diff options
author | debashisdeb | 2014-06-20 15:42:42 +0530 |
---|---|---|
committer | debashisdeb | 2014-06-20 15:42:42 +0530 |
commit | 83c1bfceb1b681b4bb7253b47491be2d8b2014a1 (patch) | |
tree | f54eab21dd3d725d64a495fcd47c00d37abed004 /Elements_of_Electromagnetics/chapter_4.ipynb | |
parent | a78126bbe4443e9526a64df9d8245c4af8843044 (diff) | |
download | Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.tar.gz Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.tar.bz2 Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.zip |
removing problem statements
Diffstat (limited to 'Elements_of_Electromagnetics/chapter_4.ipynb')
-rw-r--r-- | Elements_of_Electromagnetics/chapter_4.ipynb | 1349 |
1 files changed, 651 insertions, 698 deletions
diff --git a/Elements_of_Electromagnetics/chapter_4.ipynb b/Elements_of_Electromagnetics/chapter_4.ipynb index 14ac4af2..d64b61ce 100644 --- a/Elements_of_Electromagnetics/chapter_4.ipynb +++ b/Elements_of_Electromagnetics/chapter_4.ipynb @@ -1,699 +1,652 @@ -{
- "metadata": {
- "name": "chapter_4.ipynb"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h1>Chapter 4: Electrostatic Fields<h1>"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 4.1, Page number: 107<h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "'''\n",
- "Point charges 1 mC and -2 mC are located at (3,2,-1) and (-1,-1,4),\n",
- "respectively. Calculate the electric force on a 10 nC charge located\n",
- "at (0,3,1) and the electric field intensity at that point. '''\n",
- "\n",
- "import scipy\n",
- "from numpy import *\n",
- "\n",
- "#Variable Declaration\n",
- "\n",
- "ax=array([1,0,0]) #Unit vector along x direction\n",
- "ay=array([0,1,0]) #Unit vector along y direction\n",
- "az=array([0,0,1]) #Unit vector along z direction\n",
- "Q1=1*10**-3 #charge 1 at (-1,-1,4) in C\n",
- "Q2=-2*10**-3 #charge 2 at (3,2,-1) in C\n",
- "Q=10*10**-9 #charge 3 at (0,3,1) in C\n",
- "P1=array([0,3,1])-array([3,2,-1]) #distance vector from charge 3 to 1\n",
- "P2=array([0,3,1])-array([-1,-1,4]) #distance vector from charge 3 to 2\n",
- "e=10**-9/(36*scipy.pi) #permittivity in Farad/m \n",
- "\n",
- "#Calculations\n",
- "\n",
- "modP1=scipy.sqrt(dot(P1,P1))\n",
- "modP2=scipy.sqrt(dot(P2,P2))\n",
- "F1=(Q*Q1)*P1*10**3/(4*scipy.pi*e*modP1**3) #force on charge 3 by 1 in mN\n",
- "F2=(Q*Q2)*P2*10**3/(4*scipy.pi*e*modP2**3) #force on charge 3 by 2 in mN\n",
- "\n",
- " #Total force on charge 3\n",
- " \n",
- "Fx=round(dot(F1+F2,ax),3)\n",
- "Fy=round(dot(F1+F2,ay),3)\n",
- "Fz=round(dot(F1+F2,az),3)\n",
- "F=array([Fx,Fy,Fz]) #Total force in mN\n",
- "E=(10**-6)*(F/Q) #Electric field in kV/m\n",
- "\n",
- "#Results \n",
- "\n",
- "print 'Total force on charge at (0,3,1) =',F,'in mN'\n",
- "print 'Electric field at (0,3,1) =',E,'kV/m'"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Total force on charge at (0,3,1) = [-6.512 -3.713 7.509] in mN\n",
- "Electric field at (0,3,1) = [-651.2 -371.3 750.9] kV/m\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 4.3, Page number: 109"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "'''\n",
- "A practical application of electrostatics is in electrostatic separation of solids. For example, \n",
- "Florida phosphate ore, consisting of small panicles of quartz and phosphate rock, can be \n",
- "separated into its components by applying a uniform electric field as in Figure 4.4. Assum- \n",
- "ing zero initial velocity and displacement, determine the separation between the particles \n",
- "after falling 80 cm. Take E = 500 kV/m and Q/m = 9 microC/kg for both positively and neg- \n",
- "atively charged particles. '''\n",
- "\n",
- "import scipy\n",
- "#Variable Declaration\n",
- "\n",
- "E=500*10**3 #electric field in V/m\n",
- "Qm=9*10**-6 #Q/m in C/kg\n",
- "y=0.8 #distance fallen in m\n",
- "g=9.8 #acceleration due to gravity in m/s^2\n",
- "\n",
- "#Calculations\n",
- "\n",
- "t=scipy.sqrt(2*y/g) #time taken to fall in seconds\n",
- "x=Qm*E*t**2/2 #half the separation between particles in m\n",
- "sep=2*x #separation between particles in m\n",
