summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_G._Aruldhas/Chapter3_1.ipynb
diff options
context:
space:
mode:
authorkinitrupti2017-05-12 18:53:46 +0530
committerkinitrupti2017-05-12 18:53:46 +0530
commitf270f72badd9c61d48f290c3396004802841b9df (patch)
treebc8ba99d85644c62716ce397fe60177095b303db /Engineering_Physics_by_G._Aruldhas/Chapter3_1.ipynb
parent64d949698432e05f2a372d9edc859c5b9df1f438 (diff)
downloadPython-Textbook-Companions-f270f72badd9c61d48f290c3396004802841b9df.tar.gz
Python-Textbook-Companions-f270f72badd9c61d48f290c3396004802841b9df.tar.bz2
Python-Textbook-Companions-f270f72badd9c61d48f290c3396004802841b9df.zip
Removed duplicates
Diffstat (limited to 'Engineering_Physics_by_G._Aruldhas/Chapter3_1.ipynb')
-rwxr-xr-xEngineering_Physics_by_G._Aruldhas/Chapter3_1.ipynb476
1 files changed, 476 insertions, 0 deletions
diff --git a/Engineering_Physics_by_G._Aruldhas/Chapter3_1.ipynb b/Engineering_Physics_by_G._Aruldhas/Chapter3_1.ipynb
new file mode 100755
index 00000000..645d7595
--- /dev/null
+++ b/Engineering_Physics_by_G._Aruldhas/Chapter3_1.ipynb
@@ -0,0 +1,476 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:bdc5e7b39dc3529751aa6372cd3db8b0870c9abab4c9b51855fb3bce7de6dc73"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "3: Interference"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 3.1, Page number 71"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "beta = 0.51; #Fringe width(mm)\n",
+ "d = 2.2; #Distance between the slits(mm)\n",
+ "D = 2; #Distance between the slits and the screen(m)\n",
+ "\n",
+ "#Calculation\n",
+ "beta = beta*10**-1; #Fringe width(cm)\n",
+ "d = d*10**-1; #Distance between the slits(cm)\n",
+ "D=D*10**2; #Distance between the slits and the screen(cm)\n",
+ "lamda = beta*d/D; #Wavelength of light(cm)\n",
+ "lamda = lamda*10**8; #Wavelength of light(A)\n",
+ "\n",
+ "#Result\n",
+ "print \"The wavelength of light is\",lamda, \"angstrom\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The wavelength of light is 5610.0 angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 3.2, Page number 71"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "lambda1 = 4250; #First wavelength emitted by source of light(A)\n",
+ "lambda2 = 5050; #Second wavelength emitted by source of light(A)\n",
+ "D = 1.5; #Distance between the source and the screen(m)\n",
+ "d = 0.025; #Distance between the slits(mm)\n",
+ "n = 3; #Number of fringe from the centre\n",
+ "\n",
+ "#Calculation\n",
+ "lambda1 = lambda1*10**-10; #First wavelength emitted(m)\n",
+ "lambda2 = lambda2*10**-10; #Second wavelength emitted(m)\n",
+ "d = d*10**-3; #Distance between the slits(m)\n",
+ "x3 = n*lambda1*D/d; #Position of third bright fringe due to lambda1(m)\n",
+ "x3_prime = n*lambda2*D/d; #Position of third bright fringe due to lambda2(m)\n",
+ "x = x3_prime-x3; #separation between the third bright fringe(m)\n",
+ "x = x*10**2; #separation between the third bright fringe(cm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The separation between the third bright fringe due to the two wavelengths is\",x, \"cm\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The separation between the third bright fringe due to the two wavelengths is 1.44 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 3.3, Page number 71"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda = 5.5*10**-5; #Wavelength emitted by source of light(cm)\n",
+ "n = 4; #Number of fringes shifted\n",
+ "t = 3.9*10**-4; #Thickness of the thin glass sheet(cm)\n",
+ "\n",
+ "#Calculation\n",
+ "mew = (n*lamda/t)+1; #Refractive index of the sheet of glass\n",
+ "mew = math.ceil(mew*10**4)/10**4; #rounding off the value of v to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"The refractive index of the sheet of glass is\",mew"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The refractive index of the sheet of glass is 1.5642\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 3.4, Page number 72"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda = 5893; #Wavelength of monochromatic lihgt used(A)\n",
+ "n = 1; #Number of fringe for the least thickness of the film\n",
+ "cosr = 1; #for normal incidence\n",
+ "mew = 1.42; #refractive index of the soap film\n",
+ "\n",
+ "#Calculation\n",
+ "#As for constructive interference, \n",
+ "#2*mew*t*cos(r) = (2*n-1)*lambda/2, solving for t\n",
+ "t = (2*n-1)*lamda/(4*mew*cosr); #Thickness of the film that appears bright(A)\n",
+ "#As for destructive interference, \n",
+ "#2*mu*t*cos(r) = n*lambda, solving for t\n",
+ "t1 = n*lamda/(2*mew*cosr); #Thickness of the film that appears bright(A)\n",
