diff options
author | debashisdeb | 2014-06-20 15:42:42 +0530 |
---|---|---|
committer | debashisdeb | 2014-06-20 15:42:42 +0530 |
commit | 83c1bfceb1b681b4bb7253b47491be2d8b2014a1 (patch) | |
tree | f54eab21dd3d725d64a495fcd47c00d37abed004 /Engineering_Physics_Marikani/Chapter_11.ipynb | |
parent | a78126bbe4443e9526a64df9d8245c4af8843044 (diff) | |
download | Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.tar.gz Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.tar.bz2 Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.zip |
removing problem statements
Diffstat (limited to 'Engineering_Physics_Marikani/Chapter_11.ipynb')
-rw-r--r-- | Engineering_Physics_Marikani/Chapter_11.ipynb | 193 |
1 files changed, 169 insertions, 24 deletions
diff --git a/Engineering_Physics_Marikani/Chapter_11.ipynb b/Engineering_Physics_Marikani/Chapter_11.ipynb index 6e1a896d..781b51dc 100644 --- a/Engineering_Physics_Marikani/Chapter_11.ipynb +++ b/Engineering_Physics_Marikani/Chapter_11.ipynb @@ -1,6 +1,7 @@ { "metadata": { - "name": "Chapter 11" + "name": "", + "signature": "sha256:6c9d1e462fb51d212d5e8b8f597a34ef40452b9332c91d54e15e6a4dccd85074" }, "nbformat": 3, "nbformat_minor": 0, @@ -11,25 +12,48 @@ "cell_type": "heading", "level": 1, "metadata": {}, - "source": "Dielectric materials" + "source": [ + "Dielectric materials" + ] }, { "cell_type": "heading", "level": 2, "metadata": {}, - "source": "Example number 11.1, Page number 335" + "source": [ + "Example number 11.1, Page number 335" + ] }, { "cell_type": "code", "collapsed": false, - "input": "#To calculate the relative dielectric constant\n\n#importing modules\nimport math\n\n#Variable declaration\nepsilon_0=8.854*10**-12;\nA=10*10*10**-6; #area of capacitor in m^2\nd=2*10**-3; #distance of seperation in m\nC=10**-9; #capacitance in F\n\n#Calculation\nepsilon_r=(C*d)/(epsilon_0*A);\nepsilon_r=math.ceil(epsilon_r*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint(\"dielectric constant of material is\",epsilon_r);\n", + "input": [ + "\n", + "#importing modules\n", + "import math\n", + "\n", + "#Variable declaration\n", + "epsilon_0=8.854*10**-12;\n", + "A=10*10*10**-6; #area of capacitor in m^2\n", + "d=2*10**-3; #distance of seperation in m\n", + "C=10**-9; #capacitance in F\n", + "\n", + "#Calculation\n", + "epsilon_r=(C*d)/(epsilon_0*A);\n", + "epsilon_r=math.ceil(epsilon_r*10**2)/10**2; #rounding off to 2 decimals\n", + "\n", + "#Result\n", + "print(\"dielectric constant of material is\",epsilon_r);\n" + ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", - "text": "('dielectric constant of material is', 2258.87)\n" + "text": [ + "('dielectric constant of material is', 2258.87)\n" + ] } ], "prompt_number": 1 @@ -38,19 +62,37 @@ "cell_type": "heading", "level": 2, "metadata": {}, - "source": "Example number 11.2, Page number 335" + "source": [ + "Example number 11.2, Page number 335" + ] }, { "cell_type": "code", "collapsed": false, - "input": "#To calculate the electronic polarizability of atoms\n\n#Variable declaration\nepsilon_0=8.854*10**-12;\nepsilon_r=1.0000684; #dielectric constant of He gas\nN=2.7*10**25; #concentration of dipoles per m^3\n\n#Calculation\n#alpha_e=P/(N*E) and P=epsilon_0(epsilon_r-1)*E\n#therefore alpha_e=epsilon_0(epsilon_r-1)/N\nalpha_e=(epsilon_0*(epsilon_r-1))/N;\n\n#Result\nprint(\"electronic polarizability of He gas in Fm^2 is\",alpha_e);\n", + "input": [ + "\n", + "#Variable declaration\n", + "epsilon_0=8.854*10**-12;\n", + "epsilon_r=1.0000684; #dielectric constant of He gas\n", + "N=2.7*10**25; #concentration of dipoles per m^3\n", + "\n", + "#Calculation\n", + "#alpha_e=P/(N*E) and P=epsilon_0(epsilon_r-1)*E\n", + "#therefore alpha_e=epsilon_0(epsilon_r-1)/N\n", + "alpha_e=(epsilon_0*(epsilon_r-1))/N;\n", + "\n", + "#Result\n", + "print(\"electronic polarizability of He gas in Fm^2 is\",alpha_e);\n" + ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", - "text": "('electronic polarizability of He gas in Fm^2 is', 2.2430133333322991e-41)\n" + "text": [ + "('electronic polarizability of He gas in Fm^2 is', 2.2430133333322991e-41)\n" + ] } ], "prompt_number": 2 @@ -59,19 +101,35 @@ "cell_type": "heading", "level": 2, "metadata": {}, - "source": "Example number 11.3, Page number 336" + "source": [ + "Example number 11.3, Page number 336" + ] }, { "cell_type": "code", "collapsed": false, - "input": "#To calculate the polarisation\n\n#Variable declaration\nepsilon_0=8.854*10**-12;\nepsilon_r=6; #dielectric constant\nE=100; #electric field intensity in V/m\n\n#Calculation\nP=epsilon_0*(epsilon_r-1)*E;\n\n#Result\nprint(\"polarization in C/m^2 is\",P);\n", + "input": [ + "\n", + "#Variable declaration\n", + "epsilon_0=8.854*10**-12;\n", + "epsilon_r=6; #dielectric constant\n", + "E=100; #electric field intensity in V/m\n", + "\n", + "#Calculation\n", + "P=epsilon_0*(epsilon_r-1)*E;\n", + "\n", + "#Result\n", + "print(\"polarization in C/m^2 is\",P);\n" + ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", - "text": "('polarization in C/m^2 is', 4.426999999999999e-09)\n" + "text": [ + "('polarization in C/m^2 is', 4.426999999999999e-09)\n" + ] } ], "prompt_number": 3 @@ -80,19 +138,38 @@ "cell_type": "heading", "level": 2, "metadata": {}, - "source": "Example number 11.4, Page number 336" + "source": [ + "Example number 11.4, Page number 336" + ] }, { "cell_type": "code", "collapsed": false, - "input": "#To calculate the electronic polarizability of Ne\n\n#importing modules\nimport math\n\n#Variable declaration\nepsilon_0=8.854*10**-12;\nR=0.158; #radius of Ne in nm\n\n#Calculation\nR=R*10**-9; #converting nm to m\nalpha_e=4*math.pi*epsilon_0*R**3;\n\n#Result\nprint(\"electronic polarizability in Fm^2 is\",alpha_e);\n", + "input": [ + "\n", + "#importing modules\n", + "import math\n", + "\n", + "#Variable declaration\n", + "epsilon_0=8.854*10**-12;\n", + "R=0.158; #radius of Ne in nm\n", + "\n", + "#Calculation\n", + "R=R*10**-9; #converting nm to m\n", + "alpha_e=4*math.pi*epsilon_0*R**3;\n", + "\n", + "#Result\n", + "print(\"electronic polarizability in Fm^2 is\",alpha_e);\n" + ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", - "text": "('electronic polarizability in Fm^2 is', 4.3885458748002144e-40)\n" + "text": [ + "('electronic polarizability in Fm^2 is', 4.3885458748002144e-40)\n" + ] } ], "prompt_number": 5 @@ -101,19 +178,49 @@ "cell_type": "heading", "level": 2, "metadata": {}, - "source": "Example number 11.5, Page number 336" + "source": [ + "Example number 11.5, Page number 336" + ] }, { "cell_type": "code", "collapsed": false, - "input": "#To calculate the area of metal sheet\n\n#importing modules\nimport math\n\n#Variable declaration\nepsilon_0=8.854*10**-12;\nC=0.02; #capacitance in micro farad\nepsilon_r=6; #dielectric constant\nt=0.002; #thickness of mica in cm\nd=0.002; #thickness of metal sheet in cm\n\n#Calculation\nC=C*10**-6; #converting micro farad to farad\nd=d*10**-2; #converting cm to m\nA=(C*d)/(epsilon_0*epsilon_r);\nA=A*10**3;\nA=math.ceil(A*10**4)/10**4; #rounding off to 4 decimals\nA1=A*10; #converting m**2 to cm**2\nA1=math.ceil(A1*10**3)/10**3; #rounding off to 3 decimals\n\n#Result\nprint(\"area of metal sheet in m^2 is\",A,\"*10**-3\");\nprint(\"area of metal sheet in cm^2 is\",A1);", + "input": [ + "\n", + "\n", + "#importing modules\n", + "import math\n", + "\n", + "#Variable