summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_Dr._K._Vijaya_Kumar/chapter1_2.ipynb
diff options
context:
space:
mode:
authorkinitrupti2017-05-12 18:53:46 +0530
committerkinitrupti2017-05-12 18:53:46 +0530
commitf270f72badd9c61d48f290c3396004802841b9df (patch)
treebc8ba99d85644c62716ce397fe60177095b303db /Engineering_Physics_by_Dr._K._Vijaya_Kumar/chapter1_2.ipynb
parent64d949698432e05f2a372d9edc859c5b9df1f438 (diff)
downloadPython-Textbook-Companions-f270f72badd9c61d48f290c3396004802841b9df.tar.gz
Python-Textbook-Companions-f270f72badd9c61d48f290c3396004802841b9df.tar.bz2
Python-Textbook-Companions-f270f72badd9c61d48f290c3396004802841b9df.zip
Removed duplicates
Diffstat (limited to 'Engineering_Physics_by_Dr._K._Vijaya_Kumar/chapter1_2.ipynb')
-rwxr-xr-xEngineering_Physics_by_Dr._K._Vijaya_Kumar/chapter1_2.ipynb1232
1 files changed, 1232 insertions, 0 deletions
diff --git a/Engineering_Physics_by_Dr._K._Vijaya_Kumar/chapter1_2.ipynb b/Engineering_Physics_by_Dr._K._Vijaya_Kumar/chapter1_2.ipynb
new file mode 100755
index 00000000..bd2e1aac
--- /dev/null
+++ b/Engineering_Physics_by_Dr._K._Vijaya_Kumar/chapter1_2.ipynb
@@ -0,0 +1,1232 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:18ac31f959977ef2080ed3a1b1a6990ce93e604dcfb0f72ab45c0c28a2428e0e"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Quantum Mechanics and Quantum Computing"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.1, Page number 41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "c=3*10**8 #velocity of light in m/s\n",
+ "h=6.626*10**-34 #planks constant \n",
+ "m=1.67*10**-27 #mass of proton\n",
+ "\n",
+ "#Calculation\n",
+ "v=c/10 #velocity of proton\n",
+ "lamda=h/(m*v) #de Broglie wave length\n",
+ "\n",
+ "#Result\n",
+ "print(\"the de Broglie wavelength in m is \",lamda);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('the de Broglie wavelength in m is ', 1.3225548902195607e-14)\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.2, Page number 42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "V=400; #potential in Volts\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=12.56/math.sqrt(V); #de Broglie wavelength\n",
+ "\n",
+ "#Result\n",
+ "print(\"The de Broglie wavelength in Armstrong is\",lamda);\n",
+ "\n",
+ "#answer given in the book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('The de Broglie wavelength in Armstrong is', 0.628)\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.3, Page number 42\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "m=1.674*10**(-27); #mass of neutron in kg\n",
+ "h=6.626*10**(-34);\n",
+ "E=0.025; #kinetic energy in eV\n",
+ "\n",
+ "#Calculation\n",
+ "Ej=E*1.6*10**-19; #kinetic energy in J\n",
+ "lamda=h/math.sqrt(2*m*Ej); #de Broglie wavelength\n",
+ "lamdaA=lamda*10**10; #converting wavelength from m to Armstrong\n",
+ "lamdaA=math.ceil(lamdaA*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"The de Broglie wavelength in metres is\",lamda);\n",
+ "print(\"The de Broglie wavelength in Armstrong is\",lamdaA);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('The de Broglie wavelength in metres is', 1.81062582829353e-10)\n",
+ "('The de Broglie wavelength in Armstrong is', 1.811)\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.4, Page number 42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "V=1600; #potential in Volts\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=12.56/math.sqrt(V); #de Broglie wavelength\n",
+ "lamda=math.ceil(lamda*10**2)/10**2; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"The de Broglie wavelength in Armstrong is\",lamda);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('The de Broglie wavelength in Armstrong is', 0.32)\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.5, Page number 42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "deltax=0.2; #distance in armstrong\n",
+ "h=6.626*10**(-34);\n",
+ "\n",
+ "#Calculation\n",
+ "delta_xm=deltax*10**-10; #distance in m\n",
+ "delta_p=h/(2*math.pi*delta_xm);\n",
+ "\n",
+ "#Result\n",
+ "print(\"The uncertainity in momentum of electron in kg m/sec is\",delta_p);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('The uncertainity in momentum of electron in kg m/sec is', 5.2728032646344916e-24)\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.6, Page number 43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1=1;\n",
+ "n2=1;\n",
+ "n3=1; #values in lowest energy\n",
+ "h=6.62*10**(-34);\n",
+ "M=9.1*10**-31; #mass in kg\n",
+ "L=0.1; #side in nm\n",
+ "\n",
+ "#Calculation\n",
+ "L=L*10**-9; #side in m\n",
+ "n=(n1**2)+(n2**2)+(n3**2);\n",
+ "E1=(n*h**2)/(8*M*L**2); #energy in j\n",
+ "E1eV=E1/(1.6*10**-19); #energy in eV\n",
+ "E1eV=math.ceil(E1eV*10)/10; #rounding off to 1 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"lowest energy of electron in Joule is\",E1);\n",
+ "print(\"lowest energy of electron is eV\",E1eV);\n",
+ "\n",
+ "#answer for lowest energy in eV given in the book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('lowest energy of electron in Joule is', 1.8059505494505486e-17)\n",
+ "('lowest energy of electron is eV', 112.9)\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.7, Page number 43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "M=9.1*10**(-31); #mass of electron in kg\n",
+ "h=6.66*10**(-34);\n",
+ "E=2000; #kinetic energy in eV\n",
+ "\n",
+ "#Calculation\n",
+ "Ej=E*1.6*10**-19; #kinetic energy in J\n",
+ "lamda=h/math.sqrt(2*M*Ej); #de Broglie wavelength\n",
+ "lamdaA=lamda*10**9; #converting wavelength from m to nm\n",
+ "lamdaA=math.ceil(lamdaA*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"The de Broglie wavelength in nm is\",lamdaA);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('The de Broglie wavelength in nm is', 0.028)\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.8, Page number 43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "n=1; #for minimum energy\n",
+ "h=6.626*10**(-34);\n",
+ "m=9.1*10**-31; #mass in kg\n",
+ "L=4*10**-10; #size in m\n",
+ "\n",
+ "#Calculation\n",
+ "E1=(n*h**2)/(8*m*L**2); #energy in j\n",
+ "\n",
+ "#Result\n",
+ "print(\"lowest energy of electron in Joule is\",E1);\n",
+ "\n",
+ "#answer given in the book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('lowest energy of electron in Joule is', 3.7692201236263733e-19)\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.9, Page number 44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**(-34);\n",
+ "m=9.1*10**-31; #mass in kg\n",
+ "lamda=1.66*10**-10; #wavelength in m\n",
+ "\n",
+ "#Calculation\n",
+ "v=h/(m*lamda); #velocity in m/sec\n",
+ "v_km=v*10**-3; #velocity in km/sec\n",
+ "E=(1/2)*m*v**2; #kinetic energy in joule\n",
+ "EeV=E/(1.6*10**-19); #energy in eV\n",
+ "EeV=math.ceil(EeV*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"velocity of electron in m/sec is\",round(v));\n",
+ "print(\"velocity of electron in km/sec is\",round(v_km));\n",
+ "print(\"kinetic energy of electron in Joule is\",E);\n",
+ "print(\"kinetic energy of electron in eV is\",EeV);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('velocity of electron in m/sec is', 4386337.0)\n",
+ "('velocity of electron in km/sec is', 4386.0)\n",
+ "('kinetic energy of electron in Joule is', 8.754176510091736e-18)\n",
+ "('kinetic energy of electron in eV is', 54.714)\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.10, Page number 44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable decleration\n",
+ "V=15; #potential in kV\n",
+ "\n",
+ "#Calculation\n",
+ "v=V*10**3; #potential in V\n",
+ "lamda=12.26/math.sqrt(v); #de Broglie wavelength\n",
+ "lamda=math.ceil(lamda*10**2)/10**2 #rounding off to 2 decimals\n",
+ "\n",
+ "#result\n",
