3; #thickness of the intrinsic Ge rod(m)\n",
+ "T=300; #temperature of the intrinsic Ge rod(K)\n",
+ "me=0.39; #The electron mobility(m^2 V^-1 s^-1)\n",
+ "mh=0.19; #The hole mobility(m^2 V^-1 s^-1)\n",
+ "ni=2.5*10**19; #intrinsic carrier conduction(m^3)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculation\n",
+ "ec=ni*e*(me+mh); #The electrical conductivity at room temperature(ohm^-1 m^-1)\n",
+ "A=b*t; #area(m^2)\n",
+ "R=l/(ec*A); #The resistance of an intrinsic Ge rod(ohm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The resistance of an intrinsic Ge rod is\",int(R),\"ohm\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.9, Page number 281"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The ratio of conductiveness is 1.08 *10**5\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Eg=1.2*1.6*10**-19; #The energy gap of intrinsic semiconductor(J)\n",
+ "T1=600; #Temperature(K)\n",
+ "T2=300; #Temperature(K)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "kb=1.38*10**-23; #Boltzmann's constant(m^2 Kg s^-2 k^-1)\n",
+ "\n",
+ "#Calculation\n",
+ "x=math.exp((-Eg/(2*kb))*((1/T1)-(1/T2))); #The ratio of conductiveness\n",
+ "\n",
+ "#Result\n",
+ "print \"The ratio of conductiveness is\",round(x/10**5,2),\"*10**5\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.10, Page number 282"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The conductivity of Ge at T2 is 4.969895 ohm^-1 m^-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Eg=0.72*1.6*10**-19; #The band gap of Ge(J)\n",
+ "T1=293; #Temperature(K)\n",
+ "T2=313; #Temperature(K)\n",
+ "x1=2; #The conductivity of Ge at T1(ohm^-1 m^-1)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "kb=1.38*10**-23; #Boltzmann's constant(m^2 Kg s^-2 k^-1)\n",
+ "\n",
+ "#Calculation\n",
+ "x2=x1*math.exp((Eg/(2*kb))*((1/T1)-(1/T2))); #The ratio of conductiveness\n",
+ "\n",
+ "#Result\n",
+ "print \"The conductivity of Ge at T2 is\",round(x2,6),\"ohm^-1 m^-1\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.11, Page number 282"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The intrinsic carrier density of A to B is 1015\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Eg1=0.36; #The energy gap of intrinsic semiconductor A(eV)\n",
+ "Eg2=0.72; #The energy gap of intrinsic semiconductor B(eV)\n",
+ "T1=300; #Temperature of semiconductor A(K)\n",
+ "T2=300; #Temperature of semiconductor B(K)\n",
+ "m=9.11*10**-31; #mass of an electron(kg)\n",
+ "KT=0.026; #kt(eV)\n",
+ "\n",
+ "#Calculation\n",
+ "x=math.exp((Eg2-Eg1)/(2*KT)); #The intrinsic carrier density of A to B\n",
+ "\n",
+ "#Result\n",
+ "print \"The intrinsic carrier density of A to B is\",int(x)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.12, Page number 283"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The band gap of semiconductor is 5.5863 *10**-20 J or 0.349 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "T1=293; #Temperature(K)\n",
+ "T2=373; #Temperature(K)\n",
+ "x1=250; #The conductivity of semiconductor at T1(ohm^-1 m^-1)\n",
+ "x2=1100; #The conductivity of semiconductor at T2(ohm^-1 m^-1)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "kb=1.38*10**-23; #Boltzmann's constant(m^2 Kg s^-2 k^-1)\n",
+ "\n",
+ "#Calculation\n",
+ "Eg=2*kb*math.log(x2/x1)*(T1*T2/(T2-T1)); #The band gap of semiconductor(J)\n",
+ "\n",
+ "#Result\n",
+ "print \"The band gap of semiconductor is\",round(Eg*10**20,4),\"*10**-20 J or\",round(Eg/(1.6*10**-19),3),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.13, Page number 284"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "mobility of pure semi conductor is 0.08283 m^2 V^-1 s^-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "me=50; #The electron mobility of pure semi conductor(m^2 V^-1 s^-1)\n",
+ "t1=4.2; #temperature of pure semi conductor(K)\n",
+ "t2=300; #temperature(K)\n",
+ "\n",
+ "#Calculation\n",
+ "m=me*((t2**(-3/2))/(t1**(-3/2))); #mobility of pure semi conductor(m^2 V^-1 s^-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"mobility of pure semi conductor is\",round(m,5),\"m^2 V^-1 s^-1\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.14, Page number 284"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The band gap of an intrinsic semi conductor is 1.183808 *10**-19 J or 0.7399 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "ec1=19.96; #The electrical conductivity of an intrinsic semi conductor(ohm^-1 m^-1)\n",
+ "ec2=79.44; #The increasing electrical conductivity of an intrinsic semi conductor(ohm^-1 m^-1)\n",
+ "t1=333; #temperature of an intrinsic semi conductor(K)\n",
+ "t2=373; #increasing temperature of an intrinsic semi conductor(K)\n",
+ "kb=1.38*10**-23; #Boltzmann's constant(m^2 Kg s^-2 k^-1)\n",
+ "\n",
+ "#Calculation\n",
+ "Eg=2*kb*math.log(ec2/ec1)*((t1*t2)/(t2-t1)); #The band gap of an intrinsic semi conductor(J)\n",
+ "\n",
+ "#Result\n",
+ "print \"The band gap of an intrinsic semi conductor is\",round(Eg*10**19,6),\"*10**-19 J or\",round(Eg/(1.6*10**-19),4),\"eV\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_G._Vijayakumari/Chapter11.ipynb b/Engineering_Physics_by_G._Vijayakumari/Chapter11.ipynb
new file mode 100644
index 00000000..a7245a22
--- /dev/null
+++ b/Engineering_Physics_by_G._Vijayakumari/Chapter11.ipynb
@@ -0,0 +1,613 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#11: Extrinsic Semiconductors"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 11.1, Page number 307"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Before adding boron atoms,the semiconductor is an intrinsic semiconductor\n",
+ "conductivity before adding boron atoms is 2.016 ohm^-1 m^-1\n",
+ "After adding boron atoms,the semiconductor becomes a P-type semiconductor\n",
+ "conductivity after adding boron atoms is 1.44 *10**4 ohm^-1 m^-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "ni=2.1*10**19; #intrinsic charge carriers(m^-3)\n",
+ "me=0.4; #electron mobility(m^2 V^-1 s^-1)\n",
+ "mh=0.2; #hole mobility(m^2 V^-1 s^-1)\n",
+ "d=4.5*10**23; #density of boron(m^-3)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculation\n",
+ "C=ni*e*(me+mh); #conductivity before adding boron atoms(ohm^-1 m^-1)\n",
+ "c=d*e*mh; #conductivity after adding boron atoms(ohm^-1 m^-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"Before adding boron atoms,the semiconductor is an intrinsic semiconductor\"\n",
+ "print \"conductivity before adding boron atoms is\",C,\"ohm^-1 m^-1\"\n",
+ "print \"After adding boron atoms,the semiconductor becomes a P-type semiconductor\"\n",
+ "print \"conductivity after adding boron atoms is\",c/10**4,\"*10**4 ohm^-1 m^-1\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 11.2, Page number 307"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "DensiTy of electrons in n-type silicon is 1.4423 *10**24 electrons/m^3\n",
+ "DensiTy of holes in n-type silicon is 1.56 *10**8 holes/m^3\n",
+ "DensiTy of holes in p-type silicon is 3.75e+24 holes/m^3\n",
+ "DensiTy of electrons in p-type silicon is 6.0 *10**7 electrons/m^3\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "ni=1.5*10**16; #intrinsic charge carriers(m^-3)\n",
+ "me=1300*10**-4; #electron mobility(m^2 V^-1 s^-1)\n",
+ "mh=500*10**-4; #hole mobility(m^2 V^-1 s^-1)\n",
+ "c=3*10**4; #conductivity of n-tpye silicon(ohm^-1 m^-1)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculation\n",
+ "ne=c/(e*me); #DensiTy of electrons in n-type silicon(electrons/m^3)\n",
+ "nh=ni**2/ne; #Density of holes in n-type silicon(holes/m^3)\n",
+ "Ne=c/(e*mh); #Density of holes in p-type silicon(holes/m^3)\n",
+ "Nh=ni**2/Ne; #Density of electrons in p-type silicon(holes/m^3)\n",
+ "\n",
+ "#Result\n",
+ "print \"DensiTy of electrons in n-type silicon is\",round(ne/10**24,4),\"*10**24 electrons/m^3\"\n",
+ "print \"DensiTy of holes in n-type silicon is\",nh/10**8,\"*10**8 holes/m^3\"\n",
+ "print \"DensiTy of holes in p-type silicon is\",Ne,\"holes/m^3\"\n",
+ "print \"DensiTy of electrons in p-type silicon is\",Nh/10**7,\"*10**7 electrons/m^3\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 11.3, Page number 308"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The electron concentration is 2.0 *10**9 electrons/m^3\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "ni=2*10**16; #intrinsic charge carriers(m^-3)\n",
+ "Na=5*10**23; #density of acceptor concentration of silicon with arsenic(atoms)\n",
+ "Nd=3*10**23; #density of donor concentration of silicon with arsenic(atoms)\n",
+ "\n",
+ "#Calculation\n",
+ "nh=Na-Nd; #density of hole(m^-3)\n",
+ "ne=ni**2/nh; #The electron concentration(electrons/m^3)\n",
+ "\n",
+ "#Result\n",
+ "print \"The electron concentration is\",ne/10**9,\"*10**9 electrons/m^3\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 11.4, Page number 309"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The position of fermi level is 4.893 *10**-20 J or 0.3058 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "d=5*10**28; #density of silicon atom(atoms/m^3)\n",
+ "nd=2.5*10**7; #donor concentration in 1 atom per si atom\n",
+ "T=300; #Temperature(K)\n",
+ "Eg=1.1*1.6*10**-19; #Eg for silicon(eV)\n",
+ "kb=1.38*10**-23; #Boltzmann's Constant(m^2 Kg s^-2 k^-1)\n",
+ "m=9.11*10**-31; #mass of electon(kg)\n",
+ "h=6.625*10**-34; #plank's constant(m^2 Kg/sec)\n",
+ "\n",
+ "#Calculation\n",
+ "Nd=d/nd; #The donor concentration(atoms/m^3)\n",
+ "Ef=(Eg/2)+(kb*T*(math.log(Nd/(2*((2*math.pi*m*kb*T)/h**2)**(3/2))))); #The position of fermi level at 300K(J)\n",
+ "\n",
+ "#Result\n",
+ "print \"The position of fermi level is\",round(Ef*10**20,3),\"*10**-20 J or\",round(Ef/(1.6*10**-19),4),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 11.5, Page number 310"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The density of the intrinsic crystal for p-type is 1.302 *10**21 m^-3\n",
+ "The minor carrier concentration for p-type is 1.728e+11 electrons/m^3\n",
+ "The density of the intrinsic crystal for n-type is 4.6296 *10**20 m^-3\n",
+ "The minor carrier concentration for n-type is 4.86e+11 holes/m^3\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "ni=1.5*10**16; #intrinsic charge carriers(m^-3)\n",
+ "r1=10*10**-2; #resistivity of p-type silicon(ohm m)\n",
+ "r2=10*10**-2; #resistivity of n-type silicon(ohm m)\n",
+ "me=1350*10**-4; #The mobility of the charge carrier(m^2 V^-1 s^-1)\n",
+ "mh=480*10**-4; #The hole charge carrier(m^2 V^-1 s^-1)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculation\n",
+ "Na=1/(r1*e*mh); #The density of the intrinsic crystal for p-type(m^-3)\n",
+ "ne=ni**2/Na; #The minor carrier concentration for p-type(electrons/m^3)\n",
+ "Nd=1/(r2*e*me); #The density of the intrinsic crystal for n-type(m^-3)\n",
+ "nh=ni**2/Nd; #The minor carrier concentration for n-type(electrons/m^3)\n",
+ "\n",
+ "#Result\n",
+ "print \"The density of the intrinsic crystal for p-type is\",round(Na/10**21,3),\"*10**21 m^-3\"\n",
+ "print \"The minor carrier concentration for p-type is\",ne,\"electrons/m^3\"\n",
+ "print \"The density of the intrinsic crystal for n-type is\",round(Nd/10**20,4),\"*10**20 m^-3\"\n",
+ "print \"The minor carrier concentration for n-type is\",nh,\"holes/m^3\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 11.6, Page number 315"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The electron mobility is 0.14 m^2 V^-1 s^-1\n",
+ "The charge carrier density is 5e+21 electrons/m^3\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "c=112; #conductivity of a n-type silicon specimen(ohm^-1 m^-1)\n",
+ "RH=1.25*10**-3; #Hall coefficient of a n-type silicon specimen(m^3 C^-1)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculation\n",
+ "me=c*RH; #electron mobility(m^2 V^-1 s^-1)\n",
+ "ne=c/(me*e); #The charge carrier density(electrons/m^3)\n",
+ "\n",
+ "#Result\n",
+ "print \"The electron mobility is\",me,\"m^2 V^-1 s^-1\"\n",
+ "print \"The charge carrier density is\",ne,\"electrons/m^3\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 11.7, Page number 315"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Hall coefficient of semiconductor is 3.7e-06 C^-1 m^3\n",
+ "The density of the charge carrier is 1.689 *10**24 electrons/m^3\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "l=12*10**-3; #length of semi conductor crystal(m)\n",
+ "b=1*10**-3; #breadth of semi conductor crystal(m)\n",
+ "t=1*10**-3; #thickness of semi conductor crystal(m)\n",
+ "I=20*10**-3; #current(A)\n",
+ "Vh=37*10**-6; #voltage measured across the width(V)\n",
+ "B=0.5; #magnetic flux density(Wb/m^2)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculation\n",
+ "RH=Vh*t/(I*B); #Hall coefficient of semiconductor(C^-1 m^3)\n",
+ "ne=1/(RH*e); #The density of the charge carrier(electrons/m^3)\n",
+ "\n",
+ "#Result\n",
+ "print \"Hall coefficient of semiconductor is\",RH,\"C^-1 m^3\"\n",
+ "print \"The density of the charge carrier is\",round(ne/10**24,3),\"*10**24 electrons/m^3\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 11.8, Page number 315"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Hall coefficient of silicon plate is 3.66 *10**-4 m^3 C^-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "l=100*10**-3; #length of silicon plate(m)\n",
+ "b=10*10**-3; #breadth of silicon plate(m)\n",
+ "t=1*10**-3; #thickness of silicon plate(m)\n",
+ "I=10**-2; #current(A)\n",
