summaryrefslogtreecommitdiff
path: root/Engineering_Mechanics_by_Tayal_A.K./chapter25_10.ipynb
diff options
context:
space:
mode:
authorThomas Stephen Lee2015-08-28 16:53:23 +0530
committerThomas Stephen Lee2015-08-28 16:53:23 +0530
commit4a1f703f1c1808d390ebf80e80659fe161f69fab (patch)
tree31b43ae8895599f2d13cf19395d84164463615d9 /Engineering_Mechanics_by_Tayal_A.K./chapter25_10.ipynb
parent9d260e6fae7328d816a514130b691fbd0e9ef81d (diff)
downloadPython-Textbook-Companions-4a1f703f1c1808d390ebf80e80659fe161f69fab.tar.gz
Python-Textbook-Companions-4a1f703f1c1808d390ebf80e80659fe161f69fab.tar.bz2
Python-Textbook-Companions-4a1f703f1c1808d390ebf80e80659fe161f69fab.zip
add books
Diffstat (limited to 'Engineering_Mechanics_by_Tayal_A.K./chapter25_10.ipynb')
-rwxr-xr-xEngineering_Mechanics_by_Tayal_A.K./chapter25_10.ipynb217
1 files changed, 217 insertions, 0 deletions
diff --git a/Engineering_Mechanics_by_Tayal_A.K./chapter25_10.ipynb b/Engineering_Mechanics_by_Tayal_A.K./chapter25_10.ipynb
new file mode 100755
index 00000000..c424f5bc
--- /dev/null
+++ b/Engineering_Mechanics_by_Tayal_A.K./chapter25_10.ipynb
@@ -0,0 +1,217 @@
+{
+ "metadata": {
+ "name": "chapter25.ipynb"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 25 :Shear Force And Bending Moment"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 25.25-5,Page No:628"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "\n",
+ "# Initilization of variables\n",
+ "L_AB=3 # m # length of the beam\n",
+ "L_AC=1 # m\n",
+ "L_BC=2 # m\n",
+ "M_C=12 # kNm # clockwise moment at C\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "# REACTIONS\n",
+ "R_B=M_C/L_AB # kN # moment at A\n",
+ "R_A=-M_C/L_AB # kN # moment at B\n",
+ "\n",
+ "# S.F\n",
+ "F_A=R_A # kN \n",
+ "F_B=R_A # kN\n",
+ "\n",
+ "# B.M\n",
+ "M_A=0 # kNm\n",
+ "M_C1=R_A*L_AC # kNm # M_C1 is the BM just before C\n",
+ "M_C2=(R_A*L_AC)+M_C # kNm # M_C2 is the BM just after C\n",
+ "M_B=0 # kNm\n",
+ "\n",
+ "# Plotting SFD & BMD\n",
+ "x=[0, 0.99, 1, 3]\n",
+ "y=[-4, -4, -4, -4]\n",
+ "a=[0, 0.99, 1, 3]\n",
+ "b=[0, -4, 8, 0]\n",
+ "g=[0,0,0,0]\n",
+ "d=transpose(x)\n",
+ "e=transpose(b)\n",
+ "plt.plot(d,y)\n",
+ "plt.show()\n",
+ "plt.plot(a,e,a,g)\n",
+ "plt.show()\n",
+ "\n",
+ "# Results\n",
+ "print \"The graphs are the solutions\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD7CAYAAABt0P8jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAD35JREFUeJzt3X1MlfX/x/HXQZiFd0lOWoDg0FIEDpSLrc11jIiE4dyy\nedMNS9fNH601+ydzztxS1I0x8642FyvbzK3VTpvFpOYpV2OUKZM0dU3mAYRmzKZpgXr9/vh9O9/4\nHsBzznU6dHg/H9vZuM71gevz2ef7fXK84oDHcRxHAAAzUkZ7AgCAxCL8AGAM4QcAYwg/ABhD+AHA\nGMIPAMakjvYE/lJSUqK2trbRngYAJBWv16vjx49H9Tn/mlf8bW1tchxnzD42bNgw6nNgbayP9Y29\nRywvmP814QcAJAbhBwBjCH+C+Hy+0Z7CP2Ysr01ifclurK8vFh7Hcf4Vv6vH4/HoXzIVAEgasbST\nV/wAYAzhBwBjCD8AGEP4AcAYwg8AxhB+ADCG8AOAMYQfAIwh/ABgDOEHAGMIPwAYQ/gBwBjCDwDG\nEH4AMCbm8K9fv15er1clJSUqLy9XMBgcclxdXZ3mzZunoqIirVy5Un/++WfMkwUAuBfz7+O/fPmy\nJk2aJEnasWOH2tratHfv3kFjOjo69PDDD+vUqVMaP368li1bpqqqKtXW1oZPhN/HDwBRi6WdqbFe\n7K/oS9KVK1c0bdq0sDGTJ09WWlqarl69qnHjxunq1avKysqK9ZIAgDiIOfyStG7dOu3bt0/p6elq\naWkJO5+RkaFXX31VM2bM0O23367Kyko98sgjbi4JAHBpxFs9FRUV6unpCXt+8+bNqqmpCR1v2bJF\np0+fVmNj46BxP//8s2pqanTkyBFNmTJFTzzxhJYuXaonn3wyfCIejzZs2BA69vl8/K1MAPgfgUBA\ngUAgdLxx48aob/XE5W/unj9/XlVVVWpvbx/0/IEDB9Tc3By6979v3z61tLRo165d4RPhHj8ARC2h\nf3P37NmzoY/9fr9KS0vDxsyZM0ctLS26du2aHMfRF198oYKCglgvCQCIg5jDv3btWhUVFamkpESB\nQED19fWSpO7ublVXV0uSvF6vnnnmGc2fP1/FxcWSpOeffz4O0wYAxCout3rigVs9ABC9hN7qAQAk\nJ8IPAMYQfgAwhvADgDGEHwCMIfwAYAzhBwBjCD8AGEP4AcAYwg8AxhB+ADCG8AOAMYQfAIwh/ABg\nDOEHAGMIPwAYQ/gBwBjCDwDGEH4AMIbwA4AxhB8AjCH8AGAM4QcAYwg/ABhD+AHAGMIPAMYQfgAw\nhvADgDGEHwCMIfwAYAzhBwBjCD8AGEP4AcAYwg8AxhB+ADCG8AOAMYQfAIwh/ABgDOEHAGMIPwAY\nQ/gBwJiYw79+/Xp5vV6VlJSovLxcwWBwyHHbt29XUVGRCgsLtX379pgnCgCID4/jOE4sn3j58mVN\nmjRJkrRjxw61tbVp7969g8a0t7drxYoV+u6775SWlqbHHntMb7/9tvLz88Mn4vEoxqkAgFmxtDPm\nV/x/RV+Srly5omnTpoWN+emnn1RWVqbbbrtN48aN00MPPaSPP/441ksCAOLA1T3+devWacaMGXrv\nvff02muvhZ0vLCzUkSNH1NfXp6tXr+rgwYPq7Ox0c0kAgEsj3uqpqKhQT09P2PObN29WTU1N6HjL\nli06ffq0Ghsbw8a+++672r17tyZMmKB58+Zp/PjxamhoCJ+Ix6MNGzaEjn0+n3w+X7TrAYAxLRAI\nKBAIhI43btwY9a2emO/x/9358+dVVVWl9vb2Ece9/vrrmjFjhl588cXwiXCPHwCiltB7/GfPng19\n7Pf7VVpaOuS4X375RdL/f3P45JNPtHLlylgvCQCIg9RYP3Ht2rU6ffq0xo0bp/z8fO3Zs0eS1N3d\nreeee04HDx6UJC1dulS//vqr0tLStHv3bk2ePDk+MwcAxCQut3rigVs9ABC9hN7qAQAkJ8IPAMYQ\nfgAwhvADgDGEHwCMIfwAYAzhBwBjCD8AGEP4AcAYwg8AxhB+ADCG8AOAMYQfAIwh/ABgDOEHAGMI\nPwAYQ/gBwBjCDwDGEH4AMIbwA4AxhB8AjCH8AGAM4QcAYwg/ABhD+AHAGMIPAMYQfgAwhvADgDGE\nHwCMIfwAYAzhBwBjCD8AGEP4AcAYwg8AxhB+ADCG8AOAMYQfAIwh/ABgDOEHAGMIPwAY4zr89fX1\nSklJUV9f35Dnm5qaNGfOHM2ePVtbt251ezkAgEuuwh8MBtXc3Kzc3Nwhz9+4cUMvvfSSmpqadPLk\nSe3fv1+nTp1yc0kAgEuuwr9mzRpt27Zt2POtra2aNWuW8vLylJaWpuXLl8vv97u5JADApZjD7/f7\nlZ2dreLi4mHHdHV1KScnJ3ScnZ2trq6uWC8JAIiD1JFOVlRUqKenJ+z5TZs2qa6uTocOHQo95zhO\n2DiPxxOHKQIA4mnE8Dc3Nw/5fHt7u86dOyev1ytJ6uzs1P3336/W1lZNnz49NC4rK0vBYDB0HAwG\nlZ2dPez1PJ43/nbk+88DAPBfgf88YudxhnqpHqWZM2fq6NGjysjIGPT89evXde+99+rLL7/U3Xff\nrQceeED79+/X3Llzwyfi8Qz5rwYAwPBiaWdcfo7/77d0uru7VV1dLUlKTU3Vzp07VVlZqYKCAi1b\ntmzI6AMAEicur/jjgVf8ABC9UXvFDwBIHoQfAIwh/ABgDOEHAGMIPwAYQ/gBwBjCDwDGEH4AMIbw\nA4AxhB8AjCH8AGAM4QcAYwg/ABhD+AHAGMIPAMYQfgAwhvADgDGEHwCMIfwAYAzhBwBjCD8AGEP4\nAcAYwg8AxhB+ADCG8AOAMYQfAIwh/ABgDOEHAGMIPwAYQ/gBwBjCDwDGEH4AMIbwA4AxhB8AjCH8\nAGAM4QcAYwg/ABhD+AHAGMIPAMYQfgAwhvADgDGuw19fX6+UlBT19fUNeX7VqlXKzMxUUVGR20sB\nAOLAVfiDwaCam5uVm5s77Jhnn31WTU1Nbi4DAIgjV+Ffs2aNtm3bNuKYBQsWaOrUqW4uAwCIo5jD\n7/f7lZ2dreLi4njOBwDwD0sd6WRFRYV6enrCnt+0aZPq6up06NCh0HOO47iezBtvvBH62Ofzyefz\nuf6aADCWBAIBBQIBV1/D48RQ7Pb2dpWXlys9PV2S1NnZqaysLLW2tmr69Olh4zs6OlRTU6MTJ04M\nPxGPJy7fPADAkljaOeIr/uEUFhaqt7c3dDxz5kwdPXpUGRkZsXw5AEACxeXn+D0eT+jj7u5uVVdX\nh45XrFihBx98UGfOnFFOTo4aGxvjcUkAQIxiutXzT+BWDwBEL5Z28s5dADCG8AOAMYQfAIwh/ABg\nDOEHAGMIPwAYQ/gBwBjCDwDGEH4AMIbwA4AxhB8AjCH8AGAM4QcAYwg/ABhD+AHAGMIPAMYQfgAw\nhvADgDGEHwCMIfwAYAzhBwBjCD8AGEP4AcAYwg8AxhB+ADCG8AOAMYQfAIwh/ABgDOEHAGMIPwAY\nQ/gBwBjCDwDGEH4AMIbwA4AxhB8AjCH8AGAM4QcAYwg/ABhD+AHAGMIPAMa4Dn99fb1SUlLU19cX\ndi4YDGrhwoWaN2+eCgsL9dZbb7m9HADAJVfhDwaDam5uVm5u7pDn09LS1NDQoB9//FEtLS3atWuX\nTp065eaSSSsQCIz2FP4xY3ltEutLdmN9fbFwFf41a9Zo27Ztw56/6667VFJSIkmaOHGi5s6dq+7u\nbjeXTFpj+X98Y3ltEutLdmN9fbGIOfx+v1/Z2dkqLi6OaHxHR4eOHTumsrKyWC8JAIiD1JFOVlRU\nqKenJ+z5TZs2qa6uTocOHQo95zjOsF/nypUrWrp0qbZv366JEye6mC4AwDUnBidOnHCmT5/u5OXl\nOXl5eU5qaqqTm5vr9Pb2ho3t7+93Hn30UaehoWHEr5mfn+9I4sGDBw8eUTzy8/OjbrjHcUZ4qR6h\nmTNn6ujRo8rIyBj0vOM4qq2t1Z133qmGhga3lwEAxEFcfo7f4/GEPu7u7lZ1dbUk6ZtvvtEHH3yg\nw4cPq7S0VKWlpWpqaorHJQEAMYrLK34AQPJI6Dt3m5qaNGfOHM2ePVtbt24dcszLL7+s2bNny+v1\n6tixY4mcnmu3Wl8gENCUKVNC//p58803R2GWsVm1apUyMzNVVFQ07Jhk3rtbrS+Z906K/M2UybqH\nkawvWffwjz/+UFlZmUpKSlRQUKC1a9cOOS6qvYv6vwrE6Pr1605+fr5z7tw5p7+/3/F6vc7JkycH\njTl48KCzaNEix3Ecp6WlxSkrK0vU9FyLZH2HDx92ampqRmmG7nz99dfODz/84BQWFg55Ppn3znFu\nvb5k3jvHcZwLFy44x44dcxzHcS5fvuzcc889Y+r/f5GsL5n38Pfff3ccx3EGBgacsrIy58iRI4PO\nR7t3CXvF39raqlmzZikvL09paWlavny5/H7/oDGffvqpamtrJUllZWW6dOmSent7EzVFVyJZn6QR\nf+z132zBggWaOnXqsOeTee+kW69PSt69kyJ7M2Uy72GkbxZN1j1MT0+XJPX39+vGjRthP0gT7d4l\nLPxdXV3KyckJHWdnZ6urq+uWYzo7OxM1RVciWZ/H49G3334rr9erqqoqnTx5MtHT/Mck895FYizt\n3XBvphwrezjc+pJ5D2/evKmSkhJlZmZq4cKFKigoGHQ+2r0b8Q1c8fT3n/wZyf9+R47080ZbJPO8\n7777FAwGlZ6ers8//1xLlizRmTNnEjC7xEjWvYvEWNm7W72ZMtn3cKT1JfMepqSk6Pjx4/rtt99U\nWVmpQCAgn883aEw0e5ewV/xZWVkKBoOh42AwqOzs7BHHdHZ2KisrK1FTdCWS9U2aNCn0T7ZFixZp\nYGBgyN9qmoySee8iMRb2bmBgQI8//rieeuopLVmyJOx8su/hrdY3FvZwypQpqq6u1vfffz/o+Wj3\nLmHhnz9/vs6ePauOjg719/frwIEDWrx48aAxixcv1vvvvy9Jamlp0R133KHMzMxETdGVSNbX29sb\n+q7c2toqx3HC7tUlq2Teu0gk+945jqPVq1eroKBAr7zyypBjknkPI1lfsu7hxYsXdenSJUnStWvX\n1NzcrNLS0kFjot27hN3qSU1N1c6dO1VZWakbN25o9erVmjt3rt555x1J0gsvvKCqqip99tlnmjVr\nliZMmKDGxsZETc+1SNb30Ucfac+ePUpNTVV6ero+/PDDUZ515FasWKGvvvpKFy9eVE5OjjZu3KiB\ngQFJyb930q3Xl8x7J/33zZTFxcWhaGzevFnnz5+XlPx7GMn6knUPL1y4oNraWt28eVM3b97U008/\nrfLyclft5A1cAGAMf3oRAIwh/ABgDOEHAGMIPwAYQ/gBwBjCDwDGEH4AMIbwA4Ax/wcUEWvPZAe1\nRQAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x5b828b0>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEACAYAAABMEua6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGZlJREFUeJzt3XtwFfX9xvHnQPACsaC0gCZQLYEmARIC2LSKelACBRUp\n4IiIZgStjoBVGbF2eoHfFCheqjBexlGLpXhB6FSqUCpaDkVsjEAECkwFNG24CMNYEARMSPb3xzaR\nwB5ykt1zdr973q8ZZiDZnPPdWfbh4ZPNbsSyLEsAgFBo5fcCAADeIdQBIEQIdQAIEUIdAEKEUAeA\nECHUASBEXIf67Nmz1atXL/Xp00fjxo3TV1995cW6AAAt4CrUKysr9fzzz2vDhg3avHmzamtr9dpr\nr3m1NgBAM2W4+eJvfOMbatOmjY4eParWrVvr6NGjysrK8mptAIBmctXUL7jgAk2dOlXdunXTRRdd\npA4dOmjw4MFerQ0A0EyuQn3nzp168sknVVlZqT179ujIkSN6+eWXvVobAKCZXI1f1q1bp8suu0wd\nO3aUJI0aNUrvv/++brnlloZtcnJytHPnTnerBIA00717d+3YsaPZX+eqqefm5qqsrEzHjh2TZVl6\n5513lJ+f32ibnTt3yrKs0P761a9+5fsakvXrhz+0dPPNv9Lrr1vq3NnStGmWjh3zf10cP/YtHfav\npWXYVagXFhbqtttu04ABA1RQUCBJ+vGPf+zmJREgliVFItKNN0qbNkmffCL16yd98IHfKwMQj6vx\niyRNmzZN06ZN82ItCJj6UJekTp2kxYvtXzfcIJWWSjNmSOec4+8aATTGT5S6FI1G/V5C0tTVSQUF\n0UYfC1trD/PxC/O+SeHfv5aKWJaV1IdkRCIRJfktkCSDB0sPPSSVlDh/fvFiacoUWjuQDC3NTpo6\n4jp5/OIkbK0dCANCHXE1FerS17P2GTPsWftDD0nHj6dmfQBOR6gjrrq6pkO9Hq0dCAZCHXFZltSq\nGX9DaO2A/wh1xJXI+MUJrR3wD6GOuJozfjkVrR3wB6GOuFra1E9GawdSi1BHXM2dqcdDawdSh1BH\nXF409ZPR2oHkI9QRl5uZejy0diC5CHXE5dX4xQmtHUgOQh1xeT1+ORWtHfAeoY64kjF+cUJrB7xD\nqCOuZDf1k9HaAW8Q6ogrmTP1eGjtgDuEOuJKZVM/Ga0daDlCHXGlaqYeD60daD5CHXH5MX45Fa0d\naB5CHXH5NX5xQmsHEkOoIy6/xy+norUDTSPUEVeQmvrJaO1AfIQ64grCTD0eWjvgLKCnLIIgqE39\nZLR2oDFCHXEFbaYeD60d+BqhjriCPH5xQmsHCHWcgQnjl1PR2pHuXIf6wYMHNWbMGOXl5Sk/P19l\nZWVerAsBYGKo16O1I125DvWf/OQnGj58uLZt26ZNmzYpLy/Pi3UhAEyZqcdDa0c6chXqhw4d0po1\nazRhwgRJUkZGhtq3b+/JwuA/02bq8dDakU5cnbKffvqpvvWtb+n2229Xv379dOedd+ro0aNerQ0+\nM3n8cipaO9KFq1A/ceKENmzYoHvuuUcbNmxQu3bt9Jvf/MartcFnpo9fnNDaEXYZbr44Oztb2dnZ\nuvTSSyVJY8aMcQz16dOnN/w+Go0qGo26eVukSFjGL6eqb+2LF9utvbTUbvDnnOP3ypDOYrGYYrGY\n69eJWJZluXmBK6+8Ui+88IJ69uyp6dOn69ixY5ozZ87XbxCJyOVbwCcXXSR9+KGUleX3SpJn/35p\n0iRpyxZp/nypuNjvFQG2lman61DfuHGj7rjjDlVXV6t79+6aP39+o2+WEurmuvBCaf16O9zDbvFi\nacoUWjuCw7dQb/INCHVjde4sffSRHe7pgNaOIGlpdoZwYgqvhHWmHg9XyCAM0uiURXOF6ZLG5uAK\nGZiMUEdcYbykMVG0dpiKUEdc6TZ+cUJrh2nS/JTFmaTr+OVUtHaYhFBHXIR6Y7R2mIBQR1zpPFOP\nh9aOoCPUERcz9fho7QgqTlnExfjlzGjtCCJCHXExfkkMrR1BQqgjLpp64mjtCApCHXExU28+Wjv8\nximLuGjqLUNrh58IdcTFTN0dWjv8QKgjLsYv7tHakWqcsoiL8Yt3aO1IFR6SgbhatZJqaqTWrf1e\nSbjwlCUkgodkwHM09eSgtSOZaOpwVD9P55ulyUVrRzw0dXiq/u8SgZ5ctHZ4jVCHIxp66nCFDLxE\nqMMRlzOmHq0dXuC0hSO+SeoPWjvcItThiFD3F60dLUWowxEzdf/R2tEShDocMVMPDlo7moPTFo4Y\nvwQLrR2JItThiPFLMNHa0RRCHY4YvwQXrR1n4slpW1tbq6KiIl1//fVevBwCgPFL8NHa4cSTUJ87\nd67y8/MVIQVCg1A3A60dp3Id6rt27dLy5ct1xx13cOOuEGGmbhZaO+q5DvX7779fjz76qFoxgA0V\nZurmobVDkjLcfPFbb72lTp06qaioSLFYLO5206dPb/h9NBpVNBp187ZIAcYv5rrxRumqq6RJk+zW\nPn++VFzs96rQlFgsdsYcTZSr+6n/7Gc/0x/+8AdlZGTo+PHj+uKLLzR69GgtWLDg6zfgfupG2r9f\nys+XDhzweyVwg/u1m6ul2enZQzJWr16txx57TG+++aYnC4O/9u2T+vSxwx1m27/fbu1bttDaTRKI\nh2Rw9Ut4MH4JD2bt6YXH2cHR3r1SUZH02Wd+rwReorWbIxBNHeHBJY3hRGsPP0IdjrikMdy4rj28\nOG3hiJl6+NHaw4lQhyNCPX3Q2sOFUIejujrGL+mE1h4enLZwRFNPT7R28xHqcESopy9au9kIdTji\nkkbQ2s1EqMMRlzRCorWbiNMWjhi/4GS0dnMQ6nBEqONUtHYzEOpwxCWNiIfWHmyctnBEU8eZ0NqD\ni1CHI0IdiaC1Bw+hDkdc0ohE0dqDhVCHIy5pRHPR2oOB0xaOGL+gJWjt/iPU4YhQhxu0dv8Q6nDE\nTB1u0dr9QajDETN1eIXWnlqctnDE+AVeorWnDqEOR4xfkAy09uQj1OGI8QuShdaeXJy2cMT4BclG\na08OQh2OCHWkAq3de4Q6HDFTRyrR2r1DqMMRM3WkGq3dG5y2cMT4BX6htbvjOtSrqqo0aNAg9erV\nS71799a8efO8WBd8RqjDT7T2lnMd6m3atNETTzyhLVu2qKysTE8//bS2bdvmxdrgI558hCCgtTef\n69O2S5cu6tu3ryQpMzNTeXl52rNnj+uFwV80dQQFrb15PO1ilZWVqqioUHFxsZcvCx8Q6ggaWnti\nMrx6oSNHjmjMmDGaO3euMjMzG31u+vTpDb+PRqOKRqNevS2ShEsaEUT1rX3xYru1l5baDf6cc/xe\nmXuxWEyxWMz160Qsy7LcvkhNTY2uu+46DRs2TPfdd1/jN4hE5MFbIMVWrpTmzJHeecfvlQDO9u+X\nJk2StmyR5s+XwjYgaGl2uh6/WJaliRMnKj8//7RAh7kYvyDomLU7cx3qa9eu1cKFC7Vq1SoVFRWp\nqKhIK1as8GJt8BGhDlMwa2/M9Ux94MCBqqur82ItCBAuaYRJwjxrby5OWziiqcNEtHZCHXEQ6jBV\nus/aCXU44pJGmC5dWzuhDkfcpRFhkI6tndMWjhi/IEzSqbUT6nBEqCNs0qW1E+pwxCWNCKuwt3ZO\nWziiqSPMwtzaCXU4ItSRDsLY2gl1OOKSRqSLsLV2Qh2OuKQR6SYsrZ3TFo4YvyAdhaG1E+pwRKgj\nnZnc2gl1OOKSRqQ7U1s7py0c0dQBm2mtnVCHI0Id+JpJrZ1QhyNCHTidCa2dUIcjZuqAs6C3dk5b\nOKKpA2cW1NZOqMMRoQ40LYitnVCHI24TACQuSK2dUIcjbhMANE9QWjunLRwxfgFaxu/WTqjDEaEO\ntJyfrZ1QhyMuaQTc86O1c9rCEU0d8EaqWzuhDkeEOuCtVLV2Qh2OuKQR8F4qWrvrUF+xYoVyc3PV\no0cPzZkzx4s1IQC4pBFInmS2dlenbW1trSZPnqwVK1Zo69atevXVV7Vt2zav1gYfMX4BkitZrd1V\nqJeXlysnJ0cXX3yx2rRpo7Fjx2rp0qXuVwXfEepAanjd2jPcfPHu3bvVtWvXhj9nZ2frg6Dc1Qau\ncEkjkDr1rX3xYru1l5a2/LVchXokwSoXiZ603cWSLnHzrkiZDtKTM/xeBJAmPpVUKSlXesRFN3YV\n6llZWaqqqmr4c1VVlbKzs0/b7rufWerbV3r6aaljRzfviFR57DFp717p8cf9XgmQnhItzady9R/s\nAQMGaPv27aqsrFR1dbUWLVqkESNGnLZdRYWUlSX16SMxcjcDlzQCZnIV6hkZGXrqqac0dOhQ5efn\n66abblJeXt5p2517rt34Fi2Spk6VbrtN+u9/3bwzko1LGgEzuT5thw0bpn/961/asWOHHn744TNu\ne8UV0saNUocOdmtftsztuyNZuPoFMFPKu1i7dtK8edLChdLkydKECdKhQ6leBZpCqANm8u0/2NGo\nfW3m2Wfbrf3tt/1aCZxwSSNgJl9P2/POk559VnrxRenOO6W775YOH/ZzRahHUwfMFIguVlJit/aa\nGqmgQFq1yu8VgVAHzBSIUJek9u3txv7009Ktt0pTpkhffun3qtIXoQ6YKTChXm/4cGnzZumLL6TC\nQmnNGr9XlJ6YqQNmCuRpe/750u9/b1/bftNN0gMPSMeO+b2q9EJTB8wUyFCvd8MNdmvfu1fq21cq\nK/N7RemDUAfMFOhQl+x7xbz6qjRzpjRyZGqfyp3OGL8AZjLmtB0zxr5CZscOqX9/ad06v1cUbjR1\nwEzGhLpk33N4yRLp5z+Xrr1W+sUvpOpqv1cVToQ6YCajQl2yg+bmm6WPPrLvI3PppfZdIOEtQh0w\nk3GhXu/CC+3b+E6dKg0daj/nr6bG71WFBzN1wExGn7aRiH0b34oK+7l+xcX21TJwj6YOmMnoUK+X\nlWXfxnfSJOnqq6XZs6UTJ/xeldkIdcBMoQh1yQ6giROl9eulv/1Nuvxyads2v1dlLsYvgJlCd9p2\n62bfxvf226Urr7SftVlb6/eqzENTB8wUulCX7DC6+257zv7WW3a4b9/u96rMQqgDZgplqNf7znfs\nUczYsdIPfiDNnWuPFdA0Qh0wU6hDXbLnwlOm2PeNWbxYGjRI+uQTv1cVfMzUATOlzWmbkyOtXm3f\nJOx735OeeYbWfiY0dcBMaRPqktS6tX0b3/fes2/tO2SI9O9/+72qYCLUATOlVajXy82V1q6VBg+W\nBgyQXnjBDjF8ra6OUAdMlJahLkkZGdJPf2o/D/XZZ6Vhw6Rdu/xeVXBYFjN1wERpf9r27m1/E3Xg\nQKlfP3ssQ2tn/AKYKu1DXZLatLFv57typfTEE9KIEfbTltIZoQ6YiVA/SWGhVF4uFRXZj8975ZX0\nbe1c0giYidP2FGedJf3f/0nLl0uzZkmjR0v79/u9qtSjqQNmchXqDz74oPLy8lRYWKhRo0bp0KFD\nXq3Ld/372zcH++53pYIC+weX0gmhDpjJVagPGTJEW7Zs0caNG9WzZ0/Nnj3bq3UFwtln27fxfeMN\n+9F5Y8dKBw74varUINQBM7kK9ZKSErX63+C1uLhYu0J6TeD3v28/iCMry27tb7zh94qSj5k6YCbP\nTtvf/e53Gj58uFcvFzjnnis9/rj0+uvSgw9K48dLn3/u96qSh6YOmKnJUC8pKVGfPn1O+/Xmm282\nbDNz5kydddZZGjduXFIXGwQDB9oPve7Y0W7ty5b5vaLkINQBM2U0tcHKlSvP+PmXXnpJy5cv17vv\nvht3m+nTpzf8PhqNKhqNJrzAIGrXzr6N749+JE2YIP3xj/b17e3b+70y7zB+AVIrFospFou5fp2I\nZbX8SuwVK1Zo6tSpWr16tb75zW86v0EkIhdvEXhHjtjjmGXL7HvIDBni94q8ccst9q0Txo/3eyVA\nemppdrrqYlOmTNGRI0dUUlKioqIi3XPPPW5ezkiZmfa9Y158UbrzTumuu6TDh/1elXuMXwAzNTl+\nOZPtPCOuQUmJtGmTNHWqPWt/8UXp6qv9XlXLEeqAmZiaeqh9e3sE88wzUmmpNHmyPZ4xETN1wEyc\ntkkwbJjd2g8ftu8hs2aN3ytqPpo6YCZCPUnOP9++je9vf2v/JOr990tHj/q9qsQR6oCZCPUkGzHC\nbu379tl3f/zHP/xeUWIYvwBm4rRNgY4d7dv4zpoljRolPfSQdPy436s6M5o6YCZCPYVGj5Y2bpR2\n7rSfsvThh36vKD5CHTAToZ5inTrZt/H95S+l666zn7j01Vd+r+p0hDpgJkLdB5GI/c3TjRulzZul\nSy+17wIZJMzUATNx2vqoSxf7Nr4PPigNHSrNmCHV1Pi9KhtNHTAToe6zSES69Va7qX/wgVRcbLd3\nvxHqgJkI9YDIyrJvCjZ5sn17gVmzpBMn/FsP4xfATJy2ARKJ2LfyXb9eWrVKuuwyads2f9ZCUwfM\nRKgHULdu0ttvSxMnSldeKT36qFRbm9o1EOqAmQj1gIpE7Nv4lpdLy5dLV1whffxx6t6fUAfMRKgH\n3CWXSO++K40bZ49jnnzSnncnGzN1wEyctgZo1cr+BmpZmbRkiRSN2j+Vmkw0dcBMhLpBcnKk1aul\nkSPtSx+feSZ5rZ1QB8xEqBumdWvpgQek996TFiywn7hUWen9+1gW4xfARJy2hsrNtYN9yBD7NgPP\nP28HsVfq6mjqgIkIdYNlZNi38Y3FpOees5+4VFXlzWszfgHMRKiHQK9e9sM3Bg6U+veXXnrJfWsn\n1AEzEeoh0aaNfRvflSvtyx5HjJD27Gn563FJI2AmTtuQKSy0f2CpXz/78Xkvv9yy1k5TB8xEqIfQ\nWWfZt/FdvlyaPdt+4tK+fc17DUIdMBOhHmL9+9s3B8vNtRv8668n/rWEOmAmQj3kzj7bvo3v0qX2\nI/Ruukk6cKDpr2OmDpiJ0zZNFBfbD+Lo1k3q00f605/OvD1NHTAToZ5Gzj3Xvo3vkiXStGnS+PHS\n5587b0uoA2ZyHeqPP/64WrVqpc/jpQMC5/LL7Yded+xot/a33jp9G8YvgJlcnbZVVVVauXKlvv3t\nb3u1HuPEYjG/l9AibdtKc+dKr7wi3XuvdPvt0sGDX3++vqmbun+JCvP+hXnfpPDvX0u5CvUHHnhA\njzzyiFdrMZLpf7GuukratMkezRQUSH/9q/1xQt18Yd43Kfz711IZLf3CpUuXKjs7WwUFBV6uBz7I\nzLRv4ztqlP0IvaFDpS+/ZKYOmOiMoV5SUqLPPvvstI/PnDlTs2fP1ttvv93wMcvLWwTCF4MHS5s3\nS1OnStu32zcMA2CWiNWCNP7nP/+pa665Rm3btpUk7dq1S1lZWSovL1enTp0abZuTk6OdyX5MDwCE\nTPfu3bVjx45mf12LQv1Ul1xyidavX68LLrjA7UsBAFzw5KK1CMNXAAgET5o6ACAYPPvxkhUrVig3\nN1c9evTQnDlzHLe599571aNHDxUWFqqiosKrt06JpvYvFoupffv2KioqUlFRkX7961/7sMqWmTBh\ngjp37qw+ffrE3cbkY9fU/pl87KqqqjRo0CD16tVLvXv31rx58xy3M/X4JbJ/Jh+/48ePq7i4WH37\n9lV+fr4efvhhx+2adfwsD5w4ccLq3r279emnn1rV1dVWYWGhtXXr1kbbLFu2zBo2bJhlWZZVVlZm\nFRcXe/HWKZHI/q1atcq6/vrrfVqhO3//+9+tDRs2WL1793b8vMnHzrKa3j+Tj93evXutiooKy7Is\n6/Dhw1bPnj1Dde4lsn8mHz/Lsqwvv/zSsizLqqmpsYqLi601a9Y0+nxzj58nTb28vFw5OTm6+OKL\n1aZNG40dO1ZLly5ttM2f//xnlZaWSpKKi4t18OBB7WvuTb59ksj+SeZe1nnFFVfo/PPPj/t5k4+d\n1PT+SeYeuy5duqhv376SpMzMTOXl5WnPKY+8Mvn4JbJ/krnHT1LDVYTV1dWqra097YKT5h4/T0J9\n9+7d6tq1a8Ofs7OztXv37ia32bVrlxdvn3SJ7F8kEtH777+vwsJCDR8+XFu3bk31MpPG5GOXiLAc\nu8rKSlVUVKi4uLjRx8Ny/OLtn+nHr66uTn379lXnzp01aNAg5efnN/p8c4+fJz9ekujVL6f+a2rK\nVTOJrLNfv36qqqpS27Zt9Ze//EUjR47Uxx9/nILVpYapxy4RYTh2R44c0ZgxYzR37lxlZmae9nnT\nj9+Z9s/049eqVSt99NFHOnTokIYOHapYLKZoNNpom+YcP0+aelZWlqqqqhr+XFVVpezs7DNuU/8D\nSyZIZP/OO++8hv9GDRs2TDU1NaG5c6XJxy4Rph+7mpoajR49WuPHj9fIkSNP+7zpx6+p/TP9+NVr\n3769rr32Wq1bt67Rx5t7/DwJ9QEDBmj79u2qrKxUdXW1Fi1apBEjRjTaZsSIEVqwYIEkqaysTB06\ndFDnzp29ePukS2T/9u3b1/CvaXl5uSzLCs0PY5l87BJh8rGzLEsTJ05Ufn6+7rvvPsdtTD5+ieyf\nycfvwIEDOvi/26MeO3ZMK1euVFFRUaNtmnv8PBm/ZGRk6KmnntLQoUNVW1uriRMnKi8vT88995wk\n6a677tLw4cO1fPly5eTkqF27dpo/f74Xb50SiezfkiVL9OyzzyojI0Nt27bVa6+95vOqE3fzzTdr\n9erVOnDggLp27aoZM2aopqZGkvnHTmp6/0w+dmvXrtXChQtVUFDQEAazZs3Sf/7zH0nmH79E9s/k\n47d3716Vlpaqrq5OdXV1uvXWW3XNNde4yk5++AgAQoRn2wBAiBDqABAihDoAhAihDgAhQqgDQIgQ\n6gAQIoQ6AIQIoQ4AIfL/2SSvyxXhJiEAAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x5c897b0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The graphs are the solutions\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 25.25-7,Page No:631"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "import numpy as np\n",
+ "\n",
+ "# Initilization of variables\n",
+ "\n",
