diff options
author | kinitrupti | 2017-05-12 18:53:46 +0530 |
---|---|---|
committer | kinitrupti | 2017-05-12 18:53:46 +0530 |
commit | 6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d (patch) | |
tree | 22789c9dbe468dae6697dcd12d8e97de4bcf94a2 /Engineering_Physics_by_G._Aruldhas/Chapter11_1.ipynb | |
parent | d36fc3b8f88cc3108ffff6151e376b619b9abb01 (diff) | |
download | Python-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.tar.gz Python-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.tar.bz2 Python-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.zip |
Removed duplicates
Diffstat (limited to 'Engineering_Physics_by_G._Aruldhas/Chapter11_1.ipynb')
-rwxr-xr-x | Engineering_Physics_by_G._Aruldhas/Chapter11_1.ipynb | 326 |
1 files changed, 326 insertions, 0 deletions
diff --git a/Engineering_Physics_by_G._Aruldhas/Chapter11_1.ipynb b/Engineering_Physics_by_G._Aruldhas/Chapter11_1.ipynb new file mode 100755 index 00000000..d5495309 --- /dev/null +++ b/Engineering_Physics_by_G._Aruldhas/Chapter11_1.ipynb @@ -0,0 +1,326 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:ecf05dc207884a73f4d33d07fdee310eee827214d9664476e0cf941cf4d4f512" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "11: Lasers" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 11.1, Page number 249" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "h = 6.626*10**-34; #Planck's constant(Js)\n", + "c = 3*10**8; #Speed of light in free space(m/s)\n", + "k = 1.38*10**-23; #Boltzmann constant(J/K)\n", + "T = 300; #Temperature at absolute scale(K)\n", + "lamda1 = 5500; #Wavelength of visible light(A)\n", + "lamda2 = 10**-2; #Wavelength of microwave(m)\n", + "\n", + "#Calculation\n", + "lamda1 = lamda1*10**-10; #Wavelength of visible light(m)\n", + "rate_ratio = math.exp(h*c/(lamda1*k*T))-1; #Ratio of spontaneous emission to stimulated emission\n", + "rate_ratio1 = math.exp(h*c/(lamda2*k*T))-1; #Ratio of spontaneous emission to stimulated emission\n", + "rate_ratio1 = math.ceil(rate_ratio1*10**5)/10**5; #rounding off the value of rate_ratio1 to 5 decimals\n", + "\n", + "#Result\n", + "print \"The ratio of spontaneous emission to stimulated emission for visible region is\",rate_ratio\n", + "print \"The ratio of spontaneous emission to stimulated emission for microwave region is\", rate_ratio1" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The ratio of spontaneous emission to stimulated emission for visible region is 8.19422217477e+37\n", + "The ratio of spontaneous emission to stimulated emission for microwave region is 0.00482\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 11.2, Page number 250" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\n", + "h = 6.626*10**-34; #Planck's constant(Js)\n", + "c = 3*10**8; #Speed of light in free space(m/s)\n", + "lamda = 690; #Wavelength of laser light(nm)\n", + "E_lower = 30.5; #Energy of lower state(eV)\n", + "\n", + "#Calculation\n", + "lamda = lamda*10**-9; #Wavelength of laser light(m)\n", + "E = h*c/lamda; #Energy of the laser light(J)\n", + "E = E/e; #Energy of the laser light(eV)\n", + "E_ex = E_lower + E; #Energy of excited state of laser system(eV)\n", + "E_ex = math.ceil(E_ex*10**2)/10**2; #rounding off the value of E_ex to 2 decimals\n", + "\n", + "#Result\n", + "print \"The energy of excited state of laser system is\",E_ex, \"eV\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The energy of excited state of laser system is 32.31 eV\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 11.3, Page number 250" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "import numpy as np\n", + "\n", + "#Variable declaration\n", + "h = 6.626*10**-34; #Planck's constant(Js)\n", + "k = 1.38*10**-23; #Boltzmann constant(J/K)\n", + "\n", + "#Calculation\n", + "#Stimulated Emission = Spontaneous Emission <=> exp(h*f/(k*T))-1 = 1 i.e.