+ "Vh=1.83*10**-3; #voltage measured across the width(V)\n",
+ "B=0.5; #magnetic flux density(Wb/m^2)\n",
+ "\n",
+ "#Calculation\n",
+ "RH=Vh*t/(I*B); #Hall coefficient of silicon plate(m^3 C^-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"Hall coefficient of silicon plate is\",RH*10**4,\"*10**-4 m^3 C^-1\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 11.9, Page number 316"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The negative sign of the Hall coefficient indicates that the nature of the semiconductor is n-type\n",
+ "The density of the charge carrier is 8.503 *10**22 electrons/m^3\n",
+ "The mobility of the charge carrier is 14.7 *10**-3 m^2 V^-1 s^-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "RH=7.35*10**-5; #Hall coefficient of silicon specimen(m^3 C^-1)\n",
+ "rh=-7.35*10**-5; #Hall coefficient of silicon specimen(m^3 C^-1)\n",
+ "c=200; #conductivity(ohm^-1 m^-1)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculation\n",
+ "ne=1/(RH*e); #The density of the charge carrier(electrons/m^3)\n",
+ "me=c*RH; #The mobility of the charge carrier(m^2 V^-1 s^-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"The negative sign of the Hall coefficient indicates that the nature of the semiconductor is n-type\"\n",
+ "print \"The density of the charge carrier is\",round(ne/10**22,3),\"*10**22 electrons/m^3\"\n",
+ "print \"The mobility of the charge carrier is\",me*10**3,\"*10**-3 m^2 V^-1 s^-1\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 11.10, Page number 316"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The density of the charge carrier is 1.7728 *10**22 electrons/m^3\n",
+ "The mobility of the charge carrier is 0.06346 m^2 V^-1 s^-1\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "RH=4.16*10**-4; #Hall coefficient of n-type semiconductor(m^3 C^-1)\n",
+ "c=180; #conductivity(ohm^-1 m^-1)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "x=1.18; #correction factor for RH\n",
+ "\n",
+ "#Calculation\n",
+ "ne=x/(RH*e); #The density of the charge carrier(electrons/m^3)\n",
+ "me=c/(ne*e); #The mobility of the charge carrier(m^2 V^-1 s^-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"The density of the charge carrier is\",round(ne/10**22,4),\"*10**22 electrons/m^3\"\n",
+ "print \"The mobility of the charge carrier is\",round(me,5),\"m^2 V^-1 s^-1\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 11.11, Page number 317"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The hall coefficient measured by the probes is 1.75 mV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "l=1*10**-3; #length of rectangular plane sheet of doped silicon(m)\n",
+ "b=1*10**-3; #breadth of semi rectangular plane sheet of doped silicon(m)\n",
+ "t=0.5*10**-3; #thickness of rectangular plane sheet of doped silicon(m)\n",
+ "RH=1.25*10**-3; #Hall coefficient of the material(m^3 C^-1)\n",
+ "I=1*10**-3; #current(A)\n",
+ "B=0.7; #magnetic flux density(Wb/m^2)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculation\n",
+ "Vh=RH*I*B/t; #The hall coefficient measured by the probes(mV)\n",
+ "\n",
+ "#Result\n",
+ "print \"The hall coefficient measured by the probes is\",Vh*10**3,\"mV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 11.12, Page number 317"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The density of the charge carrier is 1.70765 *10**22 m^-3\n",
+ "The mobility is 0.04099 m^2 V^-1 s^-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "RH=3.66*10**-4; #Hall coefficient of a doped silicon(m^3 C^-1)\n",
+ "r=8.93*10**-3; #The resistivity(ohm m)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculation\n",
+ "n=1/(RH*e); #The density of the charge carrier(m^-3)\n",
+ "me=RH/r; #The mobility(m^2 V^-1 s^-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"The density of the charge carrier is\",round(n/10**22,5),\"*10**22 m^-3\"\n",
+ "print \"The mobility is\",round(me,5),\"m^2 V^-1 s^-1\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 11.13, Page number 317"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The current density is 2880.0 A/m^2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "RH=0.0125; #Hall coefficient of a sample n-type semiconductor(m^3 C^-1)\n",
+ "rh=-0.0125; #Hall coefficient of a sample n-type semiconductor(m^3 C^-1)\n",
+ "me=0.36; #electron mobility(m^2 V^-1 s^-1)\n",
+ "EH=100; #electric field(V/m)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculation\n",
+ "n=1/(RH*e); #The density of the charge carrier(m^-3)\n",
+ "c=n*e*me; #conductivity of n-type semiconductor(ohm^-1 m^-1)\n",
+ "J=c*EH; #The current density(A/m^2)\n",
+ "\n",
+ "#Result\n",
+ "print \"The current density is\",J,\"A/m^2\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_G._Vijayakumari/Chapter12.ipynb b/Engineering_Physics_by_G._Vijayakumari/Chapter12.ipynb
new file mode 100644
index 00000000..54bbbf07
--- /dev/null
+++ b/Engineering_Physics_by_G._Vijayakumari/Chapter12.ipynb
@@ -0,0 +1,351 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#12: Superconducting Materials"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 12.1, Page number 328"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The transition temperature for the isotope of mercury of mass number 200 is 4.2209 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "M1=202; #mass number of mercury\n",
+ "a=0.50; #coefficient of mass number\n",
+ "T1=4.2; #temperaturefor mass number 200(K)\n",
+ "M2=200; #mass number of mercury\n",
+ "\n",
+ "#Calculation\n",
+ "T2=((M1/M2)**a)*T1; #The transition temperature for the isotope of mercury of mass number 200(K)\n",
+ "\n",
+ "#Result\n",
+ "print \"The transition temperature for the isotope of mercury of mass number 200 is\",round(T2,4),\"K\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 12.2, Page number 328"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The critical field is 0.1117 T\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Tc=9.15; #critical temperature of Nb(K)\n",
+ "t=6; #temperature of critical field(K)\n",
+ "Ho=0.196; #The critical field AT 0K(T)\n",
+ "\n",
+ "#Calculation\n",
+ "Hc=(Ho*(1-(t/Tc)**2)); #The critical field at 6K(T)\n",
+ "\n",
+ "#Result\n",
+ "print \"The critical field is\",round(Hc,4),\"T\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 12.3, Page number 329"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The Isotopic mass if the critical temperature falls is 204.55\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "M1=199.5; #Isotopic mass of metal\n",
+ "T1=4.185; #Critical temperature for a metal with isotopic mass(K)\n",
+ "T2=4.133; #fall of critical temperature for a metal with isotopic mass(K)\n",
+ "a=0.50; #coefficient of mass\n",
+ "\n",
+ "#Calculation\n",
+ "M2=(((M1)**a)*(T1/T2))**2; #The Isotopic mass if the critical temperature falls to 4.133\n",
+ "\n",
+ "#Result\n",
+ "print \"The Isotopic mass if the critical temperature falls is\",round(M2,2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 12.4, Page number 329"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The critical current through a long thin superconductor is 22.619 A\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Hc=7.2*10**3; #The critical magnetic field(A/m)\n",
+ "r=0.5*10**-3; #radius of long thin superconducting wire(m)\n",
+ "\n",
+ "#Calculation\n",
+ "Ic=(2*math.pi*Hc*r); #The critical current through a long thin superconductor(A)\n",
+ "\n",
+ "#Result\n",
+ "print \"The critical current through a long thin superconductor is\",round(Ic,3),\"A\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 12.5, Page number 329"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The critical field is 0.021659 tesla\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Tc=3.7; #critical temperature of superconducting Sn(K)\n",
+ "t=2; #temperature of critical field(K)\n",
+ "Ho=0.0306; #The critical field at 0K(T)\n",
+ "\n",
+ "#Calculation\n",
+ "Hc=(Ho*(1-(t/Tc)**2)); #The critical field at 6K(T)\n",
+ "\n",
+ "#Result\n",
+ "print \"The critical field is\",round(Hc,6),\"tesla\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 12.6, Page number 329"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The critical density for a superconducting wire of lead is 134.33 A\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Ho=6.5*10**4; #The critical field at 0K(A/m)\n",
+ "Tc=7.18; #The temperature for lead(K)\n",
+ "r=0.5*10**-3; #radius of superconducting wire of lead(m)\n",
+ "T=4.2; #temperature of superconducting wire(K)\n",
+ "\n",
+ "#Calculation\n",
+ "Hc=(Ho*(1-(T/Tc)**2)); #The critical field(KA/m)\n",
+ "Ic=2*math.pi*Hc*r; #The critical density for a superconducting wire of lead(A)\n",
+ "\n",
+ "#Result\n",
+ "print \"The critical density for a superconducting wire of lead is\",round(Ic,2),\"A\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 12.7, Page number 330"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The critical temperature is 12.13395 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Hc=10**5; #The critical field for vanadium(A/m)\n",
+ "Ho=2*10**5; #The critical field for vanadium at 0K(A/m)\n",
+ "T=8.58; #temperature for vanadium(K)\n",
+ "\n",
+ "#Calculation\n",
+ "Tc=T/math.sqrt(1-(Hc/Ho)); #The critical temperature(K)\n",
+ "\n",
+ "#Result\n",
+ "print \"The critical temperature is\",round(Tc,5),\"K\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 12.8, Page number 338"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The frequency of the radiation emitted by the junction is 2.85196 *10**9 Hz\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "V=5.9*10**-6; #voltage applied across a Josephson junction(V)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "h=6.62*10**-34; #Planck's constant(J-sec)\n",
+ "\n",
+ "#Calculation\n",
+ "v=(2*e*V)/h; #The frequency of the radiation emitted by the junction(Hz)\n",
+ "\n",
+ "#Result\n",
+ "print \"The frequency of the radiation emitted by the junction is\",round(v/10**9,5),\"*10**9 Hz\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_G._Vijayakumari/Chapter13.ipynb b/Engineering_Physics_by_G._Vijayakumari/Chapter13.ipynb
new file mode 100644
index 00000000..afb202a5
--- /dev/null
+++ b/Engineering_Physics_by_G._Vijayakumari/Chapter13.ipynb
@@ -0,0 +1,243 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#13: Dielectrics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 13.1, Page number 356"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The electron polarisation is 3.945 *10**-7 C/m^2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "a=3.61*10**-10; #lattice constant of copper which is Fcc crystal(m)\n",
+ "x=1*10**-18; #average displacement of the electrons relative to the nucleus(m)\n",
+ "z=29; #atomic number of copper\n",
+ "n=4; #number of atoms per unit cell in FCC crystal\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculation\n",
+ "ne=((n*z)/(a*a*a)); #number of electrons(electrons/m^3) \n",
+ "P=ne*e*x; #The electron polarisation(C/m^2)\n",
+ "\n",
+ "#Result\n",
+ "print \"The electron polarisation is\",round(P*10**7,3),\"*10**-7 C/m^2\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 13.2, Page number 356"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The dipole moment of each atom in a field is 1.9646 *10**-35 C m**-3\n",
+ "The effective distance at this field strength between the centre and the nucleus is 8.77 *10**-18 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "rp=11.7; #relative permittivity of silicon\n",
+ "N=4.82*10**28; #number of atoms per unit volume(atoms/m^3)\n",
+ "ro=8.85*10**-12; #permittivity of free space\n",
+ "E=10**4; #E(Vm^-1)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "Z=14; #atomic number of silicon \n",
+ "\n",
+ "#Calculation\n",
+ "z=(ro*(rp-1))/N #electronic polarisability(Fm^2)\n",
+ "mew=z*E; #The dipole moment of each atom(Cm^-3)\n",
+ "x=y/(Z*e); #The effective distance at this field strength between the centre and the nucleus(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The dipole moment of each atom in a field is\",round(y*10**35,4),\"*10**-35 C m**-3\"\n",
+ "print \"The effective distance at this field strength between the centre and the nucleus is\",round(x*10**18,2),\"*10**-18 m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 13.3, Page number 357"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The electronic polarisability is 1.39 *10**-41 Fm**2\n",
+ "The relative permittivity in hydrogen gas is 1.0015\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "d=9.8*10**26; #density of hydrogen gas(atoms/m^3)\n",
+ "r=0.50*10**-10; #radius of the hydrogen atom(m)\n",
+ "ro=8.85*10**-12; #permittivity of free space\n",
+ "\n",
+ "#Calculation\n",
+ "z=(4*math.pi*ro*r**3)/10**-41; #electronic polarisability(Fm^2)\n",
+ "rp=(((d*z*10**-41)/ro)+1); #The relative permittivity in hydrogen gas\n",
+ "\n",
+ "#Result\n",
+ "print \"The electronic polarisability is\",round(z,2),\"*10**-41 Fm**2\"\n",
+ "print \"The relative permittivity in hydrogen gas is\",round(rp,4)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 13.4, Page number 357"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The static dielectric constant of solid argon is 1.53679\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "z=1.75*10**-40; #electronic polarisability(Fm^2)\n",
