diff options
author | hardythe1 | 2015-04-07 15:58:05 +0530 |
---|---|---|
committer | hardythe1 | 2015-04-07 15:58:05 +0530 |
commit | c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131 (patch) | |
tree | 725a7d43dc1687edf95bc36d39bebc3000f1de8f /Engineering_Economics/Chapter7.ipynb | |
parent | 62aa228e2519ac7b7f1aef53001f2f2e988a6eb1 (diff) | |
download | Python-Textbook-Companions-c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131.tar.gz Python-Textbook-Companions-c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131.tar.bz2 Python-Textbook-Companions-c7fe425ef3c5e8804f2f5de3d8fffedf5e2f1131.zip |
added books
Diffstat (limited to 'Engineering_Economics/Chapter7.ipynb')
-rwxr-xr-x | Engineering_Economics/Chapter7.ipynb | 125 |
1 files changed, 125 insertions, 0 deletions
diff --git a/Engineering_Economics/Chapter7.ipynb b/Engineering_Economics/Chapter7.ipynb new file mode 100755 index 00000000..827a806e --- /dev/null +++ b/Engineering_Economics/Chapter7.ipynb @@ -0,0 +1,125 @@ +{ + "metadata": { + "name": "EE-7" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": "Rate of Return Method" + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example 7.1 Page 89" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#initiation of vriable\nIi=100000.0;#in Rs\nAr=30000.0;#in Rs\nn=5.0;#in years\ni1=10.0;#in % per annum\n\n#calcualton\nPW1=-Ii+Ar*(((1+i1/100)**n)-1)/((i1/100)*(1+i1/100)**n);#in RS\n\n#result\nprint \"The present worth for i=10% in RS. \",round(PW1,3);\n\n#calcualtion\ni2=15.0;#in % per annum\nPW2=-Ii+Ar*(((1+i2/100)**n)-1)/((i2/100)*(1+i2/100)**n);#in RS\n\n#result\nprint \"The present worth for i=15% in RS. \",round(PW2,3);\n\n#calculation\ni3=18.0;#in % per annum\nPW3=-Ii+Ar*(((1+i3/100)**n)-1)/((i3/100)*(1+i3/100)**n);#in RS\ni=15+(PW2-0)*(i3-i2)/(PW2-PW3);#in Rs\n\n#result\nprint \"The present worth for i=18% in RS. \",round(PW3,3)\nprint \"Present worth for i=15% is suitable.\";\nprint \"Therefore, the rate of return for the new business in % per annum \",round(i,3);", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "The present worth for i=10% in RS. 13723.603\nThe present worth for i=15% in RS. 564.653\nThe present worth for i=18% in RS. -6184.869\nPresent worth for i=15% is suitable.\nTherefore, the rate of return for the new business in % per annum 15.251\n" + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example 7.2 Page 90" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#initiation of variable\nIo=2000000.0;#in Rs\nANP=350000.0;#in Rs\nS=0.0;#in Rs\nn=10.0;#in years\ni1=10.0;#in % per annum\n\n#calcualtion\nPW1=-Io+ANP*(((1+i1/100)**n)-1)/((i1/100)*(1+i1/100)**n);#in RS\n\n#result\nprint \"The present worth for i=10% in RS. \",round(PW1,3);\n\n#calculation\ni2=12.0;#in % per annum\nPW2=-Io+ANP*(((1+i2/100)**n)-1)/((i2/100)*(1+i2/100)**n);#in RS\ni=10+(PW1-0)*(i2-i1)/(PW1-PW2);#in Rs.\n\n#result\nprint \"The present worth for i=15% in RS. \",round(PW2,3);\nprint \"Present worth for i=10% is suitable.\";\nprint \"Therefore, the rate of return for the new business in % per annum \",round(i,3);", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "The present worth for i=10% in RS. 150598.487\nThe present worth for i=15% in RS. -22421.94\nPresent worth for i=10% is suitable.\nTherefore, the rate of return for the new business in % per annum 11.741\n" + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example 7.3 Page 91" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#initiation of variable\n#alternate 1\nIo=150000.0;#in Rs\nAp=45570.0;#in Rs\nn=5.0;#in years\n\n#calculation\ni1=10.0;#in % per annum\nPW1=-Io+Ap*(((1+i1/100)**n)-1)/((i1/100)*(1+i1/100)**n);#in RS\ni2=12.0;#in % per annum\nPW2=-Io+Ap*(((1+i2/100)**n)-1)/((i2/100)*(1+i2/100)**n);#in RS\ni3=15.0;#in % per annum\nPW3=-Io+Ap*(((1+i3/100)**n)-1)/((i3/100)*(1+i3/100)**n);#in RS\ni4=18.0;#in % per annum\nPW4=-Io+Ap*(((1+i4/100)**n)-1)/((i4/100)*(1+i4/100)**n);#in RS\ni=i3+(PW3-0)*(i4-i3)/(PW3-PW4);#in Rs.