\n", + "#f/T = log(2)*k/h = A\n", + "A = np.log(2)*k/h; #Frequency per unit temperature(Hz/K)\n", + "A = A/10**10;\n", + "A = math.ceil(A*10**3)/10**3; #rounding off the value of A to 3 decimals\n", + "\n", + "#Result\n", + "print \"The stimulated emission equals spontaneous emission iff f/T =\",A,\"*10**10 Hz/k\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The stimulated emission equals spontaneous emission iff f/T = 1.444 *10**10 Hz/k\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 11.4, Page number 250" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "lamda = 500; #Wavelength of laser light(nm)\n", + "f = 15; #Focal length of the lens(cm)\n", + "d = 2; #Diameter of the aperture of source(cm)\n", + "P = 5; #Power of the laser(mW)\n", + "\n", + "#Calculation\n", + "P = P*10**-3; #Power of the laser(W)\n", + "lamda = lamda*10**-9; #Wavelength of laser light(m)\n", + "d = d*10**-2; #Diameter of the aperture of source(m)\n", + "f = f*10**-2; #Focal length of the lens(m)\n", + "a = d/2; #Radius of the aperture of source(m)\n", + "A = math.pi*lamda**2*f**2/a**2; #Area of the spot at the focal plane, metre square\n", + "I = P/A; #Intensity at the focus(W/m**2)\n", + "I = I/10**7;\n", + "I = math.ceil(I*10**4)/10**4; #rounding off the value of I to 1 decimal\n", + "\n", + "#Result\n", + "print \"The area of the spot at the focal plane is\",A, \"m**2\"\n", + "print \"The intensity at the focus is\",I,\"*10**7 W/m**2\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The area of the spot at the focal plane is 1.76714586764e-10 m**2\n", + "The intensity at the focus is 2.8295 *10**7 W/m**2\n" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 11.5, Page number 251" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "\n", + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "h = 6.626*10**-34; #Planck's constant(Js)\n", + "c = 3*10**8; #Speed of light in free space(m/s)\n", + "lamda = 1064; #Wavelength of laser light(nm)\n", + "P = 0.8; #Average power output per laser pulse(W)\n", + "dt = 25; #Pulse width of laser(ms)\n", + "\n", + "#Calculation\n", + "dt = dt*10**-3; #Pulse width of laser(s)\n", + "lamda = lamda*10**-9; #Wavelength of laser light(m)\n", + "E = P*dt; #Energy released per pulse(J)\n", + "E1 = E*10**3;\n", + "N = E/(h*c/lamda); #Number of photons in a pulse\n", + "\n", + "#Result\n", + "print \"The energy released per pulse is\",E1,\"*10**-3 J\"\n", + "print \"The number of photons in a pulse is\", N\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The energy released per pulse is 20.0 *10**-3 J\n", + "The number of photons in a pulse is 1.07053023443e+17\n" + ] + } + ], + "prompt_number": 17 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example number 11.6, Page number 251" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "lamda = 693; #Wavelength of laser beam(nm)\n", + "D = 3; #Diameter of laser beam(mm)\n", + "d = 300; #Height of a satellite above the surface of earth(km)\n", + "\n", + "#Calculation\n", + "D = D*10**-3; #Diameter of laser beam(m)\n", + "lamda = lamda*10**-9; #Wavelength of laser beam(m)\n", + "d = d*10**3; #Height of a satellite above the surface of earth(m)\n", + "d_theta = 1.22*lamda/D; #Angular spread of laser beam(rad)\n", + "dtheta = d_theta*10**4;\n", + "dtheta = math.ceil(dtheta*10**2)/10**2; #rounding off the value of dtheta to 2 decimals\n", + "a = d_theta*d; #Diameter of the beam on the satellite(m)\n", + "a = math.ceil(a*10)/10; #rounding off the value of a to 1 decimal\n", + "\n", + "#Result\n", + "print \"The height of a satellite above the surface of earth is\",dtheta,\"*10**-4 rad\"\n", + "print \"The diameter of the beam on the satellite is\",a, \"m\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The height of a satellite above the surface of earth is 2.82 *10**-4 rad\n", + "The diameter of the beam on the satellite is 84.6 m\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |