summaryrefslogtreecommitdiff
path: root/Engineering_Physics_Aruldhas/Chapter12_1.ipynb
diff options
context:
space:
mode:
authorJovina Dsouza2014-06-18 13:08:52 +0530
committerJovina Dsouza2014-06-18 13:08:52 +0530
commita78126bbe4443e9526a64df9d8245c4af8843044 (patch)
treeec84778a693a93a076d64803afbe814b8f5c99be /Engineering_Physics_Aruldhas/Chapter12_1.ipynb
parent206d0358703aa05d5d7315900fe1d054c2817ddc (diff)
downloadPython-Textbook-Companions-a78126bbe4443e9526a64df9d8245c4af8843044.tar.gz
Python-Textbook-Companions-a78126bbe4443e9526a64df9d8245c4af8843044.tar.bz2
Python-Textbook-Companions-a78126bbe4443e9526a64df9d8245c4af8843044.zip
adding book
Diffstat (limited to 'Engineering_Physics_Aruldhas/Chapter12_1.ipynb')
-rw-r--r--Engineering_Physics_Aruldhas/Chapter12_1.ipynb118
1 files changed, 118 insertions, 0 deletions
diff --git a/Engineering_Physics_Aruldhas/Chapter12_1.ipynb b/Engineering_Physics_Aruldhas/Chapter12_1.ipynb
new file mode 100644
index 00000000..440b2d59
--- /dev/null
+++ b/Engineering_Physics_Aruldhas/Chapter12_1.ipynb
@@ -0,0 +1,118 @@
+{
+ "metadata": {
+ "name": "Chapter12"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": "12: Holography and Fibre Optics"
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example number 12.1, Page number 271"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#To calculate the critical angle, critical propagation angle and numerical aperture \n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nn1 = 1.43; #Refractive index of fibre core\nn2 = 1.4; #Refractive index of fibre cladding\n\n#Calculation\n#As sin (alpha_c) = n2/n1, solving for alpha_c\nalpha_c = math.asin(n2/n1); #Critical angle for optical fibre(rad)\nalpha_c = alpha_c*57.2957795; #Critical angle for optical fibre(degrees)\nalpha_c = math.ceil(alpha_c*10**3)/10**3; #rounding off the value of alpha_c to 3 decimals\n#AS cos(theta_c) = n2/n1, solving for theta_c\ntheta_c = math.acos(n2/n1); #Critical propagation angle for optical fibre(rad)\ntheta_c = theta_c*57.2957795; #Critical propagation angle for optical fibre(degrees)\ntheta_c = math.ceil(theta_c*10**2)/10**2; #rounding off the value of theta_c to 2 decimals\nNA = math.sqrt(n1**2 - n2**2); #Numerical aperture for optical fibre\nNA = math.ceil(NA*10**3)/10**3; #rounding off the value of NA to 3 decimals\n\n#Result\nprint \"The critical angle for optical fibre is\",alpha_c, \"degrees\"\nprint \"The critical propagation angle for optical fibre is\",theta_c, \"degrees\"\nprint \"Numerical aperture for optical fibre is\",NA\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "The critical angle for optical fibre is 78.244 degrees\nThe critical propagation angle for optical fibre is 11.76 degrees\nNumerical aperture for optical fibre is 0.292\n"
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example number 12.2, Page number 271"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#To calculate the numerical aperture, acceptance angle and relative refractive index difference\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nn1 = 1.45; #Refractive index of fibre core\nn2 = 1.4; #Refractive index of fibre cladding\n\n#Calculation\nNA = math.sqrt(n1**2 - n2**2); #Numerical aperture for optical fibre\nNA = math.ceil(NA*10**4)/10**4; #rounding off the value of NA to 4 decimals\n#As sin(theta_a) = sqrt(n1^2 - n2^2), solving for theta_a\ntheta_a = math.asin(math.sqrt(n1**2 - n2**2)); #Half of acceptance angle of optical fibre(rad)\ntheta_a = theta_a*57.2957795; #Half of acceptance angle of optical fibre(degrees)\ntheta_accp = 2*theta_a; #Acceptance angle of optical fibre(degrees)\ntheta_accp = math.ceil(theta_accp*10**2)/10**2; #rounding off the value of theta_accp to 2 decimals\nDelta = (n1 - n2)/n1; #Relative refractive index difference\nDelta = math.ceil(Delta*10**4)/10**4; #rounding off the value of Delta to 4 decimals\n\n#Result\nprint \"Numerical aperture for optical fibre is\", NA\nprint \"The acceptance angle of optical fibre is\",theta_accp, \"degrees\"\nprint \"Relative refractive index difference is\", Delta\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Numerical aperture for optical fibre is 0.3775\nThe acceptance angle of optical fibre is 44.36 degrees\nRelative refractive index difference is 0.0345\n"
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example number 12.3, Page number 271"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#To calculate the numerical aperture and acceptance angle\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nn1 = 1.55; #Refractive index of fibre core\nn2 = 1.53; #Refractive index of fibre cladding\nn0 = 1.3; #Refractive index of medium\n\n#Calculation\nNA = math.sqrt(n1**2 - n2**2); #Numerical aperture for optical fibre\nNA = math.ceil(NA*10**4)/10**4; #rounding off the value of NA to 4 decimals\n#n0*sin(theta_a) = sqrt(n1^2 - n2^2) = NA, solving for theta_a\ntheta_a = math.asin(math.sqrt(n1**2 - n2**2)/n0); #Half of acceptance angle of optical fibre(rad)\ntheta_a = theta_a*57.2957795; #Half of acceptance angle of optical fibre(degrees)\ntheta_accp = 2*theta_a; #Acceptance angle of optical fibre(degrees)\n\n#Result\nprint \"Numerical aperture for step index fibre is\",NA\nprint \"The acceptance angle of step index fibre is\",int(theta_accp), \"degrees\"\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Numerical aperture for step index fibre is 0.2482\nThe acceptance angle of step index fibre is 22 degrees\n"
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example number 12.4, Page number 271 Theoritical proof"
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example number 12.5, Page number 272"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#To calculate the numerical aperture and acceptance angle\n\n#importing modules\nimport math\nfrom __future__ import division\n\n#Variable declaration\nalpha = 2; #Power loss through optical fibre(dB/km)\nP_in = 500; #Poer input of optical fibre(micro-watt)\nz = 10; #Length of the optical fibre(km)\n\n#Calculation\n#As alpha = 10/z*log10(P_in/P_out), solving for P_out\nP_out = P_in/10**(alpha*z/10); #Output power in fibre optic communication(micro-Watt)\n\n#Result\nprint \"The output power in fibre optic communication is\",P_out, \"micro-Watt\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "The output power in fibre optic communication is 5.0 micro-Watt\n"
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "",
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file