- "\n",
- "#Result\n",
- "\n",
- "print 'The separation between particles is',round(sep*100,2),'cm'\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The separation between particles is 73.47 cm\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 4.5, Page number: 120"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "'''\n",
- "The finite sheet 0 <= x <= 1, 0 <= y <= 1 on the z = 0 plane has a charge density \n",
- "Ps=xy(x^2 + y^2 + 25)^3/2 nC/m^2 . Find \n",
- "\u001f\u001d",
- "(a) The total charge on the sheet \n",
- "(b) The e1ectric field at (0, 0, 5) \n",
- "(c) The force experienced by a -1 mC charge located at (0, 0, 5) '''\n",
- "\n",
- "import scipy\n",
- "import scipy.integrate\n",
- "\n",
- "#Variable Declaration\n",
- "\n",
- "Eo=10**-9/(36*scipy.pi) #permittivity of free space\n",
- "ax=array([1,0,0]) #Unit vector along x direction\n",
- "ay=array([0,1,0]) #Unit vector along y direction\n",
- "az=array([0,0,1]) #Unit vector along z direction\n",
- "q=-1 #charge in mC\n",
- "\n",
- "#Calculations\n",
- "\n",
- "def charge(x,y): \n",
- " return x*y*(x**2+y**2+25)**(1.5)\n",
- "Q, errq = scipy.integrate.dblquad(lambda y , x: charge(x,y), #total charge in nC\n",
- " 0, 1, lambda y: 0, lambda y: 1) \n",
- "\n",
- "d=(4*scipy.pi*Eo*(x**2+y**2+25)**(1.5))\n",
- "\n",
- "def elecx(x,y): \n",
- " return 10**-9*x*y*(x**2+y**2+25)**(1.5)*(-x)/d #x component of electric field\n",
- "Ex, errx = scipy.integrate.dblquad(lambda y , x: elecx(x,y), \n",
- " 0, 1, lambda y: 0, lambda y: 1) \n",
- "\n",
- "def elecy(x,y): \n",
- " return 10**-9*x*y*(x**2+y**2+25)**(1.5)*(-y)/d #y component of electric field\n",
- "Ey, erry = scipy.integrate.dblquad(lambda y , x: elecy(x,y), \n",
- " 0, 1, lambda y: 0, lambda y: 1) \n",
- "\n",
- "def elecz(x,y): \n",
- " return 10**-9*x*y*(5)/(4*scipy.pi*Eo) #z component of electric field\n",
- "Ez, errz = scipy.integrate.dblquad(lambda y , x: elecz(x,y), \n",
- " 0, 1, lambda y: 0, lambda y: 1) \n",
- "\n",
- "E=array([round(Ex,1),round(Ey,1),round(Ez,2)]) #electric field in V/m\n",
- "\n",
- "F=q*E #force in mN \n",
- "\n",
- "#Results\n",
- "\n",
- "print 'Total charge =',round(Q,2),'nC'\n",
- "print 'Electric field at (0,0,5) =',E,'V/m'\n",
- "print 'Force experienced by -1mC =',F,'mN'"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Total charge = 33.15 nC\n",
- "Electric field at (0,0,5) = [ -1.5 -1.5 11.25] V/m\n",
- "Force experienced by -1mC = [ 1.5 1.5 -11.25] mN\n"
- ]
- }
- ],
- "prompt_number": 10
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 4.6, Page number: 121<h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "'''\n",
- "Planes x=2 and y=-3, respectively, carry charges 10 nC/m^2 and 15 nC/m^2 .\n",
- "If the line x=0, z=2 carries charge 10 pi nC/m, calculate E at (1,1,-1)\n",
- "due to the three charge distributions. '''\n",
- "\n",
- "import scipy\n",
- "from numpy import *\n",
- "\n",
- "#Variable Declaration\n",
- "\n",
- "ax=array([1,0,0]) #Unit vector along x direction\n",
- "ay=array([0,1,0]) #Unit vector along y direction\n",
- "az=array([0,0,1]) #Unit vector along z direction\n",
- "ps1=10*10**-9 #Surface charge density of plane 1\n",
- "ps2=15*10**-9 #Surface charge density of plane 2\n",
- "pl=10*scipy.pi*10**-9 #charge density of line\n",
- "e=(10**-9)/(36*scipy.pi) #permittivity of free space in Farad/m\n",
- "\n",
- "#Calculations\n",
- "\n",
- "E1=(ps1/(2*e))*-ax/scipy.pi #field due to plane 1 in multiples of pi in V/m\n",
- "E2=(ps2/(2*e))*ay/scipy.pi #field due to plane 2 in multiples of pi in V/m\n",
- "\n",
- " #field due to line charge in multiples of pi in V/m\n",
- " \n",
- "a=(ax-3*az) \n",
- "moda=scipy.sqrt(dot((ax-3*az),(ax-3*az)))\n",
- "e3=(pl/(2*scipy.pi*e*moda**2))*a\n",
- "E3=array([dot(e3,ax)/scipy.pi,0,dot(e3,az)/scipy.pi])\n",
- "\n",
- " #total field in multiples of pi in V/m\n",
- " \n",
- "E=E1+E2+E3 \n",
- "\n",
- "#Result\n",
- "\n",
