diff options
author | Trupti Kini | 2016-01-05 23:30:04 +0600 |
---|---|---|
committer | Trupti Kini | 2016-01-05 23:30:04 +0600 |
commit | 3ee42f5fa3bf4b934d8a2eeb7ae533518bb15e62 (patch) | |
tree | 387b23df2a9528d57bf72e3d89b4a6cc1bf5c498 /Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter3_1.ipynb | |
parent | 7c2031ac0b56a4072c352186910ab169e1811f77 (diff) | |
download | Python-Textbook-Companions-3ee42f5fa3bf4b934d8a2eeb7ae533518bb15e62.tar.gz Python-Textbook-Companions-3ee42f5fa3bf4b934d8a2eeb7ae533518bb15e62.tar.bz2 Python-Textbook-Companions-3ee42f5fa3bf4b934d8a2eeb7ae533518bb15e62.zip |
Added(A)/Deleted(D) following books
A Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter1_1.ipynb
A Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter2_1.ipynb
A Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter3_1.ipynb
A Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter4_1.ipynb
A Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter5_1.ipynb
A Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter6_1.ipynb
A Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter7_1.ipynb
A Engineering_Physics_(Volume-2)_by_S.K._Gupta/screenshots/X-ray_diffraction_1.png
A Engineering_Physics_(Volume-2)_by_S.K._Gupta/screenshots/ultrasonics_1.png
A Engineering_Physics_(Volume-2)_by_S.K._Gupta/screenshots/wave_mechanics_1.png
A sample_notebooks/MohdAsif/Ch2.ipynb
Diffstat (limited to 'Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter3_1.ipynb')
-rw-r--r-- | Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter3_1.ipynb | 685 |
1 files changed, 685 insertions, 0 deletions
diff --git a/Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter3_1.ipynb b/Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter3_1.ipynb new file mode 100644 index 00000000..210e8592 --- /dev/null +++ b/Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter3_1.ipynb @@ -0,0 +1,685 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:b69efe67845471267465a642fdefaa06de6ab058dfd36d1fd2799087ad02e07e"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter3:DIELECTRIC PROPERTIES OF MATERIALS"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg1:pg-119"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "Eg=6.0 #dielectric constant of glass plate\n",
+ "dg=0.25 #thickness of glass plate in mm\n",
+ "Ep=3.0 #dielectric constant of plastic film\n",
+ "dp=0.1 #thickness of plastic film in mm\n",
+ "Eo=8.85e-12 #permittivity of free space in F/m \n",
+ "A=1 #let surface area be 1\n",
+ "Cg=Eg*Eo*A/dg\n",
+ "Cp=Ep*Eo*A/dp\n",
+ "ratio=Cg/Cp\n",
+ "print\"Cg = \",ratio,\"Cp\"\n",
+ "print\"Since Cp>Cg,the plastic film filled capacitor holds more charge than the glass plate filled capacitor\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Cg = 0.8 Cp\n",
+ "Since Cp>Cg,the plastic film filled capacitor holds more charge than the glass plate filled capacitor\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg2:pg-120"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "Er=2.8 #dielectric constant of a dielectric material\n",
+ "D=3e-8 #magnitude of electric displacement vector in C/m**2\n",
+ "p=(Er-1)*D/Er\n",
+ "print\"Polarization is \",round(p,10),\"C/m**2\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Polarization is 1.93e-08 C/m**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg3:pg-120"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "E=1000 #electric field in V/m\n",
+ "p=4.3e-8 #polarization in C/m**2\n",
+ "Eo=8.85e-12#permittivity of free space in F/m \n",
+ "Er=1+(p/(Eo*E))\n",
+ "print\"Relative permittivity of NaCl is \",round(Er,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Relative permittivity of NaCl is 5.86\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg4:pg-120"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "Er=1.000074 #dielectric constant of helium \n",
+ "Eo=8.85e-12 #permittivity of free space in F/m (in book F/m2 is printed which is wrong)\n",
+ "E=100 #electric field in V/m\n",
+ "Na=6e23 #Avogadro number\n",
+ "V=22.4 #volume occupied by 1gm atom of gas at NTP in litres\n",
+ "N=Na/(V*1e-3)\n",
+ "p=Eo*(Er-1)*E\n",
+ "P=p/N\n",
+ "print\"Induced dipole moment is \",round(P,42),\"Cm\"#answer in book is in different form as 24.42e-40 Cm"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Induced dipole moment is 2.445e-39 Cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg5:pg-121"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "Epsilon=1.46e-10 #permittivity of diamond in C**2/Nm**2\n",
