summaryrefslogtreecommitdiff
path: root/Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter2_2.ipynb
diff options
context:
space:
mode:
authorTrupti Kini2016-02-24 23:30:12 +0600
committerTrupti Kini2016-02-24 23:30:12 +0600
commit50e7b3b0fb869d0086b56c8e71a7c7684e4f0741 (patch)
tree93dfb12c3ca8515eaad8671823e0230f070aae3d /Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter2_2.ipynb
parentb2a89c36eff3882f8a6c4ac8ba7ccfb1e9f0dfb5 (diff)
downloadPython-Textbook-Companions-50e7b3b0fb869d0086b56c8e71a7c7684e4f0741.tar.gz
Python-Textbook-Companions-50e7b3b0fb869d0086b56c8e71a7c7684e4f0741.tar.bz2
Python-Textbook-Companions-50e7b3b0fb869d0086b56c8e71a7c7684e4f0741.zip
Added(A)/Deleted(D) following books
A Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter1_2.ipynb A Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter2_2.ipynb A Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter3_2.ipynb A Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter4_2.ipynb A Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter5_2.ipynb A Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter6_2.ipynb A Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter7_2.ipynb A Engineering_Physics_(Volume-2)_by_S.K._Gupta/screenshots/ultrasonic.png A Engineering_Physics_(Volume-2)_by_S.K._Gupta/screenshots/wave_mechanics_2.png A Engineering_Physics_(Volume-2)_by_S.K._Gupta/screenshots/x-ray_diffraction.png A "sample_notebooks/sai kiranmalepati/Untitled.ipynb"
Diffstat (limited to 'Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter2_2.ipynb')
-rw-r--r--Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter2_2.ipynb1050
1 files changed, 1050 insertions, 0 deletions
diff --git a/Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter2_2.ipynb b/Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter2_2.ipynb
new file mode 100644
index 00000000..7e8438a5
--- /dev/null
+++ b/Engineering_Physics_(Volume-2)_by_S.K._Gupta/chapter2_2.ipynb
@@ -0,0 +1,1050 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:6f9fd448718bc5e88c3775b99e3a7cc7745b7bbf33f8a54ff8af4c9ae6e09d6e"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter2:X-RAY DIFFRACTION"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg1:pg-70"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "V=25*10**3 #potential difference in Volt\n",
+ "h=6.63*10**-34 #planck constant in joule-sec\n",
+ "c=3*10**8 #speed of light in m/sec\n",
+ "e=1.6*10**-19 #charge of electron in coulomb\n",
+ "theta=radians(15.8) #glancing angle for NaCl crystal for CuKa line\n",
+ "d=2.82 #for NaCl\n",
+ "lamda=2*d*sin(theta) \n",
+ "print \"wavelength of CuKa line=\",round(lamda,4),\"Angstrom\"\n",
+ "lamda_min=(h*c/(e*V))*10**10\n",
+ "print \"wavelength of X-Ray photon at shortest limit=\",round(lamda_min,4),\"Angstrom\"\n",
+ "theta_1=degrees(math.asin(lamda_min/(2*d)))\n",
+ "print \"glancing angle for photons at the shortest wavelength limit=\",round(theta_1,2),\"degree\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "wavelength of CuKa line= 1.5357 Angstrom\n",
+ "wavelength of X-Ray photon at shortest limit= 0.4972 Angstrom\n",
+ "glancing angle for photons at the shortest wavelength limit= 5.06 degree\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg2:pg-70"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "theta=radians(30) #glancing angle in radians\n",
+ "d=1.87 #spacing between lattice planes in angstrom\n",
+ "n=2 #for second order reflection\n",
+ "lamda=2*d*sin(theta)/n\n",
+ "print \"wavelength of X-Rays=\",lamda,\"Angstrom\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "wavelength of X-Rays= 0.935 Angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg3:pg-70"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "lamda=0.36*10**-8 #wavelength in cm\n",