+ "L_AD=8 # m # length of the beam\n",
+ "L_AB=2 # m \n",
+ "L_BC=4 # m\n",
+ "L_CD=2 # m\n",
+ "UDL=1 # kN/m\n",
+ "P=2 # kN # point load at A\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "# REACTIONS\n",
+ "\n",
+ "# solving eqn's 1&2 using matrix to get R_B & R_C as,\n",
+ "\n",
+ "A=np.array([[1, 1],[ 1, 3]])\n",
+ "B=np.array([8,15])\n",
+ "C=np.linalg.solve(A,B)\n",
+ "\n",
+ "# SHEAR FORCE\n",
+ "\n",
+ "# the term F with suffixes 1 & 2 indicates SF just to left and right \n",
+ "F_A=-P # kN\n",
+ "F_B1=-P # kN\n",
+ "F_B2=-P+C[0] # kN\n",
+ "F_C1=-P+C[0]-(UDL*L_BC) # kN\n",
+ "F_C2=-P+C[0]-(UDL*L_BC)+C[1] # kN\n",
+ "F_D=0\n",
+ "\n",
+ "# BENDING MOMENT\n",
+ "\n",
+ "# the term F with suffixes 1 & 2 indicates BM just to left and right\n",
+ "M_A=0 # kNm\n",
+ "M_B=(-P*L_CD) # kNm\n",
+ "M_C=(-P*(L_AB+L_BC))+(C[0]*L_BC)-(UDL*L_BC*(L_BC/2)) # kNm\n",
+ "M_D=0 # kNm\n",
+ "\n",
+ "# LOCATION OF MAXIMUM BM\n",
+ "\n",
+ "# Max BM occurs at E at a distance of 2.5 m from B i.e x=L_AE=4.5 m from free end A. Thus max BM is given by taking moment at B\n",
+ "L_AE=4.5 # m # given\n",
+ "M_E=(-2*L_AE)+(4.5*(L_AE-2))-((1/2)*(L_AE-2)**2) # kNm\n",
+ "\n",
+ "#Plotting\n",
+ "x_p=linspace(2,6,40)\n",
+ "M_p=-2*+4.5*(x_p-2)-((x_p-2)**2)*0.5\n",
+ "\n",
+ "# PLOTTING SFD & BMD\n",
+ "x=[0,1.99,2,4.5,5.99,6,8]\n",
+ "y=[-2,-2,2.5,0,-1.5,2,0]\n",
+ "z=[0,0,0,0,0,0,0]\n",
+ "a=[0,2,4.5,6,8]\n",
+ "b=[0,-4,-0.875,-2,0]\n",
+ "g=[0,0,0,0,0]\n",
+ "d=transpose(x)\n",
+ "plt.plot(d,y,x,z)\n",
+ "plt.show()\n",
+ "e=transpose(b)\n",
+ "plt.plot(a,e,a,g)\n",
+ "plt.show()\n",
+ "\n",
+ "\n",
+ "# Results\n",
+ "\n",
+ "print\"The graphs are the solutions\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEACAYAAAC9Gb03AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYVWW+B/DvUrAJSZQyVKDBuMhFBIzETHOTIpNcQsML\nZpqXxvGSx3I6XY6nYCZRp0xtdHzS8lYdtGxUbJRutr1GPCU1U1iiSXJRGm0w8RKC6/zxBinXzd57\n7Xfttb+f59kPt7X3+olr/fjt33rX+yqqqqogIiLD6iA7ACIi0hYTPRGRwTHRExEZHBM9EZHBMdET\nERkcEz0RkcHZlOhLS0sRHx+PiIgI9O3bFy+//HKTbcxmM7y8vBATE4OYmBg8//zztuySiIjayc2W\nJ7u7u2PZsmWIjo5GdXU17rjjDiQkJCAsLOy67YYOHYrc3FybAiUiIuvYVNH36NED0dHRAABPT0+E\nhYWhoqKiyXa8J4uISB679ehLSkpQWFiIuLi4676vKAoOHTqEqKgojBw5EkVFRfbaJRERWcCm1k29\n6upqpKenY8WKFfD09LzuZ/3790dpaSk8PDywe/dupKWl4ejRo/bYLRERWUK1UU1NjTpixAh12bJl\nFm0fEBCgnj17tsn3AwMDVQB88MEHH3y04xEYGNhm3rWpdaOqKqZNm4bw8HDMmzev2W0qKysbevQF\nBQVQVRXe3t5Ntjt+/DhUVdX947nnnpMeQ2uP06dVeHg8h4kTVaSnq6irkx+Ts/4uGSfjlB2DJY/j\nx4+3mattat0cPHgQb7zxBvr164eYmBgAQHZ2Nk6ePAkAmDFjBrZu3YrVq1fDzc0NHh4e2Lx5sy27\npDao4m8qXn0VGDYMePZZgCNaiVybTYl+8ODBuHr1aqvbzJ49G7Nnz7ZlN2SFG24Atm0D4uKAPn2A\nhx6SHRERyWKXi7GuxGQyyQ6hVaoK3HCDCQDQvTuwcycQHw/07g0MHiw3tsb0/rusxzjti3E6nqKq\n9W/25VIUBToJxamdOgXExACnT//6vffeAx5+GDh4ELj9dmmhEZEGLMmdnOvGYFQVUJTrv5eYCCxY\nACQnA+fOyYmLiORhoncRs2eLi7NjxwK1tbKjISJHYqI3mOYq+nrLlomftTASlogMionehbi5AVu2\nAB9/DKxcKTsaInIUjroxmNYqegDw8gLefRcYNAgICgJ+9zvHxUZEcrCid0G9ewNbtwKTJgFffSU7\nGiLSGhO9wbRV0de7+27gpZeAlBTghx+0j4uI5GGid2ETJ4rHqFHA5cuyoyEirTDRG4ylFX29rCzA\n1xeYPv3XeXKIyFiY6F1chw7Ahg3A0aPAwoWyoyEiLXDUjcG0t6IHAA8PYMcOMQFaSIi4qYqIjIOJ\nngAAPXsCublAQgIQEAAMGCA7IiKyF7ZuDMaair5edDTw2mvi4uwvSwoQkQGwoqfrpKYCxcVi2OWB\nA8BNN8mOiIhsZVNFX1paivj4eERERKBv3754+eWXm91u7ty5CA4ORlRUFAoLC23ZJbXBloq+3uOP\ni9bNgw8CdXX2iYuI5LEp0bu7u2PZsmX4+uuvkZ+fj1WrVuHIkSPXbbNr1y4cO3YMxcXFWLNmDWbO\nnGlTwKQ9RQFWrQKqq4Enn5QdDRHZyqZE36NHD0RHRwMAPD09ERYWhoqKiuu2yc3NxeTJkwEAcXFx\nqKqqQmVlpS27pTbYWtEDQKdOYpqE3Fxg7VrbX4+I5LHbxdiSkhIUFhYiLi7uuu+Xl5fD39+/4Ws/\nPz+UlZXZa7fUiD1vevL2FhOgLVgA7Nljv9cl18VWoBx2uRhbXV2N9PR0rFixAp6enk1+3niZK6WF\nkjMzM7Phc5PJZKg1Gx3JHhV9vZAQYPNmYPx4YP9+8TWRtaZOBW65BVi6VHYkzstsNsNsNrfrOTYn\n+itXruCBBx7AxIkTkZaW1uTnvr6+KC0tbfi6rKwMvr6+zb7WtYmerKPFNAbx8eKu2aQkID8fuPlm\n+++DXMO5c0BOjigYZsyQHY1zalwEZ2Vltfkcm1o3qqpi2rRpCA8Px7wWli1KTU3Fpk2bAAD5+fno\n2rUrfHx8bNkttcGeFX296dOBtDQgPR2oqbH/65NrUFUgOxt49lngww9lR+M6FLWt5cNbceDAAdxz\nzz3o169fQzsmOzsbJ3+522bGL3+y58yZg7y8PHTu3Bnr169H//79mwZiwUrm1LZjx8Ri4MeP2/+1\n6+qA0aPFW+9XX9XmDwoZW2oqMG2aWABn7Fhg3z4gNFR2VM7NktxpU+tm8ODBuHr1apvbreS6dQ6l\nVQLu2BF4801g8GDRY/3jH7XZDxmbogAmE7BoEZCcDHz6KduBWuMUCAaj9ZsiT09g506x0PiOHdru\ni4zn2uNz2jTxDnH0aLYDtcZEb0Bat1T8/YHt20Xfnjc6U3s0vnN70SKgWzfgD3/geghaYqI3GEed\nLHfeCfztb8D99wON7pEjatW1ib5jR+CNN0TB8MIL8mIyOk5qRlYbM0YsWHL//cDevWJee6LWNFeI\n1LcDBw4EgoPF7KlkX6zoDcYek5q1xzPPiFETkycDFlyXJ2r2+PTzE+3A3/8eOHzY8TEZHRM92URR\nxFDLU6fE2Gii1rRWiMTGAqtXi3eI5eWOjcvo2LoxGEdX9ABwww3Atm1iKcI+fYCHHnLs/sl5tHUN\nKT1dtANTU8UY+86dHROX0bGiJ7vo3l30WefPFwuWELWkrULk6aeBiAhg0iS2A+2Fid5gZFT09SIi\ngNdfFxdpv/tOTgykb5aMClMUMTV2ZaWYOZVsx0RPdpWYKE7O5GQxgRVRY5YUIvXtwM2bgY0btY/J\n6JjoDUZmRV9v9mxg2DAxl0ltrdxYSF/ac3x27y7WQ3jiCTFFNlmPiZ40sWyZOKFbmNSUXFR7b+gL\nD/+1HajFRH2ugoneYPRQ0QOAmxuwZQvw8ccA57Sja7X3+ExMFEN3k5OBqiptYjI6JnrSjJeXeOu9\ncCGQlyc7GtIDa6fomDULSEgQ7cArV+wbkytgojcgPVT09Xr3FouMT5oEfPWV7GhINlvecb70kpgb\nZ+5cToDWXkz0BqPHE+Duu8VJmpIC/PCD7GhINmsTvZubGIWzfz/w17/aNyajsznRT506FT4+PoiM\njGz252azGV5eXoiJiUFMTAyef/55W3dJbdBTRV9v4kTxGDUKuHxZdjQki62FiJeXuDFv0SJg1y77\nxOQKbE70U6ZMQV4bDdihQ4eisLAQhYWFWMA7IDSlx4q+XlYW4Osr5rHXc5ykLVsLkd69gXfeERPp\n/etf9onJ6GxO9EOGDEG3bt1a3YZrwTqWHit6AOjQAdiwQcxlsnCh7GhIBnuNChs0CFi+XLQDKytt\nfz2j07xHrygKDh06hKioKIwcORJFRUVa79Kl6f1vqoeHWIJwzRrgrbdkR0OOZs/j88EHxUX+tDS2\nA9ui+eyV/fv3R2lpKTw8PLB7926kpaXh6NGjzW6bmZnZ8LnJZILJZNI6PEPSa0Vfr2dPIDdXDJcL\nCAAGDJAdETmSPY/PzEzg22+BqVPFwvV6P/btwWw2w2w2t+s5imqHvkpJSQlSUlLwLwsaZr1798bn\nn38Ob2/v6wNRFLZ47ODLL8U0wf/8p+xI2pabC8ycCXzyCXDbbbKjIUcwmYDnngPi4+33mpcuiddN\nSnLNNREsyZ2at24qKysbgigoKICqqk2SPNmXs1Q1qanA44+LPuv587KjIUex9/F5442iHfjaa2L4\nJTVlc+smIyMDe/fuxZkzZ+Dv74+srCxc+eXWtRkzZmDr1q1YvXo13Nzc4OHhgc38n9CUs70pevxx\n4JtvRL912zZxQwwZl1ZTdPToId4hDh8u2oEDB9p/H87MLq0be2Drxj6++AJ4+GHx0VnU1AC/+x3Q\nvz/w4ouyoyEt3XMP8Oc/A0OHavP6O3cCM2aIduBvf6vNPvTGktzJpQQNxhn/VnbqJKZJGDhQLEX4\nyCOyIyItadlaTEkBiovFx4MHgZtu0m5fzoRTIBiQs/Tor+XtLSZAW7AA2LNHdjSkFUcUIo89JoqG\njAygrk77/TkDJnqDccaKvl5IiLiYlpEhbqoi43HENNqKAqxaJUbjPPGEtvtyFkz0BuSMFX29+Hhx\n12xSEnD2rOxoSAuOOD7d3UU78B//AF55Rfv96R179AbjzBV9venTxU0w6enAe++JHj4ZgyOPz27d\nRDtw8GAgMFCMyHFVrOhJlxYvBrp0ETdUGeGPF/3Kke84g4PFSmcTJohhvK6Kid5g9LKUoK06dhS3\ntH/+ObB0qexoyF5kHJ8mk5jWODnZdduBTPSkW56eYlz0smXizkdyfrLenU2bBoweLR41NXJikImJ\n3mCMUtHX8/cHtm8XffvCQtnRkD3IOj4XLRJ9+z/8wfXagUz0pHt33gn87W/A/fcDFRWyoyFbyEyw\nHTsCb7whCoYXXpAXhwwcdWNARqro640ZI8bW338/sHevmNeenJPM47O+HThwoLhQO2qUvFgciRW9\nwRj5LekzzwChoWIJuatXZUdD1tBDa9HPT7QDf/974PBhubE4ChO9Ack+kbSiKMCrrwKnTrnmvONG\noJdCJDYWWL1avEMsL5cdjfbYujEYvZxIWrnhBjGdcVycmADtoYdkR0TtpZdCJD1dtANTU4F9+4DO\nnWVHpB1W9AaklxNJK927iz7r/PnAgQOyo6H20Fsh8vTTQESEWHvWyO1AJnqD0duJpJWICOD118VF\n2u++kx0NWUoPPfprKQqwdi1QWSlmTjUqmxP91KlT4ePjg8jIyBa3mTt3LoKDgxEVFYVCDobWnJ5O\nJC0lJoqTMzkZOHdOdjRkKb0dn/XtwM2bgY0bZUejDZsT/ZQpU5CXl9fiz3ft2oVjx46huLgYa9as\nwcyZM23dJbXCVSr6erNnA8OGAWPHArW1sqOhtuj1+OzeXUyA9sQTwP79sqOxP5sT/ZAhQ9CtW7cW\nf56bm4vJkycDAOLi4lBVVYXKykpbd0ut0FvFpLVly8S/ed482ZGQJfR6fIaH/9oOPH5cdjT2pXmP\nvry8HP7+/g1f+/n5oaysTOvduiy9VkxacnMTMxR+/DGwcqXsaKg1euvRN5aYKIbuJicDVVWyo7Ef\nhwyvbLxwrdLC/3RmZmbD5yaTCSaTScOojEvPJ5JWvLzEW+9Bg4CgILHYOOmPMxQis2aJKY3HjhUL\nl7i7y47oemazGWazuV3P0TzR+/r6orS0tOHrsrIy+Pr6NrvttYmerOMMJ5JWevcWqwqNGiXWne3b\nV3ZE1BxnKEReekksMD53rphnSU8xNy6Cs7Ky2nyO5q2b1NRUbNq0CQCQn5+Prl27wsfHR+vdujQ9\nHZSOdvfdv56kP/wgOxpqzFkKETc3MQpn/37gr3+VHY3tbK7oMzIysHfvXpw5cwb+/v7IysrClStX\nAAAzZszAyJEjsWvXLgQFBaFz585Yv369zUFTy5zlRNLSxIliKcJRo4CPPgJ+8xvZEdG1nKUQ8fIS\nN+bVtwNHjpQdkfUUtXEDXRJFUZr08qn9DhwAnnqKd4xevQqMHy/Wm339dedJLkYXFQVs2iQ+OotD\nh8ScOHv2AK3cLiSNJbmTd8YaDP9WCh06ABs2iLlMFi6UHQ3Vc8bjc9AgYPly0Q501pHhTPQGxOpV\n8PAQSxCuWQO89ZbsaKieMx6fDz4o5sNJSwMuX5YdTfsx0RuMM1ZMWurZE8jNFXfQFhTIjoac+fjM\nzARuuw2YOtX5/h1M9AbkjBWTlqKjgddeExdnT56UHY1r0/sNU62pbwcePw78+c+yo2kfzkdvMM5W\naThKaipQXCz6rAcOADfdJDsi1+WsiR4AbrxRtAPj4oCQEHHB3xmwojcgZz6RtPT448CAAaLfWlcn\nOxrXZIRCpEcP0Q589FEgP192NJZhojcYI5xIWlEUYNUqoLoaePJJ2dG4LiMUIlFRwLp1wOjRwPff\ny46mbWzdGJARTiStdOokpkkYOFAsRfjII7Ijci3O3KNvLCXl13bgwYP6bgeyoieX4+0tJkBbsEDc\nBEOOY7R3nI89JoqGjAx9twOZ6A3GaCeSVkJCxFwmGRnipipyHKNU9MCv7cBLl8SiJXrFRG9ARjqR\ntBQfL+6aTUoCzp6VHY1rMGIh4u4u2oH/+Afwyiuyo2keE73BGPFE0tL06eJux/R0oKZGdjSuwYiF\nSLduoh347LNiIj29YaI3ICOeSFpavBjo0gWYOZN/KLVmpIuxjQUHi5XOJkwQs6fqCRO9wTBRtV/H\njsCbbwKffw4sXSo7GmMz+vFpMonCITlZX+1AJnoDMmrFpCVPTzH3+LJl4s5H0o7Rj88pU8T4+gce\n0E870OZEn5eXh9DQUAQHB2PJkiVNfm42m+Hl5YWYmBjExMTg+eeft3WX1AqjV0xa8vcHtm8XffvC\nQtnRGJOrHJ+LFom+vV7agTYl+rq6OsyZMwd5eXkoKipCTk4Ojhw50mS7oUOHorCwEIWFhViwYIEt\nuyQLGL1i0tKdd4o1Qu+/H6iokB2N8Ri5R3+tDh2AN94QBcOLL8qOxsZEX1BQgKCgIAQEBMDd3R3j\nx4/Hjmbe93LlKMfhr9p2Y8YAM2aIZH/xouxojMcVEj0AdO4s5sRZsUK8U5TJpkRfXl4Of3//hq/9\n/PxQXl5+3TaKouDQoUOIiorCyJEjUVRUZMsuyQKuciJp6ZlngNBQYPJksSwh2YerFSJ+fiLJ//73\nctuBNiV6xYKM0r9/f5SWluLLL7/Eo48+irS0NFt2SW1wtRNJK4oCvPoqcOqUGBtN9uNqhUhsLLB6\ntdx2oE2Tmvn6+qK0tLTh69LSUvj5+V23zU3XzPRz3333YdasWfjxxx/h7e3d5PUyMzMbPjeZTDCZ\nTLaE57Jc7UTSyg03ANu2ibnH+/QBHnpIdkTOz1V69I098ICYaiM1Fdi3TyxzaS2z2Qyz2dyu5yiq\nDQ302tpa9OnTBx999BF69eqFAQMGICcnB2FhYQ3bVFZW4tZbb4WiKCgoKMDYsWNRUlLSNBALVjKn\ntr33nhgL/v77siMxjq+/FtMl/P3vwODBsqNxbr17iztHb79ddiSOp6rAww8DFy6INYw72GlwuyW5\n06Zdubm5YeXKlUhMTER4eDjGjRuHsLAwvPLKK3jll0kftm7disjISERHR2PevHnYvHmzLbskC7hi\nxaSliAjg9dfFRdrvvpMdjfNz1eNTUcRC9ZWVwP/+r4P3bUtFb0+s6O0jL0/c9PPee7IjMZ6VK8XQ\ny08+Aby8ZEfjnAICgI8/FpW9qzpzRrQDn3sOmDTJ9tfTvKInfXLViklrc+YA994LjB0L1NbKjsZ5\nufrxecstYgK0J54A9u93zD6Z6A2Gb4q0tXy5+Dhvntw4nJWrXoxtLCxMtAPHjgWOH9d+f0z0BsQT\nSTtubuJC2scfi1YOtQ8LkV+NGCGG7qakAFVV2u6Lid5geCJpz8tLTIC2cKG4JkLtw0LkVzNnAgkJ\n2rcDmegNiCeS9m6/HXj7bXEx7auvZEfjPFiINLV0qXinOHeudr8fJnoiKw0eLE7SlBTghx9kR+Mc\n2KNvys1NrF+8b5927UCb7owl/eGJ5FgPPSRWExo1StwI9JvfyI5I/3h8NtWlixiJM2gQEBQE3Hef\nfV+fFT2Rjf70J6BXLzGPPVsTrePvp2UBAWKR8cmT7d8OZKI3GFb0jtehA7Bxo6jsFy6UHY3+8fhs\n2aBBYgivvduBTPREduDhIeYeX7NGDL+k5rEQaduECeIif1oacPmyfV6Tid5geCLJ07OnSPazZwMF\nBbKj0Se2biyTmQncdhswbZp9fmdM9ER2FB0t5rEfNQo4eVJ2NPrEQqRtigKsXw8cOwbYY5ltjrox\nGFb08t1/P1BcLPqsBw4A1yzJ4PJY0VvuxhuBHTvEBGghIcC4cda/Fit6Ig3Mny8WGn/wQaCuTnY0\n+sJCxHI9eoi7sB99FPj0U+tfh4neYFgx6YOiiCmNz58HnnxSdjT6wXec7devH7BuHTB6tPXtQCZ6\nA+KJpA+dOgHvvCMu0K5dKzsafWAhYp3kZOCPfxTtwPPn2/98mxN9Xl4eQkNDERwcjCVLljS7zdy5\ncxEcHIyoqCgUylwK3QXwRNIXb29xx+OCBcCePbKj0QcWItaZNw8YOFAMv2xvO9CmRF9XV4c5c+Yg\nLy8PRUVFyMnJwZEjR67bZteuXTh27BiKi4uxZs0azJw505ZdkgV4IulLSAiQkwNkZIgFol0ZCxHr\nKYqYC+fiReC//7t9z7Up0RcUFCAoKAgBAQFwd3fH+PHjsWPHjuu2yc3NxeTJkwEAcXFxqKqqQmVl\npS27pVbwRNKne+8Vd80mJQFnz8qORh726G3j7i6mSfjHP8TNeZayKdGXl5fD39+/4Ws/Pz+Ul5e3\nuU1ZWZktu6U28ETSp+nTxdDL9HSgpkZ2NPLw+LRNt25iJM6zz4qJ9CxhU6JXLPwfa7xwraXPo/Zj\nRa9vS5aImQpnzXLN/ytX/DdrITgY2LLF8sXFbbphytfXF6WlpQ1fl5aWws/Pr9VtysrK4Ovr2+zr\nKaZr/gAEAHDhleJtEg0oWbKDoBb1Fx9e+5PcMKSYC3RfJTsIJ3cCQMkvnwcDqGj7KTYl+tjYWBQX\nF6OkpAS9evXCli1bkJOTc902qampWLlyJcaPH4/8/Hx07doVPj4+zb6eauafe1u98w7w5pvA3/8u\nOxJqzcmTYgTFmjVi6Jyr8PYWt/V7e8uOxDgs6ZDYlOjd3NywcuVKJCYmoq6uDtOmTUNYWBheeeUV\nAMCMGTMwcuRI7Nq1C0FBQejcuTPWr19vyy7JAuyM6d9tt4k/xikpYthlZKTsiByDrRs5FLVxA10S\nRVGa9PKp/bZuFUP53nlHdiRkif/7P+B//kfc3n7rrbKj0V63bsB334mPZB+W5E7eGWtArOidx4QJ\nYjnCUaPsN/e4nrGWk4OJnkiyzEyxFOEjj7hGImQh4nhM9AbDG1KcT/1ShEeOAIsWyY5GWzw+5eB8\n9EQ64OEh5h4fOBAIDRUzFRqRK7xj0SNW9AbDisl5+foC27cDM2YAhw/LjkY7PD4dj4meSEfuuANY\nvVpMlVBhwY0wzoYVvRxs3RgMK3rnl54OfPutSPZ794q2jlHw+JSDFT2RDj3zDNCnD/Dww8DVq7Kj\nsS8mesdjojcYVkzGoCjAq68CZWVAloHmLWLrRg4meiKd+s1vgG3bxNDLRlNIOTUWIo7HHr3BsKI3\nFh8fsebssGHA7bcDcXGyI7INj085WNET6Vy/fsC6dWJs/cmTsqOxDVs3crCiNxhWTMaUkiJG4qSm\nAgcOAJ6esiOyHo9Px2NFT+Qk5s8X4+wnTnTekTis6OVgojcYVvTGpSjiZqr//EcMv3RWPD4dj4me\nyIl06iTWGti6FdiwQXY07cdCRA6re/Q//vgjxo0bh++//x4BAQF466230LVr1ybbBQQEoEuXLujY\nsSPc3d1RUFBgU8DUOr41Nr5bbgF27gSGDgUCA4EhQ2RHZDken3JYXdEvXrwYCQkJOHr0KIYNG4bF\nixc3u52iKDCbzSgsLGSSdxBWTMYXFga8/jowZoxYscmZ8Ph0PKsTfW5uLiZPngwAmDx5MrZv397i\ntlwi0HH4q3YdiYnAggViRM65c7KjsQyPTzmsTvSVlZXw8fEBAPj4+KCysrLZ7RRFwfDhwxEbG4u1\na9dauztqB1ZMrmP2bNHCGT8eqK2VHU3b2KOXo9UefUJCAk6fPt3k+wsXLrzua0VRoLTwv3fw4EH0\n7NkT//73v5GQkIDQ0FAMaaGpmJmZ2fC5yWSCyWRqI3xqjBWTa1EUYMUKYORI4I9/BJYvlx1R25jo\nbWM2m2E2m9v1HEW1sq8SGhoKs9mMHj164NSpU4iPj8c333zT6nOysrLg6emJ+fPnNw3EgpXMqW2b\nNgEffig+kuv4z3+Au+4CHntMLFyiVx07Aj//DLjxVk27sSR3Wt26SU1NxcaNGwEAGzduRFpaWpNt\nLl68iPPnzwMALly4gPfffx+RkZHW7pIswL+VrqlbNzES57nngD17ZEfTOlb0jmd1on/qqafwwQcf\nICQkBHv27MFTTz0FAKioqEBSUhIA4PTp0xgyZAiio6MRFxeH5ORkjBgxwj6RU4t4Irmm4GAxy2VG\nBnD0qOxomscevRxWt27sja0b+9i4UVR0v7zZIhe0di3wwgvAp5+KSl9PFAWoqwM68FZNu9G0dUP6\nxIqJHnkESE4WSxJeuSI7mqZ4fDoeEz2RAb3wgli45NFHed2GmOgNhxU9AWJ0S04OcPAg8Ne/yo7m\nejw+HY+DnIgMqksXMRLnrruAkBDgd7+TGw/fWcjDit5gWNHTtQICxEyXkyYBRUVyY2Gil4eJnsjg\n7r4bePFFMSfOmTNyY2ERIgcTvcGwoqfmTJoEjB0r1p39+Wc5MbCil4eJnshFLFwo5rL/wx/kJF0W\nIfIw0RsMTyZqSYcOYg77L74QrRwZeGzKwVE3RC6kc2cxEmfgQKBPHyA11XH7ZutGHlb0BsOKntri\n5wf8/e/AtGnAl186dt88NuVgoidyQQMGACtXioq+mSUnNMEiRB4meoPhyUSWGjcOmDoVSEsDLl/W\nfn9s3cjDRE/kwp59VtxUNXWqYxIxixA5mOgNhhU9tYeiAOvXA8ePA88/r+2+WNHLw1E3RC7uxhuB\n7duBuDggNBQYM0a7fbEIkcPqiv7tt99GREQEOnbsiMOHD7e4XV5eHkJDQxEcHIwlS5ZYuzuyECt6\nskbPnsCOHcCsWcBnn2mzDx6b8lid6CMjI7Ft2zbcc889LW5TV1eHOXPmIC8vD0VFRcjJycGRI0es\n3SURaSgmRqxOlZYGlJfb//XZupHH6tZNaGhom9sUFBQgKCgIAQEBAIDx48djx44dCAsLs3a31AZW\nTWSLtDTgm2/EsMt9+8QNVvbEY1MOTS/GlpeXw9/fv+FrPz8/lGtRKhCR3Tz5JNC3LzB5MnD1qv1e\nlxW9PK1W9AkJCTjdzN0U2dnZSElJafPFlXb++c7MzGz43GQywWQytev5RGQ7RQHWrAGGDRPDL+01\nGofvNu32pHN8AAALQUlEQVTDbDbDbDa36zmtJvoPPvjAlnjg6+uL0tLShq9LS0vh5+fX4vbXJnqy\nDk8msocbbgC2bft1JM7EifZ5XR6btmtcBGdlZbX5HLu0btQW3pPFxsaiuLgYJSUlqKmpwZYtW5Dq\nyFmUiMhq3bsDubnA448Dn3xi++uxdSOP1Yl+27Zt8Pf3R35+PpKSknDfffcBACoqKpCUlAQAcHNz\nw8qVK5GYmIjw8HCMGzeOF2I1xoqe7KlvX2DDBuCBB4Dvv7f99XhsyqGoLZXjDqYoSovvDMhyq1aJ\ntUFXrZIdCRnJ8uXAunXAwYPATTdZ9xo//SRmzvzpJ/vG5uosyZ2cAsFgWNGTFv7rv8Qc9hMmAHV1\n1r0G6zh5mOiJqE2KIt4lVlcDTz1l2+uQ4zHRGwwretKKuzvwzjtiXpzXXmv/81nRy8NJzYjIYt7e\nwLvvAvfcAwQFAUOHtu/5LELkYEVvMKzoSWt9+gBvvikWLjl+3PLn8diUh4meiNpt+HDgueeA5GSg\nqsqy57B1Iw8TvcGwaiJHmTkTSEgQlX1trWXP4bEpBxM9EVntpZdE8n7ssba3ZUUvDxO9wbCiJ0dy\ncwO2bAE++gj4299a35bHpjwcdUNENvHyAnbuBO6+GwgOFu2cljDRy8GK3mBYNZEMgYHAW2+JWS6/\n+ab5bdi6kYeJnojs4p57gEWLgJQU4OzZ5rdhESIHE73BsKInmaZOFcsRpqcDNTXX/4zHpjxM9ERk\nV4sXixku58y5vl3D1o08TPQGw6qJZOvYUdw5++mnYnrja/HYlIOjbojI7m66SaxOddddQEgIkJTE\nil4mqyv6t99+GxEREejYsSMOHz7c4nYBAQHo168fYmJiMGDAAGt3R+3Aqon04Le/FbNdTpkCfPWV\n+B6PTTmsrugjIyOxbds2zJgxo9XtFEWB2WyGt7e3tbuidmDVRHpy113AsmViJM727Uz0slid6END\nQy3elksEOhZPJtKTBx8UY+szMmRH4ro0vxirKAqGDx+O2NhYrF27VuvduTz+TSU9ysoCIiJYhMjS\nakWfkJCA06dPN/l+dnY2UlJSLNrBwYMH0bNnT/z73/9GQkICQkNDMWTIkGa3zczMbPjcZDLBZDJZ\ntA+6Hk8m0psOHYCNG8WcOGQbs9kMs9ncrucoqo19lfj4eCxduhT9+/dvc9usrCx4enpi/vz5TQOx\nYCVzattf/gKcOSM+EpHxWZI77dK6aWknFy9exPnz5wEAFy5cwPvvv4/IyEh77JJawYqeiK5ldaLf\ntm0b/P39kZ+fj6SkJNx3330AgIqKCiQlJQEATp8+jSFDhiA6OhpxcXFITk7GiBEj7BM5NYtvioio\nMZtbN/bC1o19LFkC/Pij+EhExuew1g3pB6dAIKLGmOiJiAyOid5gWNETUWNM9EREBsdEbzCs6Imo\nMSZ6IiKDY6I3GFb0RNQYEz0RkcEx0RsMK3oiaoyJnojI4JjoDYYVPRE1xkRPRGRwTPQGxIqeiK7F\nRG8wnACUiBpjojcgVvREdC2rE/0TTzyBsLAwREVFYfTo0Th37lyz2+Xl5SE0NBTBwcFYwknSNceK\nnogaszrRjxgxAl9//TW+/PJLhISEYNGiRU22qaurw5w5c5CXl4eioiLk5OTgyJEjNgUsW3sX5ZXh\n++/NskOwiDP8LgHGaW+M0/GsTvQJCQno0EE8PS4uDmVlZU22KSgoQFBQEAICAuDu7o7x48djx44d\n1kerA3r/z1dVoKTELDsMi+j9d1mPcdoX43Q8u/To161bh5EjRzb5fnl5Ofz9/Ru+9vPzQ3l5uT12\nSUREFnJr7YcJCQk4ffp0k+9nZ2cjJSUFALBw4UJ06tQJEyZMaLKd0s6rgr+8pK59+y3w+eeyo2jZ\nt98Cvr6yoyAiXVFtsH79enXQoEHqpUuXmv35J598oiYmJjZ8nZ2drS5evLjZbQMDA1UAfPDBBx98\ntOMRGBjYZq5WVNW6cRp5eXmYP38+9u7di1tuuaXZbWpra9GnTx989NFH6NWrFwYMGICcnByEhYVZ\ns0siIrKC1T36Rx99FNXV1UhISEBMTAxmzZoFAKioqEBSUhIAwM3NDStXrkRiYiLCw8Mxbtw4Jnki\nIgezuqInIiLnIP3OWGe4oWrq1Knw8fFBZGSk7FBaVVpaivj4eERERKBv3754+eWXZYfUrMuXLyMu\nLg7R0dEIDw/H008/LTukFtXV1SEmJqZh8IFeBQQEoF+/foiJicGAAQNkh9OsqqoqpKenIywsDOHh\n4cjPz5cdUhPffvstYmJiGh5eXl66PY8WLVqEiIgIREZGYsKECfj5559b3rj9l2Dtp7a2Vg0MDFRP\nnDih1tTUqFFRUWpRUZHMkJq1b98+9fDhw2rfvn1lh9KqU6dOqYWFhaqqqur58+fVkJAQXf4+VVVV\nL1y4oKqqql65ckWNi4tT9+/fLzmi5i1dulSdMGGCmpKSIjuUVgUEBKhnz56VHUarJk2apL722muq\nqor/96qqKskRta6urk7t0aOHevLkSdmhNHHixAm1d+/e6uXLl1VVVdWxY8eqGzZsaHF7qRW9s9xQ\nNWTIEHTr1k12GG3q0aMHoqOjAQCenp4ICwtDRUWF5Kia5+HhAQCoqalBXV0dvL29JUfUVFlZGXbt\n2oXp06dDdYIOp55jPHfuHPbv34+pU6cCENfvvLy8JEfVug8//BCBgYHX3QukF126dIG7uzsuXryI\n2tpaXLx4Eb6tjKuWmuh5Q5V2SkpKUFhYiLi4ONmhNOvq1auIjo6Gj48P4uPjER4eLjukJh577DG8\n8MILDXeA65miKBg+fDhiY2Oxdu1a2eE0ceLECXTv3h1TpkxB//798cgjj+DixYuyw2rV5s2bm70/\nSA+8vb0xf/583HbbbejVqxe6du2K4cOHt7i91CO4vTdUkWWqq6uRnp6OFStWwNPTU3Y4zerQoQO+\n+OILlJWVYd++fbq73fzdd9/FrbfeipiYGF1XyvUOHjyIwsJC7N69G6tWrcL+/ftlh3Sd2tpaHD58\nGLNmzcLhw4fRuXNnLF68WHZYLaqpqcHOnTsxZswY2aE06/jx41i+fDlKSkpQUVGB6upqvPnmmy1u\nLzXR+/r6orS0tOHr0tJS+Pn5SYzI+V25cgUPPPAAJk6ciLS0NNnhtMnLywtJSUn47LPPZIdynUOH\nDiE3Nxe9e/dGRkYG9uzZg0mTJskOq0U9e/YEAHTv3h2jRo1CQUGB5Iiu5+fnBz8/P9x5550AgPT0\ndBw+fFhyVC3bvXs37rjjDnTv3l12KM367LPPMGjQINx8881wc3PD6NGjcejQoRa3l5roY2NjUVxc\njJKSEtTU1GDLli1ITU2VGZJTU1UV06ZNQ3h4OObNmyc7nBadOXMGVVVVAIBLly7hgw8+QExMjOSo\nrpednY3S0lKcOHECmzdvxr333otNmzbJDqtZFy9exPnz5wEAFy5cwPvvv6+7EWI9evSAv78/jh49\nCkD0vyMiIiRH1bKcnBxkZGTIDqNFoaGhyM/Px6VLl6CqKj788MPW258OuEDcql27dqkhISFqYGCg\nmp2dLTucZo0fP17t2bOn2qlTJ9XPz09dt26d7JCatX//flVRFDUqKkqNjo5Wo6Oj1d27d8sOq4l/\n/vOfakxMjBoVFaVGRkaqf/nLX2SH1Cqz2azrUTffffedGhUVpUZFRakRERG6PY+++OILNTY2Vu3X\nr586atQo3Y66qa6uVm+++Wb1p59+kh1Kq5YsWaKGh4erffv2VSdNmqTW1NS0uC1vmCIiMjj9Dycg\nIiKbMNETERkcEz0RkcEx0RMRGRwTPRGRwTHRExEZHBM9EZHBMdETERnc/wPWoCKwND/XUgAAAABJ\nRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x5b10e30>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEACAYAAAC9Gb03AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1QVPe5B/DvIjgdo9H6jizJGgQBRSBFGDOXzFpduEhw\nCjFKtDE1CWNMTW9TJxrHmxEnF8RknGkrptNq1Sb1EpvMeLEBd3zpbGJNmL0KsUk0xlQdkRXH1qtR\niUHw3D82Sxf3/bzseft+Zphhd8/ueTTh8cfzPOd3LIIgCCAiIsNKUDsAIiJSFhM9EZHBMdETERkc\nEz0RkcEx0RMRGRwTPRGRwUlO9E6nE5mZmUhPT8emTZuCHvOzn/0M6enpyM3NRUdHh9RTEhFRDCQl\n+v7+fqxcuRJOpxMnT55EU1MTTp06NeiY1tZWfPXVVzhz5gx+97vfYcWKFZICJiKi2EhK9G63G1Om\nTIHNZkNSUhKqq6vR3Nw86Jh9+/bh6aefBgAUFRXh2rVruHz5spTTEhFRDCQl+q6uLqSmpg48tlqt\n6OrqinjMxYsXpZyWiIhiICnRWyyWqI67d5eFaN9HRETSJUp5c0pKCjo7Owced3Z2wmq1hj3m4sWL\nSElJCfgsy2gL8H9SoiEiMp+0tDR89dVX4Q8SJLhz547w0EMPCefOnRO+/fZbITc3Vzh58uSgY1pa\nWoSysjJBEATh448/FoqKioJ+FgDhm2+kRBMf69evVzuEiPQQoyAwTrkxTnlpOc7VqwWhrEwQ+vu9\nuTMSSSv6xMRENDY2orS0FP39/Xj22WeRlZWF3/72twCA5cuXY968eWhtbcWUKVNw3333YefOnSE/\nb98+YOFCKRERERlbSwvQ1AS0twMJURbfJSV6ACgrK0NZWdmg55YvXz7ocWNjY1SftWsXEz0RUSid\nncCzzwLvvQeMHRv9+zR1ZWxbG+DxqB1FeHa7Xe0QItJDjADjlBvjlJfW4rxzB6iuBl56Cfi3f4vt\nvRZB0MaNRywWC557TkB6OrB6tdrREBFpy5o1wKefAu+/P7hkY7FYAiYb76WpFf1PfuIt32jjnx4i\nIm3w1eXfeiv6urw/TSX6Rx7x/nryv/+rdiRERNrgq8v/93/HVpf3p6lEb7H8a1VPRGR2Uury/jRV\noxcEARcuAPn5QFcX8L3vqR0VEZF6QtXl/emuRg8ADzwAPPywd6aeiMispNbl/Wku0QMs3xCRuclR\nl/enudINAPT0AFYr8NlnwKRJKgdGRBRHd+4Adjswf763dBOJLks3ADBsGPD448Af/6h2JERE8fWf\n/wmMHAm8/LJ8n6nJRA9wpp6IzEfOurw/zSZ6ztQTkZnIXZf3p9lEz5l6IjILueblQ9FkM9aHM/VE\nZAbRzMuHottmrA9n6onI6JSqy/vTdKIHWL4hIuNSsi7vT9OlG4Az9URkTLHOy4ei+9INwJl6IjIm\nJeblQ9F8ogc4U09ExhKPurw/0ae4evUqHA4HMjIyUFJSgmvXrgU9zmazYcaMGcjPz0dhYaGoc3Gm\nnoiMIl51eX+iE31DQwMcDge+/PJLzJkzBw0NDUGPs1gscLlc6OjogNvtFnUuztQTkREoPS8fiuhm\nbGZmJj744ANMmDAB3d3dsNvt+OKLLwKOmzx5Mo4dO4YxY8aEDyRCQ4Ez9USkd1Lm5UNRtBl7+fJl\nTJgwAQAwYcIEXL58OWQQc+fORUFBAbZt2yb2dJypJyJdi3dd3l9iuBcdDge6u7sDnq+rqxv02GKx\nwGKxBP2Mo0ePIjk5GVeuXIHD4UBmZiaKi4tFBesr3yxcKOrtRESq8NXl33svfnV5f2ET/cGDB0O+\n5ivZTJw4EZcuXcL48eODHpecnAwAGDduHCorK+F2u0Mm+tra2oHv7XY77Hb7oNcrK4EXXwQ8Hs7U\nE5E+yF2Xd7lccLlcMb1HdI1+9erVGDNmDNasWYOGhgZcu3YtoCHb09OD/v5+jBgxArdu3UJJSQnW\nr1+PkpKSwECiqDMBQE0NkJ4OrF4tJmoiovhSoi7vL5rcKTrRX716FQsXLsSFCxdgs9nwpz/9CaNG\njYLH40FNTQ1aWlpw9uxZVFVVAQD6+vqwZMkSrF27VnSwAHD0qDfZf/65dxqHiEirWlqAFSuA9nbl\nSjaKJnq5RZvoBQHIyAB27wZEjuUTESmusxOYOdNbl1dylNIQWyDcizP1RKR1as3Lh6K7FT3AmXoi\n0jal6/L+DLmiBzhTT0Tapea8fCgaCSN2LN8QkdaosY9NNHRZugG4Tz0RaYtc+8vHyrClG4D71BOR\ntsRzf/lY6TbRA9ynnoi0QYt1eX8aDCl63KeeiNSm1bq8P10nes7UE5GatDYvH4pum7E+nKknIrXE\nc14+FEM3Y304U09EatB6Xd6fxsOLDss3RBRPeqjL+9N96QbgTD0RxY9a8/KhmKJ0A3CmnojiR8vz\n8qEYItEDnKknIuXpqS7vT0ehhseZetKLu3e9X6QveqvL+zNMoudMPenFf/wHUFwMfP212pFQtPQy\nLx+KIZqxPpypJ607fhx47DGgrAz44gvA6QTuv1/tqCgSLczLh2KaZqwPZ+pJy+7eBV54AaivB7Zv\nB3JzgX//d67stU6vdXl/osN+9913MW3aNAwZMgTt7e0hj3M6ncjMzER6ejo2bdok9nRRY/mGtGrH\nDmDIEODpp70JY+tWJnut03Nd3p/oRJ+Tk4O9e/fi0UcfDXlMf38/Vq5cCafTiZMnT6KpqQmnTp0S\ne8qoVFYCbW2Ax6PoaYhicvUqsG6dN7n7VoVM9tqm97q8P9GJPjMzExkZGWGPcbvdmDJlCmw2G5KS\nklBdXY3m5maxp4wKZ+pJi9atA554wttD8sdkr116nJcPRdGKU1dXF1JTUwceW61WdHV1KXlKAJyp\nJ205fhz4n/8BXnst+OtM9tpjhLq8v8RwLzocDnR3dwc8X19fj4qKiogfbrFYYgqmtrZ24Hu73Q67\n3R7T+338Z+oLC0V9BJEs/Buw3/9+6ON8yf6nP/Ume07jqMdXl3/vPW3W5V0uF1wuV0zvCZvoDx48\nKCUepKSkoLOzc+BxZ2cnrFZryOP9E70U/jP1TPSkJv8GbCRM9urTQ13+3kXwhg0bIr5Hll9KQs1w\nFhQU4MyZMzh//jx6e3uxZ88ezJ8/X45TRvTUU8CePcDt23E5HVGAYA3YSFjGUZeR6vL+RCf6vXv3\nIjU1FW1tbSgvL0dZWRkAwOPxoLy8HACQmJiIxsZGlJaWIjs7G4sWLUJWVpY8kUfAmXpSW6gGbCRM\n9uowWl3en6GujL3X7t3er9ZWWT+WKCLfFbAnT4avzYdz9663jHPiBMs4SuvsBGbO9NbltVqyCSWa\n3GnoRM996kkNd+8Cs2YBzz8PLFsm/bOY7JWltf3lY2W6LRDuxZl6UkMsDdhIWMZRnlHr8v4MvaIH\ngKNHgZoa4PPPvdM4REq6ehXIyvKuvmOtzYfDlb0yWlqAFSuA9nZtjlJGw/QreoD71FN8iW3ARsKV\nvfyMso9NNAyf6LlPPcVLpCtgpWKyl48e5uXlZPjSDcB96kl5cjZgozkXyzjSaHl/+VixdPMdztST\n0uRswEbClb00Rp6XD8UUK3qAM/WkHKUasJFwZR87Pc/Lh2L6OXp/nKknpaxY4V3NNzbG/9xM9tHT\n+7x8KEz096ipAdLTgdWrFT0NmYgcV8BKxWQfHSPV5f2xRn8P7lNPcop2C2KlsWYfmRnr8v5M9Ufm\nTD3JKZ4N2EiY7EMz07x8KKZK9JypJ7mI2YJYaUz2gcw2Lx+KqWr0AGfqSR5qNmAjYc3+X4xal/fH\nGn0QnKknqZS+AlYqruy9zF6X92fKPz7LNySWVhqwkZg92bMuP5gpE31lJdDWBng8akdCeqOlBmwk\nZk32rMsHMl2N3ocz9RQrta6AlcpsNXsz1OX98YKpMLhPPcVKyw3YSMyS7I2wv3ysFG3Gvvvuu5g2\nbRqGDBmC9vb2kMfZbDbMmDED+fn5KCwsFHs62XGmnmKh9QZsJGYo47AuH5roRJ+Tk4O9e/fi0Ucf\nDXucxWKBy+VCR0cH3G632NPJjjP1FC29NGAjMXKyZ10+PNGJPjMzExkZGVEdq5HqUICnngL27AFu\n31Y7EtIyPTVgIzFqsjfDfV+lULxVYbFYMHfuXBQUFGDbtm1Kny4mnKmnSLR4BaxURkv2nJePLDHc\niw6HA93d3QHP19fXo6KiIqoTHD16FMnJybhy5QocDgcyMzNRXFwc9Nja2tqB7+12O+x2e1TnkMJX\nvlm4UPFTkQ4pdQ9YtfmS/U9/6k32em3Q+ury771nnrq8y+WCy+WK6T2Sp25mz56NzZs34+GHH454\n7IYNGzB8+HCsWrUqMJA4T934cJ96CkULWxArTc/TOEbdXz5WcdsCIdRJenp6cOPGDQDArVu3cODA\nAeTk5MhxStkMGwY8/jjwxz+qHQlpiVEasJHouYzDunz0RCf6vXv3IjU1FW1tbSgvL0dZWRkAwOPx\noLy8HADQ3d2N4uJi5OXloaioCI899hhKSkrkiVxG3Kee7mWkBmwkekz2rMvHxrQXTPkTBCAjw3tP\nWQ2N+pNK9HoFrFR6KeMY8b6vUnD3yihxpp78GbUBG4keVvaclxeHK/rvcJ96AszRgI1Eyyt7s+1j\nEw2u6GPAmXoySwM2Eq2u7FmXF49/XX5YvjE3MzVgI9Fasuc+NtKwdOOHM/XmZdYGbCRaKONwXj48\nlm5ixJl68zJrAzYSLazsOS8vHVf09+A+9eZz7Ji3AXvqlLlr8+GotbI34/7yseKKXgTuU28uvgS2\ncSOTfDhqrOxZl5cPE/09OFNvLmzARi+eyZ7z8vJi6SYIztSbAxuw4sSjjMN5+eixdCMSZ+rNgQ1Y\ncZRe2XNeXn5c0Yewe7f3q7VV7UhICWzASqfEyp772MQumtzJRB8CZ+qN6+5dYNYs4PnngWXL1I5G\n3+RM9pyXF4elGwk4U29cbMDKR84yDufllcMVfRicqTceNmCVIXVlz3l58biil4gz9cbDBqwypKzs\nOS+vPK7oI6ir845Zvvmm2pGQVGzAKi/WlT3r8tKxGSsDztQbAxuw8RNLsue8vHQs3ciAM/XGwAZs\n/ERbxuG8fPyI/ut9+eWXkZWVhdzcXFRVVeH69etBj3M6ncjMzER6ejo2bdokOlA1cUsEfbt61Vub\n37qVCSVeIiV71uXjS3Tp5uDBg5gzZw4SEhLwyiuvAAAaGhoGHdPf34+pU6fi0KFDSElJwcyZM9HU\n1ISsrKzAQDRaugE4U693K1Z4V/ONjWpHYj7Byjisy8tL0dKNw+FAwnfLo6KiIly8eDHgGLfbjSlT\npsBmsyEpKQnV1dVobm4We0rVcKZev44dA/buBV57Te1IzCnYyp7z8vEnyy+yO3bswLx58wKe7+rq\nQmpq6sBjq9WKrq4uOU4Zd77yjUZ/6aAguAWxNvgn+6Ii1uXVkBjuRYfDge7u7oDn6+vrUVFRAQCo\nq6vD0KFDsXjx4oDjLDFeZVRbWzvwvd1uh91uj+n9SvKfqS8sVDsaigYbsNrhS/b/9V9AaSnr8lK4\nXC64XK6Y3iNpvHLXrl3Ytm0bDh8+jO8FmT1sa2tDbW0tnE4nAGDjxo1ISEjAmiCFOS3X6H04U68f\nvAKWzELROXqn04lVq1bhgw8+wNgQ/zz39fVh6tSpOHz4MCZNmoTCwkJdNmN9OFOvH2zAklko2ox9\n8cUXcfPmTTgcDuTn5+OFF14AAHg8HpSXlwMAEhMT0djYiNLSUmRnZ2PRokVBk7xecKZeH9iAJRqM\nV8bGiPvUaxuvgCWz4ZWxCqisBNraAI9H7UgoGDZgiQIx0ceIM/XaxStgiYJj6UYE7lOvTWzAkhlF\nkzvDztFTcJyp1x5fA/bUKbUjIdIe/oIrgsXCjc60hFfAEoXH0o1InKnXju3bvU3Yv/6VtXkyH07d\nKIgz9drABixRZPzRkIDlG/XxHrBEkbF0IwH3qVcX