diff options
author | hardythe1 | 2015-07-03 12:23:43 +0530 |
---|---|---|
committer | hardythe1 | 2015-07-03 12:23:43 +0530 |
commit | 5a86a20b9de487553d4ef88719fb0fd76a5dd6a7 (patch) | |
tree | db67ac5738a18b921d9a8cf6e86f402703f30bdf /Engineering_Physics_/Chapter9.ipynb | |
parent | 37d315828bbfc0f5cabee669d2b9dd8cd17b5154 (diff) | |
download | Python-Textbook-Companions-5a86a20b9de487553d4ef88719fb0fd76a5dd6a7.tar.gz Python-Textbook-Companions-5a86a20b9de487553d4ef88719fb0fd76a5dd6a7.tar.bz2 Python-Textbook-Companions-5a86a20b9de487553d4ef88719fb0fd76a5dd6a7.zip |
add/remove books
Diffstat (limited to 'Engineering_Physics_/Chapter9.ipynb')
-rwxr-xr-x | Engineering_Physics_/Chapter9.ipynb | 654 |
1 files changed, 0 insertions, 654 deletions
diff --git a/Engineering_Physics_/Chapter9.ipynb b/Engineering_Physics_/Chapter9.ipynb deleted file mode 100755 index 9aff9ae1..00000000 --- a/Engineering_Physics_/Chapter9.ipynb +++ /dev/null @@ -1,654 +0,0 @@ -{
- "metadata": {
- "name": "",
- "signature": "sha256:12b212fa69742f446e6918a565a72f52e2d9500de27031b4c21c41162a940ee1"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "9: Motion of the charged particle in electric and magnetic field"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.1, Page number 230"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "L=1.33*10**-22; #angular momentum(kg m**2/sec)\n",
- "B=0.025; #magnetic field(Wb/m**2)\n",
- "m=6.68*10**-27; #mass of alpha particle(kg)\n",
- "q=3.2*10**-19; #charge of alpha particle(c)\n",
- "e=1.6*10**-19; #charge of electron(c)\n",
- "\n",
- "#Calculation\n",
- "w=(B*q)/m; #angular velocity\n",
- "E=0.5*L*w; #KE of particle(J)\n",
- "E=E/e; #KE of particle(eV)\n",
- "\n",
- "#Result\n",
- "print \"KE of particle is\",round(E,2),\"eV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "KE of particle is 497.75 eV\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.2, Page number 230"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "R=0.35; #radius of cyclotron(m)\n",
- "n=1.38*10**7; #frequency(Hz)\n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "q=1.6*10**-19; #charge of proton(c)\n",
- "\n",
- "#Calculation\n",
- "B=(2*math.pi*n*m)/q; #magnetic field induction(Wb/m**2)\n",
- "E=((B**2)*(q**2)*(R**2))/(2*m); #maximum energy of proton(J)\n",
- "E=E/q; #maximum energy of proton(eV)\n",
- "\n",
- "#Result\n",
- "print \"magnetic field induction is\",round(B,3),\"Wb/m**2\"\n",
- "print \"maximum energy of proton is\",round(E/10**6,1),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "magnetic field induction is 0.905 Wb/m**2\n",
- "maximum energy of proton is 4.8 MeV\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.3, Page number 231"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "e=1.6*10**-19; #charge of electron(c)\n",
- "V=1000; #potential difference(V)\n",
- "B=1.19*10**-3; #magnetic field of induction(Wb/m**2)\n",
- "\n",
- "#Calculation\n",
- "#due to potential difference V, electron is accelerated\n",
- "#eV=0.5*m*(v^2)\n",
- "#due to transverse magnetic field B electron moves in circular path of radius R\n",
- "#(m*(v^2))/R=BeV\n",
- "v=math.sqrt((2*e*V)/m); #velocity(m/sec)\n",
- "R=(m*v)/(B*e); #radius of electron trajectory(m)\n",
- "L=m*v*R; #angular momentum(kg m**2/sec)\n",
- "\n",
- "#Result\n",
- "print \"radius of electron trajectory is\",round(R*100,3),\"cm\"\n",
- "print \"angular momentum of electron is\",round(L/10**-28,2),\"*10**-28 kg m**2/sec\"\n",