+ "theta=radians(4.8)#glancing angle in radians\n",
+ "n=1 #for first order diffraction\n",
+ "d=n*lamda/(2*sin(theta))\n",
+ "print \"interplanar separation of atomic planes in crystal=\",\"{:.2e}\".format(d),\"cm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "interplanar separation of atomic planes in crystal= 2.15e-08 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg4:pg-71"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "lamda=2.6*10**-10 #wavelength in meter\n",
+ "theta=radians(20) #in radians\n",
+ "n=2 #for second order diffraction\n",
+ "d=n*lamda/(2*sin(theta))\n",
+ "print \"spacing constant of the crystal=\",round(d*10**10,2),\"Angstrom\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "spacing constant of the crystal= 7.6 Angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg5:pg-71"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "d=2.82*10**-10 #spacing in meter\n",
+ "n=2 #for second order\n",
+ "sin_theta=1 #maximum value of sin(theta)\n",
+ "lamda_max=2*d*sin_theta/n\n",
+ "print \"longest wavelength=\",lamda_max*10**10,\"Angstrom\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "longest wavelength= 2.82 Angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg6:pg-71"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "lamda=0.842 #wavelength in angstrom\n",
+ "theta_1=8+(35./60) #1' = (1/60)\u00ba = 0.01666667\u00ba\n",
+ "theta_3=math.asin(round(3*sin(radians(theta_1)),2))\n",
+ "print \"glancing angle for 3rd order reflection=\",round(math.degrees(theta_3),1),\"degree\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "glancing angle for 3rd order reflection= 26.7 degree\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg7:pg-71"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "lamda=0.97 #wavelength of first X-ray beam in angstrom\n",
+ "theta=radians(60) #angle of reflection in radians\n",
+ "n=3 #for third order reflection\n",
+ "d=n*lamda/(2*sin(theta))\n",
+ "n_1=1 #for first order reflection\n",
+ "theta_1=radians(30) #angle of reflection in radians\n",
+ "lamda_1=2*d*sin(theta_1)\n",
+ "print \"wavelength of the second X-ray beam=\",round(lamda_1,2),\"Angstrom\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "wavelength of the second X-ray beam= 1.68 Angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg8:pg-72"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "lamda=0.30 #wavelength in angstrom\n",
+ "d=0.5 #lattice spacing in angstrom\n",
+ "n=2 #for second order diffraction\n",
+ "theta=math.asin(n*lamda/(2*d))\n",
+ "print \"For second order maxima, angle=\",round(math.degrees(theta),2),\"degree\"\n",
+ "n=3 #for third order diffraction\n",
+ "theta=math.asin(n*lamda/(2*d))\n",
+ "print \"For third order maxima, angle=\",round(math.degrees(theta),2),\"degree\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "For second order maxima, angle= 36.87 degree\n",
+ "For third order maxima, angle= 64.16 degree\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg9:pg-72"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "d=2.82*10**-8 #lattice spacing in cm \n",
+ "c=3*10**10 #speed of light in cm/sec\n",
+ "e=1.6*10**-19 #charge on electron in coulomb\n",
+ "v=9045 #voltage in volt\n",
+ "theta=radians(14)#angle in radians\n",
+ "n=1 #first order\n",
+ "lamda=2*d*sin(theta)/n\n",
+ "h=(e*v*lamda/c)*10**7 #since 1 joule=10**7 erg\n",
+ "print \"h=\",\"{:.2e}\".format(h),\"erg-sec\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "h= 6.58e-27 erg-sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg10:pg-72"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "do=2.82 #lattice spacing in angstrom\n",
+ "theta=radians(10) #angle in radians\n",
+ "lamda=2*do*round(sin(theta),4)\n",
