summaryrefslogtreecommitdiff
path: root/Engineering_Economics_by_R_Panneerselvam/Chapter10_1.ipynb
diff options
context:
space:
mode:
authorThomas Stephen Lee2015-09-04 22:04:10 +0530
committerThomas Stephen Lee2015-09-04 22:04:10 +0530
commit41f1f72e9502f5c3de6ca16b303803dfcf1df594 (patch)
treef4bf726a3e3ce5d7d9ee3781cbacfe3116115a2c /Engineering_Economics_by_R_Panneerselvam/Chapter10_1.ipynb
parent9c9779ba21b9bedde88e1e8216f9e3b4f8650b0e (diff)
downloadPython-Textbook-Companions-41f1f72e9502f5c3de6ca16b303803dfcf1df594.tar.gz
Python-Textbook-Companions-41f1f72e9502f5c3de6ca16b303803dfcf1df594.tar.bz2
Python-Textbook-Companions-41f1f72e9502f5c3de6ca16b303803dfcf1df594.zip
add/remove/update books
Diffstat (limited to 'Engineering_Economics_by_R_Panneerselvam/Chapter10_1.ipynb')
-rwxr-xr-xEngineering_Economics_by_R_Panneerselvam/Chapter10_1.ipynb125
1 files changed, 125 insertions, 0 deletions
diff --git a/Engineering_Economics_by_R_Panneerselvam/Chapter10_1.ipynb b/Engineering_Economics_by_R_Panneerselvam/Chapter10_1.ipynb
new file mode 100755
index 00000000..8a14db85
--- /dev/null
+++ b/Engineering_Economics_by_R_Panneerselvam/Chapter10_1.ipynb
@@ -0,0 +1,125 @@
+{
+ "metadata": {
+ "name": "EE-10"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": "Evaluation of Public Alternatives"
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 10.1 Page 138"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#initiation of variable\nIi=4000000.0;#in Rs.\nAM=150000.0;#in Rs.\nAFS=600000.0;#in Rs.\nEinc=50000.0;#in Rs.\ni=12.0;#in % per annum\nn=15.0;#in years\n\n#calculation\nCp=AM*(((1+i/100)**n)-1)/((i/100)*(1+i/100)**n);#in Rs\nTPW=Ii+Cp;#in RS\n\n#result\nprint \"Total present worth of costs in RS. : \",round(TPW,3);\n\n#Total present worth of fuel savings:\nAI=600000.0;#in Rs.\nG=50000.0;#in Rs.\ni=12.0;#in % per annum\nn=15.0;#in years\n\n#calculation\nA=AI+G*(((1+i/100)**n)-i*n/100-1)/(((i/100)*(1+i/100)**n)-i/100);#in RS\nBp=A*(((1+i/100)**n)-1)/((i/100)*(1+i/100)**n);#in Rs.\nBCratio=Bp/(Ii+Cp);#unitless\n\n#result\nprint \"Present worth of fuel savings in Rs. : \",round(Bp,3);\nprint \"BCratio : \",round(BCratio,3);\nprint\"Since BC ratio is more than 1, the construction of the bridge across the river is justified.\";",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Total present worth of costs in RS. : 5021629.673\nPresent worth of fuel savings in Rs. : 5782527.265\nBCratio : 1.152\nSince BC ratio is more than 1, the construction of the bridge across the river is justified.\n"
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 10.2 Page 139"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#initiation of variable\nIc=80000000.0;#in Rs.\nAps=6000000.0;#in Rs.\nAfs=3000000.0;#in Rs.\nAib=5000000.0;#in Rs.\nArb=2000000.0;#in Rs.\nAmc=3000000.0;#in Rs.\ni=12.0;#in % per annum\nn=50.0;#in years\n\n#calculation\nTAB=Afs+Aib+Arb;#in Rs.