summaryrefslogtreecommitdiff
path: root/Engineering_Physics_Vijaya/.ipynb_checkpoints/chapter2_2-checkpoint.ipynb
diff options
context:
space:
mode:
authorkinitrupti2015-10-15 17:40:30 +0530
committerkinitrupti2015-10-15 17:40:30 +0530
commit8e4f9ec414f553746330423a974684bbac2163a8 (patch)
tree7d91d4997a3962c3ad62355ad369f7b6b7738ddb /Engineering_Physics_Vijaya/.ipynb_checkpoints/chapter2_2-checkpoint.ipynb
parent79c8f29f70cc014d5fd8b9900d3c19309134bc1d (diff)
downloadPython-Textbook-Companions-8e4f9ec414f553746330423a974684bbac2163a8.tar.gz
Python-Textbook-Companions-8e4f9ec414f553746330423a974684bbac2163a8.tar.bz2
Python-Textbook-Companions-8e4f9ec414f553746330423a974684bbac2163a8.zip
solved errors
Diffstat (limited to 'Engineering_Physics_Vijaya/.ipynb_checkpoints/chapter2_2-checkpoint.ipynb')
-rwxr-xr-xEngineering_Physics_Vijaya/.ipynb_checkpoints/chapter2_2-checkpoint.ipynb814
1 files changed, 814 insertions, 0 deletions
diff --git a/Engineering_Physics_Vijaya/.ipynb_checkpoints/chapter2_2-checkpoint.ipynb b/Engineering_Physics_Vijaya/.ipynb_checkpoints/chapter2_2-checkpoint.ipynb
new file mode 100755
index 00000000..2ff5590c
--- /dev/null
+++ b/Engineering_Physics_Vijaya/.ipynb_checkpoints/chapter2_2-checkpoint.ipynb
@@ -0,0 +1,814 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:04561aafd347865fa8c83acfb9b60eb84db275f85862655b442f546023cadd1e"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Electron Theory of Metals"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.1, Page number 69"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#import module\n",
+ "import math\n",
+ "\n",
+ "#Calculation\n",
+ "# given that E-Ef = kT\n",
+ "# fermi function FE = 1/(1+exp((E-Ef)/kT)\n",
+ "# therefore FE = 1/(1+exp(kT/kT));\n",
+ "# FE = 1/(1+exp(1))\n",
+ "FE=1/(1+math.exp(1));\n",
+ "FE=math.ceil(FE*10**2)/10**2; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"fermi function is\",FE);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('fermi function is', 0.27)\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.2, Page number 69"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#import module\n",
+ "import math\n",
+ "\n",
+ "#Calculation\n",
+ "# given that E-Ef = kT\n",
+ "# fermi function FE = 1/(1+exp((E-Ef)/kT)\n",
+ "# therefore FE = 1/(1+exp(kT/kT));\n",
+ "# FE = 1/(1+exp(1))\n",
+ "FE=1/(1+math.exp(1));\n",
+ "FE=math.ceil(FE*10**3)/10**3; #rounding off to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"fermi function is\",FE);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('fermi function is', 0.269)\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.3, Page number 69"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#import module\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable decleration\n",
+ "FE=10/100; #fermi function is 10%\n",
+ "Ef=5.5; #fermi energy of silver in eV\n",
+ "k=1.38*10**-23;\n",
+ "\n",
+ "#Calculation\n",
+ "E=Ef+(Ef/100);\n",
+ "#FE=1/(1+math.exp((E-Ef)/(k*T)))\n",
+ "#therefore 1/FE = 1+math.exp((E-Ef)/(k*T))\n",
+ "#therefore (1/FE)-1 = math.exp((E-Ef)/(k*T))\n",
+ "#therefore log((1/FE)-1) = (E-Ef)/(k*T)\n",
+ "#therefore T = (E-Ef)/(k*math.log((1/FE)-1))\n",
+ "#let X=E-Ef; \n",
+ "X=E-Ef; #energy in eV\n",
+ "X=X*1.6*10**-19; #energy in J\n",
+ "T = (X/(k*math.log((1/FE)-1)));\n",
+ "T=math.ceil(T*10**2)/10**2; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"temperature in K is\",T);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('temperature in K is', 290.23)\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.4, Page number 70 **************************************"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#import module\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable decleration\n",
+ "#let X=E-Ef\n",
+ "X=0.5; #E-Ef=0.5 in eV\n",
+ "\n",
+ "#Calculation\n",