7wFLxNKN4jhTrx42YImix0QvEfepVwevgCWK\nHhO9RP4z9RQfbMASxYY/JhJxpj7+2IAlig2bsTLgTH38sAFLNBibsXHCmfr4YAOWSBwmepmwfKM8\nNmCJxGHpRiacqVcW7wFLFBxLN3HEmXplsQFLJB5X9DLiPvXKYAOWKDRFV/Qvv/wysrKykJubi6qq\nKly/fj3ocTabDTNmzEB+fj4KDb55O2fq5ccGLJF0ohN9SUkJPv/8c5w4cQIZGRnYuHFj0OMsFgtc\nLhc6OjrgdrtFB6oHnKmXHxuwRNKJTvQOhwMJ312WWFRUhIsXL4Y8Vu8lmVg89RSwZw9w+7bakegf\nr4AlkocsPz47duzAvHnzgr5msVgwd+5cFBQUYNu2bXKcTtM4Uy8fNmCJ5BH2nrEOhwPd3d0Bz9fX\n16OiogIAUFdXh6FDh2Lx4sVBP+Po0aNITk7GlStX4HA4kJmZieLi4qDH1tbWDnxvt9tht9uj/GNo\ni698s3Ch2pHoF+8BSxScy+WCy+WK6T2Spm527dqFbdu24fDhw/heFNf+b9iwAcOHD8eqVasCAzHA\n1I0PZ+qluXsXmDULeP55YNkytaMh0jZFp26cTifeeOMNNDc3h0zyPT09uHHjBgDg1q1bOHDgAHJy\ncsSeUjc4Uy8NG7BE8hK9ok9PT0dvby9Gjx4NAJg1axbefPNNeDwe1NTUoKWlBWfPnkVVVRUAoK+v\nD0uWLMHatWuDB2KgFT3AmXqxeAUsUWyiyZ28YEohggBkZAC7dwMGv3xAVitWeFfzjY1qR0KkD9Hk\nzrDNWBLPf6aeiT46bMASKYMregVxn/rosQFLJA43NVMZZ+qjxwYskXKY6BXGLREi4xWwRMpi6UZh\nnKmPjA1YIvFYutEAztSH52vAvvaa2pEQGRcTfRz4yjcG/IVFEm5BTBQfTPRxwH3qg2MDlig+mOjj\ngPvUB2IDlih+2IyNE87UD8YGLJE82IzVEM7U/wsbsETxxUQfRyzfsAFLpAYm+jiqrATa2gCPR+1I\n1MMGLFH8MdHHkdln6tmAJVIHm7FxZuZ96tmAJZIftynWIP+ZejNtX8wtiInUw1+g48yMM/VswBKp\ni6UbFZhtpn77dm8T9q9/ZW2eSG6co9coM83UswFLpD7RP3qvvvoqcnNzkZeXhzlz5qCzszPocU6n\nE5mZmUhPT8emTZtEB2o0ZinfrFsHPPEEb/RNpCbRpZsbN25gxIgRAIAtW7bgxIkT2L59+6Bj+vv7\nMXXqVBw6dAgpKSmYOXMmmpqakJWVFRiIiUo3gDn2qT92DHjsMW8DlrV5ImUoWrrxJXkAuHnzJsaO\nHRtwjNvtxpQpU2Cz2ZCUlITq6mo0NzeLPaWhGH2mng1YIu2QVDVdt24dHnjgAfzhD3/AK6+8EvB6\nV1cXUlNTBx5brVZ0dXVJOaWhGHmfel4BS6QdYefoHQ4Huru7A56vr69HRUUF6urqUFdXh4aGBrz0\n0kvYuXPnoOMsMV4RVFtbO/C93W6H3W6P6f16Y9SZel8D1ulkA5ZIbi6XCy6XK6b3yDJeeeHCBcyb\nNw+fffbZoOfb2tpQW1sLp9MJANi4cSMSEhKwZs2awEBMVqP3qavzjlm++abakciHV8ASxY+iNfoz\nZ84MfN/c3Iz8IGMVBQUFOHPmDM6fP4/e3l7s2bMH8+fPF3tKQ3rqKWDPHuD2bbUjkQe3ICbSHtGJ\nfu3atcjJyUFeXh5cLhc2b94MAPB4PCgvLwcAJCYmorGxEaWlpcjOzsaiRYuCTtyYmZFm6tmAJdIm\nXhmrAbt3e79aW9WORBpeAUsUf9HkTiZ6DTDCTP3Vq0BWlrcBy4ujiOKHWyDohBFm6nkFLJF2cUWv\nEXrep55XwBKphyt6HfGfqdcTNmCJtI+JXiP0uk89r4Al0j6WbjREb/vUswFLpD6WbnRGbzP1bMAS\n6QNX9Bqjl5l6NmCJtIFz9Dqkh5n6u3eBWbOA558Hli1TOxoic2PpRof0MFPPBiyRvnBFr0Fanqln\nA5ZIW7ii1yktz9SzAUukP2FvPELq8J+p19INSXxbEJ86pXYkRBQLlm40Smsz9WzAEmkTSzc6prWZ\nejZgifSLiV7DtLIlgu8esFu3cp95Ij1i6UbDtDJTz3vAEmkXSzc6p4WZet4Dlkj/RK/oX331Vezb\ntw8WiwVjxozBrl27kJqaGnCczWbD/fffjyFDhiApKQlutzt4IFzRB6XmTD0bsETap+gWCDdu3MCI\nESMAAFu2bMGJEyewffv2gOMmT56M48ePY/To0ZKDNSNBADIyvPvfxHvUkveAJdI+RUs3viQPADdv\n3sTYsWNDHssELp5a+9SzAUtkHJKasevWrcPbb7+NYcOGoa2tDaNGjQo45qGHHsLIkSMxZMgQLF++\nHDU1NcED4Yo+JDVm6tmAJdIHyaUbh8OB7u7ugOfr6+tRUVEx8LihoQGnT5/Gzp07A469dOkSkpOT\nceXKFTgcDmzZsgXFxcWigjUzh8Nbq1+4UPlzcQtiIv2IJneG3QLh4MGDUZ1o8eLFmDdvXtDXkpOT\nAQDjxo1DZWUl3G530EQPALW1tQPf2+122O32qM5vBr7yjdKJnveAJdI2l8sFl8sV03tEl27OnDmD\n9PR0AN5mrNvtxttvvz3omJ6eHvT392PEiBG4desWSkpKsH79epSUlAQGwhV9WPGaqWcDlkhfFJ26\nWbBgAU6fPo0hQ4YgLS0Nv/nNbzB+/Hh4PB7U1NSgpaUFZ8+eRVVVFQCgr68PS5Yswdq1a0UHa3Y1\nNUB6OrB6tTKfzy2IifSHd5gyGKVn6tmAJdIfyTV60hb/ferlnqnnFsRExsUqrI4oNVPPBiyRsbF0\nozNKzNSzAUukX9zUzIDk3qeeV8ASGR9/tHVIzvIN7wFLZHws3eiQXDP1vAKWSP9YujEoOfapZwOW\nyDyY6HXKV74R+0sQ7wFLZB5M9DrlP1MfKzZgicyFP+Y6JWWmng1YInNhM1bHxMzUswFLZCxsxhpc\nrDP1bMASmRMTvc7FUr5hA5bInFi60bloZ+q5BTGRMbF0YwLRztSzAUtkXlzRG0CkferZgCUyLq7o\nTSLcTD0bsETERG8A4Wbq2YAlIpZuDCLYTD0bsETGF5fSzebNm5GQkICrV68Gfd3pdCIzMxPp6enY\ntGmT1NNRCMFm6tmAJSJAYqLv7OzEwYMH8eCDDwZ9vb+/HytXroTT6cTJkyfR1NSEUzq/KanL5VI7\nhJB85RuXyzVwD9jXXlM7qtC0/Hfpj3HKi3HGn6RE/4tf/AKvv/56yNfdbjemTJkCm82GpKQkVFdX\no7m5WcopVafl//iVlUBbG7Bvn0sXDVgt/136Y5zyYpzxJzrRNzc3w2q1YsaMGSGP6erqQmpq6sBj\nq9WKrq4usaekCHwz9e+8wwYsEf1LYrgXHQ4Huru7A56vq6vDxo0bceDAgYHngjUDLMGGuklRP/mJ\n92bfLS3cgpiIviOI8Omnnwrjx48XbDabYLPZhMTEROHBBx8ULl++POi4jz/+WCgtLR14XF9fLzQ0\nNAT9zLS0NAEAv/jFL37xK4avtLS0iDlblvHKyZMn4/jx4xg9evSg5/v6+jB16lQcPnwYkyZNQmFh\nIZqampCVlSX1lEREFCVZfrn3L9F4PB6Ul5cDABITE9HY2IjS0lJkZ2dj0aJFTPJERHGmmQumiIhI\nGaq36/RwQdUzzzyDCRMmICcnR+1Qwurs7MTs2bMxbdo0TJ8+Hb/+9a/VDimo27dvo6ioCHl5ecjO\nzsbatWvVDimk/v5+5Ofno6KiQu1QwrLZbJgxYwby8/NRWFiodjhBXbt2DQsWLEBWVhays7PR1tam\ndkgBTp8+jfz8/IGvkSNHavbnaOPGjZg2bRpycnKwePFifPvtt6EPFtOMlUtfX5+QlpYmnDt3Tujt\n7RVyc3OFkydPqhlSUB9++KHQ3t4uTJ8+Xe1Qwrp06ZLQ0dEhCIIg3LhxQ8jIyNDk36cgCMKtW7cE\nQRCEO3fuCEVFRcKRI0dUjii4zZs3C4sXLxYqKirUDiUsm80m/POf/1Q7jLCWLl0q/P73vxcEwfvf\n/dq1aypHFF5/f78wceJE4cKFC2qHEuDcuXPC5MmThdu3bwuCIAgLFy4Udu3aFfJ4VVf0ermgqri4\nGN/X8pVH35k4cSLy8vIAAMOHD0dWVhY8Ho/KUQU3bNgwAEBvby/6+/sDGvlacPHiRbS2tuK5557T\nxT5MWo7x+vXrOHLkCJ555hkA3v7dyJEjVY4qvEOHDiEtLW3QtUBacf/99yMpKQk9PT3o6+tDT08P\nUlJSQh6vaqLnBVXKOX/+PDo6OlBUVKR2KEHdvXsXeXl5mDBhAmbPno3s7Gy1Qwrw0ksv4Y033kCC\nDi5IsFgsmDt3LgoKCrBt2za1wwlw7tw5jBs3DsuWLcPDDz+Mmpoa9PT0qB1WWO+88w4WL16sdhhB\njR49GqtWrcIDDzyASZMmYdSoUZg7d27I41X9P5gXVCnj5s2bWLBgAX71q19h+PDhaocTVEJCAj75\n5BNcvHgRH374oeYuN3///fcxfvx45Ofna3ql7HP06FF0dHRg//792Lp1K44cOaJ2SIP09fWhvb0d\nL7zwAtrb23HfffehoaFB7bBC6u3txZ///Gc88cQTaocS1N///nf88pe/xPnz5+HxeHDz5k3s3r07\n5PGqJvqUlBR0dnYOPO7s7ITValUxIv27c+cOHn/8cfz4xz/Gj370I7XDiWjkyJEoLy/HsWPH1A5l\nkI8++gj79u3D5MmT8eSTT+Ivf/kLli5dqnZYISUnJwMAxo0bh8rKSrjdbpUjGsxqtcJqtWLmzJkA\ngAULFqC9vV3lqELbv38/fvCDH2DcuHFqhxLUsWPH8Mgjj2DMmDFITExEVVUVPvroo5DHq5roCwoK\ncObMGZw/fx69vb3Ys2cP5s+fr2ZIuiYIAp599llkZ2fj5z//udrhhPSPf/wD165dAwB88803OHjw\nIPI1tpdyfX09Ojs7ce7cObzzzjv44Q9/iLfeekvtsILq6enBjRs3AAC3bt3CgQMHNDchNnHiRKSm\npuLLL79w2+YHAAABEklEQVQE4K1/T5s2TeWoQmtqasKTTz6pdhghZWZmoq2tDd988w0EQcChQ4fC\nlz/j0CAOq7W1VcjIyBDS0tKE+vp6tcMJqrq6WkhOThaGDh0qWK1WYceOHWqHFNSRI0cEi8Ui5Obm\nCnl5eUJeXp6wf/9+tcMK8Le//U3Iz88XcnNzhZycHOH1119XO6SwXC6Xpqduzp49K+Tm5gq5ubnC\ntGnTNPtz9MknnwgFBQXCjBkzhMrKSs1O3dy8eVMYM2aM8PXXX6sdSlibNm0SsrOzhenTpwtLly4V\nent7Qx7LC6aIiAxO++MEREQkCRM9EZHBMdETERkcEz0RkcEx0RMRGRwTPRGRwTHRExEZHBM9EZHB\n/T/kZq6+7dkZ0AAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x5baadb0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The graphs are the solutions\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file