- "print \"answer for angular momentum varies due to rounding off errors\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "radius of electron trajectory is 8.962 cm\n",
- "angular momentum of electron is 15294.12 *10**-28 kg m**2/sec\n",
- "answer for angular momentum varies due to rounding off errors\n"
- ]
- }
- ],
- "prompt_number": 16
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.4, Page number 231"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "vx=1.7*10**7; #horizontal velociy(m/sec)\n",
- "Ey=3.4*10**4; #electric field(V/m)\n",
- "x=3*10**-2; #horizontal displacement(m)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "e=1.6*10**-19; #charge of electron(c)\n",
- "\n",
- "#Calculation\n",
- "t=x/vx; #time(sec)\n",
- "#y=0.5*ay*(t^2)\n",
- "ay=(e*Ey)/m; #acceleration(m/sec**2)\n",
- "y=0.5*ay*(t**2); #vertical displacement(m)\n",
- "Bz=Ey/vx; #magnitude of magnetic field(Wb/m**2) \n",
- "\n",
- "#Result\n",
- "print \"vertical displacement of electron is\",round(y*100,4),\"cm\"\n",
- "print \"answer varies due to rounding off errors\"\n",
- "print \"magnitude of magnetic field is\",Bz,\"Wb/m**2\"\n",
- "print \"direction of field is upward as Ey is downward\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "vertical displacement of electron is 0.9308 cm\n",
- "answer varies due to rounding off errors\n",
- "magnitude of magnetic field is 0.002 Wb/m**2\n",
- "direction of field is upward as Ey is downward\n"
- ]
- }
- ],
- "prompt_number": 23
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.5, Page number 232"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "m=1.67*10**-27; #mass of proton(kg)\n",
- "q=1.6*10**-19; #charge of proton(c)\n",
- "B=0.5; #magnetic field(Wb/m**2)\n",
- "R=1; #radius of cyclotron(m)\n",
- "\n",
- "\n",
- "#Calculation\n",
- "n=((B*q)/(2*math.pi*m)); #frequency of oscillation voltage(Hz)\n",
- "E=((B**2)*(q**2)*(R**2))/(2*m); #maximum energy of proton(J)\n",
- "E=E/q; #maximum energy of proton(eV)\n",
- "\n",
- "#Result\n",
- "print \"frequency of oscillation voltage is\",round(n/10**6,3),\"MHz\"\n",
- "print \"maximum energy of proton is\",round(E/10**6,3),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "frequency of oscillation voltage is 7.624 MHz\n",
- "maximum energy of proton is 11.976 MeV\n"
- ]
- }
- ],
- "prompt_number": 31
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.6, Page number 232"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "q=3.2*10**-19 #charge of a9lpha particle(c)\n",
- "m=6.68*10**-27; #mass(kg) \n",
- "B=1.5; #magnetic field(Wb/m**2)\n",
- "v=7.263*10**6; #velocity(m/s) \n",
- "\n",
- "#Calculation\n",
- "F=B*q*v; #force on particle(N)\n",
- "T=(2*math.pi*m)/(B*q); #periodic time(sec)\n",
- "n=1/T; #resonance frequency(Hz)\n",
- "\n",
- "#Result\n",
- "print \"force on particle is\",round(F*10**13,2),\"*10**-13 N\"\n",
- "print \"periodic time is\",round(T*10**8,3),\"*10**-8 sec\"\n",
- "print \"answer for periodic time varies due to rounding off errors\"\n",
- "print \"resonance frequency is\",round(n/10**6,2),\"MHz\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "force on particle is 34.86 *10**-13 N\n",
- "periodic time is 8.744 *10**-8 sec\n",
- "answer for periodic time varies due to rounding off errors\n",
- "resonance frequency is 11.44 MHz\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.7, Page number 233"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "n=1.2*10**7; #frequency(Hz)\n",