+ "Eo=8.86e-12 #permittivity of free space in C**2/Nm**2\n",
+ "Er=Epsilon/Eo \n",
+ "X=Eo*(Er-1)\n",
+ "print\"Dielectric constant is \",round(Er,2)\n",
+ "print\"Electrical susceptibility is \",round(X,12),\"C**2/Nm**2\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Dielectric constant is 16.48\n",
+ "Electrical susceptibility is 1.37e-10 C**2/Nm**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg6:pg-121"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "Xe=35.4e-12 #electrical susceptibility in C**2/Nm**2\n",
+ "Eo=8.85e-12 #permittivity of free space in C**2/Nm**2 \n",
+ "K=1+(Xe/Eo)\n",
+ "Epsilon=Eo*K\n",
+ "print\"Dielectric constant is \",int(K)\n",
+ "print\"Permittivity of the material is \",Epsilon,\"C**2/Nm**2\"\n",
+ "#answer in book is in different form as 44.25e-12 C**2/Nm**2"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Dielectric constant is 5\n",
+ "Permittivity of the material is 4.425e-11 C**2/Nm**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg7:pg-121"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "Vo=60 #applied potential difference in volt\n",
+ "V=30 #reduced potential difference in volt\n",
+ "K=Vo/V\n",
+ "print\"Dielectric constant of the liquid is \",K"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Dielectric constant of the liquid is 2\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg8:pg-121"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "Vo=100 #potential difference in volts\n",
+ "t=0.3 #thickness of insulator in cm\n",
+ "A=100 #area in cm**2\n",
+ "d=1 #separation between plates in cm\n",
+ "K=7 #dielectric constant \n",
+ "Eo=8.9e-12 #permittivity of free space in C**2/Nm**2\n",
+ "E_o=Vo/(d*1e-2)\n",
+ "E=E_o/K\n",
+ "D=K*Eo*E\n",
+ "p=(K-1)*Eo*E\n",
+ "print\"E = \",\"{:.2e}\".format(E),\"Volt/m\"\n",
+ "print\"D = \",D,\"C/m**2\"\n",
+ "print\"p = \",round(p,9),\"C/m**2\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "E = 1.43e+03 Volt/m\n",
+ "D = 8.9e-08 C/m**2\n",
+ "p = 7.6e-08 C/m**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg9:pg-122"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "E=6e4 #electric field in V/m\n",
+ "K=1.000134 #dielectric constant of neon\n",
+ "Eo=8.9e-12 #permittivity of free space in F/m\n",
+ "Na=6e23 #Avogadro number\n",
+ "V=22.4 #volume occupied by 1gm atom of gas at NTP in litres\n",
+ "p=Eo*(K-1)*E\n",
+ "N=Na/(V*1e-3)\n",
+ "P=p/N\n",
+ "alpha=P/(Eo*E)\n",
+ "print\"Induced dipole moment is\",round(P,38),\"Cm\"\n",
+ "print\"Atomic polarizability of neon is \",round(alpha,32),\"m**3\"\n",
+ "#answer in book is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Induced dipole moment is 2.67e-36 Cm\n",
+ "Atomic polarizability of neon is 5e-30 m**3\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg11:pg-123"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "Er=1.0024 #dielectric constant of argon atom\n",
+ "N=2.7e25 #number of atoms per cubic meter\n",
+ "Eo=8.85e-12 #permittivity of free space in F/m\n",
+ "alpha_e=Eo*(Er-1)/N\n",
+ "print\"Electronic polarizability is \",round(alpha_e,41),\"Fm**2\"\n",
+ "#answer is wrong in book"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Electronic polarizability is 7.9e-40 Fm**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg12:pg-123"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "N=9.8e26 #number of atoms in volume of one cubic meter of hydrogen gas\n",
+ "Eo=8.85e-12 #permittivity of free space in F/m\n",
+ "ao=0.53e-10 #radius of hydrogen atom in meter\n",
+ "alpha=4*math.pi*Eo*ao**3\n",
+ "Er=1+(4*math.pi*N*ao**3)\n",
+ "print\"Polarizability is \",round(alpha,43),\"Fm**2\"\n",
+ "print\"Relative permittivity is \",round(Er,4)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Polarizability is 1.66e-41 Fm**2\n",
+ "Relative permittivity is 1.0018\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg13:pg-124"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "alpha_300=2.5e-39 # total polarizability in C**2m/N at 300 K\n",
+ "alpha_400=2.0e-39 # total polarizability in C**2m/N at 400 K\n",
+ "T1 =300 # temperature in Kelvin\n",
+ "T2 =400 # temperature in Kelvin\n",
+ "beta=(alpha_300-alpha_400)*(T1*T2/(T2-T1))\n",
+ "alpha_def_300=alpha_300 - beta/300\n",
+ "alpha_oriant_300=beta/300\n",
+ "alpha_oriant_400=beta/400\n",
+ "print\"Deformational Polarizability is \",alpha_def_300,\"C**2mN**-1\"\n",
+ "print\"Orientational Polarizability at %d K is \"%T1,alpha_oriant_300,\"C**2mN**-1\"\n",
