summaryrefslogtreecommitdiff
path: root/Engineering_Physics/Chapter2_1.ipynb
diff options
context:
space:
mode:
authorJovina Dsouza2014-07-25 00:00:07 +0530
committerJovina Dsouza2014-07-25 00:00:07 +0530
commitcc0f90b966a13e6edc60165bc4d4d36844af4f2b (patch)
tree896d9488c2766babf34c3c9d895b0f9f730b0e54 /Engineering_Physics/Chapter2_1.ipynb
parenta4206084fd8c2bd696ea4ae4012aa83534979456 (diff)
downloadPython-Textbook-Companions-cc0f90b966a13e6edc60165bc4d4d36844af4f2b.tar.gz
Python-Textbook-Companions-cc0f90b966a13e6edc60165bc4d4d36844af4f2b.tar.bz2
Python-Textbook-Companions-cc0f90b966a13e6edc60165bc4d4d36844af4f2b.zip
adding book
Diffstat (limited to 'Engineering_Physics/Chapter2_1.ipynb')
-rwxr-xr-xEngineering_Physics/Chapter2_1.ipynb191
1 files changed, 15 insertions, 176 deletions
diff --git a/Engineering_Physics/Chapter2_1.ipynb b/Engineering_Physics/Chapter2_1.ipynb
index 3d6c503f..fff10b22 100755
--- a/Engineering_Physics/Chapter2_1.ipynb
+++ b/Engineering_Physics/Chapter2_1.ipynb
@@ -1,7 +1,7 @@
{
"metadata": {
- "name": "",
- "signature": "sha256:2693d83b10c8e62fc8d3ef78c9959c4d8327c36ed1f7884372585d33796bcbc3"
+ "name": "Chapter2",
+ "signature": "sha256:ac80f9dfe1725f11a5d4ce0fbda5ffed825d99c680f116629e5e3fcb8b69c198"
},
"nbformat": 3,
"nbformat_minor": 0,
@@ -12,231 +12,70 @@
"cell_type": "heading",
"level": 1,
"metadata": {},
- "source": [
- "2: Electromagnetic Theory"
- ]
+ "source": "2: Lasers"
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
- "source": [
- "Example number 2.1, Page number 46"
- ]
+ "source": "Example number 2.1, Page number 52"
},
{
"cell_type": "code",
"collapsed": false,
- "input": [
- " \n",
- "#importing modules\n",
- "from __future__ import division\n",
- "from sympy import *\n",
- "import math\n",
- "\n",
- "#Variable declaration\n",
- "C = 10; #Capacitance of the capacitor(pF)\n",
- "#given V=0.2*sin(120*math.pi*t) in volts\n",
- "\n",
- "#Calculation\n",
- "C=C*10**-12; #Capacitance of the capacitor(F)\n",
- "x, y, z, t = symbols('x y z t')\n",
- "k, m, n = symbols('k m n', integer=True)\n",
- "f, g, h = symbols('f g h', cls=Function)\n",
- "#I = C*dV/dt\n",
- "#let dV/dt be a\n",
- "a=diff(0.2*sin(120*math.pi*t),t) #dV/dt\n",
- "#value of dV/dt is 75.398223686155*cos(376.991118430775*t)\n",
- "#for cosine function peak value occurs when 120*math.pi*t = 0\n",
- "#therefore value of dV/dt becomes d = 75.398223686155\n",
- "d = 75.398223686155; #value of dV/dt \n",
- "I=C*d; #displacement current(A)\n",
- "\n",
- "#Result\n",
- "print \"value of dV/dt is\",a\n",
- "print \"displacement current is\",I, \"A\""
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "value of dV/dt is 75.398223686155*cos(376.991118430775*t)\n",
- "displacement current is 7.53982236862e-10 A\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 2.2, Page number 46"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- " \n",
- "#importing modules\n",
- "from __future__ import division\n",
- "from sympy import *\n",
- "import math\n",
- "\n",
- "#Variable declaration\n",
- "epsilon_r = 1; #Relative electrical permittivity of free space\n",
- "epsilon_0 = 8.854*10**-12; #Absolute electrical permittivity of free space(F/m)\n",
- "#given E=sin(120*math.pi*t) in volts\n",
- "\n",
- "#Calculation\n",
- "x, y, z, t = symbols('x y z t')\n",
- "k, m, n = symbols('k m n', integer=True)\n",
- "f, g, h = symbols('f g h', cls=Function)\n",
- "#J2 = epsilon*dE/dt\n",
- "epsilon=epsilon_0*epsilon_r;\n",
- "#let dE/dt be a\n",
- "a=diff(sin(120*math.pi*t),t) #dE/dt\n",
- "#value of dE/dt is 376.991118430775*cos(376.991118430775*t)\n",
- "#for cosine function peak value occurs when 120*math.pi*t = 0\n",
- "#therefore value of dE/dt becomes d = 376.991118430775\n",
- "d = 376.991118430775; #value of dE/dt\n",
- "J2=epsilon*d; #displacement current density(A/m**2)\n",
- "\n",
- "#Result\n",
- "print \"value of dE/dt is\",a\n",
- "print \"The peak value of displacement current density is\",J2, \"A/m**2\""
- ],
+ "input": "#importing modules\nimport math\n\n#Variable declaration\nlamda = 590; #wavelength(nm)\nh = 6.625*10**-34; #planck's constant\nc = 3*10**8; #velocity of light(m/s)\nk = 1.38*10**-23; #boltzmann's constant\nT = 523; #temperature(Kelvin)\n\n#Calculation\nlamda = lamda*10**-9; #wavelength(m) \n#n1byn2 = math.exp(-(E2-E1)/(k*T))\n#but E2-E1 = h*new and new = c/lamda\n#therefore n1byn2 = math.exp(-h*c/(lamda*k*T))\nn1byn2 = math.exp(-h*c/(lamda*k*T));\n\n#Result\nprint \"relative population of Na atoms is\",n1byn2",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