- "mp=1.67*10**-27; #mass of proton(kg)\n",
- "qp=1.6*10**-19; #charge of proton(c)\n",
- "R=0.5; #radius(m)\n",
- "malp=6.68*10**-27; #mass of alpha particle(kg)\n",
- "\n",
- "#Calculation\n",
- "Bp=(2*math.pi*mp*n)/qp; #flux density for proton(Wb/m**2)\n",
- "Ep=((Bp**2)*(qp**2)*(R**2))/(2*mp); #energy of proton(J)\n",
- "Ep=Ep/qp; #energy of proton(eV)\n",
- "qalp=2*qp; #charge of alpha particle(c)\n",
- "Balp=(2*math.pi*malp*n)/qalp; #flux density of alpha particle(Wb/m**2)\n",
- "Ealp=((Balp**2)*(qalp**2)*(R**2))/(2*malp); #energy of alpha particle(J)\n",
- "Ealp=Ealp/qp; #energy of alpha particle(eV)\n",
- "\n",
- "#Result\n",
- "print \"flux density for proton is\",round(Bp,5),\"Wb/m**2\"\n",
- "print \"flux density for alpha particle is\",round(Balp,4),\"Wb/m**2\"\n",
- "print \"energy of proton is\",round(Ep/10**6,2),\"MeV\"\n",
- "print \"energy of alpha particle is\",round(Ealp/10**6,2),\"MeV\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "flux density for proton is 0.78697 Wb/m**2\n",
- "flux density for alpha particle is 1.5739 Wb/m**2\n",
- "energy of proton is 7.42 MeV\n",
- "energy of alpha particle is 29.67 MeV\n"
- ]
- }
- ],
- "prompt_number": 42
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.8, Page number 233"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge of electron(c) \n",
- "me=9.1*10**-31; #mass of electron(kg)\n",
- "malp=6.68*10**-27; #mass of alpha particle(kg)\n",
- "B=0.05; #magnetic field(Wb/m**2)\n",
- "V=20*10**3; #potential difference(V)\n",
- "\n",
- "#Calculation\n",
- "q=2*e; #charge of alpha particle(c)\n",
- "#v=sqrt((2*q*V)/m)\n",
- "#R=(1/B)*sqrt((2*m*V)/q)\n",
- "Re=(1/B)*math.sqrt((2*me*V)/e); #radius of electron(m)\n",
- "Ralp=(1/B)*math.sqrt((2*malp*V)/q); #radius of alpha particle(m)\n",
- "S=2*Ralp-2*Re; #linear separation between two particles(m)\n",
- "\n",
- "#Result\n",
- "print \"linear separation between two particles on common boundary wall is\",round(S*100,1),\"cm\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "linear separation between two particles on common boundary wall is 113.7 cm\n"
- ]
- }
- ],
- "prompt_number": 45
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.9, Page number 234"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "V1=200; #potential difference(V)\n",
- "i=60; #angle(degrees)\n",
- "r=45; #angle(degrees)\n",
- "\n",
- "#Calculation\n",
- "#electrostatic focusing condition (sini/sinr)=(v2/v1)=sqrt(V2/V1)\n",
- "#0.5mv2=eV\n",
- "i=i*(math.pi/180); #angle(radian)\n",
- "r=r*(math.pi/180); #angle(radian)\n",
- "V2=V1*((math.sin(i)/math.sin(r))**2); #potential difference(V)\n",
- "pd=V2-V1; #potential difference(V)\n",
- "\n",
- "#Result\n",
- "print \"potential difference between two regions is\",pd,\"V\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "potential difference between two regions is 100.0 V\n"
- ]
- }
- ],
- "prompt_number": 46
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.10, Page number 235"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "E=250; #electric field(V/m)\n",
- "R=10**-8; #radius of drop(m)\n",
- "rho=10**3; #density of water(kg/m**3)\n",
- "\n",
- "#Calculation\n",
- "#F=mg=qE\n",
- "m=(4/3)*math.pi*(R**3)*rho; #mass of water drop(kg)\n",
- "W=m*9.8; #weight of drop\n",
- "q=W/E; #charge on water drop(C)\n",
- "\n",
- "#Result\n",