\nPW_B=TAB*(((1+i/100)**n)-1)/((i/100)*(1+i/100)**n);#in Rs\n\n#result\nprint \"Total present worth of benefits in RS. : \",round(PW_B,3);\n\n#Present worth of costs:\nPW_C=Ic+Amc*(((1+i/100)**n)-1)/((i/100)*(1+i/100)**n)-Aps*(((1+i/100)**n)-1)/((i/100)*(1+i/100)**n);#in RS\nBCratio=PW_B/PW_C;#unitless\n\n#result\nprint \"Present worth of costs in Rs. : \",round(PW_C,3);\nprint \"BCratio : \",round(BCratio,3);\nprint \"Since BC ratio is more than 1, the state govt. can implement the hydroelectric project.\";",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Total present worth of benefits in RS. : 83044984.884\nPresent worth of costs in Rs. : 55086504.535\nBCratio : 1.508\nSince BC ratio is more than 1, the state govt. can implement the hydroelectric project.\n"
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": "Example 10.3 Page 140"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#initiation of variable\n#alternative 1\nP=3000000.0;#in Rs.\nB=900000.0;#in Rs.\ni=10.0;#in % per annum\nn=5.0;#in years\n\n#calculation\nAE1=P*((i/100)*(1+i/100)**n)/(((1+i/100)**n)-1);#in Rs\nBCratio=B/AE1;#unitless\n\n#result\nprint \"Annual equivalent of initial cost in Rs. : \",round(AE1,3);\nprint \"BCratio : \",round(BCratio,3);\n\n#Alternative A2 : \nP=6000000.0;#in Rs.\nB=1500000.0;#in Rs.\ni=10.0;#in % per annum\nn=7.0;#in years\n\n#calculation\nAE2=P*((i/100)*(1+i/100)**n)/(((1+i/100)**n)-1);#in Rs\nBCratio=B/AE2;#unitless\n\n#result\nprint \"Annual equivalent of initial cost in Rs. : \",round(AE2,3);\nprint \"BCratio : \",round(BCratio,3);\nprint \"The benefit cost ratio of alternative 2 is more than that of alternative A1. Hence, alternative A2 is to be selected. The comparisoon is made on a 35 years period which is the minimum common multiple of the lives of alternative 1 and 2\";",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Annual equivalent of initial cost in Rs. : 791392.442\nBCratio : 1.137\nAnnual equivalent of initial cost in Rs. : 1232432.998\nBCratio : 1.217\nThe benefit cost ratio of alternative 2 is more than that of alternative A1. Hence, alternative A2 is to be selected. The comparisoon is made on a 35 years period which is the minimum common multiple of the lives of alternative 1 and 2\n"
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 10.4 Page 141"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#initiation of variable\n#cost of the state\nn=20.0;#in years\nP=2500000000.0;#in Rs.\nAgt=10000000.0;#in Rs.\nAi=1000000.0;#in Rs.\nCom=48000.0;#in Rs./year/employee\nC1=Com*300;#in Rs.\ni=10.0;#in % per annum\n\n#calculation\nC2=P*((i/100)*(1+i/100)**n)/(((1+i/100)**n)-1);#in Rs\nCA=C2+C1;#in Rs\n\n#result\nprint \"Annual equivalent initial cost in Rs. : \",round(C2,3);\nprint \"Total Annual equivalent cost of the project in Rs. : \",round(CA,3);\n\n#Benefit to the state : \nW=30000000.0;#in Rs.\nA1=W*((i/100)*(1+i/100)**n)/(((1+i/100)**n)-1);#in Rs.\nAgpy=10000000.0;#in ton/year\nA2=Agpy*(30-10);#in Rs.\nAvgAI=1000000.0;#in tons Km.\nG=20000000.0;#in Rs.\n\n#calculation\nA3=A2+G*(((1+i/100)**n)-i*n/100-1)/(((i/100)*(1+i/100)**n)-i/100) ;#in Rs.