diff options
author | Jovina Dsouza | 2014-07-25 00:00:07 +0530 |
---|---|---|
committer | Jovina Dsouza | 2014-07-25 00:00:07 +0530 |
commit | cc0f90b966a13e6edc60165bc4d4d36844af4f2b (patch) | |
tree | 896d9488c2766babf34c3c9d895b0f9f730b0e54 /Engineering_Physics/Chapter10_1.ipynb | |
parent | a4206084fd8c2bd696ea4ae4012aa83534979456 (diff) | |
download | Python-Textbook-Companions-cc0f90b966a13e6edc60165bc4d4d36844af4f2b.tar.gz Python-Textbook-Companions-cc0f90b966a13e6edc60165bc4d4d36844af4f2b.tar.bz2 Python-Textbook-Companions-cc0f90b966a13e6edc60165bc4d4d36844af4f2b.zip |
adding book
Diffstat (limited to 'Engineering_Physics/Chapter10_1.ipynb')
-rwxr-xr-x | Engineering_Physics/Chapter10_1.ipynb | 253 |
1 files changed, 9 insertions, 244 deletions
diff --git a/Engineering_Physics/Chapter10_1.ipynb b/Engineering_Physics/Chapter10_1.ipynb index b2bd25cb..051ee9c1 100755 --- a/Engineering_Physics/Chapter10_1.ipynb +++ b/Engineering_Physics/Chapter10_1.ipynb @@ -1,7 +1,6 @@ { "metadata": { - "name": "", - "signature": "sha256:4b61028c3be5c168cde4c3aa75ae23500168dbc119942b73de7c79e4a037fd53" + "name": "Chapter10" }, "nbformat": 3, "nbformat_minor": 0, @@ -12,52 +11,25 @@ "cell_type": "heading", "level": 1, "metadata": {}, - "source": [ - "10: Statistical Mechanics" - ] + "source": "10: Dielectric Materials" }, { "cell_type": "heading", "level": 2, "metadata": {}, - "source": [ - "Example number 10.1, Page number 222" - ] + "source": "Example number 10.1, Page number 289" }, { "cell_type": "code", "collapsed": false, - "input": [ - "\n", - "#importing modules\n", - "from __future__ import division\n", - "import math\n", - "\n", - "#Variable declaration\n", - "k = 1.38*10**-23; #Boltzmann constant(J/K)\n", - "e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\n", - "g1 = 2; #The degeneracy of ground state\n", - "g2 = 8; #The degeneracy of excited state\n", - "delta_E = 10.2; #Energy of excited state above the ground state(eV)\n", - "T = 6000; #Temperature of the state(K)\n", - "\n", - "#Calculation\n", - "D_ratio = g2/g1; #Ratio of degeneracy of states\n", - "x = k*T/e;\n", - "N_ratio = D_ratio*math.exp(-delta_E/x); #Ratio of occupancy of the excited to the ground state\n", - "\n", - "#Result\n", - "print \"The ratio of occupancy of the excited to the ground state is\",N_ratio" - ], + "input": "#importing modules\nimport math\n\n#Variable declaration\nepsilon_r = 1.0000684; #dielectric constant\nN = 2.7*10**25; #number of atoms(per m**3)\nepsilon0 = 8.85*10**-12; #permittivity of free space\n\n#Calculation\nalpha_e = epsilon0*(epsilon_r-1)/N; #electronic polarizability(Fm**2)\n\n#Result\nprint \"electronic polarizability is\",alpha_e,\"Fm**2\"", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", - "text": [ - "The ratio of occupancy of the excited to the ground state is 1.10167326887e-08\n" - ] + "text": "electronic polarizability is 2.242e-41 Fm**2\n" } ], "prompt_number": 1 @@ -66,229 +38,22 @@ "cell_type": "heading", "level": 2, "metadata": {}, - "source": [ - "Example number 10.2, Page number 222" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "a = 10/2;\n", - "#enegy of 10 bosons is E = (10*pi**2*h**2)/(2*m*a**2) = (5*pi**2*h**2)/(m*a**2)\n", - "\n", - "#Result\n", - "print \"enegy of 10 bosons is E = \",int(a),\"(pi**2*h**2)/(m*a**2)\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "enegy of 10 bosons is E = 5 (pi**2*h**2)/(m*a**2)\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 10.3, Page number 223" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n1=1; #1st level\n", - "n2=2; #2nd level\n", - "n3=3; #3rd level\n", - "n4=4; #4th level\n", - "n5=5; #5th level\n", - "\n", - "#Calculation\n", - "#an energy level can accomodate only 2 fermions. hence there will be 2 fermions in each level\n", - "#thus total ground state energy will be E = (2*E1)+(2*E2)+(2*E3)+(2*E4)+E5\n", - "#let X = ((pi**2)*(h**2)/(2*m*a**2)). E = X*((2*n1**2)+(2*n2**2)+(2*n3**2)+(2*n4**2)+(n5**2))\n", - "A = (2*n1**2)+(2*n2**2)+(2*n3**2)+(2*n4**2)+(n5**2);\n", - "#thus E = A*X\n", - "\n", - "#Result\n", - "print \"the ground state energy of the system is\",A,\"(pi**2)*(h**2)/(2*m*a**2)\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "the ground state energy of the system is 85 (pi**2)*(h**2)/(2*m*a**2)\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 10.4, Page number 223" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\n", - "N_A = 6.02*10**23; #Avogadro's number\n", - "h = 6.626*10**-34; #Planck's constant(Js)\n", - "me = 9.1*10**-31; #Mass of electron(kg)\n", - "rho = 10.5; #Density of silver(g/cm)\n", - "m = 108; #Molecular mass of silver(g/mol)\n", - "\n", - "#Calculation\n", - "N_D = rho*N_A/m; #Number density of conduction electrons(per cm**3)\n", - "N_D = N_D*10**6; #Number density of conduction electrons(per m**3)\n", - "E_F = ((h**2)/(8*me))*(3/math.pi*N_D)**(2/3); #fermi energy(J)\n", - "E_F = E_F/e; #fermi energy(eV)\n", - "E_F = math.ceil(E_F*10**2)/10**2; #rounding off the value of E_F to 2 decimals\n", - "\n", - "#Result\n", - "print \"The number density of conduction electrons is\",N_D, \"per metre cube\"\n", - "print \"The Fermi energy of silver is\",E_F, \"eV\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The number density of conduction electrons is 5.85277777778e+28 per metre cube\n", - "The Fermi energy of silver is 5.51 eV\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 10.5, Page number 224" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "N_A = 6.02*10**23; #Avogadro's number\n", - "k = 1.38*10**-23; #Boltzmann constant(J/K)\n", - "T = 293; #Temperature of sodium(K)\n", - "E_F = 3.24; #Fermi energy of sodium(eV)\n", - "e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\n", - "\n", - "#Calculation\n", - "C_v = math.pi**2*N_A*k**2*T/(2*E_F*e); #Molar specific heat of sodium(per mole)\n", - "C_v = math.ceil(C_v*10**2)/10**2; #rounding off the value of C_v to 2 decimals\n", - "\n", - "#Result\n", - "print \"The electronic contribution to molar specific heat of sodium is\",C_v, \"per mole\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The electronic contribution to molar specific heat of sodium is 0.32 per mole\n" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example number 10.6, Page number 224" - ] + "source": "Example number 10.2, Page number 290" }, { "cell_type": "code", "collapsed": false, - "input": [ - " \n", - "#importing modules\n", - "import math\n", - "from __future__ import division\n", - "\n", - "#Variable declaration\n", - "e = 1.6*10**-19; #Energy equivalent of 1 eV(J/eV)\n", - "h = 6.626*10**-34; #Planck's constant(Js)\n", - "m = 9.1*10**-31; #Mass of the electron(kg)\n", - "N_D = 18.1*10**28; #Number density of conduction electrons in Al(per metre cube)\n", - "\n", - "#Calculation\n", - "E_F = h**2/(8*m)*(3/math.pi*N_D)**(2/3); #N_D = N/V. Fermi energy of aluminium(J)\n", - "E_F = E_F/e; #Fermi energy of aluminium(eV)\n", - "E_F = math.ceil(E_F*10**3)/10**3; #rounding off the value of E_F to 3 decimals\n", - "Em_0 = 3/5*E_F; #Mean energy of the electron at 0K(eV)\n", - "Em_0 = math.ceil(Em_0*10**3)/10**3; #rounding off the value of Em_0 to 3 decimals\n", - "\n", - "#Result\n", - "print \"The Fermi energy of aluminium is\",E_F, \"eV\"\n", - "print \"The mean energy of the electron is\",Em_0, \"eV\"" - ], + "input": "#importing modules\nimport math\n\n#Variable declaration\nepsilon_r = 1.0024; #relative permittivity\nN = 2.7*10**25; #number of atoms(per m**3)\nepsilon0 = 8.85*10**-12; #permittivity of free space\n\n#Calculation\nalpha_e = epsilon0*(epsilon_r-1)/N; #electronic polarizability(Fm**2)\n\n#Result\nprint \"electronic polarizability is\",alpha_e,\"Fm**2\"", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", - "text": [ - "The Fermi energy of aluminium is 11.696 eV\n", - "The mean energy of the electron is 7.018 eV\n" - ] + "text": "electronic polarizability is 7.86666666667e-40 Fm**2\n" } ], - "prompt_number": 9 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [], - "language": "python", - "metadata": {}, - "outputs": [] + "prompt_number": 2 } ], "metadata": {} |