+ "d=1.8*10**3; #density of argon atom(Kg/m^3)\n",
+ "Z=39.95; #atomic weight of argon\n",
+ "NA=6.025*10**26; #Avagadro number(mole^-1)\n",
+ "ro=8.85*10**-12; #permittivity of free space\n",
+ "\n",
+ "#Calculation\n",
+ "N=((NA*d)/Z); #The number of atoms/unit volume(atoms/m^3) \n",
+ "rp=(((N*z)/ro)+1); #The static dielectric constant of solid argon\n",
+ "\n",
+ "#Result\n",
+ "print \"The static dielectric constant of solid argon is\",round(rp,5)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 13.5, Page number 366"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Ratio between electronic and ionic polarisability of this material is 1.7376\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "er=4.94; #static dielecric constant of a material\n",
+ "n=2.69; #index of friction\n",
+ "\n",
+ "#Calculation\n",
+ "x=((er-1)*(n+2))/((er+2)*(n-1))-1; #Ratio between ionic and electronic polarisability of this material\n",
+ "y=1/x; #Ratio between electronic and ionic polarisability of this material\n",
+ "\n",
+ "#Result\n",
+ "print \"Ratio between electronic and ionic polarisability of this material is\",round(y,4)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_G._Vijayakumari/Chapter15.ipynb b/Engineering_Physics_by_G._Vijayakumari/Chapter15.ipynb
new file mode 100644
index 00000000..1d22e338
--- /dev/null
+++ b/Engineering_Physics_by_G._Vijayakumari/Chapter15.ipynb
@@ -0,0 +1,71 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#15: Non Destructive Testing"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 15.1, Page number 412"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The frequency to which a piezo electric oscillator circuit should be turned is 2.7451 *10**6 Hz\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "t=0.1*10**-2; #thickness of piezo electric crystal(m)\n",
+ "E=80*10**9; #Young's modulus of crystal(pa)\n",
+ "d=2654; #density of material of crystal(Kgm^-3)\n",
+ "\n",
+ "#Calculation\n",
+ "f=1/(2*t)*math.sqrt(E/d); #The frequency to which a piezo electric oscillator circuit should be turned(Hz)\n",
+ "\n",
+ "#Result\n",
+ "print \"The frequency to which a piezo electric oscillator circuit should be turned is\",round(f/10**6,4),\"*10**6 Hz\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_G._Vijayakumari/Chapter2.ipynb b/Engineering_Physics_by_G._Vijayakumari/Chapter2.ipynb
new file mode 100644
index 00000000..79e12829
--- /dev/null
+++ b/Engineering_Physics_by_G._Vijayakumari/Chapter2.ipynb
@@ -0,0 +1,156 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#2: Ultrasonics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 2.1, Page number 30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The frequency of vibration is 2.7451 *10**6 Hz\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "E=80*10**9; #Young's modulus of material of piezo electric crystal(Pa)\n",
+ "d=2654; #Density of material of piezo electric crystal(Kg/m^3)\n",
+ "t=0.1*10**-2; #Thickness of piezo electric crystal(m)\n",
+ "p=1; #for fundamental first overtone\n",
+ "\n",
+ "#Calculation\n",
+ "f=((p/(2*t))*(math.sqrt(E/d))); #Frequency of vibration of first overtone(Hz)\n",
+ "\n",
+ "#Result\n",
+ "print \"The frequency of vibration is\",round(f/10**6,4),\"*10**6 Hz\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 2.2, Page number 30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Frequency in the first mode of vibration is 5.5 *10**4 Hz\n",
+ "Frequency in the second mode of vibration is 110.0 *10**3 Hz\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "v=5.5*10**3; #Velocity of longitudanal waves in Quartz Crystal(m/s)\n",
+ "t=0.05; #Thickness of Quartz Crystal(m)\n",
+ "\n",
+ "#Calculation\n",
+ "w=2*t; #wavelength(m)\n",
+ "v1=(v/w); #Frequency in the first mode of vibration(Hz)\n",
+ "v2=(2*v1); #Frequency in the second mode of vibration(Hz)\n",
+ "\n",
+ "#Result\n",
+ "print \"Frequency in the first mode of vibration is\",v1/10**4,\"*10**4 Hz\"\n",
+ "print \"Frequency in the second mode of vibration is\",v2/10**3,\"*10**3 Hz\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 2.3, Page number 31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The depth of sea is 495.0 m\n",
+ "The wavelength of ultrasonic pulse is 0.02 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "f=0.09*10**6; #Frequency of Ultrasonic source(Hz)\n",
+ "t=0.55; #time(sec)\n",
+ "v=1800; #velocity of sound in water(m/s)\n",
+ "\n",
+ "#Calculation\n",
+ "D=(v*t)/2; #Depth of sea(m)\n",
+ "W=(v/f); #Wavelength of ultrasonic pulse(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The depth of sea is\",D,\"m\"\n",
+ "print \"The wavelength of ultrasonic pulse is\",W,\"m\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_G._Vijayakumari/Chapter3.ipynb b/Engineering_Physics_by_G._Vijayakumari/Chapter3.ipynb
new file mode 100644
index 00000000..b55e472d
--- /dev/null
+++ b/Engineering_Physics_by_G._Vijayakumari/Chapter3.ipynb
@@ -0,0 +1,1072 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#3: Crystal Physics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.3, Page number 60"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The interplanar distance is 6.3589 *10**-11 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=3; #miller indices with respect to x axis\n",
+ "k=1; #miller indices with respect to y axis\n",
+ "l=1; #miller indices with respect to z axis\n",
+ "a=2.109*10**-10; #lattice constant of plane in a simple cubic lattice(m)\n",
+ "\n",
+ "#Calculation\n",
+ "d=(a/(math.sqrt(h**2+k**2+l**2))); #The interplanar distance(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The interplanar distance is\",round(d*10**11,4),\"*10**-11 m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.4, Page number 60"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The lattice constant is 4.0447 *10**-10 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=1; #miller indices with respect to x axis\n",
+ "k=1; #miller indices with respect to y axis\n",
+ "l=0; #miller indices with respect to z axis\n",
+ "d=2.86*10**-10; #the distance between miller indices(m)\n",
+ "\n",
+ "#Calculation\n",
+ "a=(d*(math.sqrt(h**2+k**2+l**2))); #The lattice constant(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The lattice constant is\",round(a*10**10,4),\"*10**-10 m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.6, Page number 61"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The ratio of intercepts on the three axis by ( 1 1 1 ) plane is 1.0 : 1.0 : 1.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=1; #miller indices of x-axis\n",
+ "k=1; #miller indices of y-axis\n",
+ "l=1; #miller indices of z-axis\n",
+ "\n",
+ "#Calculation\n",
+ "p=1/h; #intercept on x-axis\n",
+ "q=1/k; #intercept on y-axis\n",
+ "r=1/l; #intercept on z-axis\n",
+ "\n",
+ "#Result\n",
+ "print \"The ratio of intercepts on the three axis by (\",h,k,l,\") plane is\",p,\":\",q,\":\",r"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.7, Page number 61"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The inter planar spacing distance in 1st plane is 2.0347 *10**-10 m\n",
+ "The inter planar spacing distance in 2nd plane is 1.7621 *10**-10 m\n",
+ "The inter planar spacing distance in 3rd plane is 1.246e-10 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "r=1.246*10**-10; #atomic radius of Fcc crystal(m)\n",
+ "h1=1; #miller indices with respect to x axis in 1st plane\n",
+ "k1=1; #miller indices with respect to y axis in 1st plane\n",
+ "l1=1; #miller indices with respect to z axis in 1st plane\n",
+ "h2=2; #miller indices with respect to x axis in 2nd plane\n",
+ "k2=0; #miller indices with respect to y axis in 2nd plane\n",
+ "l2=0; #miller indices with respect to z axis in 2nd plane\n",
+ "h3=2; #miller indices with respect to x axis in 3rd plane\n",
+ "k3=2; #miller indices with respect to y axis in 3rd plane\n",
+ "l3=0; #miller indices with respect to z axis in 3rd plane\n",
+ "\n",
+ "#Calculation\n",
+ "a=(4*r)/math.sqrt(2); #The lattice constant in a FCC crystal(m)\n",
+ "d1=(a/(math.sqrt(h1**2+k1**2+l1**2))); #inter planar spacing distance in 1st plane(m)\n",
+ "d2=(a/(math.sqrt(h2**2+k2**2+l2**2))); #inter planar spacing distance in 2nd plane(m)\n",
+ "d3=(a/(math.sqrt(h3**2+k3**2+l3**2))); #inter planar spacing distance in 3rd plane(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The inter planar spacing distance in 1st plane is\",round(d1*10**10,4),\"*10**-10 m\"\n",
+ "print \"The inter planar spacing distance in 2nd plane is\",round(d2*10**10,4),\"*10**-10 m\"\n",
+ "print \"The inter planar spacing distance in 3rd plane is\",d3,\"m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.8, Page number 62"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The inter planar spacing distance in 1st plane is a* 1.0 m\n",
+ "The inter planar spacing distance in 2nd plane is a* 0.707 m\n",
+ "The inter planar spacing distance in 3rd plane is a* 0.577 fm\n",
+ "Ratio of interplanar distance of three planes d100:d110:d111= 1.0 : 0.707 : 0.577\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "a=1; #assume\n",
+ "h1=1; #miller indices with respect to x axis in 1st plane\n",
+ "k1=0; #miller indices with respect to y axis in 1st plane\n",
+ "l1=0; #miller indices with respect to z axis in 1st plane\n",
+ "h2=1; #miller indices with respect to x axis in 2nd plane\n",
+ "k2=1; #miller indices with respect to y axis in 2nd plane\n",
+ "l2=0; #miller indices with respect to z axis in 2nd plane\n",
+ "h3=1; #miller indices with respect to x axis in 3rd plane\n",
+ "k3=1; #miller indices with respect to y axis in 3rd plane\n",
+ "l3=1; #miller indices with respect to z axis in 3rd plane\n",
+ "\n",
+ "#Calculation\n",
+ "x1=math.sqrt(h1**2+k1**2+l1**2);\n",
+ "d100=a/x1; #inter planar spacing distance in 1st plane(m)\n",
+ "x2=math.sqrt(h2**2+k2**2+l2**2);\n",
+ "d110=a/x2; #inter planar spacing distance in 2nd plane(m)\n",
+ "x3=math.sqrt(h3**2+k3**2+l3**2);\n",
+ "d111=a/x3; #inter planar spacing distance in 3rd plane(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The inter planar spacing distance in 1st plane is a*\",d100,\"m\"\n",
+ "print \"The inter planar spacing distance in 2nd plane is a*\",round(d110,3),\"m\"\n",
+ "print \"The inter planar spacing distance in 3rd plane is a*\",round(d111,3),\"fm\"\n",
+ "print \"Ratio of interplanar distance of three planes d100:d110:d111=\",(1/x1),\":\",round((1/x2),3),\":\",round((1/x3),3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.9, Page number 62"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The miller indices of the plane is (h k l)=( 3.0 6.0 1.0 )\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "p=1; #x-intercept of the plane\n",
+ "q=1/2; #y-intercept of the plane\n",
+ "r=3; #z-intercept of the plane\n",
+ "\n",
+ "#Calculation\n",
+ "h=(1/p)*3; #miller indices with respect to x axis\n",
+ "k=(1/q)*3; #miller indices with respect to y axis\n",
+ "l=(1/r)*3; #miller indices with respect to z axis\n",
+ "\n",
+ "#Result\n",
+ "print \"The miller indices of the plane is (h k l)=(\",h,k,l,\")\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.10, Page number 63"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The inter planar d-spacing distance is 2.814 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "a=2.814; #the lattice constant of a simple cubic system(angstrom)\n",
+ "h1=1; #miller indices with respect to x axis\n",
+ "k1=0; #miller indices with respect to y axis\n",
+ "l1=0; #miller indices with respect to z axis\n",
+ "\n",
+ "#Calculation\n",
+ "d=a/math.sqrt(h1**2+k1**2+l1**2); #inter planar d spacing distance(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"The inter planar d-spacing distance is\",d,\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.11, Page number 63"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The miller indices of the set of parallel lines is ( 2.0 2.0 3.0 )\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "OA=0.025; #The unit cell makes intercepts on a(nm)\n",
+ "OB=0.02; #The unit cell makes intercepts on b(nm)\n",
+ "OC=0.01; #The unit cell makes intercepts on c(nm)\n",
+ "a=0.05; #The unit cell edge of an orthorhombic crystal(nm)\n",
+ "b=0.04; #The unit cell edge of an orthorhombic crystal(nm)\n",
+ "c=0.03; #The unit cell edge of an orthorhombic crystal(nm)\n",
+ "\n",
+ "#Calculation\n",
+ "p=a/OA; #miller indices with respect to x axis\n",
+ "q=b/OB; #miller indices with respect to y axis\n",
+ "r=c/OC; #miller indices with respect to z axis\n",
+ "\n",
+ "#Result\n",
+ "print \"The miller indices of the set of parallel lines is (\",p,q,r,\")\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.12, Page number 63"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The miller indices are 2 1 2\n",
+ "The miller indices are 1 2 1\n",
+ "The miller indices are 1 0 3.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "a=0.424; #value of one axial unit\n",
+ "b=1; #value of second axial unit\n",
+ "c=0.367; #value of third axial unit\n",
+ "i1=0.212; #value at x-intercept\n",
+ "j1=1; #value at y-intercept\n",
+ "k1=0.183; #value at z-intercept\n",
+ "i2=0.848; #value at x-intercept\n",
+ "j2=1; #value at y-intercept\n",
+ "k2=0.732; #value at z-intercept\n",
+ "i3=0.424; #value at x-intercept\n",
+ "k3=0.123; #value at z-intercept\n",