\n\n#result\nprint \"The present worth for i=10% in RS. \",round(PW1,3);\nprint \"The present worth for i=12% in RS. \",round(PW2,3);\nprint \"The present worth for i=15% in RS. \",round(PW3,3);\nprint \"The present worth for i=18% in RS. \",round(PW4,3);\nprint\"Present worth for i=15% is suitable.\";\nprint \"Therefore, the rate of return of alternative in % per annum :\",round(i,3);\n\n#alternative 2\nIo=210000.0;#in Rs\nAp=58260.0;#in Rs\nn=5.0;#in years\ni1=12.0;#in % per annum\n\n#calcualtion\nPW1=-Io+Ap*(((1+i1/100)**n)-1)/((i1/100)*(1+i1/100)**n);#in RS\ni2=13.0;#in % per annum\nPW2=-Io+Ap*(((1+i2/100)**n)-1)/((i2/100)*(1+i2/100)**n);#in RS\ni=i1+(PW1-0)*(i2-i1)/(PW1-PW2);#in Rs.\n\n#result\nprint \"The present worth for i=12% in RS. \",round(PW1,3);\nprint \"The present worth for i=13% in RS. \",round(PW2,3);\nprint\"Present worth for i=12% is suitable.\";\nprint \"Therefore, the rate of return of alternative in % per annum :\",round(i,3);\n\n#Alternative 3:\nIo=255000.0;#in Rs\nAp=69000.0;#in Rs\nn=5.0;#in years\ni1=11.0;#in % per annum\nPW1=-Io+Ap*(((1+i1/100)**n)-1)/((i1/100)*(1+i1/100)**n);#in RS\ni2=12.0;#in % per annum\nPW2=-Io+Ap*(((1+i2/100)**n)-1)/((i2/100)*(1+i2/100)**n);#in RS\ni=i1+(PW1-0)*(i2-i1)/(PW1-PW2);#in Rs.\n\n#result\nprint \"The present worth for i=11% in RS. \",round(PW1,3);\nprint \"The present worth for i=12% in RS. \",round(PW2,3);\nprint\"Present worth for i=12% is suitable.\";\nprint \"Therefore, the rate of return of alternative in % per annum :\",round(i,3);\nprint\"It is clear that rate of return for alternative 3v is less than the minimum attractive rate of return of 12 %. So it should not be considered for comparison. the remaining two alternatives are qualified for consideration. Among the alternatives 1 and 2, the rate of return of 1 is greater than that of 2. hence,alternative 1 should be selected. \";", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "The present worth for i=10% in RS. 22746.153\nThe present worth for i=12% in RS. 14269.652\nThe present worth for i=15% in RS. 2757.708\nThe present worth for i=18% in RS. -7494.817\nPresent worth for i=15% is suitable.\nTherefore, the rate of return of alternative in % per annum : 15.807\nThe present worth for i=12% in RS. 14.262\nThe present worth for i=13% in RS. -5086.107\nPresent worth for i=12% is suitable.\nTherefore, the rate of return of alternative in % per annum : 12.003\nThe present worth for i=11% in RS. 16.894\nThe present worth for i=12% in RS. -6270.442\nPresent worth for i=12% is suitable.\nTherefore, the rate of return of alternative in % per annum : 11.003\nIt is clear that rate of return for alternative 3v is less than the minimum attractive rate of return of 12 %. So it should not be considered for comparison. the remaining two alternatives are qualified for consideration. Among the alternatives 1 and 2, the rate of return of 1 is greater than that of 2. hence,alternative 1 should be selected. \n" + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example 7.4 Page 94" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#initiation of variable\nA0=-1275.0;#in Rs\nA1=150.0;#in Rs\nG=150.0;#in Rs\ni=10.0;#in % per annum\nn=5.0;#in years\n\n#calcualtion\nA=A1+G*(((1+i/100)**n)-i*n/100-1)/(((i/100)*(1+i/100)**n)-i/100) ;#in RS\ni1=10.0;#in % per annum\nPW1=A0+(A1+G*(((1+i1/100)**n)-i1*n/100-1)/(((i1/100)*(1+i1/100)**n)-i1/100))*(((1+i1/100)**n)-1)/((i1/100)*(1+i1/100)**n);#i1n Rs.