+ "X=X*1.6*10**-19; #X in J\n",
+ "FE=1/100; #fermi function is 1% \n",
+ "k=1.38*10**-23;\n",
+ "#FE=1/(1+exp(X/(k*T)))\n",
+ "#therefore 1/FE = 1+math.exp(X/(k*T))\n",
+ "#therefore (1/FE)-1 = math.exp(X/(k*T))\n",
+ "#therefore log((1/FE)-1) = X/(k*T)\n",
+ "#but log(x) = 2.303*math.log10(x)\n",
+ "#therefore T = X/(k*math.log((1/FE)-1))\n",
+ "#but log(x)=2.303*math.log10(x)\n",
+ "#therefore T = X/(k*2.303*math.log10((1/FE)-1))\n",
+ "T = X/(k*2.303*math.log10((1/FE)-1));\n",
+ "\n",
+ "#Result\n",
+ "print(\"temperature in K is\",T);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('temperature in K is', 1261.3505710887953)\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.5, Page number 71 *******"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#import module\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable decleration\n",
+ "rho_s=10.5*10**3; #density in kg/m^3\n",
+ "NA=6.02*10**26; #avagadro number per kmol\n",
+ "MA=107.9; \n",
+ "\n",
+ "#Calculation\n",
+ "n=(rho_s*NA)/MA;\n",
+ "sigma=6.8*10**7;\n",
+ "e=1.6*10**-19; #charge in coulomb\n",
+ "mew=sigma/(n*e);\n",
+ "mew=math.ceil(mew*10**6)/10**6; #rounding off to 6 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"density of electrons is\",n);\n",
+ "print(\"mobility of electrons in silver in m^2/Vs is\",mew);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('density of electrons is', 5.85820203892493e+28)\n",
+ "('mobility of electrons in silver in m^2/Vs is', 0.007255)\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.6, Page number 71 ***"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#import module\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable decleration\n",
+ "d=8.92*10**3; #density in kg/m^3\n",
+ "rho=1.73*10**-8; #resistivity in ohm-m\n",
+ "m=9.1*10**-31; #mass in kg\n",
+ "w=63.5; #atomic weight\n",
+ "e=1.6*10**-19; #charge in coulomb\n",
+ "A=6.02*10**26; #avagadro number\n",
+ "\n",
+ "#Calculation\n",
+ "n=(d*A)/w;\n",
+ "mew=1/(rho*n*e);\n",
+ "tow=m/(n*(e**2)*rho);\n",
+ "mew=math.ceil(mew*10**6)/10**6; #rounding off to 6 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"mobility of electrons in Copper in m/Vs is\",mew);\n",
+ "print(\"average time of collision of electrons in copper in sec is\",tow);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('mobility of electrons in Copper in m/Vs is', 0.004273)\n",
+ "('average time of collision of electrons in copper in sec is', 2.4297841992299697e-14)\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.7, Page number 72"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#import module\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable decleration\n",
+ "rho=1.54*10**-8; #resistivity in ohm-m\n",
+ "n=5.8*10**28; #electron/m^3\n",
+ "m=9.108*10**-31; #mass in kg\n",
+ "e=1.602*10**-19; #charge in coulomb\n",
+ "\n",
+ "#Calculation\n",
+ "tow=m/(n*(e**2)*rho);\n",
+ "\n",
+ "#Result\n",
+ "print(\"relaxation time of conduction electrons in sec is\",tow);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('relaxation time of conduction electrons in sec is', 3.973281032516849e-14)\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.8, Page number 73"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#import module\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable decleration\n",
+ "FE=10/100; #fermi function is 10%\n",
+ "Ef=5.5; #fermi energy of silver in eV\n",
+ "k=1.38*10**-23;\n",
+ "\n",
+ "#Calculation\n",
+ "E=Ef+(Ef/100);\n",
+ "#FE=1/(1+math.exp((E-Ef)/(k*T)))\n",
+ "#therefore 1/FE = 1+math.exp((E-Ef)/(k*T))\n",
+ "#therefore (1/FE)-1 = math.exp((E-Ef)/(k*T))\n",
+ "#therefore log((1/FE)-1) = (E-Ef)/(k*T)\n",
+ "#therefore T = (E-Ef)/(k*math.log((1/FE)-1))\n",
+ "#let X=E-Ef; \n",
+ "X=E-Ef; #energy in eV\n",
+ "X=X*1.6*10**-19; #energy in J\n",
+ "T = (X/(k*math.log((1/FE)-1)));\n",