+ "\n",
+ "#Result\n",
+ "print \"The thickness of the film that appears bright is\",t, \"angstrom\"\n",
+ "print \"The thickness of the film that appears dark is\",t1, \"angstrom\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The thickness of the film that appears bright is 1037.5 angstrom\n",
+ "The thickness of the film that appears dark is 2075.0 angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 3.5, Page number 72"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda = 5893; #Wavelength of monochromatic lihgt used(A)\n",
+ "n = 10; #Number of fringe that are found \n",
+ "d = 1; #Distance of 10 fringes(cm)\n",
+ "\n",
+ "#Calculation\n",
+ "beta = d/n; #Fringe width(cm)\n",
+ "lamda = lamda*10**-8; #Wavelength of monochromatic lihgt used(cm)\n",
+ "theta = lamda/(2*beta); #Angle of the wedge(rad)\n",
+ "theta = theta*10**4;\n",
+ "theta = math.ceil(theta*10**4)/10**4; #rounding off the value of theta to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"The angle of the wedge is\",theta,\"*10**-4 rad\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The angle of the wedge is 2.9465 *10**-4 rad\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 3.6, Page number 72"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda = 5900; #Wavelength of monochromatic lihgt used(A)\n",
+ "t = 0.010; #Spacer thickness(mm)\n",
+ "l = 10; #Wedge length(cm)\n",
+ "\n",
+ "#Calculation\n",
+ "t = t*10**-1; #Spacer thickness(cm)\n",
+ "theta = t/l; #Angle of the wedge(rad)\n",
+ "lamda = lamda*10**-8; #Wavelength of monochromatic lihgt used(cm)\n",
+ "beta = lamda/(2*theta); #Fringe width(cm)\n",
+ "\n",
+ "#Result\n",
+ "print \"The separation between consecutive bright fringes is\",beta, \"cm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The separation between consecutive bright fringes is 0.295 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 3.7, Page number 72"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "D4 = 0.4; #Diameter of 4th dark ring(cm)\n",
+ "D12 = 0.7; #Diameter of 12th dark ring(cm)\n",
+ "\n",
+ "#Calculation\n",
+ "#We have (dn_plus_k**2)-Dn**2 = 4*k*R*lamda\n",
+ "#D12**2-D4**2 = 32*R*lamda and D20**2-D12**2 = 32*R*lamda for k = 8\n",
+ "#since RHS are equal, by equating the LHS we get D12**2-D4**2 = D20**2-D12**2\n",
+ "D20 = math.sqrt((2*D12**2)-D4**2); #Diameter of 20th dark ring(cm)\n",
+ "D20 = math.ceil(D20*10**4)/10**4; #rounding off the value of D20 to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"The diameter of 20th dark ring is\",D20, \"cm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The diameter of 20th dark ring is 0.9056 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 3.8, Page number 73"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "Dn = 0.30; #Diameter of nth dark ring with air film(cm)\n",
+ "dn = 0.25; #Diameter of nth dark ring with liquid film(cm)\n",
+ "\n",
+ "#Calculation\n",
+ "mew = (Dn/dn)**2; #Refractive index of the liquid\n",
+ "\n",
+ "#Result\n",
+ "print \"The refractive index of the liquid is\", mew\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The refractive index of the liquid is 1.44\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 3.9, Page number 73"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "x = 0.002945; #Distance through which movable mirror is shifted(cm)\n",
+ "N = 100; #Number of fringes shifted\n",
+ "\n",
+ "#Calculation\n",
+ "x = x*10**-2; #Distance through which movable mirror is shifted(m)\n",
+ "lamda = 2*x/N; #Wavelength of light(m)\n",
+ "lamda = lamda*10**10; #Wavelength of light(A)\n",
+ "\n",
+ "#Result\n",
+ "print \"The wavelength of light is\",lamda, \"angstrom\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The wavelength of light is 5890.0 angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 3.10, Page number 73"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "lambda1 = 5896; #Wavelength of D1 line of sodium(A)\n",
+ "lambda2 = 5890; #Wavelength of D2 line of sodium(A)\n",
+ "\n",
+ "#Calculation\n",
+ "lamda = (lambda1+lambda2)/2;\n",
+ "x = (lamda**2)/(2*(lambda1-lambda2)); #Shift in movable mirror of Michelson Interferometer(A)\n",
+ "x = x*10**-7; #Shift in movable mirror of Michelson Interferometer(mm)\n",
+ "x = math.ceil(x*10**4)/10**4; #rounding off the value of D20 to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"The shift in movable mirror is\",x, \"mm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The shift in movable mirror is 0.2894 mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file