\ni2=12.0;#i2n % per annum\nPW2=A0+(A1+G*(((1+i2/100)**n)-i2*n/100-1)/(((i2/100)*(1+i2/100)**n)-i2/100))*(((1+i2/100)**n)-1)/((i2/100)*(1+i2/100)**n);#i2n Rs.\ni3=15.0;#i3n % per annum\nPW3=A0+(A1+G*(((1+i3/100)**n)-i3*n/100-1)/(((i3/100)*(1+i3/100)**n)-i3/100))*(((1+i3/100)**n)-1)/((i3/100)*(1+i3/100)**n);#i3n Rs.\ni4=18.0;#in % per annum\nPW4=A0+(A1+G*(((1+i4/100)**n)-i4*n/100-1)/(((i4/100)*(1+i4/100)**n)-i4/100))*(((1+i4/100)**n)-1)/((i4/100)*(1+i4/100)**n);#in Rs.\ni=i3+(PW3-0)*(i4-i3)/(PW3-PW4);#in Rs.\n\n#result\nprint \"The annual equivalent of the positive cash flows in RS. : \",round(A,3);\nprint \"PW(10)\",round(PW1,3);\nprint \"PW(12)\",round(PW2,3);\nprint \"PW(15)\",round(PW3,3);\nprint \"PW(18)\",round(PW1,4);\nprint\"Present worth for i=15% is suitable.\";\nprint \"Therefore, the rate of return for the given cash flow in % per annum :\",round(i,3);", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "The annual equivalent of the positive cash flows in RS. : 421.519\nPW(10) 322.888\nPW(12) 225.269\nPW(15) 94.095\nPW(18) 322.8882\nPresent worth for i=15% is suitable.\nTherefore, the rate of return for the given cash flow in % per annum : 17.448\n" + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": "Example 7.5 Page 95" + }, + { + "cell_type": "code", + "collapsed": false, + "input": "#initiation of variable\n#alternative 1\nIo=500000.0;#in Rs\nAr=170000.0;#in Rs\nn=5.0;#in years\ni1=15.0;#in % per annum\n\n#calculation\nPW1=-Io+Ar*(((1+i1/100)**n)-1)/((i1/100)*(1+i1/100)**n);#in RS\ni2=17.0;#in % per annum\nPW2=-Io+Ar*(((1+i2/100)**n)-1)/((i2/100)*(1+i2/100)**n);#in RS\ni3=20.0;#in % per annum\nPW3=-Io+Ar*(((1+i3/100)**n)-1)/((i3/100)*(1+i3/100)**n);#in RS\ni4=22.0;#in % per annum\nPW4=-Io+Ar*(((1+i4/100)**n)-1)/((i4/100)*(1+i4/100)**n);#in RS\ni=i3+(PW3-0)*(i4-i3)/(PW3-PW4);#in Rs.\n\n#result\nprint \"The present worth(PW(15%)) for i=10% in RS. \",round(PW1,3);\nprint \"The present worth(PW(17%)) for i=10% in RS. \",round(PW2,3);\nprint \"The present worth(PW(20%)) for i=10% in RS. \",round(PW3,3);\nprint \"The present worth(PW(22%)) for i=10% in RS. \",round(PW4,3);\nprint \"Present worth for i=15% is suitable.\";\nprint \"Therefore, the rate of return of alternative 1 in % per annum \",round(i,3);\n\n#altenative 2\nIo=800000.0;#in Rs\nAr=270000.0;#in Rs\nn=5.0;#in years\ni3=20.0;#in % per annum\n\n#calculation\nPW3=-Io+Ar*(((1+i3/100)**n)-1)/((i3/100)*(1+i3/100)**n);#in RS\ni4=22.0;#in % per annum\nPW4=-Io+Ar*(((1+i4/100)**n)-1)/((i4/100)*(1+i4/100)**n);#in RS\ni=i3+(PW3-0)*(i4-i3)/(PW3-PW4);#in Rs.\n\n#result\nprint \"The present worth(PW(20%)) for i=10% in RS. \",round(PW3,3);\nprint \"The present worth(PW(22%)) for i=10% in RS. \",round(PW4,3);\nprint \"Present worth for i=15% is suitable.\";\nprint \"Therefore, the rate of return of alternative 2 in % per annum \",round(i,3);\nprint \"Since the rate of return of alternative 1 is greater than that of the alternative 2, select alternative 1. \";", + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": "The present worth(PW(15%)) for i=10% in RS. 69866.367\nThe present worth(PW(17%)) for i=10% in RS. 43888.848\nThe present worth(PW(20%)) for i=10% in RS. 8404.064\nThe present worth(PW(22%)) for i=10% in RS. -13181.241\nPresent worth for i=15% is suitable.\nTherefore, the rate of return of alternative 1 in % per annum 20.779\nThe present worth(PW(20%)) for i=10% in RS. 7465.278\nThe present worth(PW(22%)) for i=10% in RS. -26817.264\nPresent worth for i=15% is suitable.\nTherefore, the rate of return of alternative 2 in % per annum 20.436\nSince the rate of return of alternative 1 is greater than that of the alternative 2, select alternative 1. \n" + } + ], + "prompt_number": 11 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |