summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter1.ipynb
diff options
context:
space:
mode:
authorhardythe12015-07-03 12:23:43 +0530
committerhardythe12015-07-03 12:23:43 +0530
commit5a86a20b9de487553d4ef88719fb0fd76a5dd6a7 (patch)
treedb67ac5738a18b921d9a8cf6e86f402703f30bdf /Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter1.ipynb
parent37d315828bbfc0f5cabee669d2b9dd8cd17b5154 (diff)
downloadPython-Textbook-Companions-5a86a20b9de487553d4ef88719fb0fd76a5dd6a7.tar.gz
Python-Textbook-Companions-5a86a20b9de487553d4ef88719fb0fd76a5dd6a7.tar.bz2
Python-Textbook-Companions-5a86a20b9de487553d4ef88719fb0fd76a5dd6a7.zip
add/remove books
Diffstat (limited to 'Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter1.ipynb')
-rwxr-xr-xEngineering_Physics_by_Bhattacharya_Bhaskaran/Chapter1.ipynb705
1 files changed, 705 insertions, 0 deletions
diff --git a/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter1.ipynb b/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter1.ipynb
new file mode 100755
index 00000000..7df93df9
--- /dev/null
+++ b/Engineering_Physics_by_Bhattacharya_Bhaskaran/Chapter1.ipynb
@@ -0,0 +1,705 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:e55f587b2da98ead68f73bb2b4d29bef91aa67eb577c460fb9dcaab92acc4339"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Ultrasonics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.1, Page number 20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the depth of a submerged submarine\n",
+ "\n",
+ "#Variable declaration\n",
+ "v = 1440; #velocity of ultrasonic waves(m/s)\n",
+ "t = 0.33; #time elapsed(s)\n",
+ "\n",
+ "#Calculation\n",
+ "d = v*t; #distance travelled(m)\n",
+ "d1 = d/2; #depth of submarine(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"depth of the submerged submarine is\",d1, \"m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "depth of the submerged submarine is 237.6 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.2, Page number 21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the natural frequency \n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "l = 40; #length of iron rod(mm)\n",
+ "E = 115*10**9; #Young's modulus(N/m**2)\n",
+ "rho = 7.25*10**3; #density of pure iron(kg/m**3)\n",
+ "\n",
+ "#Calculation\n",
+ "l = l*10**-3; #length of iron rod(m)\n",
+ "new = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\n",
+ "new = new*10**-3; #natural frequency of the rod(kHz)\n",
+ "new=math.ceil(new*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"depth of the submerged submarine is\",new, \"kHz\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "depth of the submerged submarine is 49.785 kHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.3, Page number 21"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the fundamental frequency \n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "l = 1; #length of quartz crystal(mm)\n",
+ "E = 7.9*10**10; #Young's modulus(N/m**2)\n",
+ "rho = 2650; #density(kg/m**3)\n",
+ "\n",
+ "#Calculation\n",
+ "l = l*10**-3; #length of iron rod(m)\n",
+ "new = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\n",
+ "new = new*10**-6; \n",
+ "new=math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"fundamental frequency of crystal is\",new, \"*10**6 Hz\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "fundamental frequency of crystal is 2.73 *10**6 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.4, Page number 22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the velocity of waves\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "d = 0.55; #distance between 2 constructive antinodes(mm)\n",
+ "new = 1.5; #frequency of crystal(MHz)\n",
+ " \n",
+ "#Calculation\n",
+ "new = new*10**6; #frequency of crystal(Hz)\n",
+ "d = d*10**-3; #distance between 2 constructive antinodes(m)\n",
+ "#distance between 2 antinodes is given by lamda/2\n",
+ "lamda = 2*d; #wavelength of ultrasonic waves(m)\n",
+ "v = new*lamda; #velocity of waves(m/s)\n",
+ "\n",
+ "#Result\n",
+ "print \"velocity of waves is\",int(v), \"m/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "velocity of waves is 1650 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.5, Page number 22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the natural frequency\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "l = 50; #length of rod(mm)\n",
+ "E = 11.5*10**10; #Young's modulus(N/m**2)\n",
+ "rho = 7250; #density(kg/m**3)\n",
+ "\n",
+ "#Calculation\n",
+ "l = l*10**-3; #length of iron rod(m)\n",
+ "new = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\n",
+ "new = new*10**-3; #natural frequency of the rod(kHz)\n",
+ "new = math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"natural frequency of rod is\",new, \"kHz\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "natural frequency of rod is 39.83 kHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.6, Page number 22"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the frequency\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "l = 2; #length of crystal(mm)\n",
+ "E = 7.9*10**10; #Young's modulus(N/m**2)\n",
+ "rho = 2650; #density(kg/m**3)\n",
+ "\n",
+ "#Calculation\n",
+ "l = l*10**-3; #length of iron rod(m)\n",
+ "new = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\n",
+ "new = new*10**-6; #natural frequency of the rod(MHz)\n",
+ "new=math.ceil(new*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"frequency of crystal is\",new, \"MHz\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "frequency of crystal is 1.365 MHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.7, Page number 23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the frequency\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "l = 3; #length of crystal(mm)\n",
+ "E = 8*10**10; #Young's modulus(N/m**2)\n",
+ "rho = 2500; #density(kg/m**3)\n",
+ "\n",
+ "#Calculation\n",
+ "l = l*10**-3; #length of iron rod(m)\n",
+ "new = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\n",
+ "new = new*10**-3; #natural frequency of the rod(kHz) \n",