+ "print(\"The de Broglie wavelength in Armstrong is\",lamda);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('The de Broglie wavelength in Armstrong is', 0.11)\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.11, Page number 44\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Calculation\n",
+ "m=1.675*10**-27; #mass of neutron in kg\n",
+ "h=6.626*10**-34;\n",
+ "E=10; #kinetic energy in keV\n",
+ "\n",
+ "#Calculation\n",
+ "EeV=E*10**3; #Energy in eV\n",
+ "Ej=EeV*1.6*10**-19; #kinetic energy in J\n",
+ "v=math.sqrt(2*Ej/m); #velocity in m/s\n",
+ "lamda=h/(m*v); #de broglie wavelength in m\n",
+ "lamda_A=lamda*10**10; #de broglie wavelength in armstrong\n",
+ "lamda_A=math.ceil(lamda_A*10**4)/10**4 #rounding off to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"The velocity in m/sec is\",round(v));\n",
+ "print(\"The de Broglie wavelength in metres is\",lamda);\n",
+ "print(\"The de Broglie wavelength in Armstrong is\",lamda_A);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('The velocity in m/sec is', 1382189.0)\n",
+ "('The de Broglie wavelength in metres is', 2.861996093951046e-13)\n",
+ "('The de Broglie wavelength in Armstrong is', 0.0029)\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.12, Page number 45"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable decleration\n",
+ "m=9.1*10**-31; #mass of electron in kg\n",
+ "h=6.6*10**-34;\n",
+ "E=2; #kinetic energy in keV\n",
+ "\n",
+ "#Calculation\n",
+ "EeV=E*10**3; #Energy in eV\n",
+ "Ej=EeV*1.6*10**-19; #kinetic energy in J\n",
+ "p=math.sqrt(2*m*Ej); #momentum\n",
+ "lamda=h/p; #de broglie wavelength in m\n",
+ "lamda_A=lamda*10**10; #de broglie wavelength in armstrong\n",
+ "lamda_A=math.ceil(lamda_A*10**4)/10**4 #rounding off to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"The de Broglie wavelength in metres is\",lamda);\n",
+ "print(\"The de Broglie wavelength in Armstrong is\",lamda_A);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('The de Broglie wavelength in metres is', 2.7348483695436575e-11)\n",
+ "('The de Broglie wavelength in Armstrong is', 0.2735)\n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.13, Page number 45"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#import module\n",
+ "import math\n",
+ "\n",
+ "#Variable decleration\n",
+ "m=1.676*10**-27; #mass of neutron in kg\n",
+ "h=6.62*10**-34;\n",
+ "E=0.025; #kinetic energy in eV\n",
+ "\n",
+ "#Calculation\n",
+ "Ej=E*1.6*10**-19; #kinetic energy in J\n",
+ "v=math.sqrt(2*Ej/m); #velocity in m/s\n",
+ "lamda=h/(m*v); #wavelength in m\n",
+ "lamda_A=lamda*10**10; #de broglie wavelength in armstrong\n",
+ "lamda_A=math.ceil(lamda_A*10**5)/10**5 #rounding off to 5 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"The neutrons wavelength in metres is\",lamda);\n",
+ "print(\"The wavelength in Armstrong is\",lamda_A);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('The neutrons wavelength in metres is', 1.8079065940980725e-10)\n",
+ "('The wavelength in Armstrong is', 1.80791)\n"
+ ]
+ }
+ ],
+ "prompt_number": 30
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.14, Page number 45"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#import module\n",
+ "import math\n",
+ "\n",
+ "#Variable decleration\n",
+ "V=10; #potential in kV\n",
+ "\n",
+ "#Calculation\n",
+ "V=V*10**3; #potential in V\n",
+ "lamda=12.26/math.sqrt(V); #wavelength\n",
+ "\n",
+ "#Result\n",
+ "print(\"The wavelength in Armstrong is\",lamda);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('The wavelength in Armstrong is', 0.1226)\n"
+ ]
+ }
+ ],
+ "prompt_number": 31
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.15, Page number 45"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#import module\n",
+ "import math\n",
+ "\n",
+ "#Varialble decleration\n",
+ "h=6.626*10**-34;\n",
+ "m=9.1*10**-31; #mass in kg\n",
+ "l=1; #width in armstrong\n",
+ "\n",
