diff options
author | hardythe1 | 2014-07-25 12:29:42 +0530 |
---|---|---|
committer | hardythe1 | 2014-07-25 12:29:42 +0530 |
commit | f2be2edf7d59ab0147b675ed707ebed209b3dcba (patch) | |
tree | 6aeb47a736122cf580ac34b748563ce9a10466ea /Engineering_Physics/Chapter_2.ipynb | |
parent | fd5a671b82455b88fd313d8d0bee2793ab27739a (diff) | |
download | Python-Textbook-Companions-f2be2edf7d59ab0147b675ed707ebed209b3dcba.tar.gz Python-Textbook-Companions-f2be2edf7d59ab0147b675ed707ebed209b3dcba.tar.bz2 Python-Textbook-Companions-f2be2edf7d59ab0147b675ed707ebed209b3dcba.zip |
removing unwated
Diffstat (limited to 'Engineering_Physics/Chapter_2.ipynb')
-rwxr-xr-x | Engineering_Physics/Chapter_2.ipynb | 467 |
1 files changed, 0 insertions, 467 deletions
diff --git a/Engineering_Physics/Chapter_2.ipynb b/Engineering_Physics/Chapter_2.ipynb deleted file mode 100755 index 82d0d7af..00000000 --- a/Engineering_Physics/Chapter_2.ipynb +++ /dev/null @@ -1,467 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:3d73f6bba1b33a0bbd48c706ad53709f1f38f4b901966e1c9494931ace163899" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Laser" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.1, Page number 59 " - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "h=6.626*10**-34;\n", - "c=3*10**8;\n", - "lamda=632.8*10**-9; #wavelength in m\n", - "P=5*10**-3; #output power in W\n", - "\n", - "#Calculation\n", - "E=(h*c)/lamda; #energy of one photon\n", - "E_eV=E/(1.6*10**-19); #converting J to eV\n", - "E_eV=math.ceil(E_eV*1000)/1000; #rounding off to 3 decimals\n", - "N=P/E; #number of photons emitted\n", - "\n", - "\n", - "#Result\n", - "print(\"energy of one photon in eV is\",E_eV);\n", - "print(\"number of photons emitted per second is\",N);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('energy of one photon in eV is', 1.964)\n", - "('number of photons emitted per second is', 1.5917094275077976e+16)\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.2, Page number 60" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "h=6.626*10**-34;\n", - "c=3*10**8;\n", - "lamda=632.8*10**-9; #wavelength in m\n", - "\n", - "#Calculation\n", - "E=(h*c)/lamda; #energy of one photon\n", - "E_eV=E/(1.6*10**-19); #converting J to eV\n", - "E_eV=math.ceil(E_eV*1000)/1000; #rounding off to 3 decimals\n", - "\n", - "#Result\n", - "print(\"energy of one photon in eV is\",E_eV);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('energy of one photon in eV is', 1.964)\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.3, Page number 60" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "E1=0; #value of 1st energy level in eV\n", - "E2=1.4; #value of 2nd energy level in eV\n", - "lamda=1.15*10**-6;\n", - "h=6.626*10**-34;\n", - "c=3*10**8;\n", - "\n", - "#Calculation\n", - "E=(h*c)/lamda; #energy of one photon\n", - "E_eV=E/(1.6*10**-19); #converting J to eV\n", - "E3=E2+E_eV;\n", - "E3=math.ceil(E3*100)/100; #rounding off to 2 decimals\n", - "\n", - "#Result\n", - "print(\"value of E3 in eV is\",E3);\n", - "\n", - "#answer given in the book for E3 is wrong" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('value of E3 in eV is', 2.49)\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.4, Page number 60" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "h=6.626*10**-34;\n", - "c=3*10**8;\n", - "E2=3.2; #value of higher energy level in eV\n", - "E1=1.6; #value of lower energy level in eV\n", - "\n", - "#Calculation\n", - "E=E2-E1; #energy difference in eV\n", - "E_J=E*1.6*10**-19; #converting E from eV to J\n", - "lamda=(h*c)/E_J; #wavelength of photon\n", - "\n", - "#Result\n", - "print(\"energy difference in eV\",E);\n", - "print(\"wavelength of photon in m\",lamda);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('energy difference in eV', 1.6)\n", - "('wavelength of photon in m', 7.76484375e-07)\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.5, Page number 60" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#Variable declaration\n", - "h=6.626*10**-34;\n", - "c=3*10**8;\n", - "E=1.42*1.6*10**-19; #band gap of GaAs in J\n", - "\n", - "#Calculation\n", - "lamda=(h*c)/E; #wavelength of laser\n", - "\n", - "#Result\n", - "print(\"wavelength of laser emitted by GaAs in m\",lamda);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('wavelength of laser emitted by GaAs in m', 8.74911971830986e-07)\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.6, Page number 61" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "T=300; #temperature in K\n", - "lamda=500*10**-9; #wavelength in m\n", - "h=6.626*10**-34;\n", - "c=3*10**8;\n", - "k=1.38*10**-23;\n", - "\n", - "#Calculation\n", - "#from maxwell and boltzmann law, relative population is given by\n", - "#N1/N2=exp(-E1/kT)/exp(-E2/kT)\n", - "#hence N1/N2=exp(-(E1-E2)/kT)=exp((h*new)/(k*T));\n", - "#new=c/lambda\n", - "R=(h*c)/(lamda*k*T);\n", - "RP=math.exp(R);\n", - "\n", - "#Result\n", - "print(\"relative population between N1 and N2 is\",RP);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('relative population between N1 and N2 is', 5.068255595981255e+41)\n" - ] - } - ], - "prompt_number": 9 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.7, Page number 61" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "T=300; #temperature in K\n", - "h=6.626*10**-34;\n", - "c=3*10**8;\n", - "k=1.38*10**-23;\n", - "lamda=600*10**-9; #wavelength in m\n", - "\n", - "#Calculation\n", - "R=(h*c)/(lamda*k*T);\n", - "Rs=1/(math.exp(R)-1);\n", - "\n", - "#Result\n", - "print(\"the ratio between stimulated emission to spontaneous emission is\",Rs);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('the ratio between stimulated emission to spontaneous emission is', 1.7617782449453023e-35)\n" - ] - } - ], - "prompt_number": 11 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.8, Page number 62" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "P=5*10**-3; #output power in W\n", - "I=10*10**-3; #current in A\n", - "V=3*10**3; #voltage in V\n", - "\n", - "#Calculation\n", - "e=(P*100)/(I*V);\n", - "e=math.ceil(e*10**6)/10**6; #rounding off to 6 decimals\n", - "\n", - "#Result\n", - "print(\"efficiency of laser in % is\",e);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('efficiency of laser in % is', 0.016667)\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.9, Page number 62" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "P=1e-03; #output power in W\n", - "d=1e-06; #diameter in m\n", - "\n", - "#Calculation\n", - "r=d/2; #radius in m\n", - "I=P/(math.pi*r**2); #intensity\n", - "I=I/10**9;\n", - "I=math.ceil(I*10**4)/10**4; #rounding off to 4 decimals\n", - "\n", - "#Result\n", - "print(\"intensity of laser in W/m^2 is\",I,\"*10**9\");" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('intensity of laser in W/m^2 is', 1.2733, '*10**9')\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 2.10, Page number 62" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "lamda=632.8*10**-9; #wavelength in m\n", - "D=5; #distance in m\n", - "d=1*10**-3; #diameter in m\n", - "\n", - "#Calculation\n", - "deltatheta=lamda/d; #angular speed\n", - "delta_theta=deltatheta*10**4;\n", - "r=D*deltatheta;\n", - "r1=r*10**3; #converting r from m to mm\n", - "A=math.pi*r**2; #area of the spread\n", - "\n", - "#Result \n", - "print(\"angular speed in radian is\",delta_theta,\"*10**-4\");\n", - "print(\"radius of the spread in mm is\",r1);\n", - "print(\"area of the spread in m^2 is\",A);\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "('angular speed in radian is', 6.328, '*10**-4')\n", - "('radius of the spread in mm is', 3.164)\n", - "('area of the spread in m^2 is', 3.1450157329451454e-05)\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file |