- "text": [
- "value of dE/dt is 376.991118430775*cos(376.991118430775*t)\n",
- "The peak value of displacement current density is 3.33787936259e-09 A/m**2\n"
- ]
+ "text": "relative population of Na atoms is 5.36748316686e-21\n"
}
],
- "prompt_number": 3
+ "prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
- "source": [
- "Example number 2.3, Page number 47 (Theoritical proof)"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example number 2.4, Page number 47"
- ]
+ "source": "Example number 2.2, Page number 53"
},
{
"cell_type": "code",
"collapsed": false,
- "input": [
- " \n",
- "#importing modules\n",
- "from __future__ import division\n",
- "import math\n",
- "\n",
- "#Variable declaration\n",
- "p = 60; #Power rating of bulb(W)\n",
- "d = 0.5; #Distance from the bulb(m)\n",
- "\n",
- "#Calculation\n",
- "A=4*math.pi*d**2; #area(m**2)\n",
- "P = p/A; #Value of Poynting vector(W/m**2)\n",
- "P = math.ceil(P*100)/100; #rounding off value of P to 1 decimal\n",
- "\n",
- "#Result\n",
- "print \"The value of Poynting vector is\",P, \"W/m**2\""
- ],
+ "input": "#importing modules\nimport math\n\n#Variable declaration\nlamda = 590; #wavelength(nm)\nh = 6.625*10**-34; #planck's constant\nc = 3*10**8; #velocity of light(m/s)\nk = 1.38*10**-23; #boltzmann's constant\nT = 523; #temperature(Kelvin)\n\n#Calculation\nlamda = lamda*10**-9; #wavelength(m) \n#n21dashbyn21 = 1/(math.exp(h*new/(k*T))-1)\n#but new = c/lamda\n#therefore n21dashbyn21 = 1/(math.exp(h*c/(lamda*k*T))-1)\nA = math.exp(h*c/(lamda*k*T))-1;\nn21dashbyn21 = 1/A; \n\n#Result\nprint \"ratio of stimulated to spontaneous emission is\",n21dashbyn21\nprint \"answer given in the book is wrong\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
- "text": [
- "The value of Poynting vector is 19.1 W/m**2\n"
- ]
+ "text": "ratio of stimulated to spontaneous emission is 5.36748316686e-21\nanswer given in the book is wrong\n"
}
],
- "prompt_number": 4
+ "prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
- "source": [
- "Example number 2.5, Page number 47"
- ]
+ "source": "Example number 2.3, Page number 53"
},
{
"cell_type": "code",
"collapsed": false,
- "input": [
- " \n",
- "#importing modules\n",
- "from __future__ import division\n",
- "import math\n",
- "\n",
- "#Variable declaration\n",
- "E_peak = 6; #Peak value of electric field intensity(V/m)\n",
- "c = 3*10**8; #Speed of electromagnetic wave in free space(m/s)\n",
- "mew_0 = 4*math.pi*10**-7; #Absolute permeability of free space(Tm/A)\n",
- "epsilon_0 = 8.854*10**-12; #Absolute permittivity of free space(F/m)\n",
- "mew_r = 1; #Relative permeability of medium\n",
- "epsilon_r = 3; #Relative permittivity of the medium\n",
- "\n",
- "#Calculation\n",
- "v = c/math.sqrt(mew_r*epsilon_r); #Wave velocity(m/s)\n",
- "v = v/10**8;\n",
- "v = math.ceil(v*10**4)/10**4; #rounding off the value of v to 4 decimals\n",
- "eta = math.sqrt((mew_0/epsilon_0)*(mew_r/epsilon_r)); #Intrinsic impedance of the medium(ohm)\n",
- "eta = math.ceil(eta*10)/10; #rounding off the value of v to 1 decimal\n",
- "H_P = E_peak/eta; #Peak value of the magnetic intensity(A/m)\n",
- "H_P = H_P*10**2;\n",
- "H_P = math.ceil(H_P*10**2)/10**2; #rounding off the value of v to 2 decimals\n",
- "\n",
- "#Result\n",
- "print \"The wave velocity is\",v,\"*10**8 m/s\"\n",
- "print \"The intrinsic impedance of the medium is\",eta, \"ohm\"\n",
- "print \"The peak value of the magnetic intensity is\",H_P,\"*10**-2 A/m\""
- ],
+ "input": "#importing modules\nimport math\n\n#Variable declaration\nlamda = 632.8; #wavelength of laser(nm)\nh = 6.625*10**-34; #planck's constant\nc = 3*10**8; #velocity of light(m/s)\np = 3.147; #output power(mW)\n\n#Calculation\np = p*10**-3; #output power(W)\nlamda = lamda*10**-9; #wavelength(m) \nnew = c/lamda; #frequency(Hz)\nE = h*new; #energy of each photon(J)\nEm = p*60; #energy emitted per minute(J/min)\nN = Em/E; #number of photons emitted per second\n\n#Result\nprint \"number of photons emitted per second is\",N",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
- "text": [
- "The wave velocity is 1.7321 *10**8 m/s\n",
- "The intrinsic impedance of the medium is 217.6 ohm\n",
- "The peak value of the magnetic intensity is 2.76 *10**-2 A/m\n"
- ]
+ "text": "number of photons emitted per second is 6.01183879245e+17\n"
}
],
- "prompt_number": 11
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [],
- "language": "python",
- "metadata": {},
- "outputs": []
+ "prompt_number": 3
}
],
"metadata": {}