- "print 'The total electric field at (1,1,-1) =',E,'Pi V/m'"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The total electric field at (1,1,-1) = [-162. 270. -54.] Pi V/m\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 4.7, Page number: 123<h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "'''\n",
- "Determine D at (4, 0, 3) if there is a point charge - 5pi mC\n",
- "at (4, 0, 0) and a line charge 3pi mC/m along the y-axis. '''\n",
- "\n",
- "import scipy\n",
- "from numpy import *\n",
- "\n",
- "#Variable Declaration\n",
- "\n",
- "ax=array([1,0,0]) #Unit vector along x direction\n",
- "ay=array([0,1,0]) #Unit vector along y direction\n",
- "az=array([0,0,1]) #Unit vector along z direction\n",
- "Q=-5*scipy.pi*10**-3 #charge at (4,0,0) in C\n",
- "pl=3*scipy.pi*10**-3 #charge density of line charge in C/m\n",
- "r=array([4,0,3]) #point where D is to be found \n",
- "rp=array([4,0,0]) #position of point charge\n",
- "\n",
- "#Calculations \n",
- "\n",
- "R=r-rp \n",
- "modR=scipy.sqrt(dot(R,R)) \n",
- "Dq=(Q*R)/(4*scipy.pi*modR**3) #flux density due to point charge in C/m^2\n",
- "p=scipy.sqrt(dot(r,r))\n",
- "ap=r/p \n",
- "Dl=(pl/(2*scipy.pi*p))*ap #flux density due to line charge in C/m^2\n",
- "D=(Dq+Dl)*10**6 #total flux density in micro C/m^2\n",
- "Dz=round(dot(D,az),0)\n",
- "Dx=round(dot(D,ax),0)\n",
- "Dy=round(dot(D,ay),0)\n",
- "Dround=array([Dx,Dy,Dz]) #value of D rounded to 0 decimal points\n",
- "\n",
- "#Result\n",
- "\n",
- "print 'D at (4,0,0) due to point charge and line charge =',Dround,'micro C/m^2'\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "D at (4,0,0) due to point charge and line charge = [ 240. 0. 41.] micro C/m^2\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 4.8, Page number: 130<h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "'''\n",
- "Given that D = zp cos^2(phi) a_z C/m^2 , calculate the charge density \n",
- "at (1,pi/4, 3) and the total charge enclosed by the cylinder of \n",
- "radius 1 m with -2< Z <2 m. '''\n",
- "\n",
- "import scipy\n",
- "from numpy import *\n",
- "import scipy.integrate\n",
- "from fractions import Fraction\n",
- "\n",
- "#Variable Declaration\n",
- "\n",
- "ap=array([1,0,0]) #Unit vector along rho direction\n",
- "aph=array([0,1,0]) #Unit vector along phi direction\n",
- "az=array([0,0,1]) #Unit vector along z direction\n",
- "point=array([1,scipy.pi/4,3])\n",
- "p1=0\n",
- "p2=1\n",
- "ph1=0\n",
- "ph2=2*scipy.pi\n",
- "\n",
- "#Calculations\n",
- "\n",
- "pointp=dot(point,ap)\n",
- "pointph=dot(point,aph)\n",
- "pv=pointp*scipy.cos(pointph)**2 #charge density at (1,pi/4,3) in C/m^3\n",
- "\n",
- "def ctop(phi,p): \n",
- " return 2*p**2*(scipy.cos(phi)**2)\n",
- "psya, erra = scipy.integrate.dblquad(lambda p , phi: ctop(phi,p), \n",
- " ph1, ph2, lambda p: p1, lambda p: p2)\n",
- "\n",
- "def cbot(phi,p): \n",
- " return 2*p**2*(scipy.cos(phi)**2)\n",
- "psyb, errb = scipy.integrate.dblquad(lambda p , phi: cbot(phi,p), \n",
- " ph1, ph2, lambda p: p1, lambda p: p2)\n",
- " \n",
- "psy=psya+psyb #Charge in C\n",
- "psyp=psy/scipy.pi #Charge in multiples of Pi in C\n",
- "psyf=Fraction(psyp).limit_denominator(100) #converting to fraction\n",
- "\n",
- "\n",
- "#Results\n",
- "\n",
- "print 'Charge density at (1,pi/4,3) =',pv,'C/m^3'\n",
- "print 'Total charge enclosed by the cylinder =',psyf,'Pi C'"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Charge density at (1,pi/4,3) = 0.5 C/m^3\n",
- "Total charge enclosed by the cylinder = 4/3 Pi C\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 4.10, Page number: 136<h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "'''\n",
- "Two point charges -4 micro C and 5 micro C are located at (2, -1, 3) \n",
- "and (0, 4, -2), respectively. Find the potential at (1, 0, 1) \n",
- "assuming zero potential at infinity. '''\n",
- "\n",
- "import scipy\n",
- "from numpy import *\n",
- "\n",
- "#Variable Declaration\n",
- "\n",
- "Q1=-4 #charge 1 in micro C\n",
- "Q2=5 #charge 2 in micro C\n",
- "e=10**-9/(36*scipy.pi) #permittivity of free space in Farad/m \n",
- "\n",
- "#Calculations\n",
- "\n",
- "R1=array([1,0,1])-array([2,-1,3]) #distance vector from (1,0,1) to charge 1\n",
