summaryrefslogtreecommitdiff
path: root/Engineering_Physics_Aruldhas/Chapter15_1.ipynb
diff options
context:
space:
mode:
authordebashisdeb2014-06-20 15:42:42 +0530
committerdebashisdeb2014-06-20 15:42:42 +0530
commit83c1bfceb1b681b4bb7253b47491be2d8b2014a1 (patch)
treef54eab21dd3d725d64a495fcd47c00d37abed004 /Engineering_Physics_Aruldhas/Chapter15_1.ipynb
parenta78126bbe4443e9526a64df9d8245c4af8843044 (diff)
downloadPython-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.tar.gz
Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.tar.bz2
Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.zip
removing problem statements
Diffstat (limited to 'Engineering_Physics_Aruldhas/Chapter15_1.ipynb')
-rw-r--r--Engineering_Physics_Aruldhas/Chapter15_1.ipynb197
1 files changed, 176 insertions, 21 deletions
diff --git a/Engineering_Physics_Aruldhas/Chapter15_1.ipynb b/Engineering_Physics_Aruldhas/Chapter15_1.ipynb
index cfabc2c6..7bc435f1 100644
--- a/Engineering_Physics_Aruldhas/Chapter15_1.ipynb
+++ b/Engineering_Physics_Aruldhas/Chapter15_1.ipynb
@@ -1,6 +1,7 @@
{
"metadata": {
- "name": "Chapter15"
+ "name": "",
+ "signature": "sha256:2292e5def6e87e01b63e6b748e8fe3955bb5676e5121c51dac319cd9531c4833"
},
"nbformat": 3,
"nbformat_minor": 0,
@@ -11,25 +12,49 @@
"cell_type": "heading",
"level": 1,
"metadata": {},
- "source": "15: Thermal Properties "
+ "source": [
+ "15: Thermal Properties "
+ ]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
- "source": "Example number 15.1, Page number 323"
+ "source": [
+ "Example number 15.1, Page number 323"
+ ]
},
{
"cell_type": "code",
"collapsed": false,
- "input": "#To calculate the Debye temperature\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nk = 1.38*10**-23; #Boltzmann constant(J/K)\nh = 6.626*10**-34; #Planck's constant(Js)\nf_D = 64*10**11; #Debye frequency for Al(Hz)\n\n#Calculation\ntheta_D = h*f_D/k; #Debye temperature(K)\ntheta_D = math.ceil(theta_D*10)/10; #rounding off the value of theta_D to 1 decimal\n\n#Result\nprint \"The Debye temperature of aluminium is\",theta_D, \"K\"",
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "k = 1.38*10**-23; #Boltzmann constant(J/K)\n",
+ "h = 6.626*10**-34; #Planck's constant(Js)\n",
+ "f_D = 64*10**11; #Debye frequency for Al(Hz)\n",
+ "\n",
+ "#Calculation\n",
+ "theta_D = h*f_D/k; #Debye temperature(K)\n",
+ "theta_D = math.ceil(theta_D*10)/10; #rounding off the value of theta_D to 1 decimal\n",
+ "\n",
+ "#Result\n",
+ "print \"The Debye temperature of aluminium is\",theta_D, \"K\""
+ ],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
- "text": "The Debye temperature of aluminium is 307.3 K\n"
+ "text": [
+ "The Debye temperature of aluminium is 307.3 K\n"
+ ]
}
],
"prompt_number": 2
@@ -38,19 +63,46 @@
"cell_type": "heading",
"level": 2,
"metadata": {},
- "source": "Example number 15.2, Page number 323"
+ "source": [
+ "Example number 15.2, Page number 323"
+ ]
},
{
"cell_type": "code",
"collapsed": false,
- "input": "#To calculate the lattice specific heat\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nN = 6.02*10**26; #Avogadro's number(per kmol)\nk = 1.38*10**-23; #Boltzmann constant(J/K)\nh = 6.626*10**-34; #Planck's constant(Js)\nf_D = 40.5*10**12; #Debye frequency for Al(Hz)\nT = 30; #Temperature of carbon(Ks)\n\n#Calculation\ntheta_D = h*f_D/k; #Debye temperature(K)\nC_l = 12/5*math.pi**4*N*k*(T/theta_D)**3; #Lattice specific heat of carbon(J/k-mol/K)\nC_l = math.ceil(C_l*10**3)/10**3; #rounding off the value of C_l to 3 decimals\n\n#Result\nprint \"The lattice specific heat of carbon is\",C_l, \"J/k-mol/K\"\n\n#answer given in the book is wrong in the 2nd decimal",
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "N = 6.02*10**26; #Avogadro's number(per kmol)\n",
+ "k = 1.38*10**-23; #Boltzmann constant(J/K)\n",
+ "h = 6.626*10**-34; #Planck's constant(Js)\n",
+ "f_D = 40.5*10**12; #Debye frequency for Al(Hz)\n",
+ "T = 30; #Temperature of carbon(Ks)\n",
