summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_G._Aruldhas/Chapter15_1.ipynb
diff options
context:
space:
mode:
authorkinitrupti2017-05-12 18:53:46 +0530
committerkinitrupti2017-05-12 18:53:46 +0530
commitf270f72badd9c61d48f290c3396004802841b9df (patch)
treebc8ba99d85644c62716ce397fe60177095b303db /Engineering_Physics_by_G._Aruldhas/Chapter15_1.ipynb
parent64d949698432e05f2a372d9edc859c5b9df1f438 (diff)
downloadPython-Textbook-Companions-f270f72badd9c61d48f290c3396004802841b9df.tar.gz
Python-Textbook-Companions-f270f72badd9c61d48f290c3396004802841b9df.tar.bz2
Python-Textbook-Companions-f270f72badd9c61d48f290c3396004802841b9df.zip
Removed duplicates
Diffstat (limited to 'Engineering_Physics_by_G._Aruldhas/Chapter15_1.ipynb')
-rwxr-xr-xEngineering_Physics_by_G._Aruldhas/Chapter15_1.ipynb309
1 files changed, 309 insertions, 0 deletions
diff --git a/Engineering_Physics_by_G._Aruldhas/Chapter15_1.ipynb b/Engineering_Physics_by_G._Aruldhas/Chapter15_1.ipynb
new file mode 100755
index 00000000..7bc435f1
--- /dev/null
+++ b/Engineering_Physics_by_G._Aruldhas/Chapter15_1.ipynb
@@ -0,0 +1,309 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:2292e5def6e87e01b63e6b748e8fe3955bb5676e5121c51dac319cd9531c4833"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "15: Thermal Properties "
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 15.1, Page number 323"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "k = 1.38*10**-23; #Boltzmann constant(J/K)\n",
+ "h = 6.626*10**-34; #Planck's constant(Js)\n",
+ "f_D = 64*10**11; #Debye frequency for Al(Hz)\n",
+ "\n",
+ "#Calculation\n",
+ "theta_D = h*f_D/k; #Debye temperature(K)\n",
+ "theta_D = math.ceil(theta_D*10)/10; #rounding off the value of theta_D to 1 decimal\n",
+ "\n",
+ "#Result\n",
+ "print \"The Debye temperature of aluminium is\",theta_D, \"K\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Debye temperature of aluminium is 307.3 K\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 15.2, Page number 323"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "N = 6.02*10**26; #Avogadro's number(per kmol)\n",
+ "k = 1.38*10**-23; #Boltzmann constant(J/K)\n",
+ "h = 6.626*10**-34; #Planck's constant(Js)\n",
+ "f_D = 40.5*10**12; #Debye frequency for Al(Hz)\n",
+ "T = 30; #Temperature of carbon(Ks)\n",
+ "\n",
+ "#Calculation\n",
+ "theta_D = h*f_D/k; #Debye temperature(K)\n",
+ "C_l = 12/5*math.pi**4*N*k*(T/theta_D)**3; #Lattice specific heat of carbon(J/k-mol/K)\n",
+ "C_l = math.ceil(C_l*10**3)/10**3; #rounding off the value of C_l to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"The lattice specific heat of carbon is\",C_l, \"J/k-mol/K\"\n",
+ "\n",
+ "#answer given in the book is wrong in the 2nd decimal"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The lattice specific heat of carbon is 7.132 J/k-mol/K\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 15.3, Page number 323"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "k = 1.38*10**-23; #Boltzmann constant(J/K)\n",
+ "h = 6.626*10**-34; #Planck's constant(Js)\n",
+ "theta_E = 1990; #Einstein temperature of Cu(K)\n",
+ "\n",
+ "#Calculation\n",
+ "f_E = k*theta_E/h; #Einstein frequency for Cu(K)\n",
+ "\n",
+ "#Result\n",
+ "print \"The Einstein frequency for Cu is\",f_E, \"Hz\"\n",
+ "print \"The frequency falls in the near infrared region\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Einstein frequency for Cu is 4.14458194989e+13 Hz\n",
+ "The frequency falls in the near infrared region\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 15.4, Page number 323"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\n",
+ "N = 6.02*10**23; #Avogadro's number(per mol)\n",
+ "T = 0.05; #Temperature of Cu(K)\n",
+ "E_F = 7; #Fermi energy of Cu(eV)\n",
+ "k = 1.38*10**-23; #Boltzmann constant(J/K)\n",
+ "h = 6.626*10**-34; #Planck's constant(Js)\n",
+ "theta_D = 348; #Debye temperature of Cu(K)\n",
+ "\n",
+ "#Calculation\n",
+ "C_e = math.pi**2*N*k**2*T/(2*E_F*e); #Electronic heat capacity of Cu(J/mol/K)\n",
+ "C_V = (12/5)*math.pi**4*(N*k)*(T/theta_D)**3; #Lattice heat capacity of Cu(J/mol/K)\n",
+ "\n",
+ "#Result\n",
+ "print \"The electronic heat capacity of Cu is\",C_e, \"J/mol/K\"\n",
+ "print \"The lattice heat capacity of Cu is\",C_V, \"J/mol/K\"\n",
+ "\n",
+ "#answer for lattice heat capacity given in the book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The electronic heat capacity of Cu is 2.52566877726e-05 J/mol/K\n",
+ "The lattice heat capacity of Cu is 5.76047891492e-09 J/mol/K\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 15.5, Page number 324"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "T = 1; #For simplicity assume temperature to be unity(K)\n",
+ "R = 1; #For simplicity assume molar gas constant to be unity(J/mol/K)\n",
+ "theta_E = T; #Einstein temperature(K)\n",
+ "\n",
+ "#Calculation\n",
+ "C_V = 3*R*(theta_E/T)**2*math.exp(theta_E/T)/(math.exp(theta_E/T)-1)**2; #Einstein lattice specific heat(J/mol/K)\n",
+ "C_V = C_V/3;\n",
+ "C_V = math.ceil(C_V*10**3)/10**3; #rounding off the value of C_V to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"The Einstein lattice specific heat is\",C_V, \"X 3R\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Einstein lattice specific heat is 0.921 X 3R\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 15.6, Page number 324"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\n",
+ "v = 2; #Valency of Zn atom\n",
+ "N = v*6.02*10**23; #Avogadro's number(per mol)\n",
+ "T = 300; #Temperature of Zn(K)\n",
+ "E_F = 9.38; #Fermi energy of Zn(eV)\n",
+ "k = 1.38*10**-23; #Boltzmann constant(J/K)\n",
+ "h = 6.626*10**-34; #Planck's constant(Js)\n",
+ "\n",
+ "#Calculation\n",
+ "N = v*6.02*10**23; #Avogadro's number(per mol)\n",
+ "C_e = math.pi**2*N*k**2*T/(2*E_F*e); #Electronic heat capacity of Zn(J/mol/K)\n",
+ "C_e = math.ceil(C_e*10**4)/10**4; #rounding off the value of C_e to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"The molar electronic heat capacity of zinc is\",C_e, \"J/mol/K\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The molar electronic heat capacity of zinc is 0.2262 J/mol/K\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file