+ "print\"Orientational Polarizability at %d K is \"%T2,alpha_oriant_400,\"C**2mN**-1\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Deformational Polarizability is 5e-40 C**2mN**-1\n",
+ "Orientational Polarizability at 300 K is 2e-39 C**2mN**-1\n",
+ "Orientational Polarizability at 400 K is 1.5e-39 C**2mN**-1\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg14:pg-132"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "m=32 # Atomic weight of sulphur\n",
+ "d=2.08 # Density in g/cm**3\n",
+ "alpha_e=3.28e-40 # Electronic polarizability in Fm**2\n",
+ "Na=6.023e23 # Avogadro Number\n",
+ "Eo=8.85e-12 # Permittivity of free space in F/m\n",
+ "N=Na*d*1e6/m \n",
+ "k=N*alpha_e/(3*Eo)\n",
+ "epsilon_r = (1+ k*2)/(1-k)# Calculation of relative permittivity\n",
+ "print\"Relative dielectric constant is \",round(epsilon_r,1)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Relative dielectric constant is 3.8\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg15:pg-132"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "n=1.5 # Refractive index\n",
+ "Er=5.6 # Static dielectric constant\n",
+ "per=(1-((n**2-1)/(n**2+2))*(Er+2)/(Er-1))*100 # Pecentage of ionic polarizability\n",
+ "print\"Percentage of ionic polarizability is \",round(per,1),\"%\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Percentage of ionic polarizability is 51.4 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg16:pg-133"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "n=sqrt(2.69) # Refractive index\n",
+ "Er=4.94 # Static dielectric constant\n",
+ "k1=(Er-1)/(Er+2)\n",
+ "k2=(n**2-1)/(n**2+2)\n",
+ "ratio=1/round(((k1/k2)-1),3) \n",
+ "print\"Ratio of electronic to ionic polarizability is \",round(ratio,3)\n",
+ "#in book ai/ae is mentioned instead of ae/ai in final answer which is wrong"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Ratio of electronic to ionic polarizability is 1.736\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg17:pg-133"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "Er=6.75 #dielectric constant of glass\n",
+ "n=1.5 #refractive index of glass\n",
+ "f=1e9 #frequency in Hz\n",
+ "per=(Er-n**2)*100/(Er-1)\n",
+ "print\"Percentage attributed to ionic polarizability is \",round(per,1),\"%\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Percentage attributed to ionic polarizability is 78.3 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg18:pg-142"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "t=5.5e-3 #thickness of quartz crystal plate in meter\n",
+ "p=2.65e3 #density of quartz crystal in Kg/m**3\n",
+ "Y=8e10 #Young's modulus of quartz in N/m**2 (value is wrong in question in book)\n",
+ "m=1 \n",
+ "f=m*sqrt(Y/p)/(2*t)\n",
+ "print\"Frequency is \",int(f*1e-3),\"KHz\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Frequency is 499 KHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg19:pg-148"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import cmath\n",
+ "Er=4.36 #real part of dielectric constant of bakelite\n",
+ "N=4e28 #number of atoms per cubic meter\n",
+ "tan_d=2.8e-2#loss tangent at 1 MHz freuqency\n",
+ "Eo=8.853e-12#permittivity of free space in F/m\n",
+ "alpha=(3*Eo/N)*(Er*(1-(1j*tan_d))-1)/(Er*(1-(1j*tan_d))+2)\n",
+ "x=round(alpha.real*1e40,1)\n",
+ "y=round(alpha.imag*1e40,2)\n",
+ "alpha=complex(x,y)\n",
+ "print\"Complex polarizability is \",alpha*1e-40,\"Fm**2\"\n",
+ "#in book answer is in different form and as (3.5-0.06i)*10**-40\n",
+ "#in book unit of answer is not mentioned"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Complex polarizability is (3.5e-40-6e-42j) Fm**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg20:pg-149"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "t=18e-6 # Relaxation time in second\n",
+ "Er_d=1 # let real part of dielectric constant be 1\n",
+ "Er_dd=1 # let imaginary part of dielectric constant be 1\n",
+ "f=1/(2*math.pi*t) # Calculation of frequency\n",
+ "delta=math.atan(Er_dd/Er_d)\n",
+ "phi=90-(delta*180/math.pi) # Calculation of phase difference\n",
+ "print\"Frequency is \",round(f/1e3,1),\"KHz\"\n",
+ "print\"Phase difference between current and voltage is %d degree\"%(phi)\n",
+ "print\"Current leads the voltage \"#this part is not mentioned in answer in book"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Frequency is 8.8 KHz\n",
+ "Phase difference between current and voltage is 45 degree\n",
+ "Current leads the voltage \n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |