summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_G._Aruldhas/Chapter5_1.ipynb
diff options
context:
space:
mode:
authorkinitrupti2017-05-12 18:53:46 +0530
committerkinitrupti2017-05-12 18:53:46 +0530
commitf270f72badd9c61d48f290c3396004802841b9df (patch)
treebc8ba99d85644c62716ce397fe60177095b303db /Engineering_Physics_by_G._Aruldhas/Chapter5_1.ipynb
parent64d949698432e05f2a372d9edc859c5b9df1f438 (diff)
downloadPython-Textbook-Companions-f270f72badd9c61d48f290c3396004802841b9df.tar.gz
Python-Textbook-Companions-f270f72badd9c61d48f290c3396004802841b9df.tar.bz2
Python-Textbook-Companions-f270f72badd9c61d48f290c3396004802841b9df.zip
Removed duplicates
Diffstat (limited to 'Engineering_Physics_by_G._Aruldhas/Chapter5_1.ipynb')
-rwxr-xr-xEngineering_Physics_by_G._Aruldhas/Chapter5_1.ipynb299
1 files changed, 299 insertions, 0 deletions
diff --git a/Engineering_Physics_by_G._Aruldhas/Chapter5_1.ipynb b/Engineering_Physics_by_G._Aruldhas/Chapter5_1.ipynb
new file mode 100755
index 00000000..8b5822ee
--- /dev/null
+++ b/Engineering_Physics_by_G._Aruldhas/Chapter5_1.ipynb
@@ -0,0 +1,299 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:d6b4557b658267af4573aff55394c33f7ae58a19c1bc5291838cb933f306de2e"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "5: Polarization"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 5.1, Page number 113"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "mew_g = 1.72; #Refractive index of glass\n",
+ "mew_w = 4/3; #Refractive index of water\n",
+ "\n",
+ "#Calculation\n",
+ "#For polarization to occur on flint glass, tan(i) = mew_g/mew_w\n",
+ "#Solving for i\n",
+ "i_g = math.atan(mew_g/mew_w); #angle of incidence for complete polarization for flint glass(rad)\n",
+ "a = 180/math.pi; #conversion factor from radians to degrees\n",
+ "i_g = i_g*a; #angle of incidence(degrees)\n",
+ "i_g = math.ceil(i_g*10**2)/10**2; #rounding off the value of i_g to 2 decimals\n",
+ "#For polarization to occur on water, tan(i) = mew_w/mew_g\n",
+ "#Solving for i\n",
+ "i_w = math.atan(mew_w/mew_g); #angle of incidence for complete polarization for water(rad)\n",
+ "i_w = i_w*a; #angle of incidence(degrees)\n",
+ "i_w = math.ceil(i_w*10**3)/10**3; #rounding off the value of i_w to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"The angle of incidence for complete polarization to occur on flint glass is\",i_g, \"degrees\"\n",
+ "print \"The angle of incidence for complete polarization to occur on water is\",i_w, \"degrees\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The angle of incidence for complete polarization to occur on flint glass is 52.22 degrees\n",
+ "The angle of incidence for complete polarization to occur on water is 37.783 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 5.2, Page number 113"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "I0 = 1; #For simplicity, we assume the intensity of light falling on the second Nicol prism to be unity(W/m**2)\n",
+ "theta = 30; #Angle through which the crossed Nicol is rotated(degrees)\n",
+ "\n",
+ "#Calculation\n",
+ "theeta = 90-theta; #angle between the planes of transmission after rotating through 30 degrees\n",
+ "a = math.pi/180; #conversion factor from degrees to radians\n",
+ "theeta = theeta*a; ##angle between the planes of transmission(rad)\n",
+ "I = I0*math.cos(theeta)**2; #Intensity of the emerging light from second Nicol(W/m**2)\n",
+ "T = (I/(2*I0))*100; #Percentage transmission of incident light\n",
+ "T = math.ceil(T*100)/100; #rounding off the value of T to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"The percentage transmission of incident light after emerging through the Nicol prism is\",T, \"%\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The percentage transmission of incident light after emerging through the Nicol prism is 12.51 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 5.3, Page number 113"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda = 6000; #Wavelength of incident light(A)\n",
+ "mew_e = 1.55; #Refractive index of extraordinary ray\n",
+ "mew_o = 1.54; #Refractive index of ordinary ray\n",
+ "\n",
+ "#Calculation\n",
+ "lamda = lamda*10**-8; #Wavelength of incident light(cm)\n",
+ "t = lamda/(4*(mew_e-mew_o)); #Thickness of Quarter Wave plate of positive crystal(cm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The thickness of Quarter Wave plate is\",t, \"cm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The thickness of Quarter Wave plate is 0.0015 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 5.4, Page number 114"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#the thickness of a half wave plate of calcite for wavelength lamda is\n",
+ "#t = lamda/(2*(mew_e - mew_o)) = (2*lamda)/(4*(mew_e - mew_o))\n",
+ "\n",
+ "#Result\n",
+ "print \"The half wave plate for lamda will behave as a quarter wave plate for 2*lamda for negligible variation of refractive index with wavelength\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The half wave plate for lamda will behave as a quarter wave plate for 2*lamda for negligible variation of refractive index with wavelength\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 5.5, Page number 114"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#importing modules\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda = 500; #Wavelength of incident light(nm)\n",
+ "mew_e = 1.5508; #Refractive index of extraordinary ray\n",
+ "mew_o = 1.5418; #Refractive index of ordinary ray\n",
+ "t = 0.032; #Thickness of quartz plate(mm)\n",
+ "\n",
+ "#Calculation\n",
+ "lamda = lamda*10**-9; #Wavelength of incident light(m)\n",
+ "t = t*10**-3; #Thickness of quartz plate(m)\n",
+ "dx = (mew_e - mew_o)*t; #Path difference between E-ray and O-ray(m)\n",
+ "dphi = (2*math.pi)/lamda*dx; #Phase retardation for quartz for given wavelength(rad)\n",
+ "dphi = dphi/math.pi;\n",
+ "\n",
+ "#Result\n",
+ "print \"The phase retardation for quartz for given wavelength is\",dphi, \"pi rad\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The phase retardation for quartz for given wavelength is 1.152 pi rad\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 5.6, Page number 114"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "C = 52; #Critical angle for total internal reflection(degrees)\n",
+ "\n",
+ "#Calculation\n",
+ "a = math.pi/180; #conversion factor from degrees to radians\n",
+ "C = C*a; #Critical angle for total internal reflection(rad)\n",
+ "#From Brewster's law, math.tan(i_B) = 1_mew_2\n",
+ "#Also math.sin(C) = 1_mew_2, so that math.tan(i_B) = math.sin(C), solving for i_B\n",
+ "i_B = math.atan(math.sin(C)); #Brewster angle at the boundary(rad)\n",
+ "b = 180/math.pi; #conversion factor from radians to degrees\n",
+ "i_B = i_B*b; #Brewster angle at the boundary(degrees)\n",
+ "\n",
+ "#Result\n",
+ "print \"The Brewster angle at the boundary between two materials is\",int(i_B), \"degrees\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Brewster angle at the boundary between two materials is 38 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 10
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file