+ "#Calculation\n",
+ "L=l*10**-10; #width in m\n",
+ "#permitted electron energies En=(n**2*h**2)/(8*m*L**2)\n",
+ "#let X = h**2/(8*m*L**2)\n",
+ "X = h**2/(8*m*L**2); #energy in J\n",
+ "XeV=X/(1.6*10**-19); #energy in eV\n",
+ "#in the 1st level n1=1\n",
+ "n1=1;\n",
+ "E1=(n1**2)*XeV; #energy in eV\n",
+ "\n",
+ "#in second level n2=2\n",
+ "n2=2;\n",
+ "E2=(n2**2)*XeV; #energy in eV\n",
+ "#in third level n3=\n",
+ "n3=3;\n",
+ "E3=(n3**2)*XeV; #energy in eV\n",
+ "\n",
+ "#Result\n",
+ "print(\"minimum energy the electron can have in eV is\",round(E1));\n",
+ "print(\"other values of energy are in eV and in eV\",round(E2),round(E3));\n",
+ "\n",
+ "#answers given in the book are wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('minimum energy the electron can have in eV is', 38.0)\n",
+ "('other values of energy are in eV and in eV', 151.0, 339.0)\n"
+ ]
+ }
+ ],
+ "prompt_number": 32
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.16, Page number 46\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#import module\n",
+ "import math\n",
+ "\n",
+ "#Variable decleration\n",
+ "n=1; #lowest state\n",
+ "L=10; #width in armstrong\n",
+ "\n",
+ "#Calculation\n",
+ "L=L*10**-10; #width in m\n",
+ "x=L/2;\n",
+ "delta_x=1; #interval in armstrong\n",
+ "delta_x=delta_x*10**-10; #interval in m\n",
+ "psi1=(math.sqrt(2/L))*math.sin(math.pi*x/L);\n",
+ "A=psi1**2;\n",
+ "p=A*delta_x;\n",
+ "p=math.ceil(p*10)/10; #de broglie wavelength in armstrong\n",
+ "\n",
+ "#Result\n",
+ "print(\"probability of finding the particle is \",p);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('probability of finding the particle is ', 0.2)\n"
+ ]
+ }
+ ],
+ "prompt_number": 33
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.17, Page number 46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#import module\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable decleration\n",
+ "d=970; #density of Na in kg/m^3\n",
+ "n=6.02*10**26;\n",
+ "h=6.62*10**(-34);\n",
+ "m=9.1*10**-31; #mass in kg\n",
+ "w=23; #atomic weight\n",
+ "\n",
+ "#Calculation\n",
+ "N=(d*n)/w; #number of atoms per m^3\n",
+ "A=(h**2)/(8*m);\n",
+ "B=(3*N)/math.pi;\n",
+ "Ef=A*B**(2/3);\n",
+ "EfeV=Ef/(1.6*10**-19);\n",
+ "EfeV=math.ceil(EfeV*10**2)/10**2 #rounding of to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"fermi energy of Na in eV is\",EfeV);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('fermi energy of Na in eV is', 3.16)\n"
+ ]
+ }
+ ],
+ "prompt_number": 34
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.18, Page number 46"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#import module\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable decleration\n",
+ "n1=1;\n",
+ "n2=1;\n",
+ "n3=1; #values in lowest energy\n",
+ "h=6.62*10**(-34);\n",
+ "m=9.1*10**-31; #mass in kg\n",
+ "L=0.1; #side in nm\n",
+ "\n",
+ "#Calculation\n",
+ "L=L*10**-9; #side in m\n",
+ "n=(n1**2)+(n2**2)+(n3**2);\n",
+ "E1=(n*h**2)/(8*m*L**2); #energy in j\n",
+ "E1eV=E1/(1.6*10**-19); #energy in eV\n",
+ "E1eV=math.ceil(E1eV*10**1)/10**1 #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"lowest energy of electron in Joule is\",E1);\n",
+ "print(\"lowest energy of electron in eV is\",E1eV);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('lowest energy of electron in Joule is', 1.8059505494505486e-17)\n",
+ "('lowest energy of electron in eV is', 112.9)\n"
+ ]
+ }
+ ],
+ "prompt_number": 35
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.19, Page number 47"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#import module\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable decleration\n",
+ "mn=1.676*10**-27; #mass of neutron in kg\n",
+ "me=9.1*10**-31; #mass of electron in kg\n",
+ "h=6.62*10**-34;\n",
+ "c=3*10**8; #velocity of light in m/sec\n",
+ "\n",
+ "#Calculation\n",
+ "En=2*me*c**2;\n",