+ "print \"wavelength=\",round(lamda,4),\"Angstrom\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "wavelength= 0.9791 Angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg11:pg-72"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "d=0.4086*10**-10 #lattice spacing in meter\n",
+ "h=6.6*10**-34 #planck constant in joule-sec\n",
+ "m=9.1*10**-31 #mass of electron in Kg\n",
+ "n=1 #first order\n",
+ "theta=radians(65) #glancing angle in radians\n",
+ "lamda=2*d*sin(theta)/n\n",
+ "print \"wavelength=\",\"{:.3e}\".format(lamda),\"m\"\n",
+ "v=h/(m*lamda)\n",
+ "print \"velocity of electron=\",\"{:.3e}\".format(v),\"m/sec\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "wavelength= 7.406e-11 m\n",
+ "velocity of electron= 9.793e+06 m/sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg12:pg-73"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "h=6.62*10**-34 #planck constant in joule-sec\n",
+ "e=1.6*10**-19 #charge on electron in coulomb\n",
+ "m=9*10**-31 #mass of electron in Kg\n",
+ "v=344 #voltage in volt\n",
+ "n=1 #first order\n",
+ "theta=radians(60)#glancing angle in radians\n",
+ "lamda=h/sqrt(2*m*e*v)\n",
+ "d=n*lamda/(2*sin(theta))\n",
+ "print \"spacing of the crystal=\",round(d*10**10,2),\"Angstrom\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "spacing of the crystal= 0.38 Angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg13:pg-73"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#given that\n",
+ "lamda=1.32*10**-10 #wavelength in meter\n",
+ "theta_deg=9 #angle fraction in degree\n",
+ "theta_min=30 #angle fraction in minute\n",
+ "theta =theta_deg+(theta_min/60.) # Total angle\n",
+ "for n in range(1,5):\n",
+ " d = lamda/(n*2*math.sin(theta*math.pi/180)) # Inter layer spacing\n",
+ " print \"If order is %d then spacing is\"%(n),\"{:.2e}\".format(d),\"meter\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "If order is 1 then spacing is 4.00e-10 meter\n",
+ "If order is 2 then spacing is 2.00e-10 meter\n",
+ "If order is 3 then spacing is 1.33e-10 meter\n",
+ "If order is 4 then spacing is 1.00e-10 meter\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg14:pg-74"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "# given that\n",
+ "theta1_deg = 5 # Absolut degree part of angle for first angle\n",
+ "theta1_min = 23# remainder minute part of angle for first angle\n",
+ "theta2_deg = 7 # Absolut degree part of angle for second angle\n",
+ "theta2_min = 37# remainder minute part of angle for second angle\n",
+ "theta3_deg = 9 # Absolut degree part of angle for third angle\n",
+ "theta3_min = 22# remainder minute part of angle for third angle\n",
+ "\n",
+ "val1 = math.sin((theta1_deg+ theta1_min/60.)*math.pi/180)# Sin value for first angle\n",
+ "val2 = math.sin((theta2_deg+ theta2_min/60.)*math.pi/180) #Sin value for second angle\n",
+ "val3 = math.sin((theta3_deg+ theta3_min/60.)*math.pi/180)#Sin value for third angle\n",
+ "ratio_21 = val2/val1\n",
+ "ratio_31 = val3/val1\n",
+ "print \"Interatomic layer separation ratios in crystal are as 1 : %f : %f\"%(ratio_21,ratio_31)\n",
+ "print \"Above relation shows that crystal has a simple cubic crystal structure.\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Interatomic layer separation ratios in crystal are as 1 : 1.412775 : 1.734750\n",
+ "Above relation shows that crystal has a simple cubic crystal structure.\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg15:pg-82"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "h=6.63*10**-34 #planck constant in joule-sec\n",
+ "c=3*10**8 #speed of light in m/sec\n",
+ "mo=9.1*10**-31 #mass of electron in Kg\n",
+ "theta=radians(180)#scattering angle in radians\n",
+ "d_lamda=h*(1-math.cos(theta))/(mo*c)\n",