+ "\n",
+ "#Calculation\n",
+ "p1=1/(i1/a); #miller indices at x-intercept\n",
+ "q1=1/(j1/b); #miller indices at y-intercept\n",
+ "r1=1/(k1/c); #miller indices at z-intercept\n",
+ "p2=1/(i2/a)*2; #miller indices at x-intercept\n",
+ "q2=1/(j2/b)*2; #miller indices at y-intercept\n",
+ "r2=1/(k2/c)*2; #miller indices at z-intercept\n",
+ "p3=1/(i3/a); #miller indices at x-intercept\n",
+ "q3=0; #miller indices at y-intercept\n",
+ "r3=1/(k3/c); #miller indices at z-intercept\n",
+ "\n",
+ "#Result\n",
+ "print \"The miller indices are\",int(p1),int(q1),int(r1)\n",
+ "print \"The miller indices are\",int(p2),int(q2),int(r2)\n",
+ "print \"The miller indices are\",int(p3),int(q3),round(r3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.13, Page number 65"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Miller indices are (1/infinite 1/ 2 1/ 7 )= 0 7 2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "OB=2; #The intercept made by the parrell line ,OB=2b\n",
+ "OC=7; #The intercept made by the parrell line ,OC=2c\n",
+ "#OA=infinite The intercept made by the parrell line ,OB=2b\n",
+ "\n",
+ "#Calculation\n",
+ "A=0; #miller indice along x-axis\n",
+ "B=1/OB; #miller indice along y-axis\n",
+ "C=1/OC; #miller indice along z-axis\n",
+ "X=(B*(OC*OB)); #taking L.C.M\n",
+ "Y=(C*(OC*OB)); #taking L.C.M\n",
+ "\n",
+ "#Result\n",
+ "print \"Miller indices are (1/infinite 1/\",OB,\"1/\",OC,\")=\",A,int(X),int(Y)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.14, Page number 75"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The atomic radius of copper is 1.273 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "a=3.6; #lattice parameter of copper(angstrom)\n",
+ "\n",
+ "#Calculation\n",
+ "r=(a*math.sqrt(2))/4; #The atomic radius of copper(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"The atomic radius of copper is\",round(r,3),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.15, Page number 76"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The inter planar d-spacing distance is 1.1011 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "a=4.12; #the lattice constant of a simple cubic system(angstrom)\n",
+ "h1=3; #miller indices with respect to x axis\n",
+ "k1=2; #miller indices with respect to y axis\n",
+ "l1=1; #miller indices with respect to z axis\n",
+ "\n",
+ "#Calculation\n",
+ "d=a/math.sqrt(h1**2+k1**2+l1**2); #inter planar d spacing distance(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"The inter planar d-spacing distance is\",round(d,4),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.16, Page number 76"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The density of copper is 8934 Kg/m^3\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=4; #no.of atoms in FCC structure\n",
+ "A=63.54; #Atomic weight of copper\n",
+ "r=1.278*10**-10; #atomic radius(m)\n",
+ "N=6.023*10**26; #Avogadro's Number(per Kg mol)\n",
+ "\n",
+ "#Calculation\n",
+ "a=(4*r/math.sqrt(2)); #The lattice constant(m)\n",
+ "d=A*n/(N*a**3); #The density of copper(Kg/m^3)\n",
+ "\n",
+ "#Result\n",
+ "print \"The density of copper is\",int(d),\"Kg/m^3\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.17, Page number 76"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The ratio of interplanar distance between successive lattice planes in a simple cubic lattice is d100:d110:d111= 1 : 0.707 : 0.577\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h1=1; #miller indices with respect to x axis in 1st plane\n",
+ "k1=0; #miller indices with respect to y axis in 1st plane\n",
+ "l1=0; #miller indices with respect to z axis in 1st plane\n",
+ "h2=1; #miller indices with respect to x axis in 2nd plane\n",
+ "k2=1; #miller indices with respect to y axis in 2nd plane\n",
+ "l2=0; #miller indices with respect to z axis in 2nd plane\n",
+ "h3=1; #miller indices with respect to x axis in 3rd plane\n",
+ "k3=1; #miller indices with respect to y axis in 3rd plane\n",
+ "l3=1; #miller indices with respect to z axis in 3rd plane\n",
+ "a=1; #The lattice constant in a in a simple cubic lattice(m)\n",
+ "\n",
+ "#Calculation\n",
+ "d100=a/math.sqrt(h1**2+k1**2+l1**2); #inter planar spacing distance in 1st plane(m)\n",
+ "d110=a/math.sqrt(h2**2+k2**2+l2**2); #inter planar spacing distance in 2nd plane(m)\n",
+ "d111=a/math.sqrt(h3**2+k3**2+l3**2); #inter planar spacing distance in 3rd plane(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The ratio of interplanar distance between successive lattice planes in a simple cubic lattice is d100:d110:d111=\",int(d100),\":\",round(d110,3),\":\",round(d111,3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.18, Page number 76"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The distance between two adjacent atoms is 2.81 *10**-10 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "x=23; #atomic weight of sodium\n",
+ "y=35.45; #atomic weight of chloride\n",
+ "AW=58.45; #atomic weight of sodium chloride(NaCl)\n",
+ "n=4; #no.of atoms in FCC structure\n",
+ "d=2.18*10**6; #density of NaCl crystal of FCC structure(kg/m^3)\n",
+ "N=6.023*10**23; #Avogadro's Number(per Kg mol)\n",
+ "\n",
+ "#Calculation\n",
+ "a=(n*AW/(d*N))**(1/3); #The lattice constant(m)\n",
+ "r=a/2; #The distance between two adjacent atoms(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The distance between two adjacent atoms is\",round(r*10**10,2),\"*10**-10 m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.19, Page number 77"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 43,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The atomic radius of Fe which has BCC structure is 1.242 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=2; #no.of atoms in BCC structure\n",
+ "d=7.86*10**6; #density of iron of FCC structure(kg/m^3)\n",
+ "AW=55.85; #atomic weight of Fe\n",
+ "N=6.023*10**23; #Avogadro's Number(per Kg mol)\n",
+ "\n",
+ "#Calculation\n",
+ "a=(n*AW/(d*N))**(1/3); #The lattice constant(m)\n",
+ "r=a*math.sqrt(3)*10**10/4; #The atomic radius of Fe which has BCC structure(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"The atomic radius of Fe which has BCC structure is\",round(r,3),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.20, Page number 77"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The lattice constant is 6.6 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=4; #no.of atoms in FCC structure\n",
+ "d=2.7*10**3; #density of potassium bromide(Kg/m^3)\n",
+ "AW=119; #molecular weight of KBr\n",
+ "N=6.023*10**26; #Avagadro's number(Kg mol)\n",
+ "\n",
+ "#Calculation\n",
+ "a=((n*AW/(d*N))**(1/3))*10**10; #The lattice constant(angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"The lattice constant is\",round(a,1),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.21, Page number 78"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Number of atoms per unit cell of a crystal is 2.0\n",
+ "If n=2,the crystal system is body centered cubic\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "d=9.6*10**2; #density of crystal(Kg/m^3)\n",
+ "AW=23; #molecular weight of the crystal\n",
+ "N=6.023*10**26; #Avagadro's number(per Kg mol)\n",
+ "a=4.3*10**-10; #lattice constant(m)\n",
+ "\n",
+ "#Calculation\n",
+ "n=d*N*a**3/AW; #Number of atoms per unit cell of a crystal\n",
+ "\n",
+ "#Result\n",
+ "print \"Number of atoms per unit cell of a crystal is\",round(n)\n",
+ "print \"If n=2,the crystal system is body centered cubic\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.22, Page number 78"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 46,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The volume of cell is 2.128 *10**-29 m^3\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "r=1.2*10**-10; #atomic radius of crystal of BCC structure(m)\n",
+ "\n",
+ "#Calculation\n",
+ "a=4*r/math.sqrt(3); #lattice constant of BCC structure(m)\n",
+ "V=a**3; #The volume of cell(m^3)\n",
+ "\n",
+ "#Result\n",
+ "print \"The volume of cell is\",round(V*10**29,3),\"*10**-29 m^3\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.23, Page number 78"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The planar atomic density is 6.25e+12 atoms/mm^2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "a=4*10**-7; #lattice constant of the crystal(mm)\n",
+ "h1=1; #miller indices with respect to x axis in 1st plane\n",
+ "k1=0; #miller indices with respect to y axis in 1st plane\n",
+ "l1=0; #miller indices with respect to z axis in 1st plane\n",
+ "\n",
+ "#Calculation\n",
+ "n=4*(1/4); #Number of atoms contained in a plane per unit cell\n",
+ "A=a**2; #Area of the plane(mm^2)\n",
+ "d=n/A; #The planar atomic density(atoms/mm^2)\n",
+ "\n",
+ "#Result\n",
+ "print \"The planar atomic density is\",d,\"atoms/mm^2\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.24, Page number 79"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 48,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The lattice constant is 4.0 *10**-10 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=4; #no.of atoms in Face centered cubic lattice\n",
+ "d=6250; #density of potassium bromide(Kg/m^3)\n",
+ "AW=60.2; #molecular weight of crysal with face centered cubic lattice\n",
+ "N=6.023*10**26; #Avagadro's number(per Kg mol)\n",
+ "\n",
+ "#Calculation\n",
+ "a=((n*AW/(d*N))**(1/3)); #The lattice constant(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The lattice constant is\",round(a*10**10),\"*10**-10 m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.25, Page number 79"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The change in volume percentage is 0.49326\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "r1=0.1258*10**-9; #atomic radii of the iron atom in BCC structure(m)\n",
+ "r2=0.1292*10**-9; #atomic radii of the iron atom in FCC structure(m)\n",
+ "T=910; #metallic iron changes from BCC to FCC(C)\n",
+ "\n",
+ "#Calculation\n",
+ "a1=(4*r1/math.sqrt(3)); #lattice constant of BCC structure(m)\n",
+ "v1=a1**3/2; #The volume occupied by one BCC atom(m^3)\n",
+ "a2=4*r2/math.sqrt(2); #lattice constant of FCC structure(m)\n",
+ "v2=a2**3/4; #The volume occupied by one FCC atom(m^3)\n",
+ "V=((v1-v2)/v1)*100; #The change in volume percentage\n",
+ "\n",
+ "#Result\n",
+ "print \"The change in volume percentage is\",round(V,5)\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.26, Page number 80"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 52,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The Number of unit cells is 4.70419 *10**22\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "a=0.405*10**-9; #lattice constant of unit cell of aluminium which is face centered cubic(m)\n",
+ "s=25*10**-2; #Side of aluminium foil(m)\n",
+ "t=0.005*10**-2; #Thickness of aluminium foil(m)\n",
+ "\n",
+ "#Calculation\n",
+ "ar=s**2; #area of aluminium foil(m^2)\n",
+ "V=ar*t; #volume of the aluminium foil(m^3)\n",
+ "v=a**3; #volume of the unit cell(m^3)\n",
+ "n=(V/v); #Number of unit cells\n",
+ "\n",
+ "#Result\n",
+ "print \"The Number of unit cells is\",round(n/10**22,5),\"*10**22\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 3.27, Page number 81"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 59,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The Volume of the unit cell of Magnesium which has HCP structure is 1.0 *10**-28 m^3\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "r=0.1605*10**-9; #radius of magnesium atom which has HCP structure(m)\n",
+ "\n",
+ "#Calculation\n",
+ "a=2*r; #lattice constant of magnesium which has HCP structure(m)\n",
+ "c=a*math.sqrt(8/3); #height of the HCP structure(m)\n",
+ "V=3*math.sqrt(3)*(a**2)*c/3; #Volume of the unit cell of Magnesium which has HCP structure(m^3)\n",
+ "\n",
+ "#Result\n",
+ "print \"The Volume of the unit cell of Magnesium which has HCP structure is\",round(V*10**28),\"*10**-28 m^3\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_G._Vijayakumari/Chapter4.ipynb b/Engineering_Physics_by_G._Vijayakumari/Chapter4.ipynb
new file mode 100644
index 00000000..49292516
--- /dev/null
+++ b/Engineering_Physics_by_G._Vijayakumari/Chapter4.ipynb
@@ -0,0 +1,499 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#4: Wave Optics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 4.1, Page number 92"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The wavelength of light used is 640 nm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=125; #number of fingers cross the field of view\n",
+ "d=0.04*10**-3; #distance of one of mirror moved(m)\n",
+ "\n",
+ "#Calculation\n",
+ "w=2*d/n; #wavelength of light used(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The wavelength of light used is\",int(w*10**9),\"nm\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 4.2, Page number 92"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The wavelength of light used is 600.0 nm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Ri=1.5; #refractive index of thin film of glass\n",
+ "n=30; #number of fringes of sodium light is observed across the field of view\n",
+ "t=0.018*10**-3; #thickness of glass film(m)\n",
+ "\n",
+ "#Calculation\n",
+ "w=2*(Ri-1)*t/n; #wavelength of the light used(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The wavelength of light used is\",w*10**9,\"nm\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 4.3, Page number 92"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The wavelength of the monochromatic source used is 589.0 nm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=200; #number of fringes cross the field of view\n",
+ "d=0.0589*10**-3; #distance of mirror displaced(m)\n",
+ "\n",
+ "#Calculation\n",
+ "w=2*d/n; #wavelength of the monochromatic source used(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The wavelength of the monochromatic source used is\",w*10**9,\"nm\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 4.4, Page number 92"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false,
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The thickness of the film is 1.9636 *10**-4 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "x=1.55; #refractive index of transparent film of glass \n",
+ "w=480*10**-9; #wavelength of light(m)\n",
+ "n=450; #number of fringes to sweep across the field\n",
+ "\n",
+ "#Calculation\n",
+ "t=n*w/(2*(x-1)); #thickness of the film(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The thickness of the film is\",round(t*10**4,4),\"*10**-4 m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 4.5, Page number 93"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The refractive index of material is 1.675\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "t=0.004*10**-2; #thickness of transparent sheet(m)\n",
+ "d=0.0027*10**-2; #distance of mirror displaced(m)\n",
+ "\n",
+ "#Calculation\n",
+ "X=(d/t)+1; #refractive index of the material\n",
+ "\n",
+ "#Result\n",
+ "print \"The refractive index of material is\",X"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 4.6, Page number 93"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The number of fringes shifted across the cross wire of eye piece of the telescope is 110\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "d=0.03205*10**-3; #distance of movable mirror displaced(m)\n",
+ "w=580.9*10**-9; #wavelength of light(m)\n",
+ "\n",
+ "#Calculation\n",
+ "n=2*d/w; #number of fringes shifted across the cross wire of eye piece of the telescope\n",
+ "\n",
+ "#Result\n",
+ "print \"The number of fringes shifted across the cross wire of eye piece of the telescope is\",int(n)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 4.7, Page number 101"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The thickness of a quarter wave plate of quartz for sodium light is 7.36625 micro m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "w=5893*10**-10; #wavelength of sodium light(m)\n",
+ "Re=1.5532; #Refractive index of quartz for e ray\n",
+ "Ro=1.5332; #Refractive index of quartz for o ray\n",
+ "\n",
+ "#Calculation\n",
+ "t=w/(4*(Re-Ro)); #thickness of a quarter wave plate of quartz for sodium light(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The thickness of a quarter wave plate of quartz for sodium light is\",t*10**6,\"micro m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 4.8, Page number 102"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The thickness of a double refracting crystal required at w/2 is 2.727 micro m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "w=6000*10**-10; #wavelength(m)\n",
+ "Re=1.54; #Refractive index of double refracting crystal for e ray\n",
+ "Ro=1.65; #Refractive index of double refracting crystal for o ray\n",
+ "\n",
+ "#Calculation\n",
+ "t=w/(2*(Ro-Re)); #thickness of a double refracting crystal required at w/2(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The thickness of a double refracting crystal required at w/2 is\",round(t*10**6,3),\"micro m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 4.9, Page number 102"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The least thickness of a plate when the emergent beam will be plane polarised is 9.54 micro m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "w=5*10**-7; #wavelength(m)\n",
+ "Re=1.5573; #Refractive index for e ray when the emergent beam will be plane polarised\n",
+ "Ro=1.5442; #Refractive index for o ray when the emergent beam will be plane polarised\n",
+ "\n",
+ "#Calculation\n",
+ "t=w/(4*(Re-Ro)); #least thickness of a plate(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The least thickness of a plate when the emergent beam will be plane polarised is\",round(t*10**6,2),\"micro m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 4.10, Page number 102"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The thickness of the quarter wave plate for calcite is 1.713 *10**-6 m\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "w=5893*10**-10; #wavelength of sodium light(m)\n",
+ "Ro=1.658; #Refractive index of calcite for o ray\n",
+ "Re=1.486; #Refractive index of calcite for e ray\n",
+ "\n",
+ "#Calculation\n",
+ "t=w/(2*(Ro-Re)); #thickness of the quarter wave plate for calcite(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The thickness of the quarter wave plate for calcite is\",round(t*10**6,3),\"*10**-6 m\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 4.11, Page number 102"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The wavelength for which it can act as a half wave plate is 600.0 *10**-9 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "t=30*10**-6; #thickness of wave plate(m)\n",
+ "Ro=1.55; #Refractive index of wave plate for o ray\n",
+ "Re=1.54; #Refractive index of wave plate for e ray\n",
+ "\n",
+ "#Calculation\n",
+ "w=2*t*(Ro-Re); #wavelength for which it can act as a half wave plate(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The wavelength for which it can act as a half wave plate is\",w*10**9,\"*10**-9 m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 4.12, Page number 102"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The thickness of a mica sheet required for making a half wave plate for a light is 4.5508 *10**-5 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "w=546.1*10**-9; #wavelength of light(m)\n",
+ "Re=1.592; #Refractive index of mica for e ray\n",
+ "Ro=1.586; #Refractive index of mica for o ray\n",
+ "\n",
+ "#Calculation\n",
+ "t=w/(2*(Re-Ro)); #thickness of a mica sheet(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The thickness of a mica sheet required for making a half wave plate for a light is\",round(t*10**5,4),\"*10**-5 m\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_G._Vijayakumari/Chapter5.ipynb b/Engineering_Physics_by_G._Vijayakumari/Chapter5.ipynb
new file mode 100644
index 00000000..9c78727b
--- /dev/null
+++ b/Engineering_Physics_by_G._Vijayakumari/Chapter5.ipynb
@@ -0,0 +1,193 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#5: Laser"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 5.1, Page number 124"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The ratio of propulsion of the two states in a laser is 1.3893 *10**-30\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "t=300; #temperature(K)\n",
+ "w=698.3*10**-9; #wavelength of photon(m)\n",
+ "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n",
+ "c=3*10**8; #velocity of light(m/s)\n",
+ "Kb=1.38*10**-23; #Boltzmann's constant(m^2 Kg.s^-2 k^-1)\n",
+ "\n",
+ "#Calculation\n",
+ "Ratio=math.exp((-h*c)/(w*Kb*t)); #ratio of propulsion of the two states in a laser\n",
+ "\n",
+ "#Result\n",
+ "print \"The ratio of propulsion of the two states in a laser is\",round(Ratio*10**30,4),\"*10**-30\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 5.2, Page number 133"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The band gap for lnp laser diode is 0.8014 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "w=1.55*10**-6; #wavelength of light emission(m)\n",
+ "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n",
+ "c=3*10**8; #velocity of light(m/s)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculation\n",
+ "Eg=(h*c)/(w*e); #band gap(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"The band gap for lnp laser diode is\",round(Eg,4),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 5.3, Page number 133"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The long wavelength limit of an extrinsic semiconductor is 6.2109 *10**-5 m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "E=0.02*1.6*10**-19; #Ionisation energy(J)\n",
+ "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n",
+ "c=3*10**8; #velocity of light(m/s)\n",
+ "\n",
+ "#Calculation\n",
+ "w=h*c/E; #long wavelength limit of an extrinsic semiconductor(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The long wavelength limit of an extrinsic semiconductor is\",round(w*10**5,4),\"*10**-5 m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 5.4, Page number 133"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The number of photons emitted per minute is 6.562 *10**17 photons/minute\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "E=3.5*10**-3*60; #power output(J/min)\n",
+ "w=0.621*10**-6; #wavelength of light(m)\n",
+ "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n",
+ "c=3*10**8; #velocity of light(m/s)\n",
+ "\n",
+ "#Calculation\n",
+ "e=h*c/w; #energy emitted by one photon(J)\n",
+ "n=E/e; #The number of photons emitted per minute(photons/minute)\n",
+ "\n",
+ "#Result\n",
+ "print \"The number of photons emitted per minute is\",round(n/10**17,3),\"*10**17 photons/minute\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_G._Vijayakumari/Chapter6.ipynb b/Engineering_Physics_by_G._Vijayakumari/Chapter6.ipynb
new file mode 100644
index 00000000..7c2ac18d
--- /dev/null
+++ b/Engineering_Physics_by_G._Vijayakumari/Chapter6.ipynb
@@ -0,0 +1,267 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#6: Fiber Optics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 6.1, Page number 146"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The critical angle is 75 degrees 23 minutes\n",
+ "The acceptance angle is 22 degrees 56 minutes\n",
+ "The numerical aperture is 0.3899\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1=1.545; #refractive index of optical fibre core\n",
+ "n2=1.495; #refractive index of cladding\n",
+ "\n",
+ "#Calculation\n",
+ "CA=math.asin(n2/n1); #critical angle(radian)\n",
+ "CA=CA*180/math.pi; #critical angle(degree)\n",
+ "CAm=int(CA);\n",
+ "CAs=int(60*(CA-CAm));\n",
+ "AA=math.asin(math.sqrt(n1**2-n2**2)); #acceptance angle(radian)\n",
+ "AAd=AA*180/math.pi; #acceptance angle(degree) \n",
+ "AAm=int(AAd);\n",
+ "AAs=int(60*(AAd-AAm));\n",
+ "NA=math.sin(AA); #numerical aperture\n",
+ "\n",
+ "#Result\n",
+ "print \"The critical angle is\",CAm,\"degrees\",CAs,\"minutes\"\n",
+ "print \"The acceptance angle is\",AAm,\"degrees\",AAs,\"minutes\"\n",
+ "print \"The numerical aperture is\",round(NA,4)\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 6.2, Page number 147"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The numerical aperture is 0.3487\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1=1.54; #refractive index of optical fibre core\n",
+ "n2=1.5; #refractive index of cladding\n",
+ "\n",
+ "#Calculation\n",
+ "NA=math.sqrt(n1**2-n2**2); #numerical aperture\n",
+ "\n",
+ "#Result\n",
+ "print \"The numerical aperture is\",round(NA,4)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 6.3, Page number 147"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The critical angle is 71 degrees 30 minutes\n",
+ "The acceptance angle is 29 degrees 26 minutes\n",
+ "The numerical aperture is 0.4915\n",
+ "answer for acceptance angle and numerical aperture given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1=1.55; #refractive index of optical fibre core\n",
+ "n2=1.47; #refractive index of cladding\n",
+ "\n",
+ "#Calculation\n",
+ "CA=math.asin(n2/n1); #critical angle(radian)\n",
+ "CA=CA*180/math.pi; #critical angle(degree) \n",
+ "CAm=int(CA);\n",
+ "CAs=int(60*(CA-CAm));\n",
+ "NA=math.sqrt(n1**2-n2**2); #numerical aperture \n",
+ "AA=math.asin(NA); #acceptance angle(radian)\n",
+ "AAd=AA*180/math.pi; #acceptance angle(degree) \n",
+ "AAm=int(AAd);\n",
+ "AAs=int(60*(AAd-AAm));\n",
+ "\n",
+ "#Result\n",
+ "print \"The critical angle is\",CAm,\"degrees\",CAs,\"minutes\"\n",
+ "print \"The acceptance angle is\",AAm,\"degrees\",AAs,\"minutes\"\n",
+ "print \"The numerical aperture is\",round(NA,4)\n",
+ "print \"answer for acceptance angle and numerical aperture given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 6.4, Page number 147"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The refractive index of optical fibre is 1.5628\n",
+ "The numerical aperture when fibre is in water is 0.15\n",
+ "The Acceptance angle for the fibre in water is 8 degrees 38 minutes\n",
+ "answer for minutes varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n2=1.55; #refractive index of cladding\n",
+ "no=1.33; #refractive index of water\n",
+ "NA=0.20; #numerical aperture of optical fibre\n",
+ "\n",
+ "#Calculation\n",
+ "n1=math.sqrt(n2**2+NA**2); #refractive index of optical fibre\n",
+ "NAW=math.sqrt(n1**2-n2**2)/no; #numerical aperture when fibre is in water\n",
+ "AA=math.asin(NAW); #Acceptance angle for the fibre in water(degrees)\n",
+ "AAd=AA*180/math.pi; #acceptance angle(degree) \n",
+ "AAm=int(AAd);\n",
+ "AAs=int(60*(AAd-AAm));\n",
+ "\n",
+ "#Result\n",
+ "print \"The refractive index of optical fibre is\",round(n1,4)\n",