+ "lamda=h/math.sqrt(2*mn*En); #wavelength in m\n",
+ "lamda_A=lamda*10**10; #converting lamda from m to A\n",
+ "lamda_A=math.ceil(lamda_A*10**6)/10**6 #rounding off to 6 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"The de broglie wavelength in Angstrom is\",lamda_A);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('The de broglie wavelength in Angstrom is', 0.000283)\n"
+ ]
+ }
+ ],
+ "prompt_number": 36
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.20, Page number 47 ***************************************************************************"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "#import module\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable decleration\n",
+ "n2=2; #second quantum state\n",
+ "n4=4; #fourth quantum state\n",
+ "h=6.626*10**-34;\n",
+ "m=9.1*10**-31; #mass in kg\n",
+ "a=2; #potential box length in armstrong\n",
+ "\n",
+ "#Calculation\n",
+ "a=a*10**-10; #length in m\n",
+ "A=n2**2*h**2;\n",
+ "B=8*m*a**2;\n",
+ "E2=A/B; #energy in j\n",
+ "E2eV=E2/(1.6*10**-19); #energy in eV\n",
+ "C=n4**2*h**2;\n",
+ "E4=C/B; #energy in j\n",
+ "E4eV=E4/(1.6*10**-19); #energy in eV\n",
+ "\n",
+ "#Result\n",
+ "print(\"energy corresponding to second quantum state in Joule is\",E2);\n",
+ "print(\"energy corresponding to second quantum state in eV is\",E2eV);\n",
+ "print(\"energy corresponding to fourth quantum state in Joule is\",E4);\n",
+ "print(\"energy corresponding to fourth quantum state in eV is\",E4eV);\n",
+ "\n",
+ "\n",
+ "#answers given in the book are wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('energy corresponding to second quantum state in Joule is', 6.030752197802197e-18)\n",
+ "('energy corresponding to second quantum state in eV is', 37.69220123626373)\n",
+ "('energy corresponding to fourth quantum state in Joule is', 2.412300879120879e-17)\n",
+ "('energy corresponding to fourth quantum state in eV is', 150.7688049450549)\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.21, Page number 48 ***********"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#import module\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable decleration\n",
+ "V=344; #accelerated voltage in V\n",
+ "n=1; #first reflection\n",
+ "theta=60; #glancing angle in degrees\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=12.27/math.sqrt(V);\n",
+ "d=(n*lamda)/(2*math.sin(theta));\n",
+ "\n",
+ "#Result\n",
+ "print(\"The spacing of the crystal in Angstrom is\",lamda);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('The spacing of the crystal in Angstrom is', 0.6615540636030947)\n"
+ ]
+ }
+ ],
+ "prompt_number": 38
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.22, Page number 49 *************"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#import module\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable decleration\n",
+ "n2=2; #second quantum state\n",
+ "n3=3; #fourth quantum state\n",
+ "h=6.626*10**-34;\n",
+ "m=9.1*10**-31; #mass in kg\n",
+ "a=1*10**-10; #width of potential well in m\n",
+ "\n",
+ "#Calculation\n",
+ "B=8*m*a**2;\n",
+ "E1=h**2/B; #ground state energy\n",
+ "E1eV=E1/(1.6*10**-19); #energy in eV\n",
+ "A=n2**2*h**2;\n",
+ "E2=A/B; #energy in j\n",
+ "E2eV=E2/(1.6*10**-19); #energy in eV\n",
+ "C=n3**2*h**2;\n",
+ "E3=C/B; #energy in j\n",
+ "E3eV=E3/(1.6*10**-19); #energy in eV\n",
+ "E1=math.ceil(E1*10**3)/10**3 #rounding off to 3 decimals\n",
+ "E1eV=math.ceil(E1eV*10**3)/10**3 #rounding off to 3 decimals\n",
+ "E2eV=math.ceil(E2eV*10**3)/10**3 #rounding off to 3 decimals\n",
+ "E3eV=math.ceil(E3eV*10**3)/10**3 #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"ground state energy in Joule is\",E1);\n",
+ "print(\"ground state energy in eV is\",E1eV);\n",
+ "print(\"first energy state in eV is\",E2eV);\n",
+ "print(\"second energy state in eV is\",E3eV);\n",
+ "\n",