+ "print \"change in wavelength of photon=\",round(d_lamda*10**10,4),\"Angstrom\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "change in wavelength of photon= 0.0486 Angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg16:pg-82"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#given that\n",
+ "E=100. # Energy of X ray beam in KeV\n",
+ "theta=30 # Scattering angle in degree\n",
+ "mo=9.1*10**-31 # mass of electron in kg\n",
+ "c=3*10**8 # Speed of light in m/s\n",
+ "E_rest=(mo*c**2)/(1.6e-19*1e3) # Rest mass energy in KeV\n",
+ "k=(1/E)+ ((1-math.cos(radians(theta)))/(E_rest))\n",
+ "k=int(k*10000)*10**-4\n",
+ "del_e=E-1/k # Energy of recoiled electron\n",
+ "print \"Energy of recoiled electrons is \",round(del_e,2),\"KeV\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Energy of recoiled electrons is 1.96 KeV\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg17:pg-82"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#given that\n",
+ "lamda=1 # wavelength in angstrom\n",
+ "h=6.63*10**-34 # Planck's constant in joule-sec\n",
+ "mo=9.1*10**-31 # mass of electron in kg\n",
+ "c=3*10**8 # speed of light in m/sec\n",
+ "theta=90 # scattering angle in degree\n",
+ "d_lambda=h*(1-math.cos(radians(90)))/(mo*c) # calculation of compton shift \n",
+ "print \"compton shift is \",round(d_lambda*1e10,4),\"Angstrom\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "compton shift is 0.0243 Angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg18:pg-83"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#given that\n",
+ "lamda=0.015 #wavelength in angstrom\n",
+ "h=6.63*10**-34 #Planks constant in joule-sec\n",
+ "mo=9.1*10**-31 #mass of electron in kg\n",
+ "c=3*10**8 #speed of light in m/sec\n",
+ "theta=60 #scattering angle in degree\n",
+ "d_lambda=h*(1-math.cos(theta*math.pi/180))*1e10/(mo*c) \n",
+ "lambda_n=lamda+d_lambda\n",
+ "print \"Wavelength of the scattered X-ray is \",round(lambda_n,3),\"Angstrom\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Wavelength of the scattered X-ray is 0.027 Angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg19:pg-83"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#given that\n",
+ "lamda=1 # wavelength in angstrom\n",
+ "h=6.63*10**-34 # Planck's constant in joule-sec\n",
+ "mo=9.1*10**-31 # mass of electron in kg\n",
+ "c=3*10**8 # speed of light in m/sec\n",
+ "theta=90 # scattering angle in degree\n",
+ "d_lambda= h*(1-math.cos(radians(90)))*1e10/(mo*c) # calculation of wavelength shift in angstrom\n",
+ "lambda_n=lamda+d_lambda # Calculation of wavelength of scattered beam in angstrom\n",
+ "K_E=h*c*(lambda_n-lamda)*1e10/(1.6e-19*lambda_n*lamda)# Calculation of K.E of recoiled electron in eV\n",
+ "phi=math.atan(round((lamda/lambda_n),2))# calculation of Direction of the recoiled electron\n",
+ "print \"Wavelength of the scattered beam is \",round(lambda_n,4),\"Angstrom\"\n",
+ "print \"Kinetic Energy imparted to the recoiled electron is \",round(K_E),\"eV\"\n",
+ "print \"Direction of the recoiled electron is \",round(degrees(phi),1),\"degree\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Wavelength of the scattered beam is 1.0243 Angstrom\n",
+ "Kinetic Energy imparted to the recoiled electron is 295.0 eV\n",
+ "Direction of the recoiled electron is 44.4 degree\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg20:pg-84"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "#given that\n",
+ "lamda=1 # wavelength in angstrom\n",
+ "h=6.63*10**-34 # Planck's constant in joule-sec\n",
+ "mo=9.1*10**-31 # mass of electron in kg\n",
+ "c=3*10**8 # speed of light in m/sec\n",
+ "theta=90 # scattering angle in degree\n",
+ "d_lambda= h*(1-math.cos(radians(90)))*1e10/(mo*c) # calculation of compton shift in angstrom\n",
+ "lambda_n=lamda+d_lambda # Calculation of wavelength of scattered beam in angstrom\n",