+ "print \"The numerical aperture when fibre is in water is\",round(NAW,2)\n",
+ "print \"The Acceptance angle for the fibre in water is\",AAm,\"degrees\",AAs,\"minutes\"\n",
+ "print \"answer for minutes varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 6.5, Page number 148"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The refractive index of the core of a fibre is 1.42\n",
+ "The refractive index of the cladding is 1.403\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "NA=0.22; #numerical aperture of optical fibre\n",
+ "no=0.012; #refractive index difference\n",
+ "\n",
+ "#Calculation\n",
+ "n1=NA/math.sqrt(2*no); #The refractive index of the core of a fibre\n",
+ "n2=n1*(1-no); #The refractive index of the cladding\n",
+ "\n",
+ "#Result\n",
+ "print \"The refractive index of the core of a fibre is\",round(n1,2)\n",
+ "print \"The refractive index of the cladding is\",round(n2,3)\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_G._Vijayakumari/Chapter7.ipynb b/Engineering_Physics_by_G._Vijayakumari/Chapter7.ipynb
new file mode 100644
index 00000000..13a2a17f
--- /dev/null
+++ b/Engineering_Physics_by_G._Vijayakumari/Chapter7.ipynb
@@ -0,0 +1,781 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#7: Conducting Materials"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 7.1, Page number 178"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The current density in the conductor corresponds to a drift velocity is 5.9 *10**9 A m^-1\n",
+ "Mobility of the charge carrires is 6.58898 *10**-3 m^2 V^-1 s^-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=5.9*10**28; #electron concentration of conductor(m^-3)\n",
+ "v=0.625; #drift velocity of a conductor(ms^-1)\n",
+ "x=6.22*10**7; #electrical conductivity(ohm^-1 m^-1)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculation\n",
+ "J=n*e*v; #current density in the conductor corresponds to drift velocity(Am^-1)\n",
+ "z=x/(n*e); #mobility of the charge(m^2V^-1s^-1)\n",
+ " \n",
+ "#Result\n",
+ "print \"The current density in the conductor corresponds to a drift velocity is\",J/10**9,\"*10**9 A m^-1\"\n",
+ "print \"Mobility of the charge carrires is\",round(z*10**3,5),\"*10**-3 m^2 V^-1 s^-1\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 7.2, Page number 179"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The drift velocity of free electron in a copper wire is 7.0028 *10**-5 ms^-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=8.5*10**28; #density of free electrons in copper(m^-3)\n",
+ "A=1.05*10**-6; #sectional area of copper(m^2)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "I=1; #copper wire carries a current(A)\n",
+ "\n",
+ "#Calculation\n",
+ "V=1/(A*n*e); #drift velocity of free electrons in copper wire(ms^-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"The drift velocity of free electron in a copper wire is\",round(V*10**5,4),\"*10**-5 ms^-1\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 7.3, Page number 179"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The drift velocity of free electrons in copper is 1.75 *10**-3 ms^-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "X=3.5*10**-3; #mobility of free electrons in copper(m^2 V^-1 s^-1)\n",
+ "E=0.5; #elactric field strength of copper(V m^-1)\n",
+ "\n",
+ "#Calculation\n",
+ "V=X*E; #drift velocity of free electrons in copper(m s^-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"The drift velocity of free electrons in copper is\",V*10**3,\"*10**-3 ms^-1\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 7.4, Page number 179"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The relaxation time of conduction electrons is 3.815 *10**-14 s\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=6.5*10**28; #conduction electron(m^-3)\n",
+ "r=1.435*10**-8; #metal resistivity(ohm-metre)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "m=9.11*10**-31; #mass of a electron(kg)\n",
+ "\n",
+ "#Calculation\n",
+ "T=m/(r*n*e**2); #relaxation time of conduction electrons(s)\n",
+ "\n",
+ "#Result\n",
+ "print \"The relaxation time of conduction electrons is\",round(T*10**14,3),\"*10**-14 s\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 7.5, Page number 180"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The mean free path between collision of free electrons in copper is 2.8153 *10**-9 m\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "r=1.72*10**-8; #resistivity of copper(ohm metre)\n",
+ "T=293; #temperature of copper(K)\n",
+ "n=8.48*10**28; #density of free electron(m^-3)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "m=9.11*10**-31; #mass of a electron(kg)\n",
+ "k=1.38*10**-23; #boltzmann constant(m^2 Kg s^-2 k^-1)\n",
+ "\n",
+ "#Calculation\n",
+ "t=m/(r*n*(e**2)); #relaxation time(s)\n",
+ "v=math.sqrt(3*k*T/m); #thermal velocity(ms^-1)\n",
+ "Lamda=t*v; #mean free path between collision of free electrons in copper(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"The mean free path between collision of free electrons in copper is\",round(Lamda*10**9,4),\"*10**-9 m\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 7.6, Page number 180"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The thermal velocity is 116.76 *10**3 m s^-1\n",
+ "Drift velocity of electrons is 40.0 m s^-1\n",
+ "Thus the terminal velocity is high compared to the drift velocity\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "t=1*10**-3; #thickness of metal(m)\n",
+ "V=1; #potential difference applied in volts(V)\n",
+ "T=300; #temperature(K)\n",
+ "m=0.04; #mobility(m^2 V^-1 s^-1)\n",
+ "k=1.38*10**-23; #boltzmann constant(m^2 Kg s^-2 k^-1)\n",
+ "m1=9.11*10**-31; #mass of a electron(kg)\n",
+ "\n",
+ "#Calculation\n",
+ "v=math.sqrt(3*k*T/m1); #thermal velocity(ms^-1)\n",
+ "E=V/t; #unit potenyial voltage gradient(V m^-1)\n",
+ "vd=E*m; #drift velocity of electrons(m s^-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"The thermal velocity is\",round(v/10**3,2),\"*10**3 m s^-1\"\n",
+ "print \"Drift velocity of electrons is\",vd,\"m s^-1\"\n",
+ "print \"Thus the terminal velocity is high compared to the drift velocity\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 7.7, Page number 181"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The electrical conductivity of copper is 5.9 *10**7 S m^-1\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "AW=63.5; #atomic weight of copper\n",
+ "D=8.93*10**3; #density of copper(kg m^-3)\n",
+ "t=2.48*10**-14; #relaxation time of copper(s)\n",
+ "AV=6.023*10**26; #avagadro no(mole^-1)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "m=9.11*10**-31; #mass of a electron(kg)\n",
+ "\n",
+ "#Calculation\n",
+ "n=AV*D/AW; #density of electrons per unit volume(m^-3)\n",
+ "sigma=n*e**2*t/m; #electrical conductivity of copper(Sm^-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"The electrical conductivity of copper is\",round(sigma/10**7,1),\"*10**7 S m^-1\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 7.8, Page number 181"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The drift velocity in copper is 3.6657 *10**-6 ms^-1\n",
+ "The current density in copper is 4.9736 *10**4 Am^-2\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "I=10; #current(A)\n",
+ "r=0.8*10**-2; #radius of wire(m)\n",
+ "n=8.48*10**28; #density of free electron(m^-3)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculation\n",
+ "J=I/(math.pi*r**2); #current density of copper(Am^-2)\n",
+ "v=J/(n*e); #drift velocity of copper(ms^-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"The drift velocity in copper is\",round(v*10**6,4),\"*10**-6 ms^-1\"\n",
+ "print \"The current density in copper is\",round(J/10**4,4),\"*10**4 Am^-2\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 7.9, Page number 182"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The mobility of charge is 6.997 *10**-3 m^2 V^-1 s^-1\n",
+ "The drift velocity of electrons is 0.6997 m s^-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "r=1.54*10**-8; #resistivity of silver wire at room temperature(ohm metre)\n",
+ "E=100; #Electric field along the wire(V/m)\n",
+ "n=5.8*10**28; #n is assuming of conduction electrons(m^-3)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculation\n",
+ "mew=1/(r*n*e); #mobility of charge(m^2 V^-1 s^-1)\n",
+ "vd=mew*E; #drift velocity of electrons(m s^-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"The mobility of charge is\",round(mew*10**3,3),\"*10**-3 m^2 V^-1 s^-1\"\n",
+ "print \"The drift velocity of electrons is\",round(vd,4),\"m s^-1\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 7.10, Page number 182"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The relaxation time collision of electrons in copper obeying classical laws is 2.43 *10**-14 s\n",
+ "The mobility charge of copper obeying classical laws is 0.427 *10**-2 m^2 V^-1 s^-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "D=8.92*10**3; #density of copper(kg m^-3)\n",
+ "AW=63.5; #atomic weight of copper\n",
+ "r=1.73*10**-8; #resistivity of copper(ohm metre)\n",
+ "AV=6.023*10**26; #avagadro no(mole^-1)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "m=9.11*10**-31; #mass of a electron(kg)\n",
+ "\n",
+ "#Calculation\n",
+ "n=AV*D/AW; #density of electrons per unit volume(m^-3)\n",
+ "tow=m/(r*n*e**2); #average time collision of electrons in copper(s)\n",
+ "mew=1/(r*n*e); #mobility of charge(m^2 V^-1 s^-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"The relaxation time collision of electrons in copper obeying classical laws is\",round(tow*10**14,2),\"*10**-14 s\"\n",
+ "print \"The mobility charge of copper obeying classical laws is\",round(mew*10**2,3),\"*10**-2 m^2 V^-1 s^-1\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 7.11, Page number 183"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The electrical resistivity is 4.63 *10**-8 ohm metre\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "r=1.85*10**-10; #the radius of sodium atom(m)\n",
+ "t=3*10**-14; #the classic value of mean free time(sec)\n",
+ "temp=0; #temperature(centigrade)\n",
+ "na=2; #number of atoms in a unit cell\n",
+ "ne=1; #number of electrons per unit cell\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "m=9.11*10**-31; #mass of a electron(kg)\n",
+ "\n",
+ "#Calculation \n",
+ "a=4*r/math.sqrt(3); #a is one side in bcc structure unit cell(m)\n",
+ "v=a**3; #volume of bcc structure unit cell(m^3)\n",
+ "n=na*ne/v; #density of electrons per unit volume(m^-3)\n",
+ "rho=m/(n*e**2*t); #The electrical resistivity(ohm metre)\n",
+ "\n",
+ "#Result\n",
+ "print \"The electrical resistivity is\",round(rho*10**8,2),\"*10**-8 ohm metre\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 7.12, Page number 184"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Free electron concentration in aluminium is 0.18 V/m\n",
+ "Mobility of the charge is 1.28 *10**-3 m^2 V^-1 S^-1\n",
+ "The drift velocity of electrons is 2.304 *10**-4 m s^-1\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "rho=2.7*10**-8; #electrical resistivity of aluminium(ohm metre)\n",
+ "AW=26.98; #atomic weight of aluminium\n",
+ "d=2.7*10**3; #density of volume(Kg/m^3)\n",
+ "R=60*10**-3; #resistance(W)\n",
+ "l=5; #length of aluminium wire(m)\n",
+ "i=15; #aluminuim wire carries a current(A)\n",
+ "fe=3; #number of free electrons \n",
+ "AV=6.023*10**26; #avagadro no(mole^-1)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculation\n",
+ "n=AV*d*fe/AW; #density of electrons per unit volume(electrons/m^-3)\n",
+ "mew=1/(n*e*rho); #mobility of the charge(m^2 V^-1 S^-1)\n",
+ "E=i*R/l; #free electron concentration(V/m)\n",
+ "vd=mew*E; #drift velocity(m s^-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"Free electron concentration in aluminium is\",E,\"V/m\"\n",
+ "print \"Mobility of the charge is\",round(mew*10**3,2),\"*10**-3 m^2 V^-1 S^-1\"\n",
+ "print \"The drift velocity of electrons is\",round(vd*10**4,3),\"*10**-4 m s^-1\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 7.13, Page number 184"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The resistance of an intrinsic Ge rod is 4310 ohm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "l=1*10**-2; #length of intrinsic Ge rod(m)\n",
+ "b=1*10**-3; #breadth of intrinsic Ge rod(m)\n",
+ "t=1*10**-3; #thickness of intrinsic Ge rod(m)\n",
+ "temp=300; #temperature(K)\n",
+ "d=2.5*10**19; #intrinsic carrier density(Kg/m^3)\n",
+ "z=0.39; #mobility of electron(m^2 V^-1 S^-1)\n",
+ "zh=0.19; #mobility of hole(m^2 V^-1 S^-1) \n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculation\n",
+ "x=d*e*(z+zh); #electrical conductivity(ohm^-1 m^-1)\n",
+ "r=1/x; #electrical resistivity(ohm metre)\n",
+ "A=b*t; #area(m^2)\n",
+ "R=r*l/A; #resistance of an intrinsic Ge rod(ohm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The resistance of an intrinsic Ge rod is\",int(R),\"ohm\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 7.14, Page number 188"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The thermal conductivity of copper is 189.9299 W m^-1 K^-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "d=8.48*10**28; #free electron density of copper(m^-3)\n",
+ "y=2.8138*10**-9; #mean free path(m)\n",
+ "v=1.1536*10**5; #velocity of copper(m s^-1)\n",
+ "t=20; #temperature of copper(C)\n",
+ "Kb=1.38*10**-23; #Boltzmann's constant(m^2 Kg s^-2 k^-1)\n",