+ "T=math.ceil(T*10**2)/10**2; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"temperature in K is\",T);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('temperature in K is', 290.23)\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.9, Page number 73"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#import module\n",
+ "import math\n",
+ "\n",
+ "#Calculation\n",
+ "# given that E-Ef = kT\n",
+ "# fermi function FpE = 1/(1+exp((E-Ef)/kT)\n",
+ "# therefore FpE = 1/(1+exp(kT/kT));\n",
+ "# FpE = 1/(1+exp(1))\n",
+ "FpE=1/(1+math.exp(1));\n",
+ "FpE=math.ceil(FpE*10**2)/10**2; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"fermi function is\",FpE);\n",
+ "#the presence of electron at that energy level is not certain"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('fermi function is', 0.27)\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.10, Page number 74 ****************************"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#import module\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable decleration\n",
+ "m=9.1*10**-31; #mass in kg\n",
+ "h=6.626*10**-34;\n",
+ "A=(8*m)**(3/2);\n",
+ "\n",
+ "#Calculation\n",
+ "B=math.pi/(2*h**3);\n",
+ "EfeV=3.10; #fermi energy in eV\n",
+ "Ef=EfeV*1.6*10**-19; #fermi energy in J\n",
+ "EFeV=EfeV+0.02; #energy after interval in eV\n",
+ "EF=EFeV*1.6*10**-19; #energy after interval in J\n",
+ "def f(E):\n",
+ " Q=A*B*math.sqrt(E)\n",
+ " \n",
+ "I=(Ef,EF,f)\n",
+ "\n",
+ "#Result\n",
+ "print(\"number of energy states per unit volume is\",I);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('number of energy states per unit volume is', (4.960000000000001e-19, 4.992000000000001e-19, <function f at 0x7f1495202848>))\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.11, Page number 74"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#import module\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable decleration\n",
+ "T=300; #temperature in K\n",
+ "n=8.5*10**28; #density per m^3\n",
+ "rho=1.69*10**-8; #resistivity in ohm/m^3\n",
+ "me=9.11*10**-31; #mass of electron in kg\n",
+ "e=1.6*10**-19; #charge in coulomb\n",
+ "KB=1.38*10**-23; #boltzmann constant in J/k\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=math.sqrt(3*KB*me*T)/(n*(e**2)*rho);\n",
+ "\n",
+ "#Result\n",
+ "print(\"mean free path of electron in m is\",lamda);\n",
+ "\n",
+ "#answer given in the book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('mean free path of electron in m is', 2.892506814374228e-09)\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.12, Page number 75"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable decleration\n",
+ "rho=1.43*10**-8; #resistivity in ohm-m\n",
+ "n=6.5*10**28; #electron/m^3\n",
+ "m=9.11*10**-34; #mass in kg\n",
+ "e=1.6*10**-19; #charge in coulomb\n",
+ "\n",
+ "#Calculation\n",
+ "tow=m/(n*(e**2)*rho);\n",
+ "\n",
+ "#Result\n",
+ "print(\"relaxation time of conduction electrons in sec is\",tow);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('relaxation time of conduction electrons in sec is', 3.8285032275416887e-17)\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.13, Page number 75 ******"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable decleration\n",
+ "d=8.92*10**3; #density in kg/m^3\n",
+ "rho=1.73*10**-8; #resistivity in ohm-m\n",
+ "m=9.1*10**-31; #mass in kg\n",
+ "M=63.5; #atomic weight\n",
+ "e=1.6*10**-19; #charge in coulomb\n",
+ "A=6.02*10**26; #avagadro number\n",
+ "\n",
+ "#Calculation\n",
+ "n=(d*A)/M;\n",
+ "mew=1/(rho*n*e);\n",
+ "tow=m/(n*(e**2)*rho);\n",
+ "mew=math.ceil(mew*10**6)/10**6; #rounding off to 6 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"mobility of electrons in Copper in m/Vs is\",mew);\n",
+ "print(\"average time of collision of electrons in copper in sec is\",tow);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('mobility of electrons in Copper in m/Vs is', 0.004273)\n",
+ "('average time of collision of electrons in copper in sec is', 2.4297841992299697e-14)\n"
+ ]
+ }
+ ],
+ "prompt_number": 31
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.14, Page number 76"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable decleration\n",
+ "MH=1.008*2*1.67*10**-27; #mass in kg\n",
+ "T=30; #temperature in C\n",
+ "\n",
+ "#Calculation\n",
+ "T=T+273; #temperature in K\n",
+ "KB=1.38*10**-23; #boltzmann constant in J/k\n",
+ "KE=(3/2)*KB*T; #kinetic energy in J\n",
+ "KEeV=KE*6.24*10**18; #kinetic energy in eV\n",
+ "cbar=math.sqrt((3*KB*T)/MH);\n",
+ "\n",
+ "#Result\n",
+ "print(\"average kinetic energy in J is\",KE);\n",
+ "print(\"average kinetic energy in eV is\",KEeV);\n",
+ "print(\"velocity of molecules in m/s is\",cbar);\n",
+ "\n",
+ "#answers for average kinetic energy in eV and velocity of electrons given in the book are wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('average kinetic energy in J is', 6.2720999999999986e-21)\n",
+ "('average kinetic energy in eV is', 0.039137903999999994)\n",
+ "('velocity of molecules in m/s is', 1930.269663853336)\n"
+ ]
+ }
+ ],
+ "prompt_number": 33
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.15, Page number 77 ****"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable decleration\n",
+ "Ee=10; #electron kinetic energy in eV\n",
+ "Ep=10; #proton kinetic energy in eV\n",
+ "me=9.1*10**-31; #mass of electron in kg\n",
+ "mp=1.67*10**-27; #mass of proton in kg\n",
+ "\n",
+ "#Calculation\n",
+ "EeeV=Ee*1.6*10**-19; #electron kinetic energy in J\n",
+ "EpeV=Ep*1.6*10**-19; #proton kinetic energy in J\n",
+ "cebar=math.sqrt((2*EeeV)/me);\n",
+ "cpbar=math.sqrt((2*EpeV)/mp);\n",
+ "\n",
+ "#Result\n",
+ "print(\"velocity of electron in m/s is\",cebar);\n",
+ "print(\"velocity of proton in m/s is\",cpbar);\n",
+ "\n",
+ "#answers given in the book are wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('velocity of electron in m/s is', 1875228.9237539817)\n",
+ "('velocity of proton in m/s is', 43774.05241316662)\n"
+ ]
+ }
+ ],
+ "prompt_number": 35
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.16, Page number 77"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#import module\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable decleration\n",
+ "A=10; #area of cross section in mm^2\n",
+ "A=A*10**-6; #area of cross section in m^2\n",
+ "i=100; #current in amp\n",
+ "n=8.5*10**28; #number of electrons per mm^3\n",
+ "e=1.6*10**-19; #electron charge in coulumb\n",
+ "\n",
+ "#Calculation\n",
+ "vd=1/(n*A*e);\n",
+ "\n",
+ "#Result\n",
+ "print(\"drift velocity in m/s is\",vd);\n",
+ "\n",
+ "#answer given in the book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('drift velocity in m/s is', 7.3529411764705884e-06)\n"
+ ]
+ }
+ ],
+ "prompt_number": 36
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example number 2.17, Page number 78"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ " \n",
+ "#import module\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable decleration\n",
+ "tow=3*10**-14; #relaxation time in sec\n",
+ "n=8*10**28; #density of electrons per m^3\n",
+ "KB=1.38*10**-23; #boltzmann constant in J/k\n",
+ "T=0; #temperature in C\n",
+ "\n",
+ "#Calculation\n",
+ "T=T+273; #temperature in K\n",
+ "m=9.1*10**-31; #mass of electron in kg\n",
+ "sigma_T=((3*n*tow*(KB**2)*T)/(2*m));\n",
+ "sigma_T=math.ceil(sigma_T*10**2)/10**2; #rounding off to 2 decimals\n",
+ "\n",
+ "#Result\n",
+ "print(\"thermal conductivity of copper in ohm-1 is\",sigma_T);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "('thermal conductivity of copper in ohm-1 is', 205.68)\n"
+ ]
+ }
+ ],
+ "prompt_number": 38
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file