+ "K_E=h*c*(lambda_n-lamda)*1e10/(1.6e-19*lambda_n*lamda)# Calculation of K.E of recoiled electron in eV\n",
+ "print \"Compton shift is \",round(d_lambda,4),\"Angstrom\"\n",
+ "print \"Kinetic Energy imparted to the recoiled electron is \",round(K_E),\"eV\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Compton shift is 0.0243 Angstrom\n",
+ "Kinetic Energy imparted to the recoiled electron is 295.0 eV\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg21:pg-84"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "h=6.63*10**-34 # Planck's constant in joule-sec\n",
+ "mo=9.1*10**-31 # mass of electron in kg\n",
+ "c=3*10**8 # speed of light in m/sec\n",
+ "E=0.88*10**6 #energy of gamma-rays in eV\n",
+ "theta=180 #scattering angle in degree for maximum energy of recoiled electron\n",
+ "lamda=h*c*10**10/(E*1.6*10**-19)\n",
+ "d_lamda_max=h*(1-math.cos(radians(theta)))*1e10/(mo*c)\n",
+ "lamda_n=lamda+d_lamda_max\n",
+ "K_E_max=h*c*d_lamda_max*1e10/(1.6e-19*lamda_n*lamda)\n",
+ "print \"Maximum energy of compton recoil electrons is \",round(K_E_max*10**-6,3),\"MeV\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum energy of compton recoil electrons is 0.682 MeV\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg22:pg-85"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "h=6.62*10**-34 # Planck's constant in joule-sec\n",
+ "mo=9.0*10**-31 # mass of electron in kg\n",
+ "c=3*10**8 # speed of light in m/sec\n",
+ "theta=90 # scattering angle in degree \n",
+ "lamda=h*(1-math.cos(radians(theta)))*1e10/(mo*c)\n",
+ "d_lamda=lamda # compton shift \n",
+ "E=h*c/(round(lamda,4)*1e-10)\n",
+ "print \"Wavelength of incident photon is \",round(lamda,4),\"Angstrom\"\n",
+ "print \"Energy of incident photon is \",\"{:.3e}\".format(E),\"joule\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Wavelength of incident photon is 0.0245 Angstrom\n",
+ "Energy of incident photon is 8.106e-14 joule\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg23:pg-85"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "h=6.63*10**-34 # Planck's constant in joule-sec\n",
+ "mo=9.1*10**-31 # mass of electron in kg\n",
+ "c=3*10**8 # speed of light in m/sec\n",
+ "theta=90 # scattering angle in degree \n",
+ "d_lamda=h*(1-math.cos(radians(theta)))*1e10/(mo*c)\n",
+ "print \"Percentage change in energy when photon is:\"\n",
+ "#(a) for microwave photon\n",
+ "lamda=3*10**8 #wavelength of microwave photon in Angstrom\n",
+ "energy_change=d_lamda*100/(lamda+d_lamda)\n",
+ "print \"A microwave photon= \",\"{:.1e}\".format(energy_change),\"%\"\n",
+ "\n",
+ "#(b) for visible light photon\n",
+ "lamda=5000 #wavelength of visible light photon in Angstrom\n",
+ "energy_change=d_lamda*100/(lamda+d_lamda)\n",
+ "print \"A visible light photon= \",\"{:.2e}\".format(energy_change),\"%\"\n",
+ "\n",
+ "#(c) for X-ray photon\n",
+ "lamda=1 #wavelength of X-ray photon in Angstrom\n",
+ "energy_change=d_lamda*100/(lamda+d_lamda)\n",
+ "print \"An X-ray photon= \",round(energy_change,1),\"%\"\n",
+ "\n",
+ "#(d) for gamma-ray photon\n",
+ "lamda=0.0124 #wavelength of gamma-ray photon in Angstrom\n",
+ "energy_change=d_lamda*100/(lamda+d_lamda)\n",
+ "print \"A gamma-ray photon= \",int(energy_change),\"%\"\n",
+ "print \"Hence, the compton effect is dominant only in the gamma-ray region and shorter X-ray region.It is not observable in the visible region and microwave region\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Percentage change in energy when photon is:\n",
+ "A microwave photon= 8.1e-09 %\n",
+ "A visible light photon= 4.86e-04 %\n",
+ "An X-ray photon= 2.4 %\n",
+ "A gamma-ray photon= 66 %\n",
+ "Hence, the compton effect is dominant only in the gamma-ray region and shorter X-ray region.It is not observable in the visible region and microwave region\n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg24:pg-86"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "lamda=2 # wavelength in angstrom\n",
+ "h=6.62*10**-34 # Planck's constant in joule-sec\n",
+ "mo=9.1*10**-31 # mass of electron in kg\n",
+ "c=3*10**8 # speed of light in m/sec\n",
+ "theta=45 # scattering angle in degree\n",
+ "d_lamda=h*(1-math.cos(radians(theta)))*1e10/(mo*c) \n",
+ "lamda_n=lamda+d_lamda \n",
+ "f=d_lamda/lamda_n # Calculation of fraction of energy lost by photon \n",
+ "print \"Fraction of energy lost by photon is \",round(f,4)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Fraction of energy lost by photon is 0.0035\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg25:pg-87"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "C_W=0.0242 #compton wavelength of electron in Angstrom\n",
+ "theta=45 # scattering angle in degree\n",
+ "d_lamda=C_W*(1-math.cos(radians(theta)))\n",
+ "lamda= d_lamda\n",
+ "print \"Wavelength= \",round(lamda,3),\"Angstrom\"\n",
+ "#answer is incomplete in book as only wavelength is calculated and no region is specified\n",
+ "print \"Hence, such a photon lie in the Gamma-ray region of electromagnetic spectrum.\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Wavelength= 0.007 Angstrom\n",
+ "Hence, such a photon lie in the Gamma-ray region of electromagnetic spectrum.\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg26:pg-87"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "h=6.6*10**-34 # Planck's constant in joule-sec\n",
+ "mo=9.1*10**-31 # mass of electron in kg\n",
+ "c=3*10**8 # speed of light in m/sec\n",
+ "E=510*10**3 # energy of gamma-rays in eV\n",
+ "theta=90 # scattering angle in degree \n",
+ "lamda=h*c/(E*1.6*10**-19)\n",
+ "d_lamda=h*(1-math.cos(radians(theta)))/(mo*c)\n",
+ "lamda_n=lamda+d_lamda\n",
+ "Er=h*c*d_lamda/(lamda_n*lamda)\n",
+ "phi=math.atan(lamda/lamda_n)\n",
+ "print \"Wavelength of scattered radiation is \",\"{:.3e}\".format(lamda_n),\"meter\"\n",
+ "print \"Energy of recoil electron is \",\"{:.3e}\".format(Er),\"joule\"\n",
+ "print \"Direction of the recoil electron is \",round(degrees(phi),2),\"degree\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Wavelength of scattered radiation is 4.844e-12 meter\n",
+ "Energy of recoil electron is 4.073e-14 joule\n",
+ "Direction of the recoil electron is 26.61 degree\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg27:pg-88"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "h=6.63*10**-34 # Planck's constant in joule-sec\n",
+ "mo=9.1*10**-31 # mass of electron in kg\n",
+ "c=3*10**8 # speed of light in m/sec\n",
+ "E=510*10**3 # energy of gamma-rays in eV\n",
+ "theta=90 # scattering angle in degree \n",
+ "lamda=h*c/(E*1.6*10**-19)\n",
+ "d_lamda=h*(1-math.cos(radians(theta)))/(mo*c)\n",
+ "lamda_n=lamda+d_lamda\n",
+ "print \"Wavelength of scattered radiation is \",round(lamda_n*10**10,4),\"Angstrom\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Wavelength of scattered radiation is 0.0487 Angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Eg28:pg-88"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "h=6.62*10**-34 # Planck's constant in joule-sec\n",
+ "mo=9.1*10**-31 # mass of electron in kg\n",
+ "c=3*10**8 # speed of light in m/sec\n",
+ "theta=180 # scattering angle in degree for minimum energy of incident photon\n",
+ "lamda_max=h*(1-math.cos(radians(theta)))/(mo*c)\n",
+ "E_min=h*c/lamda_max\n",
+ "print \"Minimum energy of incident photon is \",int(round(E_min/(1.6*10**-16))),\"KeV\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Minimum energy of incident photon is 256 KeV\n"
+ ]
+ }
+ ],
+ "prompt_number": 32
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file