+ "#answers given in the book are wrong by one decimal"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('ground state energy in Joule is', 0.001)\n",
+ "('ground state energy in eV is', 37.693)\n",
+ "('first energy state in eV is', 150.769)\n",
+ "('second energy state in eV is', 339.23)\n"
+ ]
+ }
+ ],
+ "prompt_number": 39
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.23, Page number 49"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#import module\n",
+ "import math\n",
+ "\n",
+ "#Variable decleration\n",
+ "n3=3; #fourth quantum state\n",
+ "h=6.626*10**-34;\n",
+ "m=9.1*10**-31; #mass in kg\n",
+ "\n",
+ "\n",
+ "#ground state energy E1 = h**2/(8*m*a**2)\n",
+ "#second excited state E3 = (9*h**2)/(8*m*a**2)\n",
+ "#required energy E = E3-E1\n",
+ "#E = (9*h**2)/(8*m*a**2) - h**2/(8*m*a**2)\n",
+ "#E = (h**2/(8*m*a**2))*(9-1)\n",
+ "#therefore E = (8*h**2)/(8*m*a**2)\n",
+ "#hence E = (h**2)/(m*a**2)\n",
+ "\n",
+ "#Result \n",
+ "# the required energy is E = (h**2)/(m*a**2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.24, Page number 50"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#import module\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable decleration\n",
+ "delta_x=10**-8; #length of box in m\n",
+ "h=6.626*10**-34;\n",
+ "m=9.1*10**-31; #mass in kg\n",
+ "\n",
+ "#Calculation\n",
+ "delta_v=h/(m*delta_x); #uncertainity in m/sec\n",
+ "delta_vk=delta_v*10**-3; #uncertainity in km/sec\n",
+ "delta_vk=math.ceil(delta_vk*10**2)/10**2 #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"minimum uncertainity in velocity in m/sec is\",round(delta_v));\n",
+ "print(\"minimum uncertainity in velocity in km/sec is\",delta_vk);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('minimum uncertainity in velocity in m/sec is', 72813.0)\n",
+ "('minimum uncertainity in velocity in km/sec is', 72.82)\n"
+ ]
+ }
+ ],
+ "prompt_number": 40
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.25, Page number 50"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#import module\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable decleration\n",
+ "mp=1.6*10**-27; #mass of proton in kg\n",
+ "me=9.1*10**-31; #mass of electron in kg\n",
+ "h=6.626*10**(-34);\n",
+ "c=3*10**10; #velocity of light in m/sec\n",
+ "\n",
+ "#Calculation\n",
+ "Ep=me*c**2;\n",
+ "lamda=h/math.sqrt(2*mp*Ep); #wavelength in m\n",
+ "lamda_A=lamda*10**10; #converting lamda from m to A\n",
+ "\n",
+ "#Result\n",
+ "print(\"The de broglie wavelength in Angstrom is\",lamda_A);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('The de broglie wavelength in Angstrom is', 4.092931643497047e-06)\n"
+ ]
+ }
+ ],
+ "prompt_number": 41
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.26, Page number 51 *************************************************"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#import module\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable decleration\n",
+ "m=1.675*10**(-27); #mass of neutron in kg\n",
+ "h=6.626*10**(-34);\n",
+ "n=1; #diffractive order\n",
+ "d=0.314; #spacing in nm\n",
+ "E=0.04; #kinetic energy in eV\n",
+ "\n",
+ "#Calculation\n",
+ "d=d*10**-9; #spacing in m\n",
+ "Ej=E*1.6*10**-19; #kinetic energy in J\n",
+ "lamda=h/math.sqrt(2*m*Ej); #de Broglie wavelength\n",
+ "lamdaA=lamda*10**9; #converting wavelength from m to nm\n",
+ "theta=math.asin((n*lamda)/(2*d));\n",
+ "print(\"The de Broglie wavelength in metres is\",lamda);\n",
+ "print(\"The de Broglie wavelength in nm is\",lamdaA);\n",
+ "print(\"glancing angle in degrees is\",theta);\n",
+ "\n",
+ "#answer given in the book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('The de Broglie wavelength in metres is', 1.4309980469755228e-10)\n",
+ "('The de Broglie wavelength in nm is', 0.1430998046975523)\n",
+ "('glancing angle in degrees is', 0.2298853909391574)\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file