+ "\n",
+ "#Calculation\n",
+ "K=1/2*(d*v*y*Kb); #thermal conductivity of copper(W m^-1 K^-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"The thermal conductivity of copper is\",round(K,4),\"W m^-1 K^-1\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 7.15, Page number 189"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The thermal conductivity of brass is 14.64 W m^-1 K^-1\n",
+ "The thermal resistance of brass is 4.503 K W^-1\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "er=50*10**-8; #electrical resistivity(ohm metre)\n",
+ "t=300; #temperature(K)\n",
+ "r=13*10**-3; #radius of brass(m)\n",
+ "th=35*10**-3; #thickness of brass(m)\n",
+ "L=2.44*10**-8; #Lorentz number(W ohm K^-2)\n",
+ "\n",
+ "#Calculation\n",
+ "K=L*t/er; #thermal conductivity of brass(W m^-1 K^-1)\n",
+ "A=math.pi*r**2; #area of brass disk(m^2)\n",
+ "Rt=th/(K*A); #thermal resistance of brass(K W^-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"The thermal conductivity of brass is\",K,\"W m^-1 K^-1\"\n",
+ "print \"The thermal resistance of brass is\",round(Rt,3),\"K W^-1\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 7.16, Page number 189"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Lorentz number is 2.2094 *10**-8 W ohm K^-2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "x=5.87*10**7; #electrical conductivity(ohm^-1 m^-1)\n",
+ "k=380; #thermal conductivity of copper(W m-1 K^-1)\n",
+ "t=293; #temperature of copper(K)\n",
+ "\n",
+ "#Calculation\n",
+ "L=k/(x*t); #Lorentz number(W ohm K^-2)\n",
+ "\n",
+ "#Result\n",
+ "print \"Lorentz number is\",round(L*10**8,4),\"*10**-8 W ohm K^-2\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 7.17, Page number 189"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The thermal conductivity of copper is 468.48 W m^-1 K^-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "x=6.40*10**7; #electrical conductivity(mho m^-1)\n",
+ "t=300; #temperature of copper(K)\n",
+ "L=2.44*10**-8; #Lorentz number(W ohm K^-2)\n",
+ "\n",
+ "#Calculation\n",
+ "K=x*t*L; #thermal conductivity of copper(W m^-1 K^-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"The thermal conductivity of copper is\",K,\"W m^-1 K^-1\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_G._Vijayakumari/Chapter8.ipynb b/Engineering_Physics_by_G._Vijayakumari/Chapter8.ipynb
new file mode 100644
index 00000000..e403d61e
--- /dev/null
+++ b/Engineering_Physics_by_G._Vijayakumari/Chapter8.ipynb
@@ -0,0 +1,669 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#8: Quantum Physics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.1, Page number 204"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The energy of photon is 12412.5 eV\n",
+ "The momentum of the photon is 6.62e-24 Kg m s^-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "W=0.1*10**-9; #wavelength of photon(m)\n",
+ "h=6.62*10**-34; #Planck's constant(m^2 Kg/sec)\n",
+ "c=3*10**8; #velocity of light(m/s)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculation\n",
+ "E=h*c/(W*e); #energy of photon(eV)\n",
+ "P=h/W; #momentum of the photon(Kgms^-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"The energy of photon is\",E,\"eV\"\n",
+ "print \"The momentum of the photon is\",P,\"Kg m s^-1\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.2, Page number 205"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The total number of photons emitted per second is 2.965 *10**20 per sec\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "w=5893*10**-10; #wavelength of emitted light(m)\n",
+ "e=100; #total energy emitted per sec\n",
+ "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n",
+ "c=3*10**8; #velocity of light(m/s)\n",
+ "\n",
+ "#Calculation\n",
+ "E=h*c/w; #energy of one photon(J)\n",
+ "N=e/E; #The total numberof photons emitted(sec)\n",
+ "\n",
+ "#Result\n",
+ "print \"The total number of photons emitted per second is\",round(N/10**20,3),\"*10**20 per sec\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.3, Page number 205"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The energy density per unit wavelength in a black body cavity is 0.018349 J/m^4\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "w=4000*10**-10; #wavelength in black body(m)\n",
+ "t=1500; #temperature of black body(K)\n",
+ "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n",
+ "c=3*10**8; #velocity of light(m/s)\n",
+ "Kb=1.38*10**-23; #Boltzmann's constant(m^2 Kg s^-2 k^-1)\n",
+ "\n",
+ "#Calculation\n",
+ "Edw=(8*math.pi*h*c/w**5)*(1/(math.exp(h*c/(w*Kb*t))-1)); #The energy density per unit wavelength in a black body cavity(J/m^4)\n",
+ "\n",
+ "#Result\n",
+ "print \"The energy density per unit wavelength in a black body cavity is\",round(Edw,6),\"J/m^4\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.4, Page number 211"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The compton wavelength for an electron is 0.0242 Angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n",
+ "c=3*10**8; #velocity of light(m/s)\n",
+ "m=9.11*10**-31; #mass of electron(Kg)\n",
+ "\n",
+ "#Calculation\n",
+ "w=h/(c*m)*10**10; #The compton wavelength for an electron(Armstrong)\n",
+ "\n",
+ "#Result\n",
+ "print \"The compton wavelength for an electron is\",round(w,4),\"Angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.5, Page number 212"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The change in wavelength for X ray photon is 0.0242 Angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "theta=90; #x ray photon scattered at a angle(degrees)\n",
+ "h=6.625*10**-34; #Planck's constant(J-sec)\n",
+ "c=3*10**8; #velocity of light(m/s)\n",
+ "m=9.11*10**-31; #mass of electron(Kg)\n",
+ "\n",
+ "#Calculation\n",
+ "theta=theta*math.pi/180; #angle(radian)\n",
+ "deltalamda=((h/(c*m))*(1-math.cos(x)))/10**-10; #The change in wavelength for Xray photon(Angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"The change in wavelength for X ray photon is\",round(deltalamda,4),\"Angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.6, Page number 212"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The wavelength of X-rays carbon is 1.72 Angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "theta=180; #x ray carbon scattered at a angle(degrees)\n",
+ "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n",
+ "c=3*10**8; #velocity of light(m/s)\n",
+ "m=9.11*10**-31; #mass of electron(kg)\n",
+ "v=1.8*10**18; #frequency of incident rays(s^-1)\n",
+ "\n",
+ "#Calculation\n",
+ "theta=theta*math.pi/180; #angle(radian)\n",
+ "w=c/v; #wavelength(m)\n",
+ "tw=(h/(c*m))*(1-math.cos(theta)); #The change wavelength for Xray carbon(m)\n",
+ "lamda_dash=(w+tw)/10**-10; #The wavelength of X-rays carbon(Angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"The wavelength of X-rays carbon is\",round(lamda_dash,2),\"Angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.7, Page number 212"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The wavelength of scattered photons is 3.012 Angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "w=3*10**-10; #wavelength of incident photons(m)\n",
+ "theta=60; #angle of view(degrees)\n",
+ "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "m=9.11*10**-31; #mass of electron(Kg)\n",
+ "\n",
+ "#Calculation\n",
+ "theta=theta*math.pi/180; #angle(radian)\n",
+ "lamda_dash=(w+((h/(c*m))*(1-math.cos(theta))))/10**-10; #The wavelength of scattered photons(Angstrom)\n",
+ "\n",
+ "#Result\n",
+ "print \"The wavelength of scattered photons is\",round(lamda_dash,3),\"Angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.8, Page number 213"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The Velocity of moving electron is 2.9047 *10**8 m/sec\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "x=4; #Total energy increase to 4 times of its initial rest energy\n",
+ "c=3*10**8; #velocity of light(m/sec)\n",
+ "\n",
+ "#Calculation\n",
+ "v=math.sqrt(c**2*(1-(1/x**2))); #The Velocity of moving electron(m/sec)\n",
+ "\n",
+ "#Result\n",
+ "print \"The Velocity of moving electron is\",round(v/10**8,4),\"*10**8 m/sec\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.9, Page number 224"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The least energy of the particle can be obtained is 37.639 eV\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "a=0.1*10**-9; #width of high potential box(m)\n",
+ "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n",
+ "m=9.11*10**-31; #mass of electron(Kg)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "n=1; #take n equal to one\n",
+ "\n",
+ "#Calculation\n",
+ "E=(n**2*h**2)/(8*m*a**2*e); #The least energy of the particle can be obtained(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"The least energy of the particle can be obtained is\",round(E,3),\"eV\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.10, Page number 224"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The least energy of the neutron can be obtained is 2.053 MeV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "a=10**-14; #length of impenerable box(m)\n",
+ "m=1.67*10**-27; #mass of neutron(Kg)\n",
+ "n=1; #for lowest energy\n",
+ "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n",
+ "\n",
+ "#Calculation\n",
+ "E=(n**2*h**2)/(8*m*a**2); #The least energy of the neutron can be obtained(J)\n",
+ "\n",
+ "#Result\n",
+ "print \"The least energy of the neutron can be obtained is\",round(E/(1.6*10**-19*10**6),3),\"MeV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.11, Page number 225"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The first permitted energy level by taking n=1 is 2.352 eV\n",
+ "The second permitted energy level by taking n=2 is 9.41 eV\n",
+ "The third permitted energy level by taking n=3 is 21.172 eV\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "a=4*10**-10; #width of electron box(m)\n",
+ "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n",
+ "m=9.11*10**-31; #mass of electron(kg)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "n=1; #first permitted level\n",
+ "\n",
+ "#Calculation\n",
+ "E1=((n**2*h**2)/(8*m*a**2*e)); #The first permitted energy level by taking n=1(eV)\n",
+ "E2=4*E1; #The second permitted energy level by taking n=2(eV)\n",
+ "E3=9*E1; #The third permitted energy level by taking n=3(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"The first permitted energy level by taking n=1 is\",round(E1,3),\"eV\"\n",
+ "print \"The second permitted energy level by taking n=2 is\",round(E2,2),\"eV\"\n",
+ "print \"The third permitted energy level by taking n=3 is\",round(E3,3),\"eV\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.12, Page number 226"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The lowest energy of electron in a cubical box is 50.186 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "a=1.5*10**-10; #each side of cubical box(m)\n",
+ "n1=1; #for lowest energy\n",
+ "n2=1; #for lowest energy\n",
+ "n3=1; #for lowest energy\n",
+ "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n",
+ "m=9.11*10**-31; #mass of electron(Kg)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculation\n",
+ "n=(n1**2+n2**2+n3**2); #total value of n\n",
+ "E=((n*h**2)/(8*m*a**2*e)); #The lowest energy of electron ina cubical box(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"The lowest energy of electron in a cubical box is\",round(E,3),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.13, Page number 226"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The lowest energy of electron in deep potential well is 0.02352 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "a=4*10**-9; #width of potential well(m)\n",
+ "n=1; #For minimum energy n value\n",
+ "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n",
+ "m=9.11*10**-31; #mass of electron(Kg)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculation\n",
+ "E=((n**2*h**2)/(8*m*a**2*e)); #The lowest energy of electron in deep potential well(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"The lowest energy of electron in deep potential well is\",round(E,5),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.14, Page number 227"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The energy required the electron from its ground state to the fifth exited state is 1317 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "a=0.1*10**-9; #length of one dimensional box(m)\n",
+ "n=1; #first permitted level\n",
+ "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n",
+ "m=9.11*10**-31; #mass of electron(kg)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "\n",
+ "#Calculation\n",
+ "E1=((n**2*h**2)/(8*m*a**2*e)); #The ground state of electron in an one dimensional box(eV)\n",
+ "E6=36*E1; #The fifth exited state of electron(eV)\n",
+ "E=E6-E1; #The energy required the electron from its ground state to the fifth exited state(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"The energy required the electron from its ground state to the fifth exited state is\",int(E),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 8.15, Page number 227"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The lowest energy of the system consisting of three electron ia a one dimensional box is 112.9184 eV\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "a=0.1*10**-9; #length of one dimensional box(m)\n",
+ "n=1; #first permitted level\n",
+ "h=6.625*10**-34; #Planck's constant(m^2 Kg/sec)\n",
+ "m=9.11*10**-31; #mass of electron(Kg)\n",
+ "e=1.6*10**-19; #charge of electron(c)\n",
+ "ne=3; #the number of electrons\n",
+ "\n",
+ "#Calculation\n",
+ "E=((n**2*h**2)/(8*m*a**2*e))*ne; #The lowest energy of the system consisting of three electron ia a one dimensional box(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"The lowest energy of the system consisting of three electron ia a one dimensional box is\",round(E,4),\"eV\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_G._Vijayakumari/Chapter9.ipynb b/Engineering_Physics_by_G._Vijayakumari/Chapter9.ipynb
new file mode 100644
index 00000000..90c89eeb
--- /dev/null
+++ b/Engineering_Physics_by_G._Vijayakumari/Chapter9.ipynb
@@ -0,0 +1,585 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#9: Energy bands in solids"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 9.1, Page number 240"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The fermi function for an energy kt above fermi energy is 0.269\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "#E-EF=KT\n",
+ "#K=KB is the boltzmann constant in m^2 Kg s^-2 k^-1\n",
+ "\n",
+ "#Calculation\n",
+ "f=1/(1+math.exp(1)); #The fermi function for an energy kt above fermi energy\n",
+ "\n",
+ "#Result\n",
+ "print \"The fermi function for an energy kt above fermi energy is\",round(f,3)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 9.2, Page number 240"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The fermi function is 0.358999\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "X=0.01*1.6*10**-19; #difference between energy and fermi energy(J)\n",
+ "T=200; #temperature(K)\n",
+ "KB=1.38*10**-23; #Boltzmann's Constant(J/K)\n",
+ "\n",
+ "#Calculation\n",
+ "f=1/(1+math.exp(X/(KB*T))); #The fermi function\n",
+ "\n",
+ "#Result\n",
+ "print \"The fermi function is\",round(f,6)\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 9.3, Page number 241"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The fermi velocity fo conducting electron in aluminium is 2.02118 *10**6 ms^-1\n",
+ "The mean free path for conducting electron of aluminium is 14.7546 nm\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "EF=11.63*1.6*10**-19; #fermi energy of conducting electron in aluminium(J)\n",
+ "t=7.3*10**-15; #relaxation time for electron(sec)\n",
+ "m=9.11*10**-31; #mass of electon(Kg)\n",
+ "\n",
+ "#Calculation\n",
+ "Vf=math.sqrt(2*EF/m); #The fermi velocity fo conducting electron in aluminium(ms^-1)\n",
+ "x=t*Vf*10**9; #mean free path for conducting electron of aluminium(nm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The fermi velocity fo conducting electron in aluminium is\",round(Vf/10**6,5),\"*10**6 ms^-1\"\n",
+ "print \"The mean free path for conducting electron of aluminium is\",round(x,4),\"nm\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 9.4, Page number 241"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 46,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The fermi energy in a metal is 3.36888 *10**-19 J or 2.1055 eV\n",
+ "The fermi temperature in a metal is 24.41 *10**3 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Vf=0.86*10**6; #The femi energy of electons in the metal(m/sec)\n",
+ "m=9.11*10**-31; #mass of electon(Kg)\n",
+ "KB=1.38*10**-23; #Boltzmann's Constant(m^2 Kg s^-2 k^-1)\n",
+ "\n",
+ "#Calculation\n",
+ "Ef=(1/2)*m*Vf**2; #The fermi energy in a metal(J)\n",
+ "Tf=Ef/KB; #The fermi temperature in a metal(K)\n",
+ "\n",
+ "#Result\n",
+ "print \"The fermi energy in a metal is\",round(Ef/10**-19,5),\"*10**-19 J or\",round(Ef/(1.6*10**-19),4),\"eV\"\n",
+ "print \"The fermi temperature in a metal is\",round(Tf/10**3,2),\"*10**3 K\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 9.5, Page number 242"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The fermi temparature for sodium is 37.1 *10**3 K\n",
+ "The fermi velocity fo conducting electron in aluminium is 1.0602 *10**6 ms^-1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Ef=3.2*1.6*10**-19; #The fermi energy in a metal(J)\n",
+ "m=9.11*10**-31; #mass of electon(Kg)\n",
+ "KB=1.38*10**-23; #Boltzmann's Constant(m^2 Kg s^-2 k^-1)\n",
+ "\n",
+ "#Calculation\n",
+ "Tf=Ef/KB; #The fermi temparature for sodium(K)\n",
+ "Vf=math.sqrt(2*Ef/m); #The fermi velocity fo conducting electron in aluminium(ms^-1)\n",
+ "\n",
+ "#Result\n",
+ "print \"The fermi temparature for sodium is\",round(Tf/10**3,2),\"*10**3 K\"\n",
+ "print \"The fermi velocity fo conducting electron in aluminium is\",round(Vf/10**6,4),\"*10**6 ms^-1\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 9.6, Page number 242"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The temperature at which there is 1% probability that an electron in a solid is 1.26158 *10**3 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "E=5.5*1.6*10**-19; #energy level(J)\n",
+ "Ef=5*1.6*10**-19; #fermi energy level(J)\n",
+ "x=0.5*1.6*10**-19; #Difference between energy and fermi energy(J)\n",
+ "f=0.01; #fermi function at which there is 1% probability that an electron in a solid\n",
+ "KB=1.38*10**-23; #Boltzmann's Constant(m^2 Kg s^-2 k^-1)\n",
+ "\n",
+ "#Calculation\n",
+ "T=x/(KB*(math.log(1-f)-math.log(f))); #The temperature at which there is 1% probability that an electron in a solid(K)\n",
+ "\n",
+ "#Result\n",
+ "print \"The temperature at which there is 1% probability that an electron in a solid is\",round(T/10**3,5),\"*10**3 K\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 9.7, Page number 244"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The energy for probability of occupancy at 1st is 1.98 eV\n",
+ "The energy for probability of occupancy at 2nd is 2.219 eV\n",
+ "The energy for probability of occupancy at 3rd is 2.1 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Ef=2.1*1.6*10**-19; #fermi energy level in potassium(J)\n",
+ "f1=0.99; #fermi factor for 1st\n",
+ "f2=0.01; #fermi factor for 2nd\n",
+ "f3=0.5; #fermi factor for 3rd\n",
+ "T=300; #temperature(K)\n",
+ "e=1.6*10**-19; #charge of electron(C)\n",
+ "KB=1.38*10**-23; #Boltzmann's Constant(m^2 Kg s^-2 k^-1)\n",
+ "\n",
+ "#Calculation\n",
+ "E1=(Ef+((KB*T)*(math.log(1-f1)-math.log(f1))))/e; #The energy for probability of occupancy at 1st(eV)\n",
+ "E2=(Ef+((KB*T)*(math.log(1-f2)-math.log(f2))))/e; #The energy for 1st at which the probability of occupancy(eV)\n",
+ "E3=(Ef+((KB*T)*(math.log(1-f3)-math.log(f3))))/e; #The energy for 1st at which the probability of occupancy(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"The energy for probability of occupancy at 1st is\",round(E1,2),\"eV\"\n",
+ "print \"The energy for probability of occupancy at 2nd is\",round(E2,3),\"eV\"\n",
+ "print \"The energy for probability of occupancy at 3rd is\",E3,\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 9.8, Page number 245"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The probability of unoccupancy by an electron at room temperature is 0.97946\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "X=0.1*1.6*10**-19; #difference between energy and fermi energy(J)\n",
+ "T=300; #temperature(K)\n",
+ "KB=1.38*10**-23; #Boltzmann's Constant(m^2 Kg s^-2 k^-1)\n",
+ "\n",
+ "#Calculation\n",
+ "f=1-1/(1+math.exp(X/(KB*T))); #The probability of unoccupancy by an electron at room temperature \n",
+ "\n",
+ "#Result\n",
+ "print \"The probability of unoccupancy by an electron at room temperature is\",round(f,5)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 9.9, Page number 252"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The fermi energy for the metal is 11.66 eV\n",
+ "The fermi factor is 0.0205\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=4; #number of atoms/unit cell in Al\n",
+ "a=4.05*10**-10; #lattice constant of Aluminium which is FCC crystal(m)\n",
+ "nf=3; #number of free electrons per atom in Al\n",
+ "T=300; #ambient temperature(K)\n",
+ "x=0.1*1.6*10**-19; #The same difference energy and fermi energy(J)\n",
+ "m=9.11*10**-31; #mass of electon(kg)\n",
+ "h=6.625*10**-34; #plank's constant(m^2 Kg/sec)\n",
+ "KB=1.38*10**-23; #Boltzmann's Constant(m^2 Kg s^-2 k^-1)\n",
+ "\n",
+ "#Calculation\n",
+ "nc=n*nf/(a**3); #number of electrons per unit volume\n",
+ "Ef=h**2/(8*m)*((3*nc)/math.pi)**(2/3); #The fermi energy for the metal(eV)\n",
+ "f=1/(1+math.exp(x/(KB*T))); #he fermi factor\n",
+ "\n",
+ "#Result\n",
+ "print \"The fermi energy for the metal is\",round(Ef/(1.6*10**-19),2),\"eV\"\n",
+ "print \"The fermi factor is\",round(f,4)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 9.10, Page number 253"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The fermi energy for cesium is 1.537 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=2; #number of atoms/unit cell in cesium which is Bcc\n",
+ "a=6.14*10**-10; #lattice constant of cesium which is BCC crystal(m)\n",
+ "nf=1; #number of free electrons per atom in cesium\n",
+ "m=9.11*10**-31; #mass of electon(kg)\n",
+ "h=6.625*10**-34; #plank's constant(m^2 Kg/sec)\n",
+ "KB=1.38*10**-23; #Boltzmann's Constant(m^2 Kg s^-2 k^-1)\n",
+ "e=1.6*10**-19; #charge of electron(C)\n",
+ "\n",
+ "#Calculation\n",
+ "nc=n*nf/(a**3); #number of electrons per unit volume\n",
+ "Ef=(h**2/(8*m)*((3*nc)/math.pi)**(2/3))/e; #The fermi energy for the metal(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"The fermi energy for cesium is\",round(Ef,3),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 9.11, Page number 254"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The number of free electrons per unit volume in potassium is 1.38 *10**28 electrons/m^3\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Ef=2.1*1.6*10**-19; #The fermi energy level in potassium at a particular temperature(J)\n",
+ "m=9.11*10**-31; #mass of electron(kg)\n",
+ "h=6.625*10**-34; #plank's constant(m^2 Kg/sec)\n",
+ "\n",
+ "#Calculation\n",
+ "nc=(8*m/(h**2)*Ef)**(3/2)*(math.pi/3); #ThE Number of free electrons per unit volume in potassium(electrons/m^3)\n",
+ "\n",
+ "#Result\n",
+ "print \"The number of free electrons per unit volume in potassium is\",round(nc/10**28,2),\"*10**28 electrons/m^3\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 9.12, Page number 254"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The fermi energy for the sodium is 3.155 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "AW=23; #atomic weight of sodium(gm/mole)\n",
+ "d=0.971*10**6; #density of sodium(gm/m^3)\n",
+ "m=9.11*10**-31; #mass of electon(kg)\n",
+ "h=6.625*10**-34; #plank's constant(m^2 Kg/sec)\n",
+ "AV=6.02*10**23; #Avagadro number(mole^-1)\n",
+ "e=1.6*10**-19; #charge of electron(C)\n",
+ "\n",
+ "#Calculation\n",
+ "nc=AV*d/AW; #number of electrons per unit volume\n",
+ "Ef=(h**2/(8*m)*((3*nc)/math.pi)**(2/3))/e; #The fermi energy for the sodium(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"The fermi energy for the sodium is\",round(Ef,3),\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 9.13, Page number 255"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The fermi energy for the sodium is 7.046 eV\n",
+ "answer varies due to rounding off errors\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "AW=63.5; #atomic weight of copper(u)\n",
+ "M=63.5*1.66*10**-27; #mass of one copper atom(kg)\n",
+ "d=8.94*10**3; #density of sodium(Kg/m^3)\n",
+ "m=9.11*10**-31; #mass of electon(Kg)\n",
+ "h=6.625*10**-34; #plank's constant(m^2 Kg/sec)\n",
+ "e=1.6*10**-19; #charge of electron(C)\n",
+ "\n",
+ "#Calculation\n",
+ "nc=d/M; #number of electrons per unit volume(electrons/m^3)\n",
+ "Ef=h**2/(8*m)*((3*nc)/math.pi)**(2/3)/e; #The fermi energy for the sodium(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"The fermi energy for the sodium is\",round(Ef,3),\"eV\"\n",
+ "print \"answer varies due to rounding off errors\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Physics_by_G._Vijayakumari/README.txt b/Engineering_Physics_by_G._Vijayakumari/README.txt
new file mode 100644
index 00000000..87e83878
--- /dev/null
+++ b/Engineering_Physics_by_G._Vijayakumari/README.txt
@@ -0,0 +1,10 @@
+Contributed By: SPANDANA ARROJU
+Course: others
+College/Institute/Organization: JNAFAU
+Department/Designation: Applied Arts
+Book Title: Engineering Physics
+Author: G. Vijayakumari
+Publisher: Vikas Publishing House Pvt Ltd(New Delhi)
+Year of publication: 2007
+Isbn: 9788125924098
+Edition: 2 \ No newline at end of file
diff --git a/Engineering_Physics_by_G._Vijayakumari/screenshots/11.png b/Engineering_Physics_by_G._Vijayakumari/screenshots/11.png
new file mode 100644
index 00000000..2b3d6924
--- /dev/null
+++ b/Engineering_Physics_by_G._Vijayakumari/screenshots/11.png
Binary files differ
diff --git a/Engineering_Physics_by_G._Vijayakumari/screenshots/22.png b/Engineering_Physics_by_G._Vijayakumari/screenshots/22.png
new file mode 100644
index 00000000..b7b6ba9e
--- /dev/null
+++ b/Engineering_Physics_by_G._Vijayakumari/screenshots/22.png
Binary files differ
diff --git a/Engineering_Physics_by_G._Vijayakumari/screenshots/33.png b/Engineering_Physics_by_G._Vijayakumari/screenshots/33.png
new file mode 100644
index 00000000..bfad6e10
--- /dev/null
+++ b/Engineering_Physics_by_G._Vijayakumari/screenshots/33.png
Binary files differ