declaration\n", + "epsilon_0=8.854*10**-12;\n", + "C=0.02; #capacitance in micro farad\n", + "epsilon_r=6; #dielectric constant\n", + "t=0.002; #thickness of mica in cm\n", + "d=0.002; #thickness of metal sheet in cm\n", + "\n", + "#Calculation\n", + "C=C*10**-6; #converting micro farad to farad\n", + "d=d*10**-2; #converting cm to m\n", + "A=(C*d)/(epsilon_0*epsilon_r);\n", + "A=A*10**3;\n", + "A=math.ceil(A*10**4)/10**4; #rounding off to 4 decimals\n", + "A1=A*10; #converting m**2 to cm**2\n", + "A1=math.ceil(A1*10**3)/10**3; #rounding off to 3 decimals\n", + "\n", + "#Result\n", + "print(\"area of metal sheet in m^2 is\",A,\"*10**-3\");\n", + "print(\"area of metal sheet in cm^2 is\",A1);" + ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", - "text": "('area of metal sheet in m^2 is', 7.5296, '*10**-3')\n('area of metal sheet in cm^2 is', 75.296)\n" + "text": [ + "('area of metal sheet in m^2 is', 7.5296, '*10**-3')\n", + "('area of metal sheet in cm^2 is', 75.296)\n" + ] } ], "prompt_number": 9 @@ -122,19 +229,39 @@ "cell_type": "heading", "level": 2, "metadata": {}, - "source": "Example number 11.6, Page number 336" + "source": [ + "Example number 11.6, Page number 336" + ] }, { "cell_type": "code", "collapsed": false, - "input": "#To calculate the relative permitivity of the crystal\n\n#importing modules\nimport math\n\n#Variable declaration\nepsilon_0=8.854*10**-12;\nE=1000; #electric field in V/m\nP=4.3*10**-8; #polarization in C/m^2\n\n#Calculation\nepsilon_r=(P/(E*epsilon_0)+1);\nepsilon_r=math.ceil(epsilon_r*10**4)/10**4; #rounding off to 4 decimals\n\n#Result\nprint(\"dielectric constant is\",epsilon_r);\n", + "input": [ + "\n", + "#importing modules\n", + "import math\n", + "\n", + "#Variable declaration\n", + "epsilon_0=8.854*10**-12;\n", + "E=1000; #electric field in V/m\n", + "P=4.3*10**-8; #polarization in C/m^2\n", + "\n", + "#Calculation\n", + "epsilon_r=(P/(E*epsilon_0)+1);\n", + "epsilon_r=math.ceil(epsilon_r*10**4)/10**4; #rounding off to 4 decimals\n", + "\n", + "#Result\n", + "print(\"dielectric constant is\",epsilon_r);\n" + ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", - "text": "('dielectric constant is', 5.8566)\n" + "text": [ + "('dielectric constant is', 5.8566)\n" + ] } ], "prompt_number": 10 @@ -143,19 +270,37 @@ "cell_type": "heading", "level": 2, "metadata": {}, - "source": "Example number 11.7, Page number 337" + "source": [ + "Example number 11.7, Page number 337" + ] }, { "cell_type": "code", "collapsed": false, - "input": "#To calculate the polarisability of the material\n\n#Variable declaration\nepsilon_0=8.854*10**-12;\nchi=4.94; #relative susceptibility\nN=10**28; #number of dipoles per m^3\n\n#Calculation\n#polarisation P=N*alpha*E and P=epsilon_0*chi*E. equate the two equations\n#epsilon_0*chi*E=N*alpha*E\nalpha=(epsilon_0*chi)/N;\n\n#Result\nprint(\"polarisability of material in F/m^2 is\",alpha);\n", + "input": [ + "\n", + "#Variable declaration\n", + "epsilon_0=8.854*10**-12;\n", + "chi=4.94; #relative susceptibility\n", + "N=10**28; #number of dipoles per m^3\n", + "\n", + "#Calculation\n", + "#polarisation P=N*alpha*E and P=epsilon_0*chi*E. equate the two equations\n", + "#epsilon_0*chi*E=N*alpha*E\n", + "alpha=(epsilon_0*chi)/N;\n", + "\n", + "#Result\n", + "print(\"polarisability of material in F/m^2 is\",alpha);\n" + ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", - "text": "('polarisability of material in F/m^2 is', 4.373876e-39)\n" + "text": [ + "('polarisability of material in F/m^2 is', 4.373876e-39)\n" + ] } ], "prompt_number": 11 @@ -163,7 +308,7 @@ { "cell_type": "code", "collapsed": false, - "input": "", + "input": [], "language": "python", "metadata": {}, "outputs": [] |