- "R2=array([1,0,1])-array([0,4,-2]) #distance vector from (1,0,1) to charge 2\n",
- "modR1=scipy.sqrt(dot(R1,R1))\n",
- "modR2=scipy.sqrt(dot(R2,R2)) \n",
- "V=10**-9*((Q1/modR1)+(Q2/modR2))/(4*scipy.pi*e) #potential in kV\n",
- "\n",
- "#Result\n",
- "\n",
- "print 'The potential at (1, 0, 1) =',round(V,3),'kV'\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The potential at (1, 0, 1) = -5.872 kV\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 4.11, Page number: 136"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "'''\n",
- "A point charge 5 nC is located at (-3, 4, 0) while line y = 1, z = 1 carries uniform charge \n",
- "2 nC/m. \n",
- "\u001f\u001d",
- "(a) If V = 0V at O(0, 0, 0), find V at A(5, 0, ]). \n",
- "(b) If V = 100V at B(1, 2, 1), find V at C(-2, 5, 3). \n",
- "(c) If V = -5V at O, find V_BC '''\n",
- "\n",
- "import scipy\n",
- "\n",
- "#Variable Declaration\n",
- "\n",
- "Eo=10**-9/(36*scipy.pi) #permittivity of free space\n",
- "Vo=0 #potential at O in V\n",
- "Vb=100 #potential at B in V\n",
- "po=scipy.sqrt(2)\n",
- "ro=5\n",
- "pa=1\n",
- "ra=9\n",
- "pb=1\n",
- "rb=scipy.sqrt(21)\n",
- "pc=scipy.sqrt(20)\n",
- "rc=scipy.sqrt(11)\n",
- "pl=2*10**-9 #charge density of the line in C/m\n",
- "Q=5*10**-9 #point charge at (-3,4,0) in C\n",
- "\n",
- "#Calculations\n",
- "\n",
- "Va=Vo-(-pl*scipy.log(po/pa)/(2*scipy.pi*Eo)+Q*(ra-ro)/(4*scipy.pi*Eo*ra*ro))\n",
- "Vc=Vb+(-pl*scipy.log(pc/pb)/(2*scipy.pi*Eo)+Q*(rb-rc)/(4*scipy.pi*Eo*rb*rc))\n",
- "Vbc=Vc-Vb\n",
- "\n",
- "#Results\n",
- "\n",
- "print 'Va =',round(Va,3),'V'\n",
- "print 'Vc =',round(Vc,3),'V'\n",
- "print 'Vbc =',round(Vbc,3),'V'"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Va = 8.477 V\n",
- "Vc = 49.825 V\n",
- "Vbc = -50.175 V\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 4.12, Page number: 140<h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "'''\n",
- "Given the potential V = (10/r**2)sin(theta)cos(phi), \n",
- "(a) Find the electric flux density D at (2, pi/2, 0). \n",
- "(b) Calculate the work done in moving a 10 micro C charge from \n",
- "point A( 1, 30\u00b0, 120\u00b0) to B( 4, 90\u00b0, 60\u00b0). '''\n",
- "\n",
- "import scipy\n",
- "from numpy import *\n",
- "\n",
- "#Variable Declaration\n",
- "\n",
- "ar=array([1,0,0]) #Unit vector along radial direction\n",
- "ath=array([0,1,0]) #Unit vector along theta direction\n",
- "aph=array([0,0,1]) #Unit vector along phi direction\n",
- "e=(10**-9)/(36*scipy.pi) #permittivity of free space in Farad/m\n",
- "\n",
- " #The point (2, pi/2, 0)\n",
- "r=2\n",
- "th=scipy.pi/2\n",
- "ph=0\n",
- " #Point A\n",
- "ra=1\n",
- "tha=scipy.pi*30/180\n",
- "pha=scipy.pi*120/180\n",
- " #Point B\n",
- "rb=4\n",
- "thb=scipy.pi/2\n",
- "phb=scipy.pi*60/180\n",
- "\n",
- "q=10*10**-6 \n",
- "\n",
- "#Calculations\n",
- "\n",
- "Er=(20.0/r**3)*scipy.sin(th)*scipy.cos(ph) #Radial component of E in V/m\n",
- "Eth=-(10/r**3)*scipy.cos(th)*scipy.cos(ph) #Theta component of E in V/m\n",
- "Eph=(10/r**3)*scipy.sin(ph) #Phi component of E in V/m\n",
- "E=array([Er,Eth,Eph])\n",
- "D=E*e*10**12 #Electric flux density D in pC/m^2\n",
- "Dr=round(dot(D,ar),1) #Radial component of D in V/m rounded to 1 decimal\n",
- "Dth=round(dot(D,ath),0) #Theta component of D in pC/m^2 rounded to 0 decimal\n",
- "Dph=round(dot(D,aph),0) #Phi component of D in pC/m^2 rounded to 0 decimal\n",
- "Dc=array([Dr,Dth,Dph]) #Rounded D in pC/m^2\n",
- "\n",
- "Va=10*scipy.sin(tha)*cos(pha)/ra**2 #potential at point A in V\n",
- "Vb=10*scipy.sin(thb)*cos(phb)/rb**2 #potential at point B in V\n",
- "W=q*(Vb-Va)*10**6 #work done in micro J\n",
- "\n",
- "#Results\n",
- "\n",
- "print 'The electric flux density D at (2, pi/2, 0) =',Dc,'pC/m^2'\n",
- "print 'Work done in moving the charge =',W,'micro J'\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "The electric flux density D at (2, pi/2, 0) = [ 22.1 -0. 0. ] pC/m^2\n",
- "Work done in moving the charge = 28.125 micro J\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 4.13, Page number: 145<h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "'''\n",
- "Two dipoles with dipole moments -5 a_z nC/m and 9 a_z nC/m are\n",
- "located at points (0,0,-2) and (0,0,3), respectively.\n",
- "Find the potential at the origin. '''\n",
- "\n",
- "import scipy\n",
- "from numpy import *\n",
- "\n",
- "#Variable Declaration\n",
- "\n",
- "p1=-5*10**-9 #dipole moment of dipole 1 in C/m\n",
- "p2=9*10**-9 #dipole moment of dipole 2 in C/m\n",
- "z1=2 #z component of position vector of dipole 1\n",
- "z2=-3 #z component of position vector of dipole 2\n",
- "e=10**-9/(36*scipy.pi) #permittivity of free space in Farad/m\n",
- "\n",
- "#Calculation\n",
- "\n",
- "V=(1/(4*scipy.pi*e))*((p1*abs(z1)/z1**3)+(p2*abs(z2)/z2**3))\n",
- "\n",
- "#Result\n",
- "\n",
- "print 'Potential at origin =',V, 'V'\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Potential at origin = -20.25 V\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 4.14, Page number: 148<h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "'''\n",
- "Three point charges - 1 nC, 4 nC, and 3 nC are located at (0, 0, 0), \n",
- "(0, 0, 1), and (1, 0, 0), respectively. Find the energy in the system. '''\n",
- "\n",
- "import scipy\n",
- "from numpy import *\n",
- "\n",
- "#Variable Declaration\n",
- "\n",
- "Q1=-1*10**-9 #Charge 1 in C\n",
- "Q2=4*10**-9 #Charge 2 in C\n",
- "Q3=3*10**-9 #Charge 3 in C\n",
- "e=10**-9/(36*scipy.pi) #permittivity of free space in farad/m\n",
- "\n",
- "#Calculations\n",
- "\n",
- "V1=(1/(4*scipy.pi*e)*(Q2+Q3))\n",
- "V2=(1/(4*scipy.pi*e)*(Q1+Q3/(2**.5)))\n",
- "V3=(1/(4*scipy.pi*e)*(Q1+Q2/(2**.5)))\n",
- "W=0.5*((V1*Q1)+(V2*Q2)+(V3*Q3))*10**9 #Energy in nJ\n",
- "\n",
- "#Result\n",
- "\n",
- "print 'Energy in the system =',round(W,2),'nJ'"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Energy in the system = 13.37 nJ\n"
- ]
- }
- ],
- "prompt_number": 8
- }
- ],
- "metadata": {}
- }
- ]
+{ + "metadata": { + "name": "", + "signature": "sha256:891c986a46f113e35878dc6d6a0b8d702286ad7b4ea91bae03f716286f9bdeaa" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h1>Chapter 4: Electrostatic Fields<h1>" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 4.1, Page number: 107<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "import scipy\n", + "from numpy import *\n", + "\n", + "#Variable Declaration\n", + "\n", + "ax=array([1,0,0]) #Unit vector along x direction\n", + "ay=array([0,1,0]) #Unit vector along y direction\n", + "az=array([0,0,1]) #Unit vector along z direction\n", + "Q1=1*10**-3 #charge 1 at (-1,-1,4) in C\n", + "Q2=-2*10**-3 #charge 2 at (3,2,-1) in C\n", + "Q=10*10**-9 #charge 3 at (0,3,1) in C\n", + "P1=array([0,3,1])-array([3,2,-1]) #distance vector from charge 3 to 1\n", + "P2=array([0,3,1])-array([-1,-1,4]) #distance vector from charge 3 to 2\n", + "e=10**-9/(36*scipy.pi) #permittivity in Farad/m \n", + "\n", + "#Calculations\n", + "\n", + "modP1=scipy.sqrt(dot(P1,P1))\n", + "modP2=scipy.sqrt(dot(P2,P2))\n", + "F1=(Q*Q1)*P1*10**3/(4*scipy.pi*e*modP1**3) #force on charge 3 by 1 in mN\n", + "F2=(Q*Q2)*P2*10**3/(4*scipy.pi*e*modP2**3) #force on charge 3 by 2 in mN\n", + "\n", + " #Total force on charge 3\n", + " \n", + "Fx=round(dot(F1+F2,ax),3)\n", + "Fy=round(dot(F1+F2,ay),3)\n", + "Fz=round(dot(F1+F2,az),3)\n", + "F=array([Fx,Fy,Fz]) #Total force in mN\n", + "E=(10**-6)*(F/Q) #Electric field in kV/m\n", + "\n", + "#Results \n", + "\n", + "print 'Total force on charge at (0,3,1) =',F,'in mN'\n", + "print 'Electric field at (0,3,1) =',E,'kV/m'" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Total force on charge at (0,3,1) = [-6.512 -3.713 7.509] in mN\n", + "Electric field at (0,3,1) = [-651.2 -371.3 750.9] kV/m\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.3, Page number: 109" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "import scipy\n", + "#Variable Declaration\n", + "\n", + "E=500*10**3 #electric field in V/m\n", + "Qm=9*10**-6 #Q/m in C/kg\n", + "y=0.8 #distance fallen in m\n", + "g=9.8 #acceleration due to gravity in m/s^2\n", + "\n", + "#Calculations\n", + "\n", + "t=scipy.sqrt(2*y/g) #time taken to fall in seconds\n", + "x=Qm*E*t**2/2 #half the separation between particles in m\n", + "sep=2*x #separation between particles in m\n", + "\n", + "#Result\n", + "\n", + "print 'The separation between particles is',round(sep*100,2),'cm'\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The separation between particles is 73.47 cm\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.5, Page number: 120" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "import scipy\n", + "import scipy.integrate\n", + "\n", + "#Variable Declaration\n", + "\n", + "Eo=10**-9/(36*scipy.pi) #permittivity of free space\n", + "ax=array([1,0,0]) #Unit vector along x direction\n", + "ay=array([0,1,0]) #Unit vector along y direction\n", + "az=array([0,0,1]) #Unit vector along z direction\n", + "q=-1 #charge in mC\n", + "\n", + "#Calculations\n", + "\n", + "def charge(x,y): \n", + " return x*y*(x**2+y**2+25)**(1.5)\n", + "Q, errq = scipy.integrate.dblquad(lambda y , x: charge(x,y), #total charge in nC\n", + " 0, 1, lambda y: 0, lambda y: 1) \n", + "\n", + "d=(4*scipy.pi*Eo*(x**2+y**2+25)**(1.5))\n", + "\n", + "def elecx(x,y): \n", + " return 10**-9*x*y*(x**2+y**2+25)**(1.5)*(-x)/d #x component of electric field\n", + "Ex, errx = scipy.integrate.dblquad(lambda y , x: elecx(x,y), \n", + " 0, 1, lambda y: 0, lambda y: 1) \n", + "\n", + "def elecy(x,y): \n", + " return 10**-9*x*y*(x**2+y**2+25)**(1.5)*(-y)/d #y component of electric field\n", + "Ey, erry = scipy.integrate.dblquad(lambda y , x: elecy(x,y), \n", + " 0, 1, lambda y: 0, lambda y: 1) \n", + "\n", + "def elecz(x,y): \n", + " return 10**-9*x*y*(5)/(4*scipy.pi*Eo) #z component of electric field\n", + "Ez, errz = scipy.integrate.dblquad(lambda y , x: elecz(x,y), \n", + " 0, 1, lambda y: 0, lambda y: 1) \n", + "\n", + "E=array([round(Ex,1),round(Ey,1),round(Ez,2)]) #electric field in V/m\n", + "\n", + "F=q*E #force in mN \n", + "\n", + "#Results\n", + "\n", + "print 'Total charge =',round(Q,2),'nC'\n", + "print 'Electric field at (0,0,5) =',E,'V/m'\n", + "print 'Force experienced by -1mC =',F,'mN'" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Total charge = 33.15 nC\n", + "Electric field at (0,0,5) = [ -1.5 -1.5 11.25] V/m\n", + "Force experienced by -1mC = [ 1.5 1.5 -11.25] mN\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 4.6, Page number: 121<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "import scipy\n", + "from numpy import *\n", + "\n", + "#Variable Declaration\n", + "\n", + "ax=array([1,0,0]) #Unit vector along x direction\n", + "ay=array([0,1,0]) #Unit vector along y direction\n", + "az=array([0,0,1]) #Unit vector along z direction\n", + "ps1=10*10**-9 #Surface charge density of plane 1\n", + "ps2=15*10**-9 #Surface charge density of plane 2\n", + "pl=10*scipy.pi*10**-9 #charge density of line\n", + "e=(10**-9)/(36*scipy.pi) #permittivity of free space in Farad/m\n", + "\n", + "#Calculations\n", + "\n", + "E1=(ps1/(2*e))*-ax/scipy.pi #field due to plane 1 in multiples of pi in V/m\n", + "E2=(ps2/(2*e))*ay/scipy.pi #field due to plane 2 in multiples of pi in V/m\n", + "\n", + " #field due to line charge in multiples of pi in V/m\n", + " \n", + "a=(ax-3*az) \n", + "moda=scipy.sqrt(dot((ax-3*az),(ax-3*az)))\n", + "e3=(pl/(2*scipy.pi*e*moda**2))*a\n", + "E3=array([dot(e3,ax)/scipy.pi,0,dot(e3,az)/scipy.pi])\n", + "\n", + " #total field in multiples of pi in V/m\n", + " \n", + "E=E1+E2+E3 \n", + "\n", + "#Result\n", + "\n", + "print 'The total electric field at (1,1,-1) =',E,'Pi V/m'" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The total electric field at (1,1,-1) = [-162. 270. -54.] Pi V/m\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 4.7, Page number: 123<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "import scipy\n", + "from numpy import *\n", + "\n", + "#Variable Declaration\n", + "\n", + "ax=array([1,0,0]) #Unit vector along x direction\n", + "ay=array([0,1,0]) #Unit vector along y direction\n", + "az=array([0,0,1]) #Unit vector along z direction\n", + "Q=-5*scipy.pi*10**-3 #charge at (4,0,0) in C\n", + "pl=3*scipy.pi*10**-3 #charge density of line charge in C/m\n", + "r=array([4,0,3]) #point where D is to be found \n", + "rp=array([4,0,0]) #position of point charge\n", + "\n", + "#Calculations \n", + "\n", + "R=r-rp \n", + "modR=scipy.sqrt(dot(R,R)) \n", + "Dq=(Q*R)/(4*scipy.pi*modR**3) #flux density due to point charge in C/m^2\n", + "p=scipy.sqrt(dot(r,r))\n", + "ap=r/p \n", + "Dl=(pl/(2*scipy.pi*p))*ap #flux density due to line charge in C/m^2\n", + "D=(Dq+Dl)*10**6 #total flux density in micro C/m^2\n", + "Dz=round(dot(D,az),0)\n", + "Dx=round(dot(D,ax),0)\n", + "Dy=round(dot(D,ay),0)\n", + "Dround=array([Dx,Dy,Dz]) #value of D rounded to 0 decimal points\n", + "\n", + "#Result\n", + "\n", + "print 'D at (4,0,0) due to point charge and line charge =',Dround,'micro C/m^2'\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "D at (4,0,0) due to point charge and line charge = [ 240. 0. 41.] micro C/m^2\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 4.8, Page number: 130<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "\n", + "import scipy\n", + "from numpy import *\n", + "import scipy.integrate\n", + "from fractions import Fraction\n", + "\n", + "#Variable Declaration\n", + "\n", + "ap=array([1,0,0]) #Unit vector along rho direction\n", + "aph=array([0,1,0]) #Unit vector along phi direction\n", + "az=array([0,0,1]) #Unit vector along z direction\n", + "point=array([1,scipy.pi/4,3])\n", + "p1=0\n", + "p2=1\n", + "ph1=0\n", + "ph2=2*scipy.pi\n", + "\n", + "#Calculations\n", + "\n", + "pointp=dot(point,ap)\n", + "pointph=dot(point,aph)\n", + "pv=pointp*scipy.cos(pointph)**2 #charge density at (1,pi/4,3) in C/m^3\n", + "\n", + "def ctop(phi,p): \n", + " return 2*p**2*(scipy.cos(phi)**2)\n", + "psya, erra = scipy.integrate.dblquad(lambda p , phi: ctop(phi,p), \n", + " ph1, ph2, lambda p: p1, lambda p: p2)\n", + "\n", + "def cbot(phi,p): \n", + " return 2*p**2*(scipy.cos(phi)**2)\n", + "psyb, errb = scipy.integrate.dblquad(lambda p , phi: cbot(phi,p), \n", + " ph1, ph2, lambda p: p1, lambda p: p2)\n", + " \n", + "psy=psya+psyb #Charge in C\n", + "psyp=psy/scipy.pi #Charge in multiples of Pi in C\n", + "psyf=Fraction(psyp).limit_denominator(100) #converting to fraction\n", + "\n", + "\n", + "#Results\n", + "\n", + "print 'Charge density at (1,pi/4,3) =',pv,'C/m^3'\n", + "print 'Total charge enclosed by the cylinder =',psyf,'Pi C'" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Charge density at (1,pi/4,3) = 0.5 C/m^3\n", + "Total charge enclosed by the cylinder = 4/3 Pi C\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 4.10, Page number: 136<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "\n", + "import scipy\n", + "from numpy import *\n", + "\n", + "#Variable Declaration\n", + "\n", + "Q1=-4 #charge 1 in micro C\n", + "Q2=5 #charge 2 in micro C\n", + "e=10**-9/(36*scipy.pi) #permittivity of free space in Farad/m \n", + "\n", + "#Calculations\n", + "\n", + "R1=array([1,0,1])-array([2,-1,3]) #distance vector from (1,0,1) to charge 1\n", + "R2=array([1,0,1])-array([0,4,-2]) #distance vector from (1,0,1) to charge 2\n", + "modR1=scipy.sqrt(dot(R1,R1))\n", + "modR2=scipy.sqrt(dot(R2,R2)) \n", + "V=10**-9*((Q1/modR1)+(Q2/modR2))/(4*scipy.pi*e) #potential in kV\n", + "\n", + "#Result\n", + "\n", + "print 'The potential at (1, 0, 1) =',round(V,3),'kV'\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The potential at (1, 0, 1) = -5.872 kV\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.11, Page number: 136" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "import scipy\n", + "\n", + "#Variable Declaration\n", + "\n", + "Eo=10**-9/(36*scipy.pi) #permittivity of free space\n", + "Vo=0 #potential at O in V\n", + "Vb=100 #potential at B in V\n", + "po=scipy.sqrt(2)\n", + "ro=5\n", + "pa=1\n", + "ra=9\n", + "pb=1\n", + "rb=scipy.sqrt(21)\n", + "pc=scipy.sqrt(20)\n", + "rc=scipy.sqrt(11)\n", + "pl=2*10**-9 #charge density of the line in C/m\n", + "Q=5*10**-9 #point charge at (-3,4,0) in