- "print \"charge on water drop is\",round(q*10**21,3),\"*10**-21 C\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "charge on water drop is 0.164 *10**-21 C\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.11, Page number 235"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge of electron(c)\n",
- "v=5*10**5; #velocity(m/s)\n",
- "B=0.3; #flux density(Wb/m**2)\n",
- "N=6.025*10**26; #avagadro number\n",
- "M72=72/N; #mass(kg)\n",
- "M74=74; #mass(kg)\n",
- "\n",
- "#Calculation\n",
- "R72=(M72*v)/(B*e); #radius(m)\n",
- "R74=(R72/72)*M74; #radius(m)\n",
- "S=2*(R74-R72); #linear separation of two lines(m)\n",
- "\n",
- "#Result\n",
- "print \"linear separation of two lines is\",round(S,3),\"m\"\n",
- "print \"answer given in the book is wrong\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "linear separation of two lines is 0.069 m\n",
- "answer given in the book is wrong\n"
- ]
- }
- ],
- "prompt_number": 58
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.12, Page number 236"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "l=5*10**-2; #length(m)\n",
- "d=0.3; #distance of screen from end of magnetic field(m)\n",
- "y=0.01; #deflection on screen(m)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "e=1.6*10**-19; #charge of electron(C)\n",
- "Va=1000; #anode voltage(V)\n",
- "\n",
- "#Calculation\n",
- "D=d+(l/2); #distance(m)\n",
- "B=(y/(D*l))*math.sqrt((2*m*Va)/e); #flux density(Wb/m**2)\n",
- "\n",
- "#Result\n",
- "print \"flux density is\",round(B*10**6,1),\"*10**-6 Wb/m**2\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "flux density is 65.6 *10**-6 Wb/m**2\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 9.13, Page number 236"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge of electron(C)\n",
- "Va=150; #potential difference(V)\n",
- "m=9.1*10**-31; #mass of electron(kg)\n",
- "V=20; #potential(V)\n",
- "D=1/2;\n",
- "d=10**-2; #distance of seperation(m)\n",
- "l=10*10**-2; #length(m)\n",
- "\n",
- "#Calculation\n",
- "vx=math.sqrt((2*e*Va)/m); #velocity of electron reacting the field(m/s)\n",
- "ay=(e/m)*(V/d); #acceleration due to deflecting field(m/s**2)\n",
- "vy=ay*(l/vx); #final velocity attained by deflecting field(m/s)\n",
- "theta=math.atan(vy/vx); #angle of deflection(radian)\n",
- "thetaD=theta*(180/math.pi); #angle of deflection(degrees)\n",
- "Y=D*math.tan(theta); #deflection on screen(m)\n",
- "S=(Y/V); #deflection senstivity(m/V)\n",
- "\n",
- "\n",
- "#Result\n",
- "print \"velocity of electron reacting the field is\",round(vx/10**6,2),\"*10**6 m/s\"\n",
- "print \"acceleration due to deflecting field is\",round(ay*10**-14,3),\"*10**14 m/s**2\"\n",
- "print \"final velocity attained by deflecting field is\",round(vy/10**6,1),\"*10**6 m/s\"\n",
- "print \"angle of deflection is\",round(thetaD,2),\"degrees\"\n",
- "print \"answer varies due to rounding off errors\"\n",
- "print \"deflection on screen is\",round(Y,2),\"m\"\n",
- "print \"deflection senstivity is\",round(S,4),\"m/V\"\n",
- "print \"answer varies due to rounding off errors\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "velocity of electron reacting the field is 7.26 *10**6 m/s\n",
- "acceleration due to deflecting field is 3.516 *10**14 m/s**2\n",
- "final velocity attained by deflecting field is 4.8 *10**6 m/s\n",
- "angle of deflection is 33.69 degrees\n",
- "answer varies due to rounding off errors\n",
- "deflection on screen is 0.33 m\n",
- "deflection senstivity is 0.0167 m/V\n"
- ]
- }
- ],
- "prompt_number": 11
- }
- ],
- "metadata": {}
- }
- ]
-}
\ No newline at end of file |