+ "\n",
+ "#Calculation\n",
+ "theta_D = h*f_D/k; #Debye temperature(K)\n",
+ "C_l = 12/5*math.pi**4*N*k*(T/theta_D)**3; #Lattice specific heat of carbon(J/k-mol/K)\n",
+ "C_l = math.ceil(C_l*10**3)/10**3; #rounding off the value of C_l to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"The lattice specific heat of carbon is\",C_l, \"J/k-mol/K\"\n",
+ "\n",
+ "#answer given in the book is wrong in the 2nd decimal"
+ ],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
- "text": "The lattice specific heat of carbon is 7.132 J/k-mol/K\n"
+ "text": [
+ "The lattice specific heat of carbon is 7.132 J/k-mol/K\n"
+ ]
}
],
"prompt_number": 3
@@ -59,19 +111,42 @@
"cell_type": "heading",
"level": 2,
"metadata": {},
- "source": "Example number 15.3, Page number 323"
+ "source": [
+ "Example number 15.3, Page number 323"
+ ]
},
{
"cell_type": "code",
"collapsed": false,
- "input": "#To show that the frequency falls in the infrared region\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nk = 1.38*10**-23; #Boltzmann constant(J/K)\nh = 6.626*10**-34; #Planck's constant(Js)\ntheta_E = 1990; #Einstein temperature of Cu(K)\n\n#Calculation\nf_E = k*theta_E/h; #Einstein frequency for Cu(K)\n\n#Result\nprint \"The Einstein frequency for Cu is\",f_E, \"Hz\"\nprint \"The frequency falls in the near infrared region\"",
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "k = 1.38*10**-23; #Boltzmann constant(J/K)\n",
+ "h = 6.626*10**-34; #Planck's constant(Js)\n",
+ "theta_E = 1990; #Einstein temperature of Cu(K)\n",
+ "\n",
+ "#Calculation\n",
+ "f_E = k*theta_E/h; #Einstein frequency for Cu(K)\n",
+ "\n",
+ "#Result\n",
+ "print \"The Einstein frequency for Cu is\",f_E, \"Hz\"\n",
+ "print \"The frequency falls in the near infrared region\""
+ ],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
- "text": "The Einstein frequency for Cu is 4.14458194989e+13 Hz\nThe frequency falls in the near infrared region\n"
+ "text": [
+ "The Einstein frequency for Cu is 4.14458194989e+13 Hz\n",
+ "The frequency falls in the near infrared region\n"
+ ]
}
],
"prompt_number": 4
@@ -80,19 +155,49 @@
"cell_type": "heading",
"level": 2,
"metadata": {},
- "source": "Example number 15.4, Page number 323"
+ "source": [
+ "Example number 15.4, Page number 323"
+ ]
},
{
"cell_type": "code",
"collapsed": false,
- "input": "#To calculate the electronic and lattice heat capacities\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\ne = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\nN = 6.02*10**23; #Avogadro's number(per mol)\nT = 0.05; #Temperature of Cu(K)\nE_F = 7; #Fermi energy of Cu(eV)\nk = 1.38*10**-23; #Boltzmann constant(J/K)\nh = 6.626*10**-34; #Planck's constant(Js)\ntheta_D = 348; #Debye temperature of Cu(K)\n\n#Calculation\nC_e = math.pi**2*N*k**2*T/(2*E_F*e); #Electronic heat capacity of Cu(J/mol/K)\nC_V = (12/5)*math.pi**4*(N*k)*(T/theta_D)**3; #Lattice heat capacity of Cu(J/mol/K)\n\n#Result\nprint \"The electronic heat capacity of Cu is\",C_e, \"J/mol/K\"\nprint \"The lattice heat capacity of Cu is\",C_V, \"J/mol/K\"\n\n#answer for lattice heat capacity given in the book is wrong",
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\n",
+ "N = 6.02*10**23; #Avogadro's number(per mol)\n",
+ "T = 0.05; #Temperature of Cu(K)\n",
+ "E_F = 7; #Fermi energy of Cu(eV)\n",
+ "k = 1.38*10**-23; #Boltzmann constant(J/K)\n",
+ "h = 6.626*10**-34; #Planck's constant(Js)\n",
+ "theta_D = 348; #Debye temperature of Cu(K)\n",
+ "\n",
+ "#Calculation\n",
+ "C_e = math.pi**2*N*k**2*T/(2*E_F*e); #Electronic heat capacity of Cu(J/mol/K)\n",
+ "C_V = (12/5)*math.pi**4*(N*k)*(T/theta_D)**3; #Lattice heat capacity of Cu(J/mol/K)\n",
+ "\n",
+ "#Result\n",
+ "print \"The electronic heat capacity of Cu is\",C_e, \"J/mol/K\"\n",
+ "print \"The lattice heat capacity of Cu is\",C_V, \"J/mol/K\"\n",
+ "\n",
+ "#answer for lattice heat capacity given in the book is wrong"
+ ],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
- "text": "The electronic heat capacity of Cu is 2.52566877726e-05 J/mol/K\nThe lattice heat capacity of Cu is 5.76047891492e-09 J/mol/K\n"
+ "text": [
+ "The electronic heat capacity of Cu is 2.52566877726e-05 J/mol/K\n",
+ "The lattice heat capacity of Cu is 5.76047891492e-09 J/mol/K\n"
+ ]
}
],
"prompt_number": 5
@@ -101,19 +206,42 @@
"cell_type": "heading",
"level": 2,
"metadata": {},
- "source": "Example number 15.5, Page number 324"
+ "source": [
+ "Example number 15.5, Page number 324"
+ ]
},
{
"cell_type": "code",
"collapsed": false,
- "input": "#To calculate the heat capacity\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nT = 1; #For simplicity assume temperature to be unity(K)\nR = 1; #For simplicity assume molar gas constant to be unity(J/mol/K)\ntheta_E = T; #Einstein temperature(K)\n\n#Calculation\nC_V = 3*R*(theta_E/T)**2*math.exp(theta_E/T)/(math.exp(theta_E/T)-1)**2; #Einstein lattice specific heat(J/mol/K)\nC_V = C_V/3;\nC_V = math.ceil(C_V*10**3)/10**3; #rounding off the value of C_V to 3 decimals\n\n#Result\nprint \"The Einstein lattice specific heat is\",C_V, \"X 3R\"",
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "T = 1; #For simplicity assume temperature to be unity(K)\n",
+ "R = 1; #For simplicity assume molar gas constant to be unity(J/mol/K)\n",
+ "theta_E = T; #Einstein temperature(K)\n",
+ "\n",
+ "#Calculation\n",
+ "C_V = 3*R*(theta_E/T)**2*math.exp(theta_E/T)/(math.exp(theta_E/T)-1)**2; #Einstein lattice specific heat(J/mol/K)\n",
+ "C_V = C_V/3;\n",
+ "C_V = math.ceil(C_V*10**3)/10**3; #rounding off the value of C_V to 3 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"The Einstein lattice specific heat is\",C_V, \"X 3R\""
+ ],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
- "text": "The Einstein lattice specific heat is 0.921 X 3R\n"
+ "text": [
+ "The Einstein lattice specific heat is 0.921 X 3R\n"
+ ]
}
],
"prompt_number": 6
@@ -122,19 +250,46 @@
"cell_type": "heading",
"level": 2,
"metadata": {},
- "source": "Example number 15.6, Page number 324"
+ "source": [
+ "Example number 15.6, Page number 324"
+ ]
},
{
"cell_type": "code",
"collapsed": false,
- "input": "#To calculate the molar electronic heat capacity\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\ne = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\nv = 2; #Valency of Zn atom\nN = v*6.02*10**23; #Avogadro's number(per mol)\nT = 300; #Temperature of Zn(K)\nE_F = 9.38; #Fermi energy of Zn(eV)\nk = 1.38*10**-23; #Boltzmann constant(J/K)\nh = 6.626*10**-34; #Planck's constant(Js)\n\n#Calculation\nN = v*6.02*10**23; #Avogadro's number(per mol)\nC_e = math.pi**2*N*k**2*T/(2*E_F*e); #Electronic heat capacity of Zn(J/mol/K)\nC_e = math.ceil(C_e*10**4)/10**4; #rounding off the value of C_e to 4 decimals\n\n#Result\nprint \"The molar electronic heat capacity of zinc is\",C_e, \"J/mol/K\"",
+ "input": [
+ "\n",
+ "\n",
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\n",
+ "v = 2; #Valency of Zn atom\n",
+ "N = v*6.02*10**23; #Avogadro's number(per mol)\n",
+ "T = 300; #Temperature of Zn(K)\n",
+ "E_F = 9.38; #Fermi energy of Zn(eV)\n",
+ "k = 1.38*10**-23; #Boltzmann constant(J/K)\n",
+ "h = 6.626*10**-34; #Planck's constant(Js)\n",
+ "\n",
+ "#Calculation\n",
+ "N = v*6.02*10**23; #Avogadro's number(per mol)\n",
+ "C_e = math.pi**2*N*k**2*T/(2*E_F*e); #Electronic heat capacity of Zn(J/mol/K)\n",
+ "C_e = math.ceil(C_e*10**4)/10**4; #rounding off the value of C_e to 4 decimals\n",
+ "\n",
+ "#Result\n",
+ "print \"The molar electronic heat capacity of zinc is\",C_e, \"J/mol/K\""
+ ],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
- "text": "The molar electronic heat capacity of zinc is 0.2262 J/mol/K\n"
+ "text": [
+ "The molar electronic heat capacity of zinc is 0.2262 J/mol/K\n"
+ ]
}
],
"prompt_number": 8
@@ -142,7 +297,7 @@
{
"cell_type": "code",
"collapsed": false,
- "input": "",
+ "input": [],
"language": "python",
"metadata": {},
"outputs": []