C\n", + "\n", + "#Calculations\n", + "\n", + "Va=Vo-(-pl*scipy.log(po/pa)/(2*scipy.pi*Eo)+Q*(ra-ro)/(4*scipy.pi*Eo*ra*ro))\n", + "Vc=Vb+(-pl*scipy.log(pc/pb)/(2*scipy.pi*Eo)+Q*(rb-rc)/(4*scipy.pi*Eo*rb*rc))\n", + "Vbc=Vc-Vb\n", + "\n", + "#Results\n", + "\n", + "print 'Va =',round(Va,3),'V'\n", + "print 'Vc =',round(Vc,3),'V'\n", + "print 'Vbc =',round(Vbc,3),'V'" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Va = 8.477 V\n", + "Vc = 49.825 V\n", + "Vbc = -50.175 V\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 4.12, Page number: 140<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "\n", + "import scipy\n", + "from numpy import *\n", + "\n", + "#Variable Declaration\n", + "\n", + "ar=array([1,0,0]) #Unit vector along radial direction\n", + "ath=array([0,1,0]) #Unit vector along theta direction\n", + "aph=array([0,0,1]) #Unit vector along phi direction\n", + "e=(10**-9)/(36*scipy.pi) #permittivity of free space in Farad/m\n", + "\n", + " #The point (2, pi/2, 0)\n", + "r=2\n", + "th=scipy.pi/2\n", + "ph=0\n", + " #Point A\n", + "ra=1\n", + "tha=scipy.pi*30/180\n", + "pha=scipy.pi*120/180\n", + " #Point B\n", + "rb=4\n", + "thb=scipy.pi/2\n", + "phb=scipy.pi*60/180\n", + "\n", + "q=10*10**-6 \n", + "\n", + "#Calculations\n", + "\n", + "Er=(20.0/r**3)*scipy.sin(th)*scipy.cos(ph) #Radial component of E in V/m\n", + "Eth=-(10/r**3)*scipy.cos(th)*scipy.cos(ph) #Theta component of E in V/m\n", + "Eph=(10/r**3)*scipy.sin(ph) #Phi component of E in V/m\n", + "E=array([Er,Eth,Eph])\n", + "D=E*e*10**12 #Electric flux density D in pC/m^2\n", + "Dr=round(dot(D,ar),1) #Radial component of D in V/m rounded to 1 decimal\n", + "Dth=round(dot(D,ath),0) #Theta component of D in pC/m^2 rounded to 0 decimal\n", + "Dph=round(dot(D,aph),0) #Phi component of D in pC/m^2 rounded to 0 decimal\n", + "Dc=array([Dr,Dth,Dph]) #Rounded D in pC/m^2\n", + "\n", + "Va=10*scipy.sin(tha)*cos(pha)/ra**2 #potential at point A in V\n", + "Vb=10*scipy.sin(thb)*cos(phb)/rb**2 #potential at point B in V\n", + "W=q*(Vb-Va)*10**6 #work done in micro J\n", + "\n", + "#Results\n", + "\n", + "print 'The electric flux density D at (2, pi/2, 0) =',Dc,'pC/m^2'\n", + "print 'Work done in moving the charge =',W,'micro J'\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The electric flux density D at (2, pi/2, 0) = [ 22.1 -0. 0. ] pC/m^2\n", + "Work done in moving the charge = 28.125 micro J\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 4.13, Page number: 145<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "\n", + "import scipy\n", + "from numpy import *\n", + "\n", + "#Variable Declaration\n", + "\n", + "p1=-5*10**-9 #dipole moment of dipole 1 in C/m\n", + "p2=9*10**-9 #dipole moment of dipole 2 in C/m\n", + "z1=2 #z component of position vector of dipole 1\n", + "z2=-3 #z component of position vector of dipole 2\n", + "e=10**-9/(36*scipy.pi) #permittivity of free space in Farad/m\n", + "\n", + "#Calculation\n", + "\n", + "V=(1/(4*scipy.pi*e))*((p1*abs(z1)/z1**3)+(p2*abs(z2)/z2**3))\n", + "\n", + "#Result\n", + "\n", + "print 'Potential at origin =',V, 'V'\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Potential at origin = -20.25 V\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 4.14, Page number: 148<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "import scipy\n", + "from numpy import *\n", + "\n", + "#Variable Declaration\n", + "\n", + "Q1=-1*10**-9 #Charge 1 in C\n", + "Q2=4*10**-9 #Charge 2 in C\n", + "Q3=3*10**-9 #Charge 3 in C\n", + "e=10**-9/(36*scipy.pi) #permittivity of free space in farad/m\n", + "\n", + "#Calculations\n", + "\n", + "V1=(1/(4*scipy.pi*e)*(Q2+Q3))\n", + "V2=(1/(4*scipy.pi*e)*(Q1+Q3/(2**.5)))\n", + "V3=(1/(4*scipy.pi*e)*(Q1+Q2/(2**.5)))\n", + "W=0.5*((V1*Q1)+(V2*Q2)+(V3*Q3))*10**9 #Energy in nJ\n", + "\n", + "#Result\n", + "\n", + "print 'Energy in the system =',round(W,2),'nJ'" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Energy in the system = 13.37 nJ\n" + ] + } + ], + "prompt_number": 8 + } + ], + "metadata": {} + } + ] }
\ No newline at end of file |