\nBA=A1+A3;#in Rs\nBCratio=BA/CA;#unitless\nprint \"Annual equivalent average of transport cost saving in Rs. : \",round(A3,3);\nprint \"Total annual equivalent benefits to the state : \",round(BA,3);\nprint \"BCratio : \",round(BCratio,3);\nprint \"The benefit cost ratio is more than 1,the project is justified.\";",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Annual equivalent initial cost in Rs. : 293649061.931\nTotal Annual equivalent cost of the project in Rs. : 308049061.931\nAnnual equivalent average of transport cost saving in Rs. : 330161500.91\nTotal annual equivalent benefits to the state : 333685289.653\nBCratio : 1.083\nThe benefit cost ratio is more than 1,the project is justified.\n"
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": "Example 10.5 Page 143"
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": "#initiation of variable\n#project A\ni=9.0;#% per annum\nn=50.0;#in years\nP_A=150000000.0;#in RS.\nFcs_A=2500000;#in Rs.\nIb_A=3500000;#in Rs.\nRb_A=1000000;#in RS.\nOMC_A=2000000.0;#in Rs.\nPsy_A=10000000.0;#in Rs.\n\n#calculation\nAE_A=P_A*((i/100)*(1+i/100)**n)/(((1+i/100)**n)-1);\nCpy_A=AE_A+OMC_A-Psy_A;#in Rs.\nBpy_A=Fcs_A+Ib_A+Rb_A;#in Rs.\nBCratio_A=Bpy_A/Cpy_A;#unitless\n\n#result\nprint \"Costs/year : \",round(Cpy_A,3);\nprint \"Benefits/year : \",round(Bpy_A,3);\nprint \"BC Ratio of project A : \",round(BCratio_A,3)\n\n\n#Project B : \nP_B=250000000.0;#in Rs.\n\nOMC_B=2500000.0;#in Rs.\nPsy_B=12000000.0;#in Rs.\nFcs_B=3500000.0;#in Rs.\nIb_B=4500000.0;#in Rs.\nRb_B=2000000.0;#in RS.\nAE_B=P_B*((i/100)*(1+i/100)**n)/(((1+i/100)**n)-1);\nCpy_B=AE_B+OMC_B-Psy_B;#in Rs.\nBpy_B=Fcs_B+Ib_B+Rb_B;#in Rs.\nBCratio_B=Bpy_B/Cpy_B;#unitless\n\n#result\nprint \"Costs/year : \",round(Cpy_B,3);\nprint \"Benefits/year : \",round(Bpy_B,3);\nprint \"BC Ratio of project B : \",round(BCratio_B,3)\n\n#Project C : \nP_C=400000000.0;#in Rs.\nOMC_C=3500000.0;#in Rs.\nPsy_C=18000000.0;#in Rs.\nFcs_C=5000000.0;#in Rs.\nIb_C=6000000.0;#in Rs.\nRb_C=3500000.0;#in RS.\nAE_C=P_C*((i/100)*(1+i/100)**n)/(((1+i/100)**n)-1);\nBpy_C=Fcs_C+Ib_C+Rb_C;#in Rs.\nCpy_C=AE_C+OMC_C-Psy_C;#in Rs.\nBCratio_C=Bpy_C/Cpy_C;#unitless\n\n#result\nprint \"Costs/year : \",round(Cpy_C,3);\nprint \"Benefits/year : \",round(Bpy_C,3);\nprint \"BC Ratio of project C : \",round(BCratio_C,3)\nprint\"From the computations it is clear that only alternative A is eligible because other two alternatives have BC ratio less than one.\"",
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": "Costs/year : 5684030.212\nBenefits/year : 7000000.0\nBC Ratio of project A : 1.232\nCosts/year : 13306717.021\nBenefits/year : 10000000.0\nBC Ratio of project B : 0.752\nCosts/year : 21990747.233\nBenefits/year : 14500000.0\nBC Ratio of project C : 0.659\nFrom the computations it is clear that only alternative A is eligible because other two alternatives have BC ratio less than one.\n"
+ }
+ ],
+ "prompt_number": 8
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file