summaryrefslogtreecommitdiff
path: root/Engineering_Physics/Chapter_7.ipynb
diff options
context:
space:
mode:
authorJovina Dsouza2014-06-18 12:43:07 +0530
committerJovina Dsouza2014-06-18 12:43:07 +0530
commit206d0358703aa05d5d7315900fe1d054c2817ddc (patch)
treef2403e29f3aded0caf7a2434ea50dd507f6545e2 /Engineering_Physics/Chapter_7.ipynb
parentc6f0d6aeb95beaf41e4b679e78bb42c4ffe45a40 (diff)
downloadPython-Textbook-Companions-206d0358703aa05d5d7315900fe1d054c2817ddc.tar.gz
Python-Textbook-Companions-206d0358703aa05d5d7315900fe1d054c2817ddc.tar.bz2
Python-Textbook-Companions-206d0358703aa05d5d7315900fe1d054c2817ddc.zip
adding book
Diffstat (limited to 'Engineering_Physics/Chapter_7.ipynb')
-rw-r--r--Engineering_Physics/Chapter_7.ipynb91
1 files changed, 91 insertions, 0 deletions
diff --git a/Engineering_Physics/Chapter_7.ipynb b/Engineering_Physics/Chapter_7.ipynb
new file mode 100644
index 00000000..c59443c9
--- /dev/null
+++ b/Engineering_Physics/Chapter_7.ipynb
@@ -0,0 +1,91 @@
+{
+ "metadata": {
+ "name": "Chapter 7"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": "Crystal Imperfections"
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example number 7.1, Page number 207 "
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#To calculate the number of vacancies and vacancy fraction\n\n#importing modules\nimport math\n\n#Variable declaration\nk=1.38*10**-23;\nEv=0.98; #energy in eV/atom\nT1=900; #temperature in C\nT2=1000;\nA=6.022*10**26; #avagadro's constant\nw=196.9; #atomic weight in g/mol\nd=18.63; #density in g/cm^3\n\n#Calculation\nEv=Ev*1.6*10**-19; #converting eV to J\nd=d*10**3; #converting g/cm^3 into kg/m^3\nN=(A*d)/w;\nn=N*math.exp(-Ev/(k*T1));\n#let valency fraction n/N be V\nV=math.exp(-Ev/(k*T2));\n\n#Result\nprint(\"concentration of atoms per m^3 is\",N);\nprint(\"number of vacancies per m^3 is\",n);\nprint(\"valency fraction is\",V);\n",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "('concentration of atoms per m^3 is', 5.69780904012189e+28)\n('number of vacancies per m^3 is', 1.8742498047705634e+23)\n('valency fraction is', 1.1625392535344139e-05)\n"
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example number 7.2, Page number 208 "
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#To calculate the energy for vacancy formation\n\n#importing modules\nimport math\n\n#Variable declaration\nk=1.38*10**-23;\nA=6.022*10**26; #avagadro's constant\nT=1073; #temperature in K\nn=3.6*10**23; #number of vacancies\nd=9.5; #density in g/cm^3\nw=107.9; #atomic weight in g/mol\n\n#Calculation\nd=d*10**3; #converting g/cm^3 into kg/m^3\nN=(A*d)/w; #concentration of atoms\nE=k*T*math.log((N/n), ); #energy in J\nEeV=E/(1.602176565*10**-19); #energy in eV\nEeV=math.ceil(EeV*10**2)/10**2; #rounding off to 2 decimals\n\n#Result\nprint(\"concentration of atoms per m^3 is\",N);\nprint(\"energy for vacancy formation in J\",E);\nprint(\"energy for vacancy formation in eV\",EeV);",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "('concentration of atoms per m^3 is', 5.3020389249304915e+28)\n('energy for vacancy formation in J', 1.762092900344914e-19)\n('energy for vacancy formation in eV', 1.1)\n"
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example number 7.3, Page number 209 "
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#To calculate the number of Schotky defect\n\n#importing modules\nimport math\n\n#Variable declaration\nA=6.022*10**26; #avagadro's constant\nk=1.38*10**-23;\nw1=39.1; #atomic weight of K\nw2=35.45; #atomic weight of Cl\nEs=2.6; #energy formation in eV\nT=500; #temperature in C\nd=1.955; #density in g/cm^3\n\n#Calculation\nEs=Es*1.6*10**-19; #converting eV to J\nT=T+273; #temperature in K\nd=d*10**3; #converting g/cm^3 into kg/m^3\nN=(A*d)/(w1+w2);\nn=N*math.exp(-Es/(2*k*T));\n\n#Result\nprint(\"number of Schotky defect per m^3 is\",n);\n\n#answer given in the book is wrong by 3rd decimal point",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "('number of Schotky defect per m^3 is', 5.373777171020081e+19)\n"
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "",
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file