diff options
author | debashisdeb | 2014-06-20 15:42:42 +0530 |
---|---|---|
committer | debashisdeb | 2014-06-20 15:42:42 +0530 |
commit | 83c1bfceb1b681b4bb7253b47491be2d8b2014a1 (patch) | |
tree | f54eab21dd3d725d64a495fcd47c00d37abed004 /Engineering_Heat_Transfer/CHAPTER8.ipynb | |
parent | a78126bbe4443e9526a64df9d8245c4af8843044 (diff) | |
download | Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.tar.gz Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.tar.bz2 Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.zip |
removing problem statements
Diffstat (limited to 'Engineering_Heat_Transfer/CHAPTER8.ipynb')
-rw-r--r-- | Engineering_Heat_Transfer/CHAPTER8.ipynb | 46 |
1 files changed, 0 insertions, 46 deletions
diff --git a/Engineering_Heat_Transfer/CHAPTER8.ipynb b/Engineering_Heat_Transfer/CHAPTER8.ipynb index a70f7944..759f39bd 100644 --- a/Engineering_Heat_Transfer/CHAPTER8.ipynb +++ b/Engineering_Heat_Transfer/CHAPTER8.ipynb @@ -27,10 +27,7 @@ "cell_type": "code",
"collapsed": false,
"input": [
- "# Determination of the heat transferred to the wall.\n",
"\n",
- "#Given\n",
- "# air properties at (400+120)/2 =260 degree F = 720 degree R from Appendix Table D1\n",
"rou= 0.0551 # density in Ibm/cu.ft \n",
"cp=0.2420 # specific heat BTU/(lbm-degree Rankine) \n",
"v= 27.88e-5 # viscosity in sq.ft/s \n",
@@ -41,8 +38,6 @@ "Tw=400.0+460.0 # inside wall temperature in degree R\n",
"Beta=1/T_inf\n",
"\n",
- "#IN THE BOOK THERE IS CALCULATION MISTAKE IN Beta\n",
- "#Accoding to book Beta=0.00116 /R\n",
"Beta_=0.00116\n",
"gc=32.2\n",
"L=1.0 # length of wall in ft\n",
@@ -53,7 +48,6 @@ "A=L*W # cross sectional area in sq.ft\n",
"qw=hL*A*(Tw-T_inf)\n",
"\n",
- "#Result\n",
"print\"The heat transferred is\",round(qw,0),\"BTU/hr\"\n"
],
"language": "python",
@@ -81,10 +75,7 @@ "cell_type": "code",
"collapsed": false,
"input": [
- "# Determination of heat lost through the glass per unit area\n",
"\n",
- "#Given\n",
- "# properties of air at 0 + 273 K=273 K from appendix table D1\n",
"rou1=1.295 # density in kg/cu.m\n",
"cp1=1005.5 # specific heat in J/(kg*K) \n",
"v1=12.59e-6 # viscosity in sq.m/s \n",
@@ -94,7 +85,6 @@ "T_inf1=0 # inside and outside temperature in K\n",
"Beta1=1/(T_inf1+273.0) # volumetric thermal expansion coefficient at 295 K and 273 K\n",
"\n",
- "# properties of air at 22 + 273 = 295 K = 300 K(approx) \n",
"rou2=1.177 # density in kg/cu.m\n",
"cp2=1005 # specific heat in J/(kg*K) \n",
"v2=15.68e-6 # viscosity in sq.m/s \n",
@@ -108,7 +98,6 @@ "t=0.005 # thickness of glass\n",
"L=0.60 # window length in m\n",
"k=0.81 # thermal conductivity of glass from appendix table B3\n",
- "# for first guess\n",
"Tw1=18\n",
"Tw2=4\n",
"Ra1=(g*Beta1*(Tw2-T_inf1)*L**3)/(v1*a1)\n",
@@ -119,18 +108,15 @@ "Tw2_=T_inf2-(q1/hL2)\n",
"Tw1_=q1/hL1+T_inf1\n",
"\n",
- "#Using these temprature as second estimates\n",
"Ra1_=3.7*10**8\n",
"hL1_=2.92\n",
"Ra2_=2.31*10**8\n",
"hL2_=2.80\n",
"q2=(T_inf2-T_inf1)/((1/hL2_)+(t/k)+(1/hL1_))\n",
"\n",
- "#The wall temprature are\n",
"Tw2final=q2-T_inf2\n",
"Tw1final=10.7\n",
"\n",
- "#result\n",
"print\"The heat loss is \",round(q2,1),\" W/sq.m\"\n",
"\n",
"\n"
@@ -160,9 +146,7 @@ "cell_type": "code",
"collapsed": false,
"input": [
- "# determination of heat loss through the side.\n",
"\n",
- "#Given\n",
"rou= 0.0735 # density in Ibm/cu.ft \n",
"cp=0.240 # specific heat BTU/(lbm-degree Rankine) \n",
"v= 16.88e-5 # viscosity in sq.ft/s \n",
@@ -179,7 +163,6 @@ "hc=(kf/L)*(0.825+((0.387*(Ra)**(1/6.0))/(1+(0.492/Pr)**(9/16.0))**(8/27.0)))**2\n",
"q=hc*L*W*(Tw-T_inf)\n",
"\n",
- "#Result\n",
"print\"The heat gained is %d BTU/hr\",round(q,0),\"BTU/hr\"\n"
],
"language": "python",
@@ -207,8 +190,6 @@ "cell_type": "code",
"collapsed": false,
"input": [
- "# Determination of the variation of average convection coefficient with distance\n",
- "# properties of air at (65 + 20)/2 = 42.5 degree C =315 K. from appendix table D1\n",
"rou= 1123 # density in kg/m^3 \n",
"cp= 1006.7 # specific heat in J/(kg*K) \n",
"v= 17.204e-6 # vismath.cosity in m^2/s \n",
@@ -222,9 +203,7 @@ "Tw=65 # roof surface temperature in degree C\n",
"Beta=1/(T_inf+273.0) # volumetric thermal math.expansion coefficient in per K\n",
"\n",
- "#Calculation\n",
"import math\n",
- "# determination of Laminar-turbulent transition length by Vliet equation Ra=3x10^5xmath.exp(0.1368math.cos(90-theta))\n",
"x=((3e5*math.exp(0.1368*math.cos(90-theta))*v*a)/(g*math.cos(theta)*Beta*(Tw-T_inf)))**(1/3.0)\n",
"x=0.051\n",
"print\"The Laminar-turbulent transition length by Vliet equation is \",round(x,3),\"m\\n\\n\"\n",
@@ -290,10 +269,7 @@ "cell_type": "code",
"collapsed": false,
"input": [
- "# determine if heat is lost lose more heat through its upper surface or one of its vertical sides\n",
"\n",
- "#Given\n",
- "# properties of air at (100 + 60)/2 = 80\u00b0F = 540 degree R from appendix table D1\n",
"rou= 0.0735 # density in lbm/cu.ft\n",
"cp=0.240 # specific heat BTU/(lbm-degree Rankine) \n",
"v= 16.88e-5 # viscosity in sq.ft/s \n",
@@ -306,18 +282,15 @@ "L=2.0 # length in ft\n",
"W=2.0 # width in ft\n",
"\n",
- "#Calculation\n",
"Beta=1/(T_inf+460.0) # volumetric thermal expansion coefficient in per degree Rankine\n",
"Ra=(g*Beta*(Tw-T_inf)*L**3)/(v*a/3600.0)\n",
"hc=(kf/L)*(0.68+(0.670*Ra**(0.25))/(1+(0.492/Pr)**(9/16.0))**(4/9.0))\n",
"q1side=hc*L*W*(Tw-T_inf)\n",
- "# For the top, we have a heated surface facing upward, The characteristic length is determined as follows\n",
"Lc=0.5\n",
"Ra_L=(g*Beta*(Tw-T_inf)*Lc**3)/(v*a/3600.0) # Rayleigh number based on characteristic length\n",
"hc_L=(kf/Lc)*0.54*(Ra_L)**(1/4.0)\n",
"qtop=hc_L*L*W*(Tw-T_inf)\n",
"\n",
- "#Result\n",
"print\"The heat transferred from one side is \",round(q1side,1),\"BTU/hr\"\n",
"print\"The heat transferred from top is \",round(qtop,0),\"BTU/hr\"\n",
"\n",
@@ -355,10 +328,7 @@ "cell_type": "code",
"collapsed": false,
"input": [
- "# determination of heat lost from the insulation by convection\n",
"\n",
- "#Given\n",
- "# properties of air at (50 + 5)/2 = 27.5 degree C = 300 K from appendix table D1\n",
"rou= 1.177 # density in kg/cu.m\n",
"cp= 1005.7 # specific heat in J/(kg*K) \n",