+ "new=math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"frequency of crystal is\",new, \"kHz\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "frequency of crystal is 942.81 kHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.8, Page number 23"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the frequency\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "l = 1.5; #length of crystal(mm)\n",
+ "E = 7.9*10**10; #Young's modulus(N/m**2)\n",
+ "rho = 2650; #density(kg/m**3)\n",
+ "\n",
+ "#Calculation\n",
+ "l = l*10**-3; #length of iron rod(m)\n",
+ "new = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\n",
+ "new = new*10**-6; #natural frequency of the rod(MHz) \n",
+ "new=math.ceil(new*10**2)/10**2; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"frequency of crystal is\",new, \"MHz\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "frequency of crystal is 1.82 MHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.9, Page number 24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the depth of the sea\n",
+ "\n",
+ "#Variable declaration\n",
+ "v = 1440; #velocity of ultrasonic waves(m/s)\n",
+ "t = 0.95; #time elapsed(s)\n",
+ "\n",
+ "#Calculation\n",
+ "d = v*t; #distance travelled(m)\n",
+ "d1 = d/2; #depth of sea(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"depth of the submerged submarine is\",int(d1), \"m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "depth of the submerged submarine is 684 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.10, Page number 24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the depth of a submerged submarine\n",
+ "\n",
+ "#Variable declaration\n",
+ "v = 1440; #velocity of ultrasonic waves(m/s)\n",
+ "t = 0.83; #time elapsed(s)\n",
+ "\n",
+ "#Calculation\n",
+ "d = v*t; #distance travelled(m)\n",
+ "d1 = d/2; #depth of submarine(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"depth of the submerged submarine is\",d1, \"m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "depth of the submerged submarine is 597.6 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.11, Page number 24"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the reverberation time of hall\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "aS = 1050; #total absorption inside hall(Sabine)\n",
+ "V = 9000; #volume of cinema hall(m**3)\n",
+ "\n",
+ "#Calculation\n",
+ "T = 0.165*V/aS; #reverberation time of hall(s)\n",
+ "T = math.ceil(T*10**4)/10**4; #rounding off to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"reverberation time of the hall is\",T, \"s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "reverberation time of the hall is 1.4143 s\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.12, Page number 25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the area of interior surface\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "a = 0.65; #average absorption coefficient(Sabine/m**2)\n",
+ "V = 13500; #volume of auditorium(m**3)\n",
+ "T = 1.2; #reverberation time of hall(s)\n",
+ "\n",
+ "#Calculation\n",
+ "S = 0.165*V/(a*T); #reverberation time of hall(s)\n",
+ "S = math.ceil(S*10)/10; #rounding off to 1 decimal\n",
+ "\n",
+ "#Result\n",
+ "print \"total area of interior surface is\",S, \"m**2\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "total area of interior surface is 2855.8 m**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.13, Page number 25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the new reverberation time of hall\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "V = 15000; #volume of cinema hall(m**3)\n",
+ "T1 = 1.3; #initial reverberation time of hall(s)\n",
+ "a1S1 = 300; #number of chairs placed\n",
+ "\n",
+ "#Calculation\n",
+ "aS = 0.165*V/T1; #total absorption of hall\n",
+ "T2 = (0.165*V)/(aS+a1S1); #reverberation time of hall after adding chairs(s)\n",
+ "T2 = math.ceil(T2*10**4)/10**4; #rounding off to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"reverberation time of the hall after adding chairs is\",T2, \"s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "reverberation time of the hall after adding chairs is 1.1231 s\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.14, Page number 26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the depth of a submerged submarine\n",
+ "\n",
+ "#Variable declaration\n",
+ "v = 1440; #velocity of ultrasonic waves(m/s)\n",
+ "t = 0.5; #time elapsed(s)\n",
+ "\n",
+ "#Calculation\n",
+ "d = v*t; #distance travelled(m)\n",
+ "d1 = d/2; #depth of submarine(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"depth of the submerged submarine is\",int(d1), \"m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "depth of the submerged submarine is 360 m\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.15, Page number 26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the velocity of waves\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "d = 0.4; #distance between 2 constructive antinodes(mm)\n",
+ "new = 1.5; #frequency of crystal(MHz)\n",
+ " \n",
+ "#Calculation\n",
+ "new = new*10**6; #frequency of crystal(Hz)\n",
+ "d = d*10**-3; #distance between 2 constructive antinodes(m)\n",
+ "#distance between 2 antinodes is given by lamda/2\n",
+ "lamda = 2*d; #wavelength of ultrasonic waves(m)\n",
+ "v = new*lamda; #velocity of waves(m/s)\n",
+ "\n",
+ "#Result\n",
+ "print \"velocity of waves is\",int(v), \"m/s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "velocity of waves is 1200 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 1.16, Page number 26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#To calculate the natural frequency \n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "l = 40; #length of iron rod(mm)\n",
+ "E = 11.5*10**10; #Young's modulus(N/m**2)\n",
+ "rho = 7250; #density of pure iron(kg/m**3)\n",
+ "\n",
+ "#Calculation\n",
+ "l = l*10**-3; #length of iron rod(m)\n",
+ "new = (1/(2*l))*math.sqrt(E/rho); #natural frequency of the rod(Hz)\n",
+ "new = new*10**-3; #natural frequency of the rod(kHz)\n",
+ "new=math.ceil(new*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"depth of the submerged submarine is\",new, \"kHz\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "depth of the submerged submarine is 49.785 kHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file