"v= 15.68e-6 # viscosity in sq.m/s \n",
@@ -371,20 +341,16 @@ "T_inf=5.0 # ambient air temperature in degree C\n",
"Tw=50.0 # outside surface temperature in degree C\n",
"\n",
- "#Calculation\n",
"import math\n",
"Beta=1/(T_inf+273.0) # volumetric thermal expansion coefficient in per K\n",
"Ra=(g*Beta*(Tw-T_inf)*D**3)/(v*a)\n",
- "# for horizontal pipe, the convective coefficient is determined as follows\n",
"hc_h=(kf/D)*(0.60+(0.387*Ra**(1/6.0))/(1+(0.559/Pr)**(9/16.0))**(8/27.0))**2\n",
"As=math.pi*D*L\n",
"q_hor=hc_h*As*(Tw-T_inf)\n",
- "# for vertical pipe, the convective coefficient is determined as follows\n",
"hc_v=(kf/D)*0.6*(Ra*(D/L))**(1/4.0)\n",
"q_ver=hc_v*As*(Tw-T_inf)\n",
"q=round(q_ver,0)+round(q_hor,0)\n",
"\n",
- "#Result\n",
"print\"The heat transferred from the horizontal length of 4 m is \",round(q_hor,0),\"W\"\n",
"print\"The heat transferred from the vertical length of 4 m is \",round(q_ver,0),\"W\"\n",
"print\"nThe total heat lost from the pipe is \",round(q,2),\"W\"\n"
@@ -416,10 +382,7 @@ "cell_type": "code",
"collapsed": false,
"input": [
- "# Determinion of the convection coefficient about the ice cube\n",
"\n",
- "#Given\n",
- "# properties of air at (0 + 70)/2 = 35\u00b0F == 495 degree R from appendix table D1\n",
"rou= 0.0809 # density in lbm/cu.ft \n",
"cp=0.240 # specific heat BTU/(lbm-degree Rankine) \n",
"v= 13.54e-5 # viscosity in sq.ft/s \n",
@@ -430,12 +393,10 @@ "T_inf=70.0 # ambient temperature in degree F\n",
"g=32.2\n",
"Beta=1/(T_inf+460.0) # volumetric thermal expansion coefficient in per degree Rankine\n",
- "# The characteristic length is found by using King Equation\n",
"Lc=1/((1/1)+(1/1.2))\n",
"Ra=(g*Beta*abs(Tw-T_inf)*Lc**3)/(v*a/3600.0)\n",
"hc=(kf/Lc)*0.6*(Ra)**(1/4.0)\n",
"\n",
- "#Result\n",
"print\"The value of convection coefficient is \",round(hc,2),\"BTU/(hr.sq.ft.degree R)\"\n"
],
"language": "python",
@@ -463,10 +424,7 @@ "cell_type": "code",
"collapsed": false,
"input": [
- "# determination of the maximum amount of heat that fins can transfer\n",
"\n",
- "#Given\n",
- "# properties of air at (100 + 35)/2 = 67.5 degree C from appendix table D1\n",
"rou= 0.998 # density in kg/cu.m\n",
"cp= 1009.0 # specific heat in J/(kg*K) \n",
"v= 20.76e-6 # viscosity in sq.m/s \n",
@@ -477,7 +435,6 @@ "T_inf=35 # ambient air temperature in degree C\n",
"Tw=100 # surface temperature in degree C\n",
"Beta=1/(T_inf+273.0) # volumetric thermal expansion coefficient in per K\n",
- "# properties of aluminium from appendix table B1\n",
"rou_Al=2702 # density in kg/cu.m\n",
"k_Al=236 # thermal conductivity in W/(m.K)\n",
"cp_Al=896 # specific heat in J/(kg*K) \n",
@@ -485,15 +442,12 @@ "b=46/100.0\n",
"w=24/100.0\n",
"\n",
- "#Calculation\n",
- "# Applying the Bar-Cohen Equations\n",
"zeta=((w*v**2)/(g*Beta*(Tw-T_inf)*Pr))**(1/4.0)\n",
"L=1.54*(k_Al/kf)**(1/2)*zeta\n",
"S=2.89*zeta\n",
"q=(b*w*(Tw-T_inf)*1.3*(k_Al*kf)**(1/2.0))/(6*zeta)\n",
"N=b/(2*S)\n",
"\n",
- "#result\n",
"print\"The heat transfer rate is \",round(q,0),\"W\"\n",
"print\"The number of fins can be atmost\",round(N,0)\n",
"\n"
|