diff options
author | debashisdeb | 2014-06-20 15:42:42 +0530 |
---|---|---|
committer | debashisdeb | 2014-06-20 15:42:42 +0530 |
commit | 83c1bfceb1b681b4bb7253b47491be2d8b2014a1 (patch) | |
tree | f54eab21dd3d725d64a495fcd47c00d37abed004 /Elements_of_Electromagnetics/chapter_10.ipynb | |
parent | a78126bbe4443e9526a64df9d8245c4af8843044 (diff) | |
download | Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.tar.gz Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.tar.bz2 Python-Textbook-Companions-83c1bfceb1b681b4bb7253b47491be2d8b2014a1.zip |
removing problem statements
Diffstat (limited to 'Elements_of_Electromagnetics/chapter_10.ipynb')
-rw-r--r-- | Elements_of_Electromagnetics/chapter_10.ipynb | 1085 |
1 files changed, 520 insertions, 565 deletions
diff --git a/Elements_of_Electromagnetics/chapter_10.ipynb b/Elements_of_Electromagnetics/chapter_10.ipynb index ed7744f3..86a61c5f 100644 --- a/Elements_of_Electromagnetics/chapter_10.ipynb +++ b/Elements_of_Electromagnetics/chapter_10.ipynb @@ -1,566 +1,521 @@ -{
- "metadata": {
- "name": "chapter_10.ipynb"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h1>Chapter 10: Electromagnetic Wave Propagation<h1>"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 10.1, Page number: 416<h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "'''\n",
- "The elcctric field in free space is given by \n",
- "E=50 cos(10^8t + Bx) a_y V/m \n",
- "(a) Find the direction of wave propagation. \n",
- "(b) Calculate B and the time it takes to travel a distance of lambda/2. \n",
- "(c) Sketch the wave at t = 0, T/4, and T/2. '''\n",
- "\n",
- "import scipy\n",
- "from pylab import *\n",
- "\n",
- "#Variable Declaration\n",
- "\n",
- "w=10**8 \n",
- "c=3.0*10**8\n",
- "\n",
- "#Calculations\n",
- "\n",
- "T=2*scipy.pi/w #timeperiod of the wave in sec\n",
- "B=(w/c) #in rad/m\n",
- "lam=2*scipy.pi/B #wavelength in m\n",
- "t1=lam*10**9/(2*c) #time taken to travel half the wavelength in ns \n",
- "\n",
- "x=arange(-6*scipy.pi,6*scipy.pi,0.1)\n",
- "\n",
- "t=0\n",
- "E=50*scipy.cos(10**8*t+x*w/c)\n",
- "\n",
- "subplot(3,1,1)\n",
- "xlabel(\"x\")\n",
- "ylabel(\"E for t=0\")\n",
- "plot(x,E,'r')\n",
- "\n",
- "subplot(3,1,2)\n",
- "t=T/4\n",
- "E=50*scipy.cos(10**8*t+x*w/c)\n",
- "xlabel(\"x\")\n",
- "ylabel(\"E for t=T/4\")\n",
- "plot(x,E)\n",
- "\n",
- "subplot(3,1,3)\n",
- "t=T/2\n",
- "E=50*scipy.cos(10**8*t+x*w/c)\n",
- "xlabel(\"x\")\n",
- "ylabel(\"E for t=T/2\")\n",
- "plot(x,E,'g')\n",
- "show()\n",
- "\n",
- "#Results\n",
- "\n",
- "print 'Since the argument of cosine function is positive, '\n",
- "print 'the wave is propagating in the negative x direction.'\n",
- "print' B =',round(B,4),'rad/m'\n",
- "print 'Time taken to travel a distance of lambda/2 =',round(t1,2),'n sec'"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "display_data",
- "png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEICAYAAABF82P+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXlcVNX7xz+DG5bmhjurggyLMqgsmho7pCIq+hVzK7EU\nNVyyfmYlZmXhjpZroqlZmaXigoIimyaoWCjhlii448aObM/vj5MTKOswM/fOcN6vF6/g0sz5cL1z\nn3vOeZ7PIyEiAofD4XA4L6AjtAAOh8PhiBMeIDgcDodTKTxAcDgcDqdSeIDgcDgcTqXwAMHhcDic\nSuEBgsPhcDiVIliAyMvLw6RJk9CjRw9YWloiISEBOTk58PHxgaGhIYYPH47c3Fyh5HE4HE6DR7AA\nERQUBENDQyQnJyM5ORlSqRTr16+HoaEhrl69Cn19fWzYsEEoeRwOh9PgESxAHDt2DAsWLICuri4a\nN26MVq1aITExEf7+/mjWrBkmT56MhIQEoeRxOBxOg0ciRCX1rVu34ObmBkdHR6SmpmLkyJEIDAyE\nVCrF5cuXoauri/z8fFhYWODmzZv/iZVI1C2Vw+FwtAJFbvWCzCAKCwtx5coV+Pr6Ijo6GikpKdi9\ne3et/gAiEv1XUFCQ4Bq4Tq6T6+Qan38piiABwtTUFObm5vD29kbz5s0xduxYHDlyBHZ2dkhNTQUA\npKamws7OTgh5HA6Hw4GAexBmZmZISEhAWVkZDh06BDc3Nzg4OCA0NBQFBQUIDQ2Fo6OjUPI4HA6n\nwdNYqIGXL1+OiRMnorCwEG5ubvDz80NZWRnGjx8Pc3Nz9O7dG8HBwULJqxdOTk5CS6gVXKdy4TqV\niybo1ASN9UGQTWpFkUgktVtPu3ABiI8HXnsNaNUKMDUFuncHmjRRvUhOw6GoCLh+Hbh2DXj8GCgo\nAMrKgDZtgHbtADMzwMgI4MkVHGWSlcWuuxs3gAcPAA8PwMSk2pfU+t75AoLNIFRKdjaQnMz+++QJ\ncPUqcOsWYGkJuLmxE/rGG0Bj7fzzOSqipAQ4fhyIjASio4GLFwEDA/YAoqcHNG8O6OiwYPHwIXDl\nCpCTA9jaAl5ewODBQM+ePGBw6kZuLnDoELvu4uPZvaxbNxYUOnQA+vVT2dDaOYOojIIC4OxZdpLD\nw9lJHj8e8PcHpFLlCuVoF3//DWzYAPzyC2BsDAwdCjg7A3Z2QLNm1b/20SMgIYFdc4cOAU2bAlOm\nABMnsg83h1MZROwhZP164OhR4PXX2QPGwIGAtTXQqFGd3k7heycJRElJCclkMho6dCgREWVnZ9Ow\nYcPIwMCAfHx8KCcn56XXKFXupUtE8+cTdehANGIEUWKi8t6box3ExRENGULUsSPRZ58RXb1av/cr\nK2PvOWkSUZs2RDNnEmVkKEUqR0soLSX66ScimYxIKiVat47o4cN6v62i907BsphCQkJgaWkpL35T\nu82GuTnw9ddAWhrg5ASMHAmMGsXW9jgNm0uXAB8fNsMcNoxdI4sXs6Wk+iCRAAMGANu2sVmJri5g\nYwPMncvWlTkNm4gIoG9fYNUqYMkSICUFCAhg+1kCIUiAuHXrFg4fPowpU6bIpz2C2Wy88goQGMjW\ni21tAXt7YMECoLBQPeNzxEN+PvDRR2waP3AgCxTvvcf2FpRNp07AsmVAairbp5BKga1b2dICp2Fx\n+zbg6wvMmAF88glw+jTw5ptsP0tgBNmlnTNnDpYtW4bs7Gz5sTNnzkD6716AVCpFYmJipa9dtGiR\n/HsnJyflpZk1b87+cSZPBt5/nwWL0FCVbgBxRMSJE8C777IHhJQU9e0PdOgAbN7M9semTmX7HJs3\ns81vjnZDxP6tP/mEzRR+/JHNKpVAdHQ0oqOj6/9GtV2LKiwspMLCQoXWscpz4MABmj59OhERnThx\nQr4HYWBgQAUFBURElJeXR4aGhi+9tg5y68+vvxJ16kQUFERUUqK+cTnqpbiYaMECoi5diA4cEFZL\nURHRF18QtW/P1qE52sujR0QjR7K9hpQUlQ+n6L2z2jnMvXv3MHPmTNjZ2cHMzAympqbo27cvZs6c\niXv37ikUkE6dOoWwsDCYmJhg7NixiIqKwoQJE8RnszFqFHD+PBATA3h6AvfvC6uHo3wyMtj+09mz\nQFISy04SkiZNgE8/ZVkrn37KZrJFRcJq4iif+Hi2QmFgwJaTLC2FVlQl1QYIPz8/6Ovr4+jRo0hP\nT0dGRgYiIiKgr68PPz8/hQZcsmQJMjIykJaWhp9//hkuLi7YsWOHOG02OnUCjh0D+vcH+vQB4uKE\nVsRRFsePszTVoUNZCmrHjkIr+g9bWxa0bt0CBg0C0tOFVsRRFt99xx4+v/sOWL265jRpoaluemFo\naEh5eXkvHc/NzSUDAwOFpizliY6OJm9vbyISIM21roSHs6n/Dz8Ip4GjHDZuZOnNUVFCK6mesjKi\npUuJOncmOn1aaDWc+lBURBQQQGRpSfTPP2ofXtF7Z7WFcv7+/sjKysL48eNhaWkJIsLff/+NnTt3\nolWrVggNDVVfJEM9C+WUwd9/syfOceOAzz8XRZYBpw6UlgIffsgK1g4eZFYYmsDBg8A77wAbN7J0\nbI5m8eQJmzXo6gI//cQsgNSMovfOagNEcXEx9u7di8TERCQkJICI4ODgAAcHB4wYMQJN1OxtJHiA\nAJj3yfDhzGPnhx9YZSxH/BQWAm+9xeoN9uxhfkmaRFISq8mYM4fVTXC7Ds3g9m22h+nuDixfXucK\naGWhkgAhNkQRIID/bjb5+cBvvwGvviq0Ik515OayoN62LbBzp+YG9YwMlh8/ZAjwzTc8SIidK1dY\ncJg+nc1cBUTRe2et10h27txZ4b/1ISMjA87OzrCysoKTkxN27doFAMjJyYGPjw8MDQ0xfPhw5Obm\n1nsslaCrC+zezTaxPT2Bp0+FVsSpisePmUGjiQmb3mtqcABY1ktMDKvZmD6dOcdyxMm5c8wQdOFC\nwYNDfah1gFixYkWF/9aHJk2aYNWqVUhJScGePXvw6aefIicnR/12G/WhcWNWSNenDzNuy8wUWhHn\nRe7eZR/SQYOATZsEm94rlXbtWGbd338DkyYxh1mOuEhIYMZ669ezvSMNRpBK6k6dOqFTp04AAD09\nPVhZWeHMmTNITEzEp59+Krfb+Prrr196rcoqqRVBR4elqn32GeDqylIn27cXTg/nP+7fZzUOEycy\n6xRtWo557TWWmjtqFDB2LJsZcet6cXD6NNsr2rqVLQUKhNorqWUyWYX/KourV6+SiYkJ5eTkkKGh\nYbXV1HWQq17Kylg1bq9eRJmZQqvhPH7M/i2CgoRWoloKC4nefJPIz49VhHOE5dQplgp/+LDQSl5C\n0XunoHmaOTk5GDNmDFatWoUWLVqIYwNaESQS4Msv2bTSzY31AOAIQ24u+3dwcQGCgoRWo1qaNQN+\n/53ts7z9Nkvj5QjDqVPMAXj7dpZIoCUIFiCKi4vh6+uLCRMmwMfHBwDEZ7dRFyQSZtHr5cWDhFAU\nFrJsJSsrYOVK7VpWqgpdXWDfPuDePWY0yYOE+jl3jl13O3awz78WUesAYW5uDgDo0aNHvQclIvj7\n+8Pa2hqzZ8+WHxel3UZdkEhYjwlXV/YUkZMjtKKGQ3Ex4OfHNnE3bmwYweE5zZsDYWEsDXbqVG4Z\nrk5SU1nx7KZNLKNRyxCkDiI+Ph6DBg1Cr1695A2Dvv76a7z++usYP348zp8/j969e2Pnzp1o0aLF\nf2LFUgdRE0TAtGmsF/bhw0qz8OVUQVkZ24x+/Jg9TWtyKmt9yM1lBVmvv856TTSkICkEN2+yviFf\nfsmuPxGj0kI5V1dXHD9+vMZjqkZjAgTApvrjxrFe2Hv2MKdOjvIhYjUBf//NMnteeUVoRcLy+DFL\n7R07lmVvcVTD/fssOMycyRqOiRyVFMoVFBTg0aNHyMzMxOPHj+Vfly5dQg5fPqmeRo3YhlVJCVsb\n5kVNquHjj5nz6YEDPDgArFo8IoLV6KxfL7Qa7eTpU7acNG6cRgSH+lDtDGL16tUICQnBnTt30KVL\nF/lxIyMjvPfee3jrrbfUIvI5GjWDeE5+PtuP6NkTWLuWT/uVyddfM+uM2FhB+/aKkrQ0ViAYHMxs\nYTjKIS8P8PBgVvGrVmnM51nhe2dtcmFDQkIUyqFVhJiYGJJKpWRqakpr1qyp8LtayhUfWVlEffoQ\nffKJ0Eq0h2+/JerWjej2baGViJeLF4k6diQ6eFBoJdrBs2dEnp5Eb79NVFoqtJo6oei9U3Rmfba2\ntggJCYGRkRE8PT0RHx8PPT09ABo6g3jOw4fsiW7yZGDePKHVaDbbt7M+vrGxzGOJUzWJiSzL5tdf\n2d4ERzFKS9m+TkkJ82HTsMp1Re+dovors7KyAACDBg0CAHh4eCAhIQFDypWsi8pqoy7o6bG14YED\ngdatgSlThFakmezdC/zf/zFbEx4casbenllxjB4NHDkC9O4ttCLN43lW4uPHrDeHBgQHZVlt1DiD\nICLcunULBgYG9R6sJo4dO4YtW7bgp59+AgBs2LABt2/fxhdffMHEavIM4jlXrzKPoJAQ5qXDqT2R\nkWxjkN/o6s6+fUBAAHOClUqFVqM5ELEHkthYZpJYLu1ek1DpDGLw4MG4cOFCnd+cUwlmZqw2wsMD\naNlSK4trVMLJk2yzde9eHhwUYfhw1izJ05P1Vjc0FFqRZvDNNyx9OiZGY4NDfaixkloikaBfv37Y\nv3+/ysXY2dnh0qVL8p9TUlI0r5q6NtjYMA+dCROYhwunes6fB0aMYBlLAwYIrUZzmTSJdaNzd2ed\nETnVs3498P33wNGjLH24AVKrTWoLCwtcvnwZ7dq1k9t0SyQSJCcnK13Q801qQ0NDeHl5ac8mdWUc\nPcoqMCMjgV69hFYjTi5dYv02vv0W8PUVWo12sGgRsH8/W25q3VpoNeJk167/lpa0YK9LpZXUN27c\nqHQgY2PjOg9YEzExMZg2bRqKi4sRGBiIwHKFKFoXIACWETFnDhAdzZafOP9x4wbL/Fq8mLmVcpQD\nETB7NutzffQoLzB8kQMHgHffZYkQVlZCq1EKKu9JnZ2djfDwcEgkErz55pto2bJlnQerL1oZIABg\n82bmBBsfD3TtKrQacXD3Lsv4CgzU+mpVQSgrY93OMjMbtn/Vi0RHs4yvQ4dYBpiWoNKe1Hv37oWd\nnR1iY2MRHR0NOzs77N27t86Dcarg3XdZhom7O6uXaOhkZjLL9Lff5sFBVejoAFu2MI+wiRO5TTgA\nnDkD/O9/bFavRcGhXtSmms7Z2Zlu3bol//n27dvk7OysUGXevHnzSCqVkq2tLc2aNYvy8/PlvwsJ\nCSFTU1OysLCguLi4l15bS7may/z5RH37EmVnC61EOB49IpLJWIe+sjKh1Wg/BQVEzs5EU6c27POd\nksKqzvfvF1qJSlD03lnrfhA6OjoVvicFl3o8PDyQkpKCs2fPIi8vD7t27QIAPHjwAOvWrcPx48ex\nfv36CnsPDYYlS4A+fVhnqsJCodWon6ws1nDF2ZlZKGuIz41Go6vLNqyTkoD58xtmL4krV1ja+bJl\nrJ80R06tAsT06dPh7OyMwMBAvP/++3B2dsaMGTMUGtDd3R06OjrQ0dGBp6cnYmJiAAAJCQnw8vKC\noaEh3njjDRBRw3OMlUiA774DOnVieesNKUjk5rIm7337AitW8OCgTlq2ZLn+R48yC5OGFCSuXmUN\nvhYvZmnnnApUWyiXlpYGExMTjBo1Cq6urvJN6sWLF6NNmzb1Hnzz5s2Y8q/lRGJiIiwsLOS/Mzc3\nR2JiIlxdXSu8RmOtNmrLc5vw8eNZkNi3T/sbDhUUsCc3c3OWzsqDg/pp145VCru6/tdjXdv/Hf75\nh/29CxcyjzQtQi1WG3369MG5c+fq3BzI3d0d9+7de+n4kiVL4O3tDQBYvHgxkpOTsWfPHgDAp59+\nCgMDA0ydOhUA4Ofnh/feew8uLi7/idXWLKbKKClhTzTPu6Q1by60ItWQl8eW1Dp2ZIGxUSOhFTVs\nHj4EXFxYwP7iC+0NEtevs6XMjz9mPktajkqsNlq3bo1Fixbh8uXLWLlyZYUBJBIJ5s6dW+nrIiMj\nqx1027ZtOHr0aIWg4+DggGPHjsl/vnTpEuzs7Gr1R2gljRuzJugTJ/43k9C2IJGVxZaVevRgqb48\nOAiPnh7L/38+c9fGIHH1KssY/OijBhEc6kO1exDbt29H27ZtUVpaipycHOTm5sq/FN0fOHLkCJYt\nW4awsDDolls6sbe3x9GjR5Geno7o6Gjo6OgIUmshKho3Zk/VenrA4MFAdrbQipTHo0fsJiSTMTsD\nHhzEQ/v2LEgcOgTMmqVd3RCTk5nt+SefAAruozYkalUod/jwYQwePFgpA5qZmaGoqAht//U26dev\nH9atWwcACAkJwdq1a9G0aVNs3LgRAwcOrCi2IS0xlae0lPW+TUxkm4kdOgitqH7cv8/qHAYPZmZo\n2vaEqi08fQp4ezOriec1E5rM6dNsOXPNGmDMGKHVqBWVV1KLgQYbIACWWRIUBPzyC+srYWQktCLF\nuHKFBYZJk4BPP+XBQezk5zNb+saN2bWnqcucR4+yxI9t29iyZgNDpZXUHBEgkbBUvOnTgddfB86d\nE1pR3YmPZ95KH38MfPYZDw6awCuvsP2v115jfUwqST4RPRs3sgeSvXsbZHCoDzxAaBqzZrEpspcX\n8G8GmEbwyy/AyJFsT8XfX2g1nLrQtClLmBgyBHB0ZOv4mkBZGfDhh8DKlezhhFvF15lqA8TSpUvl\n3//6668VfrdgwYJ6DbxixQro6Ojg8ePH8mNr1qyBmZkZLC0tER8fX6/312pGjmTLTHPnsiwTMS+7\nlZQw2+SPPmJ59h4eQiviKIJEwuoFvvmG7R+FhQmtqHqePmU9RBITWc8VU1OhFWkm1flwyGSySr+v\n7Oe6kJ6eTp6enmRsbEyPHj0iIqL79++Tubk53bx5k6Kjo8nW1val19Ugt+Fx5w6RoyPR0KFEmZlC\nq3mZe/eYz4+7uzj1cRTj9GkiQ0OiefOIioqEVvMyZ88SdetG9P77RM+eCa1GFCh67xRkiWnu3LkV\nZicAt9pQiM6dWStECwvA1pZ9Lxaio5ltxoABLPPq36ZPHC3AwYF5N6Wmsj2lmzeFVsQgYl3gvLzY\nTGfNGm5jXk9q1ZNamezfvx/6+vro9UIHNW61oSBNmwJLl7LqVz8/5vG/cKFw9hz5+cCCBWx/5Pvv\n2YeVo320a8eWmVauBOzsgOBgZs8uVOLBrVvMNv/+fda/vEcPYXSIBGVZbVQ779DR0aEWLVpQixYt\nqFGjRvLvn/9cFW5ubmRtbf3S1/79+8nBwYGysrKIiMjY2JgePnxIRESffPIJbdiwQf4eY8aMoePH\njytlmtRguHuXaNQoIjMzohMn1D9+eDiRqSnR2LHMtpvTMPjzT6LevdlS4rVr6h27uJho3ToiPT2i\nxYvFueQlAhS9d6r1jnvhwgXq0KEDGRsbk7GxMTVu3JiMjIzo3r17FBYWRoGBgfL/18bGhrJf6IvA\nA0Qt2b+fyMCABYsrV1Q/3qVLRMOGseBw6JDqx+OIj+JiouBgonbtiD74gOjxY9WPefw4Uc+eRE5O\nRMnJqh9Pg9GIAPEi5Tep7927J9+kPnHiBN+kri95eURff80+sFOmEKWmKn+M1FSicePY09vXXxMV\nFip/DI5mcfcu0bvvsmvis8+IHjxQ7vuXlRFFRBANGsQ2ovfsadiNjmqJovdOQesgJOXWKzt27IiA\ngAC4uLhg+vTpCAkJEVCZFvDKK6wBzKVLgL4+858ZMgT49Vdmr60ohYWspsHVlW1QWlgw2+T584Fm\nzZSnn6OZdOoEbNrEUkvv32cW7pMnAydO1M/TKTMTWL2aeXfNmsX2Gy5fBnx9ecGlCuFWGw2FggJ2\nY//xR+DsWZbL/sYbwMCB7ENc1aZ2QQFw4QKr3D5yhH3Q7eyA995jLrM8KHCq4/59YOdOVmj38CFz\nUXV1ZT2fu3VjFh6V8fgxcPEiEBfHrru//mI+SpMns+tWh9f41gXuxcSpPffuAZGRQGwsqzBNS2Np\nqJ06sRt+kyas0OjhQ/ZBNTdnabRubiwr6V+jRQ6nTly+zIoljx8H/vwTuHMHMDQEWrUCXn2VmVI+\necJmCwUFgLU1S6n18mKzVU31gRIBPECIiOjoaI1Iv5XrLC1laYL37wPPngHFxUDr1v8FDYFzyTXu\nfIoc0egsLARu3ABycljL2caN2XXXti3QpQuiY2LEobMaRHMua0CjzPq2bt0KCwsLWFlZ4f/+7//k\nx7XFakMp+cdqQK6zUSPmDmtvz5acXFyA3r3Z050ICo007nyKHNHo1NUFpFK2ZOnszK69nj2Brl0B\niUQ8OqtBEzTWB7UXyl28eBGbNm1CWFgYzMzMkJmZCQB48OAB1q1bh+PHjyMtLQ2BgYFISkpStzwO\nh8Ph/IvaA0R4eDj8/f1hZmYGAGjfvj2AilYbhoaGcquNBt9VjsPhcARC7XsQ7u7usLKyQnx8PGQy\nGebOnQtLS0t89tln0NfXx9SpUwEAfn5+ePfddytYbUh4OhuHw+EohCK3epXMINzd3XGvksYiX331\nFQoLC/H48WPExcXh2LFjmDlzJqKioioV/2JA0IQNag6Hw9EWVBIgIiMjq/xdXFwcnJyc0Lx5c3h7\ne2Pq1KkoLCyEg4MDjh07Jv//Ll26BDs7O1XI43A4HE4tUHsWU79+/RAeHg4iQkJCArp37w5dXV3Y\n29vj6NGjSE9PR3R0NHR0dPj+A4fD4QiI2jepfXx8EBERAUtLS0ilUqxcuRJARauNpk2bYuPGjeqW\nxuFwOJzy1McASl3MmzePpFIp2dra0qxZsyg/P1/+u5CQEDI1NSULCwuKi4sTUCXR7t27ydLSknR0\ndOjcuXPy42lpaaSrq0symYxkMhkFBAQIqLJqnUTiOp/lCQoKoq5du8rPYXh4uNCSKhATE0NSqZRM\nTU1pzZo1QsupEiMjI+rZsyfJZDKys7MTWo6cd955hzp06EDW1tbyY9nZ2TRs2DAyMDAgHx8fysnJ\nEVAhozKdYrs209PTycnJiSwtLemNN96gH3/8kYgUO58aESAiIiKotLSUSktLacqUKfT9998TUe3a\nlKqT1NRUunz5Mjk5Ob0UIMpfUEJTlU6xnc/yLFq0iFasWCG0jCqRyWQUExNDN27cIHNzc8oUaYvV\n8g7KYiI2NpaSkpIqfE6Cg4Np5syZVFhYSDNmzKBly5YJqJBRmU6xXZt3796l8+fPExFRZmYmmZiY\nUHZ2tkLnUyMcr9zd3aGjowMdHR14enoi5t/WmmJrUyqVStFDAzpZVaVTbOfzRUikWWxZWVkAgEGD\nBsHIyAgeHh5ISEgQWFXViPE8Dhw4EG3atKlwLDExEf7+/mjWrBkmT54sinNamU5AXOe0U6dOkMlk\nAAA9PT1YWVnhzJkzCp1PjQgQ5dm8eTO8vb0BVN2mVIykpaVBJpNh6tSp+Ouvv4SWUyliP59r166F\no6MjgoODRRW4zpw5A6lUKv/Z0tISp0+fFlBR1UgkEri4uGD48OEICwsTWk61lD+vUqlUVNfii4j1\n2rx27RpSUlJgb2+v0PlU+yZ1VVRVO7FkyRJ5QFi8eDFatmyJ0aNHA6g8aqu6mK42Ol+kS5cuyMjI\nQJs2bRAeHo4JEyYgOTlZdDqFOJ/lqa5+JiAgAAsXLkR2djY+/PBDbNy4EfPmzVObNm3h5MmT6Ny5\nM1JTU+Ht7Q17e3t06tRJaFmVIqan8uoQ67WZk5ODMWPGYNWqVWjRooVi51NFy2A1kpubSxMnTiQz\nMzOysLCg06dPV7uJsnXrVurfvz8VFBTIj9WmTakQvLi2/yK2trZ09epVNSqqnBd1ivV8vsiff/5J\n/fv3F1qGnKdPn5JMJpP/PHPmTDp48KCAimrHnDlzaNOmTULLkPPiXt3IkSMpKSmJiIjOnj1Lvr6+\nQkmrQHV7imK5NouKisjd3Z1WrVolP6bI+RRsiSkoKAiGhoZITk5GcnIypFIp1q9fD0NDQ1y9ehX6\n+vrYsGEDAODIkSNYtmwZwsLCoFuusY2YayeoXLR++PAhSktLAQBJSUkoKCiAqampUNIqUF6nmM/n\n3bt3AQAlJSXYtWsXBg8eLLCi/2jVqhUAIDY2Fjdu3EBkZCQcHBwEVvUy+fn58uWPzMxMHD16FF5e\nXgKrqhoHBweEhoaioKAAoaGhcHR0FFpSpYjt2iQi+Pv7w9raGrNnz5YfV+h8qiZ+1YyNjU2FdFUi\nIl9fX/nu+7lz52jUqFFERGRqakqGhoaVpomuXr2aunfvThYWFhQbG6u+P6ASfv/9d9LX1yddXV3q\n2LEjeXl5ERHRnj17yMrKimxsbMjX15diYmJEqZNIXOezPBMmTKCePXtSnz59aM6cOaLLxImOjiap\nVErdu3enkJAQoeVUyvXr18nGxoZsbGzIxcWFtmzZIrQkOX5+ftS5c2dq2rQp6evrU2hoqCjTXJ/r\nbNKkCenr69OWLVtEd23GxcWRRCIhGxubCqm3ipxPQRoG3bp1C25ubnB0dERqaipGjhyJwMBASKVS\nXL58Gbq6usjPz4eFhQVu3rwpfx036+NwOBzFUORWL8gSU2FhIa5cuQJfX19ER0cjJSUFu3fvrtUf\nQKx2Q9RfQUFBgmvgOrlOrpNrfP6lKIIECFNTU5ibm8Pb2xvNmzfH2LFjceTIEdjZ2SE1NRUAkJqa\nys36OBwOR0AE26Q2MzNDQkICysrKcOjQIbi5uWnMphSHw+E0BASrg1i+fDkmTpyIwsJCuLm5wc/P\nD2VlZRg/fjzMzc3Ru3dvBAcHCyWvXmhCE3OA61Q2XKdy0QSdmqCxPgiySa0oEomkXutpHA6H0xBR\n9N4pmkpqDqc8RMDNm0ByMvDPP+z7vDygsBBo1gzQ0wM6dgSsrACZDOjQQWjFHG2gtBRITWVfly4B\nDx8COTlAURHw2mtAq1aAiQlgaQn07Ml+1mb4DIIjGoqKgCNHgN9+A06cYD/37g2YmQHGxsCrr7Lg\n8OwZ8Ogh7poPAAAgAElEQVQRcPcucOEC8OefLGAMHgx4ewPOzkCjRkL/NRxN4ckTYM8eIDwciI5m\n15KVFSCVsoeQli2Bpk2B7Gzg6VP2wJKSAvz9NwsUnp7AqFFAr15C/yVVo+i9s04BYsGCBViyZEmd\nB6mM0tJS9O3bF/r6+jhw4ABycnIwfvx4nD9/Hr1798bOnTvRokWLimJ5gNBK/vkHWL0a2LWLfTDH\njAHc3IAePYDalL4QAX/9BRw6BOzdCzx4AEyeDLz3HtCli+r1czQPIiAuDli7FoiIADw8gOHDARcX\noHPn2r3Hs2fAyZPsoebnn1lg8fcH3nkHeOUV1eqvK0oPEO+///5Lx7Zv346JEydCIpFgzZo1dVdZ\njpUrV+LcuXPIyclBWFgYli5dioyMDCxfvhwffPABjI2NXzK84gFCu0hJAYKCgJgYdjOfOhUwNKz/\n+/71F7BpE/DTT8DYscD8+YCBQf3fl6P5ELGZwldfAffvA3PmAG+9BVTi4F0nSkuBqChg3Trgjz+A\nWbOAmTPZ7EMMKHrvrDLNde/evXj8+DH69u2Lvn37ok+fPmjatKn8+/pw69YtHD58GFOmTJGLFqP3\nO0c13L0LvPsuWwrq3x9IS2MfWGUEBwCwsQG++46tIbdowfYoFixgexichktyMuDuDnzwAbuBX74M\nzJhR/+AAsCVNd3c2gz1+nD38mJsDoaEseGgqVc4gsrOz8dlnn+HBgwdYsWIFunTpAhMTE6SlpdV7\n0NGjR2PBggXIzs7G8uXLceDAARgZGVVrswGwKBgUFCT/2cnJSevTzLSJsjJg82bg00/ZEtDHHwOt\nW6t+3Dt3gI8+YjOVkBBg5EjVj8kRD3l57JrbtQtYuJDNVps0Uf24Z88Cs2ezxIotW9iDi7qIjo5G\ndHS0/OfPP/9csdUXqoGzZ8+Sk5MTLV26lAwNDWv632vkwIEDNH36dCIiOnHiBA0dOpSIiAwMDORW\n3nl5eZWOVQu5HJFy/TrRwIFEjo5EFy8KoyE2lsjMjGjsWCKRef1xVMSJE0TduhGNH0/08KH6xy8r\nIwoNJWrfnigoiOjZM/VrIFL83lljJXWfPn1w/PhxNG/eHAMHDqx7BHqBU6dOISwsDCYmJhg7diyi\noqIwYcIEbrOhxezZAzg4AD4+QHw824gWgoEDWcZThw4sRfHfzrUcLaS0lO1vvfUWsGYNsGMH0K6d\n+nVIJGzT+vx5IDERGDQISE9Xvw6FqSpyeHh40MqVKyk1NVXhqFUT0dHR8hnE84ba+fn5NH369Eob\nalcjlyNCCgqIAgLYE9yZM0KrqcjRo0QdOxItXcqe8jjaw507RM7ORC4uRHfvCq3mP8rKiJYtI+rQ\ngUjd/aQUvXdWOYPYtm0bWrdujUWLFsHW1hYBAQHYv38/8pS80/fcwjsgIADp6ekwNzfH7du3MW3a\nNKWOw1Evd+6wJ/ZHj4CkJKBvX6EVVcTDgz3R7dnD9iSysoRWxFEGp04BffqwJ/WICEBM3VQlEmDe\nPOD334Fp09i+SFmZ0Kqqp1Z1EKWlpUhISEB4eDiioqKgq6sLT09PfPTRR+rQKIenuWoGSUlsOSkg\ngG1Ei7mNx7NnbCMxLo7VURgZCa2Ioyi7drF/y23bWNGkmMnMZA8mnToB27cDzZurdjyF751VTS3W\nrl1b5bTjwYMHtHPnToWmLPWhGrkckfDbb0R6ekR79gitpPaUlRGtWkXUpQvR2bNCq+HUlbIyokWL\niIyMiJKThVZTewoLicaNI7K3J7p3T7VjKXrvrHIGYWtri/Pnz9cvbCkZPoMQN+vXA19+CYSFsWm+\nprF3L0uB3LoVGDpUaDWc2lBSAkyZwryT9u8X15JSbSACFi9ms56jR5l7gCpQeqGcKsnIyICzszOs\nrKzg5OSEXbt2AQBycnLg4+MDQ0NDDB8+HLm5uULI49QRIhYYli8HYmM1MzgAwIgRwMGD7Ibz009C\nq+HURGEhMHo0cO8eq2LWtOAAsOXXoCBWn+HkxLLsxESVM4hGjRrhlSoMRSQSCbKzsxUe9N69e7h3\n7x5kMhkePnwIe3t7/PXXX1i/fn21dht8BiE+yspYZerx4+wJqLY+NmLmwgXAywv44gtW0McRHzk5\nzDupXTtg505mpqfp/PYbMH06m8n276/c91b6DKJXr17Iycmp9Ks+wQEAOnXqBJlMBgDQ09ODlZUV\nzpw5w+02NIyyMnZBJySwmgJtCA4Aq5E4cQL4/HNm5sYRF1lZzNaie3c209OG4AAAvr5sw3r4cODY\nMaHVMATvB3Ht2jWkpKTA3t4e77zzDqRSKQBAKpUiMTHxpf9/0aJF8u+51YZwPA8OFy6wmYNYTMmU\nRY8ebLnM1ZVZNcyfL7QiDsCCg6cnYGfHCuDEnCGnCJ6eLA125EgW/FxdFXufF602FKaq3euvvvpK\noV3vupCdnU29e/emffv2EVHNdhvVyOWokdJSovfeI+rfnyg7W2g1quX2baIePVhBHUdYsrKYVcuM\nGdpf3BgTw+w5oqKU836K3jurXGJasGCB/PudO3cCAHbs2FH/iPQvxcXF8PX1xYQJE+Dj4wMA3G5D\nAygrY/UNFy8yH3xtmzm8SJcubAN0wwa+3CQk2dlsX8jWlv07aNvM4UUGDQJ27wb+9z/WxEgoapXF\ntGLFCgCsh4MyICL4+/vD2toas2fPlh93cHBAaGgoCgoKEBoaCkdHR6WMx1EOREBgYMMJDs/p2pUF\niRUrWJ8JjnrJzQXefJO5oX77rfYHh+c4OQG//MIytWJjhdEgSJrryZMnsXPnTkRFRcHW1ha2trY4\ncuQIt9sQOUFBzMrg8OGGExyeY2TENg6/+AL44Qeh1TQcnj1j6/FSKevxoSPIHUs4XFzYXsSoUcw+\nXN0Iskk9YMAAlFVhQrJ//341q+HUhlWr2NNMXJz2N2qvClNTIDKSfWibNQP8/IRWpN2UlDA31tde\nYzO3hhYcnuPmxvqoDB3KZrKWluobW/AsJo742bqV9YyOi2NW2Q0ZqZRlbbm7A6++Cnh7C61IOyFi\nLWizs1nxYqNGQisSFh8fdi48Pdlyk4mJesZtoDGZU1t+/52164yIUF5LUE2nZ0/gwAHWoD4qSmg1\n2gcR8OGHwN9/s6KxZs2EViQOJkwA/u//2MPJ3bvqGbNWAcLc3BwA0ENVRiHliI2NhYWFBczMzLCW\np40IyrFjzJb40CHWX5fzH3Z2wK+/smUmXs+pXL75hs3SDh1iPcU5/zFzJvD228yu/vFj1Y9XK7tv\ndWJra4uQkBAYGRnB09MT8fHx0NPTA8CtNtRJQgJb8/ztN5Zyx6mcw4dZx7DISKBXL6HVaD4bNgDL\nlrHOg9pSma9siFhfiZMn2UNcbYKoysz6XCsp5avsmDLI+rdry6BBg2BkZAQPDw9utyEAFy8Cw4Yx\nh0keHKpn8GBW0fvmm8DVq0Kr0Wx+/pmZPkZG8uBQHRIJM8a0tmYZXs+eqW6sKjepCwoKkJ+fj8zM\nTDwuN5d58OABcnJyVCLmzJkzcqsNALC0tMTp06cxZMgQ+bHaWG08eADcv8/Wijl14/p1VpC0ahVQ\n7rRzqmHMGGYe5+7ONhD5Xk3dOXwYmDWLmT526ya0GvEjkbDZ1vjxrDPiwIEVf68sq40qA8TGjRsR\nEhKCO3fuoE85/2YjI6MKxW3qpnyAqIrERODdd5mBnBq2TbSGu3fZTe6TT1h6Iaf2TJnCskyeB4mO\nHYVWpDnExbF19bAw9lTMqR2NG7MaicoKB198eP78888VG6QmL46QkBCFPDwU4enTpySTyeQ/z5w5\nkw6W6+5dC7lyvv+edZhKT1emQu3l0SMia2uiL78UWolms3AhkY0N0ePHQivRDM6fJ+rQgSgyUmgl\n2k1d7p3lEe0mtaGhIby8vOq1Sb1iBSswiYsD2rdXlWLNJzeXFeMMGMA2CBuKlYEqIALmzGGz2IgI\nnoVTHVeuMDuJtWuZ1TVHdSi6SS26ABETE4Np06ahuLgYgYGBCAwMlP9OkT/yk0+Yb1BUVMOtAK6O\nwkKWrWRszIIpDw71p6yMLTllZLB6CV1doRWJj/R0tm6+aBHLAuOoFpUECCLCrVu3YGBgUC9xykKR\nP5KI5Q4/N5hr3lxF4jSQkhLm8dK0KVvLbOjVqsqktJTVSJSUsHqJxtyzQM6DByw4TJvGZlsc1aOy\nNNfBgwcrJEgsSCRsCquvz6xzi4uFViQOyspYO81nz1jLRh4clEujRsCPP7IZ2uTJ7HxzWMMfLy+W\n+cWDg/ipNkBIJBL069dP4w30dHRYTj8Ry5Zo6B9WIpZSmJbGCuG0pWWj2GjalJ3fGzeA999n570h\nk5/PljMHDGDtXDnip8YZRFxcHEaMGIH27dujZ8+e6NmzJ3rVo2T0ww8/hIWFBXr37o3Zs2ejoKBA\n/rs1a9bAzMwMlpaWiI+PV3iMymjShE31b93iH9aFC1kV5sGDwCuvCK1Gu3nlFbYPcfo02w9rqBQV\nseVMExNm/Mj3ujSDGjepb9y48d//XG4dy9jYWKEBIyMj5ZXYU6dOhaOjI/z9/fHgwQMMGjQIERER\nSEtLw5w5c5CUlFRRrBKsNrKyWJ9XJ6eGmbHzzTesn0FsLM/sUicPH7Kq9EmTmOFaQ6KoiDW9adSI\nWcY3aSK0ooaHyvYgjI2N0bZtWyQkJCAhIQHt2rVTODgAgLu7O3R0dKCjowNPT0/ExMQAABISEuDl\n5QVDQ0O88cYbICKVVGy3asXSD6Oi2Ae1Ic0kgoOZdffx4zw4qBs9PWYhsXEjsG6d0GrUR3Hxf30z\nfv6ZBwdNo8bcir1792L+/Plwc3MDEWHhwoX4+uuvMWLEiHoPvnnzZkyZMgUAkJiYCAsLC/nvzM3N\nkZiY+JLvU22sNmqibVv2YXV1ZU81S5Zo/0xi6VJgyxbW37ZLF6HVNEy6dmXmaoMGsSY448cLrUi1\nFBezivyiIr7XpW5UbrXxnLVr1yIqKgpdu3YFANy5cwfjx4+vNkC4u7vj3r17Lx1fsmQJvP/tsLJ4\n8WK0bNkSo0ePBoBKpz+SSu7atbHaqA3t2rEPq6sr28T+8kvtDRLLl7MaBx4chKdbN2Zl7erKGg4p\n4TlLlJSUsACYl8d7OgiBsqw2apWdrVOu15+Ojk6Na1mRkZHV/n7btm04evQojh8/Lj/m4OCAY8eO\nyX++dOkS7OzsaiNPYfT02HKLiwu7oL/5RvuCRHAw8P33wIkT7AmWIzxWVqzXweDBLA127FihFSmX\nZ8/YzCEvD9i3jwcHTabGADF9+nQ4OzvDw8MDRIRjx47hiy++UHjAI0eOYNmyZYiNjYVuuRJTe3t7\nfPjhh0hPT8f169eho6ODli1bKjxObdHTYzfPwYOBgADWGF0bagKIgI8/Zhk00dE8OIiNPn3Yw4mn\nJ0ucmDZNaEXKIS+PWVC3aAHs38+Dg6ZTZRZTWloaTP5tfPrkyROEh4dDIpHAy8sLbdq0UXhAMzMz\nFBUVoW3btgCAfv36Yd2/u3YhISFYu3YtmjZtio0bN2LgCx62qmwYlJPD+r527Ahs367Zm2mlpcCM\nGUBSEhAezpbTOOLkn3+YA+zUqZqf3fT0KatzMDVls1ZePS4elG610adPH5w7dw6urq4VloKERNUd\n5QoL/6u2/uUXtpGoaRQWslTKzEz2BKeGSRinnty+zYKEtzfw9ddsT0zTyMhgwWHQICAkRDP/Bm1G\n6QHC1dUVAwcOxPfff4+5c+dWeHOJRIK5c+cqrlZB1NFytKSEeTedOsXWiUViQ1UrHjwAhg9nDWu2\nbeMmcZrEw4esi5+BAfu30yTPsKQkNvueNQv44APt28fTBpReB7F9+3a0bdsWpaWlyMnJQW5urvxL\nVR3lxEDjxsD69ewpvF8/4Nw5oRXVjr//BhwdWXbMrl08OGgaenqsNqdxY1bEWUkSoCg5eJDto6xe\nzfok8+CgZdTUMOLQoUMKNZqoieXLl5NEIqFHjx7Jj4WEhJCpqSlZWFhQXFzcS6+phVylsncvkZ4e\n0Q8/qHXYOrNvH1H79kTbtwuthFNfysqIFi8mMjQkSkwUWk3VlJYSff45UefORKdPC62GUxOK3jvV\ne8f9l/T0dPL09CRjY2N5gLh//z6Zm5vTzZs3KTo6mmxtbV96nboDBBHRhQtE5uZE/v5E+flqH75a\nnj0jmjOHdc774w+h1XCUyW+/saC/ahULGmIiM5PI05No0CCiO3eEVsOpDYreOwXZSpo7dy6WLl1a\n4Zi6rDbqirU1cOYMS99zdARSU4VWxLhxg20IXrvG1oAdHYVWxFEmI0cyg79du9i+0uPHQitixMSw\nFF2ZjKXpdu4stCKOKlF7Itr+/fuhr6//kiOsOq026krLluyDunkzuynPm8c244RI4ysrY3skQUHA\nggXMU5+v+2on3boB8fHA/PlAz57At98KV3mdl8eut99+Y35SQ4YIo4NTO5RltVHlvCM4OFj+/e7d\nuyv87uOPP652WuLm5kbW1tYvfe3fv58cHBwoKyuLiIiMjY3p4cOHRET0ySef0IYNG+TvMWbMGDp+\n/HiF961GrtpISyNydSXq04fo1Cn1jn3+PNGAAUT9+hGlpqp3bI6wxMYS9ehB5OtLdPOm+sYtK2N7\ncSYmROPHE5XbMuRoEIreO6t8lUwmq/T7yn6uLRcuXKAOHTqQsbExGRsbU+PGjcnIyIju3btHYWFh\nFBgYKP9/bWxsKDs7u6JYEQQIIvah2b6dqGtXorfeYkFDldy+TTR5MlGHDkTffUdUUqLa8TjipKCA\naOFCorZtiebPJ/r3OUtlnDvHHoYsLYkiI1U7Fke1KHrvVOsehLW1Ne7fv4+0tDSkpaVBX18fSUlJ\n6NixI+zt7XH06FGkp6cjOjpabVYbiiCRABMmAJcuAd27szXZSZNYqqkyuXaNVdhaWzMH2suXgenT\ntcMKhFN3dHVZJ7a//gLu3mVLUB9/zL5XFkSsmdSQIawuY/hw4M8/ATc35Y3B0RwErXcs79basWNH\nBAQEwMXFBdOnT0dISIiAympHixbA4sXMLsHcnNUgDBjAbAYU3VTMzmZWH66ubOO5Y0cWGJYtA1q3\nVq5+jmair8+K6RITmUWMpSXb1N67lxnlKUJGBrByJXsYefttVtV97RorGtVk2xlO/aiykrpRo0Z4\n5d9+lAUFBWherrSzoKAAJSUl6lFYDnVUUteH4mLmfbRtG7MSt7BgN/pevZiDp74+s+9o1IhtNufm\nsg9maiqQnMwKpf76ixVKTZrErAt4wRunJp4+ZZvHO3awws5+/dg11LMn0KMHu+5eeYXNfEtKgCdP\n2HV34QKbHURGssK8oUOByZOBgQN54oO2oXSrDTEi9gBRnmfPmF1HTAxw8SKQksKWAnJyWOOUZ89Y\nP4AuXVggsbICnJ2B11/XLJsFjrh48oS1k42NZQ8eV64wr6dnz5izanEx66rYpQsLIL16seuub1++\ndKnN8AAhIqKjo6tMvy0rY4Z6urrCG5pVp1NMcJ31p/x1FxsrXp3lEfP5fI4maARU2JNaFWzduhUW\nFhawsrLC/5XzOF6zZg3MzMxgaWmJ+Ph4IaQpheryj3V02HRf6OAAVK9TTHCd9af8dSdmneXRBJ2a\noLE+qL3U6+LFi9i0aRPCwsJgZmaGzMxMAMCDBw+wbt06HD9+HGlpaQgMDERSUpK65XE4HA7nX9Qe\nIMLDw+Hv7w8zMzMAQPv27QFUtNowNDSUW22INdWVw+FwtB2170G4u7vDysoK8fHxkMlkmDt3Liwt\nLfHZZ59BX18fU6dOBQD4+fnh3XffrWC1IeGpFRwOh6MQitzqVTKDcHd3x71KDO2/+uorFBYW4vHj\nx4iLi8OxY8cwc+ZMREVFVSr+xYCgCRvUHA6Hoy2oJEBERkZW+bu4uDg4OTmhefPm8Pb2xtSpU1FY\nWAgHBwccO3ZM/v9dunQJdnZ2qpDH4XA4nFqg9lyafv36ITw8HESEhIQEdO/eHbq6uhpltcHhcDgN\nAbVvUvv4+CAiIgKWlpaQSqVYuXIlgIpWG02bNsXGjRvVLY3D4XA45amPQ6C6mDdvHkmlUrK1taVZ\ns2ZRfrnWbjW1KVUnu3fvJktLS9LR0aFz587Jj6elpZGuri7JZDKSyWQUEBAgoMqqdRKJ63yWJygo\niLp27So/h+Hh4UJLqkBMTAxJpVIyNTWlNWvWCC2nSoyMjKhnz54kk8nIzs5OaDly3nnnHerQoQNZ\nW1vLj2VnZ9OwYcPIwMCAfHx8KCcnR0CFjMp0iu3aTE9PJycnJ7K0tKQ33niDfvzxRyJS7HxqRICI\niIig0tJSKi0tpSlTptD3339PRLVrU6pOUlNT6fLly+Tk5PRSgCh/QQlNVTrFdj7Ls2jRIlqxYoXQ\nMqpEJpNRTEwM3bhxg8zNzSkzM1NoSZVSvs2vmIiNjaWkpKQKn5Pg4GCaOXMmFRYW0owZM2jZsmUC\nKmRUplNs1+bdu3fp/PnzRESUmZlJJiYmlJ2drdD5FEE9b824u7tDR0cHOjo68PT0RExMDADxtSmV\nSqXo0aOHYOPXlqp0iu18vgiJNIstKysLADBo0CAYGRnBw8MDCQkJAquqGjGex4EDB6JNmzYVjiUm\nJsLf3x/NmjXD5MmTRXFOK9MJiOucdurUCTKZDACgp6cHKysrnDlzRqHzqREBojybN2+Gt7c3gKrb\nlIqRtLQ0yGQyTJ06FX/99ZfQcipF7Odz7dq1cHR0RHBwsKgC15kzZyCVSuU/W1pa4vTp0wIqqhqJ\nRAIXFxcMHz4cYWFhQsuplvLnVSqViupafBGxXpvXrl1DSkoK7O3tFTqfAnRVrpyqaieWLFkiDwiL\nFy9Gy5YtMXr0aACVR21VF9PVRueLdOnSBRkZGWjTpg3Cw8MxYcIEJCcni06nEOezPNXVzwQEBGDh\nwoXIzs7Ghx9+iI0bN2LevHlq06YtnDx5Ep07d0Zqaiq8vb1hb2+PTp06CS2rUsT0VF4dYr02c3Jy\nMGbMGKxatQotWrRQ7HyqaBmsRnJzc2nixIlkZmZGFhYWdPr06Wo3UbZu3Ur9+/engoIC+bHatCkV\nghfX9l/E1taWrl69qkZFlfOiTrGezxf5888/qX///kLLkPP06dMKbXhnzpxJBw8eFFBR7ZgzZw5t\n2rRJaBlyXtyrGzlyJCUlJRER0dmzZ8nX11coaRWobk9RLNdmUVERubu706pVq+THFDmfgi0xBQUF\nwdDQEMnJyUhOToZUKsX69ethaGiIq1evQl9fHxs2bAAAHDlyBMuWLUNYWBh0y3XQEXPtBJWL1g8f\nPkRpaSkAICkpCQUFBTA1NRVKWgXK6xTz+bz7b1/NkpIS7Nq1C4MHDxZY0X+0atUKABAbG4sbN24g\nMjISDg4OAqt6mfz8fPnyR2ZmJo4ePQovLy+BVVWNg4MDQkNDUVBQgNDQUDg6OgotqVLEdm0SEfz9\n/WFtbY3Zs2fLjyt0PlUTv2rGxsamQroqEZGvr6989/3cuXM0atQoIiIyNTUlQ0PDStNEV69eTd27\ndycLCwuKjY1V3x9QCb///jvp6+uTrq4udezYkby8vIiIaM+ePWRlZUU2Njbk6+tLMTExotRJJK7z\nWZ4JEyZQz549qU+fPjRnzhzRZeJER0eTVCql7t27U0hIiNByKuX69etkY2NDNjY25OLiQlu2bBFa\nkhw/Pz/q3LkzNW3alPT19Sk0NFSUaa7PdTZp0oT09fVpy5Ytors24+LiSCKRkI2NTYXUW0XOpyAN\ng27dugU3Nzc4OjoiNTUVI0eORGBgIKRSKS5fvgxdXV3k5+fDwsICN2/elL+Om/VxOByOYihyqxdk\niamwsBBXrlyBr68voqOjkZKSgt27d9fqDyBWuyHqr6CgIME1cJ1cJ9fJNT7/UhRBAoSpqSnMzc3h\n7e2N5s2bY+zYsThy5Ajs7OyQmpoKAEhNTeVmfRwOhyMggm1Sm5mZISEhAWVlZTh06BDc3Nw0ZlOK\nw+FwGgKC1UEsX74cEydORGFhIdzc3ODn54eysjKMHz8e5ubm6N27N4KDg4WSVy80oYk5wHUqG65T\nuWiCTk3QWB8E2aRWFIlEUq/1NA6Hw2mIKHrvFE0lNUe9FJcW4/y98ziZfhJXHl/BP4//wf28+ygq\nLUJxaTFa6bZC+1faw7CVIWSdZLDtZIu+XfqiSaMmQkvnaDB5RXmIT49H0t0kXH50GdefXEf2s2zk\nFuWisU5jtNZtjXavtINUTwrr9tZw0HeAhZ4Fz2AUCD6DaEAUFBfg4JWD+OniTzh2/RiMWxtjoNFA\nWOpZolubbujUohOaNW6GJjpN8LTwKR7mP8T1J9fx5/0/ceb2GaRnpcOjuwdGSEdguHQ4mjVuJvSf\nxNEAHuY/xC8Xf8Huv3fj3J1z6NOlD+y72kPaTorubbujtW5rvNrkVZRSKZ4UPEFmfiZSM1Nx4cEF\nxKfHo4zK4GXqhQm9JmCA4QAeLBRA0XtnjQEiLS0NJiYmFY4lJyejV69edR6sPKWlpejbty/09fVx\n4MAB5OTkYPz48Th//jx69+6NnTt3okWLFhXF8gChEOlZ6QhJCMHW81vRt0tf+Fn7wcfcB+1eaVen\n97mbcxeHrx7GTxd/QvL9ZEySTcIsh1nQf01fRco5mszZO2ex9ORSRPwTgcFmgzGu5zg4GTvh1aav\n1vo9iAiXH13GgcsHsPXPrSguK0ZA3wBM7TO1Tu/T0FH03lllFtORI0fQo0cPDBs2DDKZDGfOnJH/\nbtKkSYqpLEdISAgsLS3lTwNV2WxwFCcjKwOT90+G7UZbSCDBn9P+RMSECEy2nVzn4AAAnVt2hn9v\nfxybeAwnJ59EGZWh1/pemH5oOm5l31LBX8DRRBJvJ8JtuxtG/DIC/fT7IX1OOnb57sKQHkPqfFOX\nSCSQ6knx4esfImV6CnaM2IE/bv0BkxATfBX7FfKK8lT0V3AAVG214eHhITeUi4uLox49etBvv/1G\nRNqCjLkAAB8ESURBVFTBmEwRMjIyyNXVlaKiomjo0KFEVLXNRnmqkcspR+6zXPr42MfUNrgtLTi+\ngJ4WPFXZWPdz79NHkR9R2+C29EXMF1RQXFDzizhaSfrTdBr32zjqsqILbT63mZ6VPFPZWH8/+JvG\n/DqGDFYa0I/JP1JZWZnKxtIGFL13VrlJfefOHbmh3IABAxAVFQVvb2/culX/J8U5c+Zg2bJlyM7O\nlh+rrVf5okWL5N87OTlpfZpZXYn4JwLTDk5DP4N++GvaXypf/unwagcEuwUjoG8A5h6dC6t1Vtjs\nvRkuJi4qHZcjHsqoDOvPrEdQdBCm203HhqEb0KJpi5pfWA8s2lvg51E/Iz49HrOOzMKmc5sQ6hOK\nbm26qXRcTSE6OhrR0dH1f6OqIoejoyNdu3atwrGsrCxycXGhJk2aKBSNiIgOHDhA06dPJyKiEydO\nyGcQBgYGcivvvLw8MjQ0fOm11cht8OQ+yyX//f5ktMqIwq8K1xP34OWD1HVFV3r/8PuUV5QnmA6O\nekh7kkYDQwdS/y39KTUzVRANJaUltPzkcmoX3I7WJqzls4lKUPTeWeUexIYNG1BWVlbh2GuvvYbw\n8HCEhoYqHJBOnTqFsLAwmJiYYOzYsYiKisKECRO4zUY9SL6fjL6b+6KotAgXAi7Ay1Q4C+chPYYg\nOSAZjwoeoc+mPkjNTBVMC0e17Lu0D/ab7THMfBhi346FVE9a84tUQCOdRvig/wc45X8KO5J3YPgv\nw/Gk4IkgWrSOqiKHh4cHrVy5klJTVfdUEB0dLZ9BPG+onZ+fT9OnT6+0oXY1chssG89uJL2levTD\nnz8ILeUltiRtIb2levTzhZ+FlsJRIs9KntGs8FlktMqI/sj4Q2g5FXhW8owCwwPJZLUJnb19Vmg5\nokHRe2eVM4ht27ahdevWWLRoEWxtbTFt2jTs378feXnKzRp4nsUUEBCA9PR0mJub4/bt25g2bZpS\nx9E2ikuLMePwDIQkhCD+nXhMtJkotKSXmGw7GRHjI7AgagFmH5mNkrISoSVx6snD/Idw3e6K60+u\nI2lqEhz1xeWX1rRRU4R4hSDYLRheP3oh9Lziqx2cWhbKlZaWIiEhAeHh4YiKioKuri48PT3x0Ucf\nqUOjHF4HwXhS8AT/2/M/NNFpgp9H/YzXmr0mtKRqeVLwBGN/GwuJRILdo3ajZTNxdKnj1I3UzFQM\n/WkoxliNwZcuX0JHIpjXZ6249PAShu4aiv9Z/U8j9KoSpRfKffvtt5g5c2alL8rMzERERATGjRtX\n5wHrAw8QwPUn1/Hmj29iiNkQLHNfhkY6jYSWVCuez3jO3DmDg2MPoutrXYWWxKkDkf9EYtzv47DM\nfRkmyepfB6UuMvMyMfyX4dB/TR/bfLaheZPmQksSBKUHCFtbW5w/f77ewpRJQw8QyfeTMfjHwVgw\ncAGm200XWk6dISIEnwzGujPrcHjcYVh3sBZaEqcW/HzxZ8w6Mgu/jv4Vg4wGCS2nzhSWFOLtfW/j\nVvYtHHzrIFrrthZaktpReiW1KsnIyICzszOsrKzg5OSEXbt2AQBycnLg4+MDQ0NDDB8+HLm5uULI\nEyUn00/CfYc7Vnqu1MjgALCLdP6A+fja9Wu4bXfDuTvnhJbEqYENZzfgg4gPcGzCMY0MDgCg21gX\nu3x3oW+XvnD+wRkP8h4ILUlzqHL3WkeHWrRoUelXy5YtFdoRf87du3flVdOZmZlkYmJC2dnZ8kym\nwsJCmjFjxkuZTNXI1WrCr4aT3lI9OnL1iNBSlMbe1L3Ufml7ir8ZL7QUTiWUlZXRktglZLLahK49\nulbzCzSAsrIyWnhiIfVY24PSn6YLLUetKHrvrPJV9bXTqAtDhw6l48eP12i30RADxMHLB6n90vZ0\nKv2U0FKUzpGrR0hvqR4dv35caCmcF1h4YiFZfmdJt7NvCy1F6aw4tYKMVhnRP4//EVqK2lD03il4\nP4hr164hJSUF9vb2eOedd2q022hIVhsHrxzE5P2TcWDsATjoOwgtR+l4mnpiz+g9GP3raPww/Ae8\nafam0JI4ABZFL8Kev/fgxKQT6PBqB6HlKJ25/eaieePmcPnBBdFvR8O4tbHQkpSOyq02vvrqK4Wj\nVW3Jzs6m3r170759+4ioZruNauRqHQcuH6D2S9vT6YzTQktROX9k/EHtl7anyH8ihZbS4Fl0YhFZ\nfmdJ93LuCS1F5Xyb8C0ZrzamG09uCC1F5Sh676zVq3bs2EFERNu3b1dokMooKioid3d3WrVqlfzY\nyJEjKSkpiYiIzp49S76+vhVe01ACxPPgkHArQWgpaiP2RizpLdWjmBsxQktpsHwe/TlZfGvRIILD\nc0JOh5DJahO6+fSm0FJUiqL3zlplMa1YsQIAsHLlyvpPWZhS+Pv7w9raGrNnz5Yfd3BwQGhoKAoK\nChAaGgpHR3FVaaqDqLQoTN4/GQffOgj7rvZCy1EbA40G4mffnzFq9yicvnVaaDkNjm/iv8FPF39C\n1KQodGzRUWg5aiPQIRDv278Plx9ceE+TyqhNFHm+Ya2sjeu4uDiSSCRkY2NDMpmMZDIZhYeHU3Z2\nNg0bNowMDAzIx8eHcnJyKryulnI1loRbCdR+aXs6kXZCaCmCcfjKYeqwrAOdu3NOaCkNhvVn1lO3\nkG5auSFdW4Ljg8niWwvKzMsUWopKUPTeKUiAUBRtDhApD1Ko47KOFHYpTGgpgvP7379Tx2UdKfle\nstBStJ6fLvxEXVZ00ZpU1vrw8bGPqc/GPpRVmCW0FKWj6L2z4ZqTiIi0J2nw3OmJFR4r4G3uLbQc\nwRlhMQKrvVbDc6cnrj66KrQcreXw1cOYdWQWjow7gu5tuwstR3C+cvkK9l3t4f2TNwqKC4SWIwp4\ngBCYuzl34b7DHfNfn49xvdTrbSVm/Kz9sNh5Mdx3uCM9K11oOVpH3M04TNo3Cfv99qNnx55CyxEF\nEokE3w7+Fvqv6WP0r6NRXFostCTBqVWAMDc3BwD06NFDpWIAIDY2FhYWFjAzM8PatWtVPp6QPCl4\nAs+dnnhb9jZm2M8QWo7omNJ7CgIdAuG+wx33c+8LLUdrOH/3PHx3+2LXyF2is+sWGh2JDrb5bINE\nIsGkfZNQWlYqtCRBqZXdtzqxtbVFSEgIjIyM4Onpifj4eOjp6QHQLrO+vKI8uO9wh6O+I1Z4rJD3\nxeC8zKLoRdh3aR9OTDqBNs3bCC1Ho7n88DKcf3DGt4O/xUiLkULLES0FxQV488c3YdHeAusGr9P4\nz6fKzPpcXV1rdUwZZGVlAQAGDRoEIyMjeHh4ICEhQSVjCcmzkmcY8csISPWkPDjUgqA3guBs4owh\nu4Ygt4gbOCpKRlYGPHZ64EuXL3lwqIHmTZojbGwYzt45i0+iPhFajmBUabVRUFCA/Px8ZGZm4vHj\nx/LjDx48QE5OjkrEnDlzRm61AQCWlpY4ffo0hgwZIj+m6VYbpWWlGL93PFo2a4lN3pt4cKgFEokE\nKz1WYsqBKRj+83AcfOsgdBvrCi1Lo3iQ9wDuO9wxy2EWJttOFlqORvBas9cQPi4cg7YOQhvdNvjw\n9Q+FllRrlGW1UWWA2LhxI0JCQnDnzh306dNHftzIyKhCcZu6KR8gNA0iwtSDU/Gk4AkOvXUIjXUE\nt8LSGCQSCTYN3YSxv42F3x4//Dr6VzRp1ERoWRpBVmEW3vzxTYyyHIW5/eYKLUej0HtFDxETIjBw\n60C01m2Nd/u8K7SkWvHiw/Pnn3+u0PvUuAexZs0aBAYGKvTmdSUrKwtOTk7yRkXvv/8+vLy85DMI\nTd6D+P/27jyqiXP9A/g3sS5YtRVEQNksQUIACbhQPS7IBaG0Li1WqIptxZZDS+tyaK3t0Xrt7YIr\nyqlVUaxavHUpFqxll80qAUnVqrhwDUVco8iiBMXk+f3Re1PQoPxCkpno+zmHc5IJw3x9zzhPZt6Z\n9yUifJz7MYr/LEburFz06taL60hm6Z76Hqb8OAVWPa2wbcq2p3oayY5QtagQkhICr/5eSHwpkZ2x\n6qmythLjvh+HNcFrMM1jGtdx/t+M1gdhquIAAM899xyAv+5kqqqqQk5ODvz8noxRTL8q/gqZlZn4\ndcavrDh0Qrcu3bB32l5U11cj9tdYs/3CYAot6ha8vud1OPRxwLqX1rHi0AkiSxEyZmTgg4wPkFmZ\nyXUck+Hd16+EhARER0cjMDAQ7733nvYOJnP2bem32HpsK7JnZsPSwpLrOGavZ9ee2P/GfpRdLsOn\nBz/lOg4vaUiDt9LegkAgwNbJW9mZlgEMsRmCn8N/xqx9s3Co+hDXcUzikZeYiAg1NTVwcHAwZaZ2\nmeMlph9O/IBFeYtQ9FYRBvUdxHWcJ8rNppsY+/1YzPSaiUVjFnEdhzeICLEZsTh1/RQyZmTAoqsF\n15GeKNn/ycbM1JnIjsyG1FbKdZwOMdolptDQUL0CMUDamTTEZccha2YWKw5GYNXTCjmROdj8+2Z8\nW/ot13F4Y3H+YshqZEh/I50VByOY4DIB619ej9CUUJy7eY7rOEb1yAIhEAgwcuRIpKWlmSrPEyPv\nQh7e2f8Ofpn+CyTWEq7jPLEG9B6A3MhcfPPbN9hxfAfXcTi36vAq/FTxEzJmZKBP9z5cx3liTZVM\nxRfjv8CEHRNwsf4i13GM53Gj+YnFYhIIBNSvXz/y9PQkT09P8vLy0mtkQCKiuLg4EovF5OPjQ3Pn\nzqWmpibtZ2vXriWRSETu7u5UXFz80LodiMsLJRdLqN/yflSgKOA6ylPj1PVTZLvSllJPp3IdhTNJ\n5UnktMaJquuquY7y1Fj520pyS3Sj67evcx3lkfQ9dj52LYVCof2pqqrSvtZXdnY2qdVqUqvVNGfO\nHNq8eTMREV27do3c3Nzozz//pIKCAvLx8Xk4rBkUiLJLZWS93Jr2n93PdZSnTvnlcrJebk3Zldlc\nRzG5ZHky2a+2p/M3z3Md5anzWd5n5LvRl26pbnEdpV36Hjsf2wfh7OwMS0tLyGQyyGQyWFlZwdnZ\nWe8zlqCgIAiFQgiFQgQHB6OwsBAAIJPJEBISAkdHR4wbNw5EZLQnto2l/HI5Xt75MjZP2oxXBr/C\ndZynjq+dL1LDUzEjdQYOXzzMdRyT2XZsGxbnL0berDyILEVcx3nqfDH+C4x2HI0JOyagrrmO6zgG\n9dhHefft24dPPvkEgYGBICIsWbIEX3/9NV599dVObzwpKQlz5swBAJSWlsLd3V37mZubG0pLSx8a\n94mvQ23Ir8gRujMUG1/ZiEluk7iO89Qa7TgaO17dgSk/TkHWzCz42PlwHcmofjjxAz49+CnyZuVh\nsJXxR1tmHiYQCJAQnID5WfMRtCMI2TOzOR9U0lBDbTz2vGP8+PFUU1OjfX/p0iUaP378I9cJDAzU\n9le0/klP/3u2tH/+858UFhamff/ZZ5/Rhg0btO/Dw8MpLy+vzd/tQFxOyC/LyWaFzVN9/Ztv9p7a\nS7YrbenU9VNcRzGalBMpZLfS7on+N5oTjUZD8zLn0dCNQ6m2qZbrOG3oe+zs0GBAQqGwzWt6zP20\nOTk5j/z8+++/R1ZWFvLy8rTL/Pz8kJubq31/5swZDB8+vCPxOFVSU4LJP07G+tD1eNW982dVjGGE\nScLQfL8Z/9j+D+x/Yz+GDRjGdSSDSipPwtLCpciOzGZ3yfHE/waVjMuJQ+COQORE5pj/g7GPqyB7\n9uwhNzc3+uCDDyg2NpbEYjHt2bNHr2pERJSRkUESiYRu3LjRZvnVq1e1ndT5+flm0Umd858csl5u\nTQfOHeA6CtOOnyt+Juvl1k/UHWWrDq8i5wRn1iHNUxqNhj7O+Zg813tSTX3N41cwAX2Pne2udeHC\nBe3r2tpaSklJoZ07d1JtbedOnUQiETk6OpJUKiWpVEoxMTHazxISEsjFxYXc3d2pqKjo4bA8KhCp\np1PJerk1FVU9nJPhl7wLeU/EnWUajYaW5C8ht0Q3diurGYg/FE/OCc509sZZrqMYvkD4+voSEVFA\nQIB+iYyALwXiu7LvyHalLZVfLuc6CtNBshoZ2aywoW3HtnEdRS/37t+j2WmzyXejL127fY3rOEwH\nbZFvIduVtlR2qYzTHPoeO9vtg3j++eexdOlSnD17FqtXr27T7yAQCLBgwdM3rrxao8ZHOR/h1/O/\n4tDbh+Bi6cJ1JKaDRgwcgYNvHsTLO1/GuZvnsGz8MrMZwK6uuQ5Td09Fz649UfhWIRsN2IzM9pkN\nKwsrhKaEYsMrG8xuJr92/4ds374dlpaWUKvVaGxsxO3bt7U/5vZ8giHcvncbr+1+DceuHsORqCOs\nOJghibUEsjky5FflI3xvOJpamriO9FiKWwqMTh4NibUE+8L3seJghiaLJyNzZibmZc7Dv4r+ZV4D\njj7uFOPAAeN0wK5cuZIEAgHdvHlTu4yvQ22cvn6aPL71oKi0KLp7/y4nGRjDUbWoaGbqTPLd6EuV\nNyu5jtOu9DPp1H9Ff1pXso7rKIwBXG64TH5JfhS+J5wa7zaadNv6Hjs5OeJWV1dTcHAwOTs7awsE\nX4fa2HF8B/Vb3o+2yLeQRqMx+fYZ49BoNJRwJIGsl1vTrpO7uI7TRou6hT7J/YQcVjvQ4erDXMdh\nDEjVoqLZabNpcOJgkl+Wm2y7ZlUgpk6dSsePH29TINLT02nu3Lna35FKpdTQ0NBmPVMWiPrmeopK\ni6LBiYPp+NXjJtsuY1pll8rIZa0LRe+Ppjv37nAdhypvVtKY5DEUuD2Q9wPAMfrbeWInWS+3pjVH\n1pjki6e+x84OPShnSGlpabC3t8eQIUPaLOfTUBtZlVl495d3EfRCEI6+cxS9u/c2+DYYfhg2YBjK\n3y3H+7++D6/vvJA0MQkBgwJMnkNDGmw4ugFL8pfg0zGfYq7fXHQRdjF5DsY03vB6A372fpj+03Ts\nP7cfG17eAFcrV4P9faMPtREfH699vXv37jafLVq06JFVp72hNtLS0sjPz4/q6+uJiMjZ2Vn7wBwf\nhtqoulVFEXsjyGmN01M5IujTbv/Z/eSw2oHe3PcmXWq4ZLLtllwsoeGbhtPIzSOpQllhsu0y3GtR\nt9Dqw6vJKt6KlhUsM9pZrL7HznbXkkqlOl/ret9Rf/zxB/Xv35+cnZ3J2dmZnnnmGXJycqKrV69S\neno6ffjhh9rf9fb2NtklJuUdJS3KXUSW8Zb0ef7ndPvubaNsh+G/+uZ6WpizkCzjLWlJ/hKqU9UZ\nbVsVygqa/tN0GrBqAG0/tp3UGrXRtsXwW9WtKgrbFUYDVw2kpPIkalG3GPTv63vsNOmN4J6enrh2\n7RoUCgUUCgXs7e0hl8thY2ODESNGICsrC9XV1SgoKIBQKETv3sa9tKO4pcCCrAUYnDgYyiYljkUf\nw1L/pXi227NG3S7DX32698E3gd9A/q4cVXVVeGHdC4jLjjPYrGFEhMMXDyNibwTGbh0LST8JKt6v\nQKR3pNk8l8EYntPzTtg7bS9+mvYTUv5IgWidCKsOr0J9cz2nuUzeB9GaQCDQvraxsUFMTAwCAgLQ\nrVs3bNy40SjbrGmoQWZlJnac2IEKZQVmec/CHzF/YGCfgUbZHmOenJ53wrYp21BdX42EkgR4b/CG\nj50PZnjNQKhrKGx72Xb4bxERTl4/iQPnD2D78e1Qkxrv+r6LpIlJrH+LacPP3g/5b+aj9FIpEkoS\n8EXCFwgRhWCaxzQEuwSb/Mur4L+nHw/p0qULevbsCQBQqVSwsPh78nOVSoX79++bJmErAoGgQw+Z\n1KpqUVVXhYa7DbiluoXztedxWnkasksyKO8oEfhCICI8IxDqGopuXbqZIDlj7prvN+PAuQP498l/\nI0+RB9tethjlMApuVm5wtXSFVU8rWDxjAaFAiFpVLW6qbuLsjbM4cf0ESi+VoquwK15yfQkRHhEY\n7Ti6zZcjhmmP8o4SqRWp2HVqF2SXZPCw9sBIh5EQ9RVhUN9BsHnWBm793B47/3hHj50PrddegeCj\njv4jd53chfjf4tGnex/06d4HIksRJNYS+Nr5QmorZafyTKeoNWqcuHYCJTUlOF97HpW1lbjVfAuq\nFhXUpIalhSWsLKwgshRhiM0QDLUbCpGliBUFplNULSocvXwUJTUlUNQpoKhTQHlHiZUTVsLf2f+R\n67ICwSMFBQW8menuUVhOw2I5DcsccppDRkD/YycnX6W3bt0Kd3d3eHh4YOHChdrl69atg6urKyQS\nCQ4dOsRFNIMwyP3HJsByGhbLaVjmkNMcMnaGyTupT548iU2bNiE9PR2urq5QKpUAgOvXr2P9+vXI\ny8uDQqHAhx9+CLlcbup4DMMwzH+ZvEBkZGQgKioKrq5/PTVobW0NAJDJZAgJCYGjoyMcHR1BRGhs\nbDT6ra4MwzCMbibvgwgKCoKHhwcOHToEqVSKBQsWQCKRYPHixbC3t0d0dDQAICIiAu+8806boTZY\nJx/DMIx+9DnUG+UMIigoCFevXn1o+Zdffonm5mbU1taiuLgYubm5iI2NxcGDB3WGf7AgmEMHNcMw\nzJPCKAUiJyen3c+Ki4vh7+8PCwsLTJw4EdHR0Whuboafnx9yc3O1v3fmzBkMHz7cGPEYhmGYDjD5\nXUwjR45ERkYGiAgymQwuLi7o0aMHJ0NtMAzDMO0zeSf15MmTkZ2dDYlEArFYjNWrVwMw3VAbDMMw\nTAfpPz6g6cTFxZFYLCYfHx+aO3cuNTU1aT973DSlprR7926SSCQkFAqpvLxcu1yhUFCPHj1IKpWS\nVCqlmJgYDlO2n5OIX+3Z2ueff04DBw7UtmFGRgbXkdooLCwksVhMIpGI1q3j7xShTk5O5OXlRVKp\nlIYPH851HK23336b+vfvT56entplDQ0NNGnSJHJwcKDJkydTY6Npp+nURVdOvu2b1dXV5O/vTxKJ\nhMaNG0cpKSlEpF97mkWByM7OJrVaTWq1mubMmUObN28moo5NU2pKFRUVdPbsWfL393+oQLTeobjW\nXk6+tWdrS5cupVWrVnEdo11SqZQKCwupqqqK3NzcSKlUch1Jp9azOPJJUVERyeXyNv9P4uPjKTY2\nlpqbm+n999+nFStWcJjwL7py8m3fvHLlCv3+++9ERKRUKmnQoEHU0NCgV3uaxaBEQUFBEAqFEAqF\nCA4ORmFhIYC2z06MGzdO++wEV8RiMQYPHszZ9juqvZx8a88HEU/vYquv/2tI5rFjx8LJyQkTJkyA\nTCbjOFX7+NiOY8aMQd++fdssKy0tRVRUFLp3747Zs2fzok115QT41aa2traQSqUAgH79+sHDwwNl\nZWV6tadZFIjWkpKSMHHiRADtT1PKRwqFAlKpFNHR0Th+/DjXcXTie3smJibixRdfRHx8PK8KV1lZ\nGcRisfa9RCJBSUkJh4naJxAIEBAQgClTpiA9PZ3rOI/Uul3FYjGv9sUH8XXfrKysxKlTpzBixAi9\n2pPT+SBaa+/Zia+++kpbEJYtW4bevXvj9ddfB6C7ahv7YbqO5HzQgAEDcPHiRfTt2xcZGRmIjIzE\niRMneJeTi/Zs7VHPz8TExGDJkiVoaGjARx99hI0bNyIuLs5k2Z4Uv/32G+zs7FBRUYGJEydixIgR\nsLXt+NwWpsSnb+WPwtd9s7GxEeHh4VizZg169eqlX3sa6TKYwW3dupVGjRpFKpVKu6wj05Ry4cFr\n+w/y8fGh8+fPmzCRbg/m5Gt7PujYsWM0atQormNo1dXVtZmGNzY2ln755RcOE3XM/PnzadOmTVzH\n0Hqwr+61114juVxORERHjx6lsLAwrqK18ag+Rb7sm/fu3aOgoCBas2aNdpk+7WkWl5gyMzOxYsUK\npKeno0ePHtrlfH52glpV6xs3bkCtVgMA5HI5VCoVRCIRV9HaaJ2Tz+155coVAMD9+/exc+dOhIaG\ncpzob8899xwAoKioCFVVVcjJyYGfnx/HqR7W1NSkvfyhVCqRlZWFkJAQjlO1z8/PD8nJyVCpVEhO\nTsaLL77IdSSd+LZvEhGioqLg6emJefPmaZfr1Z7GqV+GJRKJyNHRUedtogkJCeTi4kLu7u5UVFTE\nYUqi1NRUsre3px49epCNjQ2FhIQQEdHevXvJw8ODvL29KSwsjAoLC3mZk4hf7dlaZGQkeXl50dCh\nQ2n+/Pm8uxOnoKCAxGIxubi40Nq1a7mOo9OFCxfI29ubvL29KSAggLZs2cJ1JK2IiAiys7Ojbt26\nkb29PSUnJ/PyNtf/5ezatSvZ29vTli1beLdvFhcXk0AgIG9v7za33urTnmY1YRDDMAxjOmZxiYlh\nGIYxPVYgGIZhGJ1YgWAYhmF0YgWCYRiG0YkVCIbppLKyMnh7e+Pu3bu4c+cOPD09cfr0aa5jMUyn\nsbuYGMYAFi9ejObmZqhUKjg4OGDhwoVcR2KYTmMFgmEMoKWlBcOGDYOFhQWOHDnC5k9nngjsEhPD\nGMCNGzdw584d3L59GyqVius4DGMQ7AyCYQxg0qRJmD59Oi5cuIArV64gMTGR60gM02m8Gc2VYczV\n9u3b0b17d0RERECj0WDUqFEoKCiAv78/19EYplPYGQTDMAyjE+uDYBiGYXRiBYJhGIbRiRUIhmEY\nRidWIBiGYRidWIFgGIZhdGIFgmEYhtHp/wBv2SibrE7lggAAAABJRU5ErkJggg==\n",
- "text": [
- "<matplotlib.figure.Figure at 0x60587d0>"
- ]
- },
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Since the argument of cosine function is positive, \n",
- "the wave is propagating in the negative x direction.\n",
- " B = 0.3333 rad/m\n",
- "Time taken to travel a distance of lambda/2 = 31.42 n sec\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 10.2, Page number: 428<h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "'''\n",
- "A lossy dielectric has an intrinsic impedance of 200 /30degree ohms at\n",
- "a particular frequency. If, at that frequency, the plane wave propagating \n",
- "through the dielectric has the magnetic field component \n",
- "\n",
- "H = 10 e^-ax cos(wt-0.5x)a_y A/m \n",
- "find E and a. Determine the skin depth and wave polarization. '''\n",
- "\n",
- "import cmath\n",
- "import scipy\n",
- "\n",
- "#Variable Declaration\n",
- "\n",
- "Ho=10 \n",
- "n=200*scipy.exp(1)**(1j*scipy.pi/6) \n",
- "b=0.5\n",
- "\n",
- "#Calclations\n",
- "\n",
- "Eo=n*Ho #amplitude of electric field in kV/m\n",
- "P=scipy.arctan(scipy.sqrt(3)) \n",
- "a=b*((scipy.sqrt(((1+(scipy.tan(P))**2)**0.5)-1))/(scipy.sqrt(((1+(scipy.tan(P)\n",
- ")**2)**0.5)+1)))\n",
- "delta=1/a\n",
- "\n",
- "#Results\n",
- "\n",
- "print 'E has the same form as H except for amplitude and phase.'\n",
- "print 'The amplitude and phase of E =',Eo,'kV/m'\n",
- "print '= magnitude of 2000 and angle of pi/6'\n",
- "print 'a =',round(a,4),'Np/m'\n",
- "print 'Skin depth =',round(delta,3),'m'\n",
- "print 'The polarization of wave is in z direction since it has an z component.'\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "E has the same form as H except for amplitude and phase.\n",
- "The amplitude and phase of E = (1732.05080757+1000j) kV/m\n",
- "= magnitude of 2000 and angle of pi/6\n",
- "a = 0.2887 Np/m\n",
- "Skin depth = 3.464 m\n",
- "The polarization of wave is in z direction since it has an z component.\n"
- ]
- }
- ],
- "prompt_number": 2
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 10.3, Page number: 430<h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "'''\n",
- "In a loss]ess medium for which eta = 60 pi, mu_r = 1 and \n",
- "H= -0.1 Cos(Wt - z)a_x + 0.5 sin(wt - z)a_y A/m, \n",
- "calculate epison_r, w and E. '''\n",
- "\n",
- "import scipy\n",
- "\n",
- "#Variable Declaration\n",
- "\n",
- "B=1\n",
- "n=60*scipy.pi \n",
- "Ur=1 #relative permeability\n",
- "Eo=10**-9/(36*scipy.pi) #permittivity of free space\n",
- "Uo=4*scipy.pi*10**-7 #permeability of free space\n",
- "\n",
- "#Calculations\n",
- "\n",
- "Er=Uo*Ur/(n**2*Eo) #relative permittivity\n",
- "w=B/scipy.sqrt(Eo*Er*Uo*Ur) #in rad/sec\n",
- "eps=Eo*Er #permittivity of the medium in Farad/m\n",
- "H1o=-0.1\n",
- "H2o=0.5\n",
- "Ex=H2o/(eps*w) #amplitude of x component of E in V/m\n",
- "Ey=H1o/(eps*w) #amplitude of y component of E in V/m\n",
- "\n",
- "\n",
- "#Results\n",
- "\n",
- "print 'er =',Er\n",
- "print 'w =',w,'rad/sec'\n",
- "print 'E =',round(Ex,2),'sin(wt-z)ax +',round(-Ey,2),'cos(wt-z)ay V/m'"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "er = 4.0\n",
- "w = 150000000.0 rad/sec\n",
- "E = 94.25 sin(wt-z)ax + 18.85 cos(wt-z)ay V/m\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 10.4, Page number: 432<h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "'''\n",
- "A uniform plane wave propagating in a medium has \n",
- "E = 2e^(-az) sin(10^8t-Bz)a_y V/m. \n",
- "If the medium is characterized by epsilon_r=1, mu_r=20 and sigma=3 mhos/m, \n",
- "find a,B and H. '''\n",
- "\n",
- "import scipy\n",
- "\n",
- "#Variable Declaration\n",
- "\n",
- "E=2 #amplitude of E in V/m\n",
- "sigma=3 #in mhos/m\n",
- "w=10**8 #in rad/sec\n",
- "Ur=20 #relative permeability\n",
- "Eo=10**-9/(36*scipy.pi) #permittivity of free space in Farad/m\n",
- "Er=1 #relative permittivity\n",
- "Uo=4*scipy.pi*10**-7 #permeability of free space\n",
- "\n",
- "#Calculations\n",
- "\n",
- "a=round(scipy.sqrt(Uo*Ur*w*sigma/2),1) #in Np/m\n",
- "B=a #rad/m\n",
- "theta=scipy.arctan(sigma/(w*Eo*Er))*0.5 #in radians\n",
- "thetad=round(theta*180/scipy.pi,0) #in degrees\n",
- "H=E/(scipy.sqrt(Uo*Ur*w/sigma))*10**3 #amplitude of H in mA/m\n",
- "\n",
- "#Results\n",
- "\n",
- "print 'alpha =',a,'Np/m'\n",
- "print 'beta =',B,'rad/m'\n",
- "print 'H =',round(H,1),'e^ (',a,'z ) sin(wt - Bz -',thetad,') mA/m'"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "alpha = 61.4 Np/m\n",
- "beta = 61.4 rad/m\n",
- "H = 69.1 e^ ( 61.4 z ) sin(wt - Bz - 45.0 ) mA/m\n"
- ]
- }
- ],
- "prompt_number": 4
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 10.6, Page number: 434<h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "'''\n",
- "For the copper coaxial cable of Figure 7.12, let a = 2 mm, b = 6 mm\n",
- "and t = 1 mm. Calculate the resistance of 2 m length of the cablc at dc\n",
- "and at 100 MHz. '''\n",
- "\n",
- "import scipy\n",
- "\n",
- "#Variable Declaration\n",
- " \n",
- "a=2*10**-3 #in m\n",
- "b=6*10**-3 #in m \n",
- "t=10**-3 #in m\n",
- "l=2 #in m\n",
- "c=5.8*10**7 #conductivity in seimens\n",
- "f=100*10**6 #frequency in Hz\n",
- "mu=4*scipy.pi*10**-7 #permeability of free space\n",
- "\n",
- "#Calculations\n",
- "\n",
- "Ri=l/(c*scipy.pi*a*a) #dc resistance of inner cable in ohms\n",
- "Ro=l/(c*scipy.pi*((b+t)**2-b**2)) #dc resistance of outer cable in ohms\n",
- "Rdc=Ro+Ri #total dc resistance in ohms\n",
- "\n",
- "Ria=round(l/(2*scipy.pi*a)*scipy.sqrt(scipy.pi*f*mu/c),1)\n",
- "Roa=round(l/(2*scipy.pi*b)*scipy.sqrt(scipy.pi*f*mu/c),4)\n",
- "Rac=Ria+Roa #ac resistance in ohms\n",
- "\n",
- "#Results\n",
- "\n",
- "print 'Rdc =',round(Rdc*10**3,3),'m ohms'\n",
- "print 'Rac =',round(Rac,4),'ohms'\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Rdc = 3.588 m ohms\n",
- "Rac = 0.5384 ohms\n"
- ]
- }
- ],
- "prompt_number": 5
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 10.7, Page number: 439<h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "'''\n",
- "In a nonmagnetic medium \n",
- "E= 4 sin (2pi X 10^7t - 0.8x) a_z V/m \n",
- "Find\n",
- "(a) epsilon_r,eta\n",
- "(b) The time-average power carried by the wave \n",
- "(c) The total power crossing 100 cm^2 of plane 2x + y = 5 '''\n",
- "\n",
- "import scipy\n",
- "from numpy import *\n",
- "\n",
- "#Variable Declaration\n",
- "\n",
- "ax=array([1,0,0]) #Unit vector along x direction\n",
- "ay=array([0,1,0]) #Unit vector along y direction\n",
- "az=array([0,0,1]) #Unit vector along z direction\n",
- "a=0 #alpha in m^-1\n",
- "b=0.8 #beta in m^-1\n",
- "Eo=10**-9/(36*scipy.pi) #permittivity of free space in farad/m\n",
- "Uo=4*scipy.pi*10**-7 #permeability of free space\n",
- "Ur=1 #relative permeability of medium\n",
- "w=2*scipy.pi*10**7 #omega in rad/s\n",
- "Eamp=4 #amplitude of the field in V/m\n",
- "\n",
- "#Calculations\n",
- "\n",
- "Er=b**2/(Uo*Eo*w*w) #relative permittivity of the medium\n",
- "n=scipy.sqrt(Uo/(Eo*Er)) #eta in ohms\n",
- "Pav=Eamp**2/(2*n)*ax #average power in W/m^2\n",
- "an=(2*ax+ay)/scipy.sqrt(5) #normal to the plane\n",
- "S=100*10**-4*an #area in m^2\n",
- "P=dot(Pav,S)*10**6 #power through the plane in micro W\n",
- "\n",
- "#Results\n",
- "\n",
- "print 'Er=',round(Er,2)\n",
- "print 'eta= ',round(n,1),'ohms'\n",
- "print 'The time-average power =',round(dot(Pav,ax)*10**3,0),'ax mW/m^2'\n",
- "print 'The total power crossing 100 cm^2 of the plane =',round(P,2),'micro W'\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Er= 14.59\n",
- "eta= 98.7 ohms\n",
- "The time-average power = 81.0 ax mW/m^2\n",
- "The total power crossing 100 cm^2 of the plane = 725.0 micro W\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "<h3>Example 10.10, Page number: 458<h3>"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "'''\n",
- "An EM wave travels in free space with the electric field component \n",
- "E =:100 e^j(0.866x-0.5z) ax V/m \n",
- "Determine \n",
- "(a) w and lambda\n",
- "(b) The magnetic field component \n",
- "(c) The time average power in the wave '''\n",
- "\n",
- "import scipy \n",
- "from numpy import *\n",
- "\n",
- "#Variable Declaration\n",
- "\n",
- "ax=array([1,0,0]) #Unit vector along x direction\n",
- "ay=array([0,1,0]) #Unit vector along y direction\n",
- "az=array([0,0,1]) #Unit vector along z direction\n",
- "kx=0 #in m^-1\n",
- "ky=0.866 #in m^-1\n",
- "kz=0.5 #in m^-1\n",
- "Eo=10**-9/(36*scipy.pi) #permittivity of free space in farad/m\n",
- "Uo=4*scipy.pi*10**-7 #permeability of free space\n",
- "c=1/(scipy.sqrt(Uo*Eo)) #speed of light in m/s\n",
- "kvect=kx*ax+ky*ay+kz*az #propogation vector in m^-1\n",
- "Eo=100 #amplitude of electric field\n",
- "\n",
- "#Calculations\n",
- "\n",
- "k=round(scipy.sqrt(kx*kx+ky*ky+kz*kz),0) #magnitude of k in m^-1\n",
- "w=k*c #omega in rad/sec\n",
- "lam=2*scipy.pi/k #wavelength in m\n",
- "Ho=cross(kvect,Eo*ax*10)/(Uo*w) #amplitude of magnetic field in mA/m\n",
- "Hoy=round(dot(Ho,ay),2) #y component of Ho\n",
- "Hoz=round(dot(Ho,az),1) #z component of Ho\n",
- "Hr=array([0,Hoy,Hoz]) #Ho with components rounded off\n",
- "P=Eo**2/(2*120*scipy.pi)*kvect #average power in W/m^2\n",
- "Py=round(dot(P,ay),2) #y component of P\n",
- "Pz=round(dot(P,az),3) #z component of P\n",
- "Pr=array([0,Py,Pz]) #P with components rounded off\n",
- "\n",
- "#Results\n",
- "\n",
- "print 'w =',w,'rad/sec'\n",
- "print 'lambda =',round(lam,3),'m'\n",
- "print 'The magnetic field component =',Hr,'e^j(0.866x-0.5z) mA/m'\n",
- "print 'The time average power in the wave =',Pr,'W/m^2'"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "w = 300000000.0 rad/sec\n",
- "lambda = 6.283 m\n",
- "The magnetic field component = [ 0. 1.33 -2.3 ] e^j(0.866x-0.5z) mA/m\n",
- "The time average power in the wave = [ 0. 11.49 6.631] W/m^2\n"
- ]
- }
- ],
- "prompt_number": 7
- },
- {
- "cell_type": "heading",
- "level": 3,
- "metadata": {},
- "source": [
- "Example 10.11, Page number: 459"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "'''\n",
- "A uniform plane wave in air with \n",
- "\u001f\u001d",
- "E = 8 cos(wt - 4x - 3z) ay V/m \n",
- "\u001f\u001d",
- "is incident on a dielectric slah (z>= 0) with mur= 1.0\u001f epsilonr = 2.5\u001f ,sigma=0. Find \n",
- "(a) The polarization of the wave \n",
- "(b) The angle of incidence \n",
- "(c) The reflected E field \n",
- "(d) The transmitted H field '''\n",
- "\n",
- "import scipy\n",
- "\n",
- "#Variable Declaration\n",
- "\n",
- "ax=array([1,0,0]) #Unit vector along x direction\n",
- "ay=array([0,1,0]) #Unit vector along y direction\n",
- "az=array([0,0,1]) #Unit vector along z direction\n",
- "Ei=8 #incident wave amplitude\n",
- "k=5 #propogation constant\n",
- "Eo=10**-9/36*scipy.pi #permittivity of free space\n",
- "Erel=2.5 #relative permittivity\n",
- "muo=4*scipy.pi*10**-7 #permeability of free space\n",
- "mur=1 #relative permeability\n",
- "c=3*10**8 #speed of light\n",
- "etao=377\n",
- "\n",
- "#Calculations\n",
- "\n",
- "w=k*c #frequency in rad\n",
- "theta=scipy.arctan(4/3.0) #angle of incidence in rad\n",
- "eta1=etao\n",
- "eta2=377/scipy.sqrt(2.5)\n",
- "thetai=scipy.arcsin(sin(theta)/scipy.sqrt(2.5))\n",
- "gamm=(eta2*cos(theta)-eta1*cos(thetai))/(eta2*cos(theta)+eta1*cos(thetai))\n",
- "Er=Ei*gamm #reflected E field amplitude in V/m\n",
- "kt=w*scipy.sqrt(mur*Erel)/c\n",
- "tao=2*eta2*cos(theta)/((eta2*cos(theta)+eta1*cos(thetai)))\n",
- "Et=tao*Ei*ay\n",
- "Ht=cross((4*ax+6.819*az)/(eta2*kt),Et)*10**3\n",
- "Htx=round(dot(Ht,ax),2)\n",
- "Hty=round(dot(Ht,ay),2)\n",
- "Htz=round(dot(Ht,az),2)\n",
- "Htc=array([Htx,Hty,Htz]) #transmitted H field amplitude\n",
- "\n",
- "#Results\n",
- "\n",
- "print 'Polarisation is perpendicular polarization'\n",
- "print 'Angle of incidence is ',round(180*theta/scipy.pi,2),'degrees'\n",
- "print 'Er =',round(Er,3),'cos(',w,'t - 4x + 3z) V/m'\n",
- "print 'Ht =',Htc,'cos(',w,'t - 4x - 6.819z) mA/m'\n",
- "\n"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Polarisation is perpendicular polarization\n",
- "Angle of incidence is 53.13 degrees\n",
- "Er = -3.112 cos( 1500000000 t - 4x + 3z) V/m\n",
- "Ht = [-17.68 0. 10.37] cos( 1500000000 t - 4x - 6.819z) mA/m\n"
- ]
- }
- ],
- "prompt_number": 25
- }
- ],
- "metadata": {}
- }
- ]
+{ + "metadata": { + "name": "", + "signature": "sha256:cdf18287acc82150753d10351b24abe70a503e3715e5a7f68621619ab02a6a02" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h1>Chapter 10: Electromagnetic Wave Propagation<h1>" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 10.1, Page number: 416<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "\n", + "import scipy\n", + "from pylab import *\n", + "\n", + "#Variable Declaration\n", + "\n", + "w=10**8 \n", + "c=3.0*10**8\n", + "\n", + "#Calculations\n", + "\n", + "T=2*scipy.pi/w #timeperiod of the wave in sec\n", + "B=(w/c) #in rad/m\n", + "lam=2*scipy.pi/B #wavelength in m\n", + "t1=lam*10**9/(2*c) #time taken to travel half the wavelength in ns \n", + "\n", + "x=arange(-6*scipy.pi,6*scipy.pi,0.1)\n", + "\n", + "t=0\n", + "E=50*scipy.cos(10**8*t+x*w/c)\n", + "\n", + "subplot(3,1,1)\n", + "xlabel(\"x\")\n", + "ylabel(\"E for t=0\")\n", + "plot(x,E,'r')\n", + "\n", + "subplot(3,1,2)\n", + "t=T/4\n", + "E=50*scipy.cos(10**8*t+x*w/c)\n", + "xlabel(\"x\")\n", + "ylabel(\"E for t=T/4\")\n", + "plot(x,E)\n", + "\n", + "subplot(3,1,3)\n", + "t=T/2\n", + "E=50*scipy.cos(10**8*t+x*w/c)\n", + "xlabel(\"x\")\n", + "ylabel(\"E for t=T/2\")\n", + "plot(x,E,'g')\n", + "show()\n", + "\n", + "#Results\n", + "\n", + "print 'Since the argument of cosine function is positive, '\n", + "print 'the wave is propagating in the negative x direction.'\n", + "print' B =',round(B,4),'rad/m'\n", + "print 'Time taken to travel a distance of lambda/2 =',round(t1,2),'n sec'" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEICAYAAABF82P+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXlcVNX7xz+DG5bmhjurggyLMqgsmho7pCIq+hVzK7EU\nNVyyfmYlZmXhjpZroqlZmaXigoIimyaoWCjhlii448aObM/vj5MTKOswM/fOcN6vF6/g0sz5cL1z\nn3vOeZ7PIyEiAofD4XA4L6AjtAAOh8PhiBMeIDgcDodTKTxAcDgcDqdSeIDgcDgcTqXwAMHhcDic\nSuEBgsPhcDiVIliAyMvLw6RJk9CjRw9YWloiISEBOTk58PHxgaGhIYYPH47c3Fyh5HE4HE6DR7AA\nERQUBENDQyQnJyM5ORlSqRTr16+HoaEhrl69Cn19fWzYsEEoeRwOh9PgESxAHDt2DAsWLICuri4a\nN26MVq1aITExEf7+/mjWrBkmT56MhIQEoeRxOBxOg0ciRCX1rVu34ObmBkdHR6SmpmLkyJEIDAyE\nVCrF5cuXoauri/z8fFhYWODmzZv/iZVI1C2Vw+FwtAJFbvWCzCAKCwtx5coV+Pr6Ijo6GikpKdi9\ne3et/gAiEv1XUFCQ4Bq4Tq6T6+Qan38piiABwtTUFObm5vD29kbz5s0xduxYHDlyBHZ2dkhNTQUA\npKamws7OTgh5HA6Hw4GAexBmZmZISEhAWVkZDh06BDc3Nzg4OCA0NBQFBQUIDQ2Fo6OjUPI4HA6n\nwdNYqIGXL1+OiRMnorCwEG5ubvDz80NZWRnGjx8Pc3Nz9O7dG8HBwULJqxdOTk5CS6gVXKdy4TqV\niybo1ASN9UGQTWpFkUgktVtPu3ABiI8HXnsNaNUKMDUFuncHmjRRvUhOw6GoCLh+Hbh2DXj8GCgo\nAMrKgDZtgHbtADMzwMgI4MkVHGWSlcWuuxs3gAcPAA8PwMSk2pfU+t75AoLNIFRKdjaQnMz+++QJ\ncPUqcOsWYGkJuLmxE/rGG0Bj7fzzOSqipAQ4fhyIjASio4GLFwEDA/YAoqcHNG8O6OiwYPHwIXDl\nCpCTA9jaAl5ewODBQM+ePGBw6kZuLnDoELvu4uPZvaxbNxYUOnQA+vVT2dDaOYOojIIC4OxZdpLD\nw9lJHj8e8PcHpFLlCuVoF3//DWzYAPzyC2BsDAwdCjg7A3Z2QLNm1b/20SMgIYFdc4cOAU2bAlOm\nABMnsg83h1MZROwhZP164OhR4PXX2QPGwIGAtTXQqFGd3k7heycJRElJCclkMho6dCgREWVnZ9Ow\nYcPIwMCAfHx8KCcn56XXKFXupUtE8+cTdehANGIEUWKi8t6box3ExRENGULUsSPRZ58RXb1av/cr\nK2PvOWkSUZs2RDNnEmVkKEUqR0soLSX66ScimYxIKiVat47o4cN6v62i907BsphCQkJgaWkpL35T\nu82GuTnw9ddAWhrg5ASMHAmMGsXW9jgNm0uXAB8fNsMcNoxdI4sXs6Wk+iCRAAMGANu2sVmJri5g\nYwPMncvWlTkNm4gIoG9fYNUqYMkSICUFCAhg+1kCIUiAuHXrFg4fPowpU6bIpz2C2Wy88goQGMjW\ni21tAXt7YMECoLBQPeNzxEN+PvDRR2waP3AgCxTvvcf2FpRNp07AsmVAairbp5BKga1b2dICp2Fx\n+zbg6wvMmAF88glw+jTw5ptsP0tgBNmlnTNnDpYtW4bs7Gz5sTNnzkD6716AVCpFYmJipa9dtGiR\n/HsnJyflpZk1b87+cSZPBt5/nwWL0FCVbgBxRMSJE8C777IHhJQU9e0PdOgAbN7M9semTmX7HJs3\ns81vjnZDxP6tP/mEzRR+/JHNKpVAdHQ0oqOj6/9GtV2LKiwspMLCQoXWscpz4MABmj59OhERnThx\nQr4HYWBgQAUFBURElJeXR4aGhi+9tg5y68+vvxJ16kQUFERUUqK+cTnqpbiYaMECoi5diA4cEFZL\nURHRF18QtW/P1qE52sujR0QjR7K9hpQUlQ+n6L2z2jnMvXv3MHPmTNjZ2cHMzAympqbo27cvZs6c\niXv37ikUkE6dOoWwsDCYmJhg7NixiIqKwoQJE8RnszFqFHD+PBATA3h6AvfvC6uHo3wyMtj+09mz\nQFISy04SkiZNgE8/ZVkrn37KZrJFRcJq4iif+Hi2QmFgwJaTLC2FVlQl1QYIPz8/6Ovr4+jRo0hP\nT0dGRgYiIiKgr68PPz8/hQZcsmQJMjIykJaWhp9//hkuLi7YsWOHOG02OnUCjh0D+vcH+vQB4uKE\nVsRRFsePszTVoUNZCmrHjkIr+g9bWxa0bt0CBg0C0tOFVsRRFt99xx4+v/sOWL265jRpoaluemFo\naEh5eXkvHc/NzSUDAwOFpizliY6OJm9vbyISIM21roSHs6n/Dz8Ip4GjHDZuZOnNUVFCK6mesjKi\npUuJOncmOn1aaDWc+lBURBQQQGRpSfTPP2ofXtF7Z7WFcv7+/sjKysL48eNhaWkJIsLff/+NnTt3\nolWrVggNDVVfJEM9C+WUwd9/syfOceOAzz8XRZYBpw6UlgIffsgK1g4eZFYYmsDBg8A77wAbN7J0\nbI5m8eQJmzXo6gI//cQsgNSMovfOagNEcXEx9u7di8TERCQkJICI4ODgAAcHB4wYMQJN1OxtJHiA\nAJj3yfDhzGPnhx9YZSxH/BQWAm+9xeoN9uxhfkmaRFISq8mYM4fVTXC7Ds3g9m22h+nuDixfXucK\naGWhkgAhNkQRIID/bjb5+cBvvwGvviq0Ik515OayoN62LbBzp+YG9YwMlh8/ZAjwzTc8SIidK1dY\ncJg+nc1cBUTRe2et10h27txZ4b/1ISMjA87OzrCysoKTkxN27doFAMjJyYGPjw8MDQ0xfPhw5Obm\n1nsslaCrC+zezTaxPT2Bp0+FVsSpisePmUGjiQmb3mtqcABY1ktMDKvZmD6dOcdyxMm5c8wQdOFC\nwYNDfah1gFixYkWF/9aHJk2aYNWqVUhJScGePXvw6aefIicnR/12G/WhcWNWSNenDzNuy8wUWhHn\nRe7eZR/SQYOATZsEm94rlXbtWGbd338DkyYxh1mOuEhIYMZ669ezvSMNRpBK6k6dOqFTp04AAD09\nPVhZWeHMmTNITEzEp59+Krfb+Prrr196rcoqqRVBR4elqn32GeDqylIn27cXTg/nP+7fZzUOEycy\n6xRtWo557TWWmjtqFDB2LJsZcet6cXD6NNsr2rqVLQUKhNorqWUyWYX/KourV6+SiYkJ5eTkkKGh\nYbXV1HWQq17Kylg1bq9eRJmZQqvhPH7M/i2CgoRWoloKC4nefJPIz49VhHOE5dQplgp/+LDQSl5C\n0XunoHmaOTk5GDNmDFatWoUWLVqIYwNaESQS4Msv2bTSzY31AOAIQ24u+3dwcQGCgoRWo1qaNQN+\n/53ts7z9Nkvj5QjDqVPMAXj7dpZIoCUIFiCKi4vh6+uLCRMmwMfHBwDEZ7dRFyQSZtHr5cWDhFAU\nFrJsJSsrYOVK7VpWqgpdXWDfPuDePWY0yYOE+jl3jl13O3awz78WUesAYW5uDgDo0aNHvQclIvj7\n+8Pa2hqzZ8+WHxel3UZdkEhYjwlXV/YUkZMjtKKGQ3Ex4OfHNnE3bmwYweE5zZsDYWEsDXbqVG4Z\nrk5SU1nx7KZNLKNRyxCkDiI+Ph6DBg1Cr1695A2Dvv76a7z++usYP348zp8/j969e2Pnzp1o0aLF\nf2LFUgdRE0TAtGmsF/bhw0qz8OVUQVkZ24x+/Jg9TWtyKmt9yM1lBVmvv856TTSkICkEN2+yviFf\nfsmuPxGj0kI5V1dXHD9+vMZjqkZjAgTApvrjxrFe2Hv2MKdOjvIhYjUBf//NMnteeUVoRcLy+DFL\n7R07lmVvcVTD/fssOMycyRqOiRyVFMoVFBTg0aNHyMzMxOPHj+Vfly5dQg5fPqmeRo3YhlVJCVsb\n5kVNquHjj5nz6YEDPDgArFo8IoLV6KxfL7Qa7eTpU7acNG6cRgSH+lDtDGL16tUICQnBnTt30KVL\nF/lxIyMjvPfee3jrrbfUIvI5GjWDeE5+PtuP6NkTWLuWT/uVyddfM+uM2FhB+/aKkrQ0ViAYHMxs\nYTjKIS8P8PBgVvGrVmnM51nhe2dtcmFDQkIUyqFVhJiYGJJKpWRqakpr1qyp8LtayhUfWVlEffoQ\nffKJ0Eq0h2+/JerWjej2baGViJeLF4k6diQ6eFBoJdrBs2dEnp5Eb79NVFoqtJo6oei9U3Rmfba2\ntggJCYGRkRE8PT0RHx8PPT09ABo6g3jOw4fsiW7yZGDePKHVaDbbt7M+vrGxzGOJUzWJiSzL5tdf\n2d4ERzFKS9m+TkkJ82HTsMp1Re+dovors7KyAACDBg0CAHh4eCAhIQFDypWsi8pqoy7o6bG14YED\ngdatgSlThFakmezdC/zf/zFbEx4casbenllxjB4NHDkC9O4ttCLN43lW4uPHrDeHBgQHZVlt1DiD\nICLcunULBgYG9R6sJo4dO4YtW7bgp59+AgBs2LABt2/fxhdffMHEavIM4jlXrzKPoJAQ5qXDqT2R\nkWxjkN/o6s6+fUBAAHOClUqFVqM5ELEHkthYZpJYLu1ek1DpDGLw4MG4cOFCnd+cUwlmZqw2wsMD\naNlSK4trVMLJk2yzde9eHhwUYfhw1izJ05P1Vjc0FFqRZvDNNyx9OiZGY4NDfaixkloikaBfv37Y\nv3+/ysXY2dnh0qVL8p9TUlI0r5q6NtjYMA+dCROYhwunes6fB0aMYBlLAwYIrUZzmTSJdaNzd2ed\nETnVs3498P33wNGjLH24AVKrTWoLCwtcvnwZ7dq1k9t0SyQSJCcnK13Q801qQ0NDeHl5ac8mdWUc\nPcoqMCMjgV69hFYjTi5dYv02vv0W8PUVWo12sGgRsH8/W25q3VpoNeJk167/lpa0YK9LpZXUN27c\nqHQgY2PjOg9YEzExMZg2bRqKi4sRGBiIwHKFKFoXIACWETFnDhAdzZafOP9x4wbL/Fq8mLmVcpQD\nETB7NutzffQoLzB8kQMHgHffZYkQVlZCq1EKKu9JnZ2djfDwcEgkErz55pto2bJlnQerL1oZIABg\n82bmBBsfD3TtKrQacXD3Lsv4CgzU+mpVQSgrY93OMjMbtn/Vi0RHs4yvQ4dYBpiWoNKe1Hv37oWd\nnR1iY2MRHR0NOzs77N27t86Dcarg3XdZhom7O6uXaOhkZjLL9Lff5sFBVejoAFu2MI+wiRO5TTgA\nnDkD/O9/bFavRcGhXtSmms7Z2Zlu3bol//n27dvk7OysUGXevHnzSCqVkq2tLc2aNYvy8/PlvwsJ\nCSFTU1OysLCguLi4l15bS7may/z5RH37EmVnC61EOB49IpLJWIe+sjKh1Wg/BQVEzs5EU6c27POd\nksKqzvfvF1qJSlD03lnrfhA6OjoVvicFl3o8PDyQkpKCs2fPIi8vD7t27QIAPHjwAOvWrcPx48ex\nfv36CnsPDYYlS4A+fVhnqsJCodWon6ws1nDF2ZlZKGuIz41Go6vLNqyTkoD58xtmL4krV1ja+bJl\nrJ80R06tAsT06dPh7OyMwMBAvP/++3B2dsaMGTMUGtDd3R06OjrQ0dGBp6cnYmJiAAAJCQnw8vKC\noaEh3njjDRBRw3OMlUiA774DOnVieesNKUjk5rIm7337AitW8OCgTlq2ZLn+R48yC5OGFCSuXmUN\nvhYvZmnnnApUWyiXlpYGExMTjBo1Cq6urvJN6sWLF6NNmzb1Hnzz5s2Y8q/lRGJiIiwsLOS/Mzc3\nR2JiIlxdXSu8RmOtNmrLc5vw8eNZkNi3T/sbDhUUsCc3c3OWzsqDg/pp145VCru6/tdjXdv/Hf75\nh/29CxcyjzQtQi1WG3369MG5c+fq3BzI3d0d9+7de+n4kiVL4O3tDQBYvHgxkpOTsWfPHgDAp59+\nCgMDA0ydOhUA4Ofnh/feew8uLi7/idXWLKbKKClhTzTPu6Q1by60ItWQl8eW1Dp2ZIGxUSOhFTVs\nHj4EXFxYwP7iC+0NEtevs6XMjz9mPktajkqsNlq3bo1Fixbh8uXLWLlyZYUBJBIJ5s6dW+nrIiMj\nqx1027ZtOHr0aIWg4+DggGPHjsl/vnTpEuzs7Gr1R2gljRuzJugTJ/43k9C2IJGVxZaVevRgqb48\nOAiPnh7L/38+c9fGIHH1KssY/OijBhEc6kO1exDbt29H27ZtUVpaipycHOTm5sq/FN0fOHLkCJYt\nW4awsDDolls6sbe3x9GjR5Geno7o6Gjo6OgIUmshKho3Zk/VenrA4MFAdrbQipTHo0fsJiSTMTsD\nHhzEQ/v2LEgcOgTMmqVd3RCTk5nt+SefAAruozYkalUod/jwYQwePFgpA5qZmaGoqAht//U26dev\nH9atWwcACAkJwdq1a9G0aVNs3LgRAwcOrCi2IS0xlae0lPW+TUxkm4kdOgitqH7cv8/qHAYPZmZo\n2vaEqi08fQp4ezOriec1E5rM6dNsOXPNGmDMGKHVqBWVV1KLgQYbIACWWRIUBPzyC+srYWQktCLF\nuHKFBYZJk4BPP+XBQezk5zNb+saN2bWnqcucR4+yxI9t29iyZgNDpZXUHBEgkbBUvOnTgddfB86d\nE1pR3YmPZ95KH38MfPYZDw6awCuvsP2v115jfUwqST4RPRs3sgeSvXsbZHCoDzxAaBqzZrEpspcX\n8G8GmEbwyy/AyJFsT8XfX2g1nLrQtClLmBgyBHB0ZOv4mkBZGfDhh8DKlezhhFvF15lqA8TSpUvl\n3//6668VfrdgwYJ6DbxixQro6Ojg8ePH8mNr1qyBmZkZLC0tER8fX6/312pGjmTLTHPnsiwTMS+7\nlZQw2+SPPmJ59h4eQiviKIJEwuoFvvmG7R+FhQmtqHqePmU9RBITWc8VU1OhFWkm1flwyGSySr+v\n7Oe6kJ6eTp6enmRsbEyPHj0iIqL79++Tubk53bx5k6Kjo8nW1val19Ugt+Fx5w6RoyPR0KFEmZlC\nq3mZe/eYz4+7uzj1cRTj9GkiQ0OiefOIioqEVvMyZ88SdetG9P77RM+eCa1GFCh67xRkiWnu3LkV\nZicAt9pQiM6dWStECwvA1pZ9Lxaio5ltxoABLPPq36ZPHC3AwYF5N6Wmsj2lmzeFVsQgYl3gvLzY\nTGfNGm5jXk9q1ZNamezfvx/6+vro9UIHNW61oSBNmwJLl7LqVz8/5vG/cKFw9hz5+cCCBWx/5Pvv\n2YeVo320a8eWmVauBOzsgOBgZs8uVOLBrVvMNv/+fda/vEcPYXSIBGVZbVQ779DR0aEWLVpQixYt\nqFGjRvLvn/9cFW5ubmRtbf3S1/79+8nBwYGysrKIiMjY2JgePnxIRESffPIJbdiwQf4eY8aMoePH\njytlmtRguHuXaNQoIjMzohMn1D9+eDiRqSnR2LHMtpvTMPjzT6LevdlS4rVr6h27uJho3ToiPT2i\nxYvFueQlAhS9d6r1jnvhwgXq0KEDGRsbk7GxMTVu3JiMjIzo3r17FBYWRoGBgfL/18bGhrJf6IvA\nA0Qt2b+fyMCABYsrV1Q/3qVLRMOGseBw6JDqx+OIj+JiouBgonbtiD74gOjxY9WPefw4Uc+eRE5O\nRMnJqh9Pg9GIAPEi5Tep7927J9+kPnHiBN+kri95eURff80+sFOmEKWmKn+M1FSicePY09vXXxMV\nFip/DI5mcfcu0bvvsmvis8+IHjxQ7vuXlRFFRBANGsQ2ovfsadiNjmqJovdOQesgJOXWKzt27IiA\ngAC4uLhg+vTpCAkJEVCZFvDKK6wBzKVLgL4+858ZMgT49Vdmr60ohYWspsHVlW1QWlgw2+T584Fm\nzZSnn6OZdOoEbNrEUkvv32cW7pMnAydO1M/TKTMTWL2aeXfNmsX2Gy5fBnx9ecGlCuFWGw2FggJ2\nY//xR+DsWZbL/sYbwMCB7ENc1aZ2QQFw4QKr3D5yhH3Q7eyA995jLrM8KHCq4/59YOdOVmj38CFz\nUXV1ZT2fu3VjFh6V8fgxcPEiEBfHrru//mI+SpMns+tWh9f41gXuxcSpPffuAZGRQGwsqzBNS2Np\nqJ06sRt+kyas0OjhQ/ZBNTdnabRubiwr6V+jRQ6nTly+zIoljx8H/vwTuHMHMDQEWrUCXn2VmVI+\necJmCwUFgLU1S6n18mKzVU31gRIBPECIiOjoaI1Iv5XrLC1laYL37wPPngHFxUDr1v8FDYFzyTXu\nfIoc0egsLARu3ABycljL2caN2XXXti3QpQuiY2LEobMaRHMua0CjzPq2bt0KCwsLWFlZ4f/+7//k\nx7XFakMp+cdqQK6zUSPmDmtvz5acXFyA3r3Z050ICo007nyKHNHo1NUFpFK2ZOnszK69nj2Brl0B\niUQ8OqtBEzTWB7UXyl28eBGbNm1CWFgYzMzMkJmZCQB48OAB1q1bh+PHjyMtLQ2BgYFISkpStzwO\nh8Ph/IvaA0R4eDj8/f1hZmYGAGjfvj2AilYbhoaGcquNBt9VjsPhcARC7XsQ7u7usLKyQnx8PGQy\nGebOnQtLS0t89tln0NfXx9SpUwEAfn5+ePfddytYbUh4OhuHw+EohCK3epXMINzd3XGvksYiX331\nFQoLC/H48WPExcXh2LFjmDlzJqKioioV/2JA0IQNag6Hw9EWVBIgIiMjq/xdXFwcnJyc0Lx5c3h7\ne2Pq1KkoLCyEg4MDjh07Jv//Ll26BDs7O1XI43A4HE4tUHsWU79+/RAeHg4iQkJCArp37w5dXV3Y\n29vj6NGjSE9PR3R0NHR0dPj+A4fD4QiI2jepfXx8EBERAUtLS0ilUqxcuRJARauNpk2bYuPGjeqW\nxuFwOJzy1McASl3MmzePpFIp2dra0qxZsyg/P1/+u5CQEDI1NSULCwuKi4sTUCXR7t27ydLSknR0\ndOjcuXPy42lpaaSrq0symYxkMhkFBAQIqLJqnUTiOp/lCQoKoq5du8rPYXh4uNCSKhATE0NSqZRM\nTU1pzZo1QsupEiMjI+rZsyfJZDKys7MTWo6cd955hzp06EDW1tbyY9nZ2TRs2DAyMDAgHx8fysnJ\nEVAhozKdYrs209PTycnJiSwtLemNN96gH3/8kYgUO58aESAiIiKotLSUSktLacqUKfT9998TUe3a\nlKqT1NRUunz5Mjk5Ob0UIMpfUEJTlU6xnc/yLFq0iFasWCG0jCqRyWQUExNDN27cIHNzc8oUaYvV\n8g7KYiI2NpaSkpIqfE6Cg4Np5syZVFhYSDNmzKBly5YJqJBRmU6xXZt3796l8+fPExFRZmYmmZiY\nUHZ2tkLnUyMcr9zd3aGjowMdHR14enoi5t/WmmJrUyqVStFDAzpZVaVTbOfzRUikWWxZWVkAgEGD\nBsHIyAgeHh5ISEgQWFXViPE8Dhw4EG3atKlwLDExEf7+/mjWrBkmT54sinNamU5AXOe0U6dOkMlk\nAAA9PT1YWVnhzJkzCp1PjQgQ5dm8eTO8vb0BVN2mVIykpaVBJpNh6tSp+Ouvv4SWUyliP59r166F\no6MjgoODRRW4zpw5A6lUKv/Z0tISp0+fFlBR1UgkEri4uGD48OEICwsTWk61lD+vUqlUVNfii4j1\n2rx27RpSUlJgb2+v0PlU+yZ1VVRVO7FkyRJ5QFi8eDFatmyJ0aNHA6g8aqu6mK42Ol+kS5cuyMjI\nQJs2bRAeHo4JEyYgOTlZdDqFOJ/lqa5+JiAgAAsXLkR2djY+/PBDbNy4EfPmzVObNm3h5MmT6Ny5\nM1JTU+Ht7Q17e3t06tRJaFmVIqan8uoQ67WZk5ODMWPGYNWqVWjRooVi51NFy2A1kpubSxMnTiQz\nMzOysLCg06dPV7uJsnXrVurfvz8VFBTIj9WmTakQvLi2/yK2trZ09epVNSqqnBd1ivV8vsiff/5J\n/fv3F1qGnKdPn5JMJpP/PHPmTDp48KCAimrHnDlzaNOmTULLkPPiXt3IkSMpKSmJiIjOnj1Lvr6+\nQkmrQHV7imK5NouKisjd3Z1WrVolP6bI+RRsiSkoKAiGhoZITk5GcnIypFIp1q9fD0NDQ1y9ehX6\n+vrYsGEDAODIkSNYtmwZwsLCoFuusY2YayeoXLR++PAhSktLAQBJSUkoKCiAqampUNIqUF6nmM/n\n3bt3AQAlJSXYtWsXBg8eLLCi/2jVqhUAIDY2Fjdu3EBkZCQcHBwEVvUy+fn58uWPzMxMHD16FF5e\nXgKrqhoHBweEhoaioKAAoaGhcHR0FFpSpYjt2iQi+Pv7w9raGrNnz5YfV+h8qiZ+1YyNjU2FdFUi\nIl9fX/nu+7lz52jUqFFERGRqakqGhoaVpomuXr2aunfvThYWFhQbG6u+P6ASfv/9d9LX1yddXV3q\n2LEjeXl5ERHRnj17yMrKimxsbMjX15diYmJEqZNIXOezPBMmTKCePXtSnz59aM6cOaLLxImOjiap\nVErdu3enkJAQoeVUyvXr18nGxoZsbGzIxcWFtmzZIrQkOX5+ftS5c2dq2rQp6evrU2hoqCjTXJ/r\nbNKkCenr69OWLVtEd23GxcWRRCIhGxubCqm3ipxPQRoG3bp1C25ubnB0dERqaipGjhyJwMBASKVS\nXL58Gbq6usjPz4eFhQVu3rwpfx036+NwOBzFUORWL8gSU2FhIa5cuQJfX19ER0cjJSUFu3fvrtUf\nQKx2Q9RfQUFBgmvgOrlOrpNrfP6lKIIECFNTU5ibm8Pb2xvNmzfH2LFjceTIEdjZ2SE1NRUAkJqa\nys36OBwOR0AE26Q2MzNDQkICysrKcOjQIbi5uWnMphSHw+E0BASrg1i+fDkmTpyIwsJCuLm5wc/P\nD2VlZRg/fjzMzc3Ru3dvBAcHCyWvXmhCE3OA61Q2XKdy0QSdmqCxPgiySa0oEomkXutpHA6H0xBR\n9N4pmkpqDqc8RMDNm0ByMvDPP+z7vDygsBBo1gzQ0wM6dgSsrACZDOjQQWjFHG2gtBRITWVfly4B\nDx8COTlAURHw2mtAq1aAiQlgaQn07Ml+1mb4DIIjGoqKgCNHgN9+A06cYD/37g2YmQHGxsCrr7Lg\n8OwZ8Ogh7poPAAAgAElEQVQRcPcucOEC8OefLGAMHgx4ewPOzkCjRkL/NRxN4ckTYM8eIDwciI5m\n15KVFSCVsoeQli2Bpk2B7Gzg6VP2wJKSAvz9NwsUnp7AqFFAr15C/yVVo+i9s04BYsGCBViyZEmd\nB6mM0tJS9O3bF/r6+jhw4ABycnIwfvx4nD9/Hr1798bOnTvRokWLimJ5gNBK/vkHWL0a2LWLfTDH\njAHc3IAePYDalL4QAX/9BRw6BOzdCzx4AEyeDLz3HtCli+r1czQPIiAuDli7FoiIADw8gOHDARcX\noHPn2r3Hs2fAyZPsoebnn1lg8fcH3nkHeOUV1eqvK0oPEO+///5Lx7Zv346JEydCIpFgzZo1dVdZ\njpUrV+LcuXPIyclBWFgYli5dioyMDCxfvhwffPABjI2NXzK84gFCu0hJAYKCgJgYdjOfOhUwNKz/\n+/71F7BpE/DTT8DYscD8+YCBQf3fl6P5ELGZwldfAffvA3PmAG+9BVTi4F0nSkuBqChg3Trgjz+A\nWbOAmTPZ7EMMKHrvrDLNde/evXj8+DH69u2Lvn37ok+fPmjatKn8+/pw69YtHD58GFOmTJGLFqP3\nO0c13L0LvPsuWwrq3x9IS2MfWGUEBwCwsQG++46tIbdowfYoFixgexichktyMuDuDnzwAbuBX74M\nzJhR/+AAsCVNd3c2gz1+nD38mJsDoaEseGgqVc4gsrOz8dlnn+HBgwdYsWIFunTpAhMTE6SlpdV7\n0NGjR2PBggXIzs7G8uXLceDAARgZGVVrswGwKBgUFCT/2cnJSevTzLSJsjJg82bg00/ZEtDHHwOt\nW6t+3Dt3gI8+YjOVkBBg5EjVj8kRD3l57JrbtQtYuJDNVps0Uf24Z88Cs2ezxIotW9iDi7qIjo5G\ndHS0/OfPP/9csdUXqoGzZ8+Sk5MTLV26lAwNDWv632vkwIEDNH36dCIiOnHiBA0dOpSIiAwMDORW\n3nl5eZWOVQu5HJFy/TrRwIFEjo5EFy8KoyE2lsjMjGjsWCKRef1xVMSJE0TduhGNH0/08KH6xy8r\nIwoNJWrfnigoiOjZM/VrIFL83lljJXWfPn1w/PhxNG/eHAMHDqx7BHqBU6dOISwsDCYmJhg7diyi\noqIwYcIEbrOhxezZAzg4AD4+QHw824gWgoEDWcZThw4sRfHfzrUcLaS0lO1vvfUWsGYNsGMH0K6d\n+nVIJGzT+vx5IDERGDQISE9Xvw6FqSpyeHh40MqVKyk1NVXhqFUT0dHR8hnE84ba+fn5NH369Eob\nalcjlyNCCgqIAgLYE9yZM0KrqcjRo0QdOxItXcqe8jjaw507RM7ORC4uRHfvCq3mP8rKiJYtI+rQ\ngUjd/aQUvXdWOYPYtm0bWrdujUWLFsHW1hYBAQHYv38/8pS80/fcwjsgIADp6ekwNzfH7du3MW3a\nNKWOw1Evd+6wJ/ZHj4CkJKBvX6EVVcTDgz3R7dnD9iSysoRWxFEGp04BffqwJ/WICEBM3VQlEmDe\nPOD334Fp09i+SFmZ0Kqqp1Z1EKWlpUhISEB4eDiioqKgq6sLT09PfPTRR+rQKIenuWoGSUlsOSkg\ngG1Ei7mNx7NnbCMxLo7VURgZCa2Ioyi7drF/y23bWNGkmMnMZA8mnToB27cDzZurdjyF751VTS3W\nrl1b5bTjwYMHtHPnToWmLPWhGrkckfDbb0R6ekR79gitpPaUlRGtWkXUpQvR2bNCq+HUlbIyokWL\niIyMiJKThVZTewoLicaNI7K3J7p3T7VjKXrvrHIGYWtri/Pnz9cvbCkZPoMQN+vXA19+CYSFsWm+\nprF3L0uB3LoVGDpUaDWc2lBSAkyZwryT9u8X15JSbSACFi9ms56jR5l7gCpQeqGcKsnIyICzszOs\nrKzg5OSEXbt2AQBycnLg4+MDQ0NDDB8+HLm5uULI49QRIhYYli8HYmM1MzgAwIgRwMGD7Ibz009C\nq+HURGEhMHo0cO8eq2LWtOAAsOXXoCBWn+HkxLLsxESVM4hGjRrhlSoMRSQSCbKzsxUe9N69e7h3\n7x5kMhkePnwIe3t7/PXXX1i/fn21dht8BiE+yspYZerx4+wJqLY+NmLmwgXAywv44gtW0McRHzk5\nzDupXTtg505mpqfp/PYbMH06m8n276/c91b6DKJXr17Iycmp9Ks+wQEAOnXqBJlMBgDQ09ODlZUV\nzpw5w+02NIyyMnZBJySwmgJtCA4Aq5E4cQL4/HNm5sYRF1lZzNaie3c209OG4AAAvr5sw3r4cODY\nMaHVMATvB3Ht2jWkpKTA3t4e77zzDqRSKQBAKpUiMTHxpf9/0aJF8u+51YZwPA8OFy6wmYNYTMmU\nRY8ebLnM1ZVZNcyfL7QiDsCCg6cnYGfHCuDEnCGnCJ6eLA125EgW/FxdFXufF602FKaq3euvvvpK\noV3vupCdnU29e/emffv2EVHNdhvVyOWokdJSovfeI+rfnyg7W2g1quX2baIePVhBHUdYsrKYVcuM\nGdpf3BgTw+w5oqKU836K3jurXGJasGCB/PudO3cCAHbs2FH/iPQvxcXF8PX1xYQJE+Dj4wMA3G5D\nAygrY/UNFy8yH3xtmzm8SJcubAN0wwa+3CQk2dlsX8jWlv07aNvM4UUGDQJ27wb+9z/WxEgoapXF\ntGLFCgCsh4MyICL4+/vD2toas2fPlh93cHBAaGgoCgoKEBoaCkdHR6WMx1EOREBgYMMJDs/p2pUF\niRUrWJ8JjnrJzQXefJO5oX77rfYHh+c4OQG//MIytWJjhdEgSJrryZMnsXPnTkRFRcHW1ha2trY4\ncuQIt9sQOUFBzMrg8OGGExyeY2TENg6/+AL44Qeh1TQcnj1j6/FSKevxoSPIHUs4XFzYXsSoUcw+\nXN0Iskk9YMAAlFVhQrJ//341q+HUhlWr2NNMXJz2N2qvClNTIDKSfWibNQP8/IRWpN2UlDA31tde\nYzO3hhYcnuPmxvqoDB3KZrKWluobW/AsJo742bqV9YyOi2NW2Q0ZqZRlbbm7A6++Cnh7C61IOyFi\nLWizs1nxYqNGQisSFh8fdi48Pdlyk4mJesZtoDGZU1t+/52164yIUF5LUE2nZ0/gwAHWoD4qSmg1\n2gcR8OGHwN9/s6KxZs2EViQOJkwA/u//2MPJ3bvqGbNWAcLc3BwA0ENVRiHliI2NhYWFBczMzLCW\np40IyrFjzJb40CHWX5fzH3Z2wK+/smUmXs+pXL75hs3SDh1iPcU5/zFzJvD228yu/vFj1Y9XK7tv\ndWJra4uQkBAYGRnB09MT8fHx0NPTA8CtNtRJQgJb8/ztN5Zyx6mcw4dZx7DISKBXL6HVaD4bNgDL\nlrHOg9pSma9siFhfiZMn2UNcbYKoysz6XCsp5avsmDLI+rdry6BBg2BkZAQPDw9utyEAFy8Cw4Yx\nh0keHKpn8GBW0fvmm8DVq0Kr0Wx+/pmZPkZG8uBQHRIJM8a0tmYZXs+eqW6sKjepCwoKkJ+fj8zM\nTDwuN5d58OABcnJyVCLmzJkzcqsNALC0tMTp06cxZMgQ+bHaWG08eADcv8/Wijl14/p1VpC0ahVQ\n7rRzqmHMGGYe5+7ONhD5Xk3dOXwYmDWLmT526ya0GvEjkbDZ1vjxrDPiwIEVf68sq40qA8TGjRsR\nEhKCO3fuoE85/2YjI6MKxW3qpnyAqIrERODdd5mBnBq2TbSGu3fZTe6TT1h6Iaf2TJnCskyeB4mO\nHYVWpDnExbF19bAw9lTMqR2NG7MaicoKB198eP78888VG6QmL46QkBCFPDwU4enTpySTyeQ/z5w5\nkw6W6+5dC7lyvv+edZhKT1emQu3l0SMia2uiL78UWolms3AhkY0N0ePHQivRDM6fJ+rQgSgyUmgl\n2k1d7p3lEe0mtaGhIby8vOq1Sb1iBSswiYsD2rdXlWLNJzeXFeMMGMA2CBuKlYEqIALmzGGz2IgI\nnoVTHVeuMDuJtWuZ1TVHdSi6SS26ABETE4Np06ahuLgYgYGBCAwMlP9OkT/yk0+Yb1BUVMOtAK6O\nwkKWrWRszIIpDw71p6yMLTllZLB6CV1doRWJj/R0tm6+aBHLAuOoFpUECCLCrVu3YGBgUC9xykKR\nP5KI5Q4/N5hr3lxF4jSQkhLm8dK0KVvLbOjVqsqktJTVSJSUsHqJxtyzQM6DByw4TJvGZlsc1aOy\nNNfBgwcrJEgsSCRsCquvz6xzi4uFViQOyspYO81nz1jLRh4clEujRsCPP7IZ2uTJ7HxzWMMfLy+W\n+cWDg/ipNkBIJBL069dP4w30dHRYTj8Ry5Zo6B9WIpZSmJbGCuG0pWWj2GjalJ3fGzeA999n570h\nk5/PljMHDGDtXDnip8YZRFxcHEaMGIH27dujZ8+e6NmzJ3rVo2T0ww8/hIWFBXr37o3Zs2ejoKBA\n/rs1a9bAzMwMlpaWiI+PV3iMymjShE31b93iH9aFC1kV5sGDwCuvCK1Gu3nlFbYPcfo02w9rqBQV\nseVMExNm/Mj3ujSDGjepb9y48d//XG4dy9jYWKEBIyMj5ZXYU6dOhaOjI/z9/fHgwQMMGjQIERER\nSEtLw5w5c5CUlFRRrBKsNrKyWJ9XJ6eGmbHzzTesn0FsLM/sUicPH7Kq9EmTmOFaQ6KoiDW9adSI\nWcY3aSK0ooaHyvYgjI2N0bZtWyQkJCAhIQHt2rVTODgAgLu7O3R0dKCjowNPT0/ExMQAABISEuDl\n5QVDQ0O88cYbICKVVGy3asXSD6Oi2Ae1Ic0kgoOZdffx4zw4qBs9PWYhsXEjsG6d0GrUR3Hxf30z\nfv6ZBwdNo8bcir1792L+/Plwc3MDEWHhwoX4+uuvMWLEiHoPvnnzZkyZMgUAkJiYCAsLC/nvzM3N\nkZiY+JLvU22sNmqibVv2YXV1ZU81S5Zo/0xi6VJgyxbW37ZLF6HVNEy6dmXmaoMGsSY448cLrUi1\nFBezivyiIr7XpW5UbrXxnLVr1yIqKgpdu3YFANy5cwfjx4+vNkC4u7vj3r17Lx1fsmQJvP/tsLJ4\n8WK0bNkSo0ePBoBKpz+SSu7atbHaqA3t2rEPq6sr28T+8kvtDRLLl7MaBx4chKdbN2Zl7erKGg4p\n4TlLlJSUsACYl8d7OgiBsqw2apWdrVOu15+Ojk6Na1mRkZHV/n7btm04evQojh8/Lj/m4OCAY8eO\nyX++dOkS7OzsaiNPYfT02HKLiwu7oL/5RvuCRHAw8P33wIkT7AmWIzxWVqzXweDBLA127FihFSmX\nZ8/YzCEvD9i3jwcHTabGADF9+nQ4OzvDw8MDRIRjx47hiy++UHjAI0eOYNmyZYiNjYVuuRJTe3t7\nfPjhh0hPT8f169eho6ODli1bKjxObdHTYzfPwYOBgADWGF0bagKIgI8/Zhk00dE8OIiNPn3Yw4mn\nJ0ucmDZNaEXKIS+PWVC3aAHs38+Dg6ZTZRZTWloaTP5tfPrkyROEh4dDIpHAy8sLbdq0UXhAMzMz\nFBUVoW3btgCAfv36Yd2/u3YhISFYu3YtmjZtio0bN2LgCx62qmwYlJPD+r527Ahs367Zm2mlpcCM\nGUBSEhAezpbTOOLkn3+YA+zUqZqf3fT0KatzMDVls1ZePS4elG610adPH5w7dw6urq4VloKERNUd\n5QoL/6u2/uUXtpGoaRQWslTKzEz2BKeGSRinnty+zYKEtzfw9ddsT0zTyMhgwWHQICAkRDP/Bm1G\n6QHC1dUVAwcOxPfff4+5c+dWeHOJRIK5c+cqrlZB1NFytKSEeTedOsXWiUViQ1UrHjwAhg9nDWu2\nbeMmcZrEw4esi5+BAfu30yTPsKQkNvueNQv44APt28fTBpReB7F9+3a0bdsWpaWlyMnJQW5urvxL\nVR3lxEDjxsD69ewpvF8/4Nw5oRXVjr//BhwdWXbMrl08OGgaenqsNqdxY1bEWUkSoCg5eJDto6xe\nzfok8+CgZdTUMOLQoUMKNZqoieXLl5NEIqFHjx7Jj4WEhJCpqSlZWFhQXFzcS6+phVylsncvkZ4e\n0Q8/qHXYOrNvH1H79kTbtwuthFNfysqIFi8mMjQkSkwUWk3VlJYSff45UefORKdPC62GUxOK3jvV\ne8f9l/T0dPL09CRjY2N5gLh//z6Zm5vTzZs3KTo6mmxtbV96nboDBBHRhQtE5uZE/v5E+flqH75a\nnj0jmjOHdc774w+h1XCUyW+/saC/ahULGmIiM5PI05No0CCiO3eEVsOpDYreOwXZSpo7dy6WLl1a\n4Zi6rDbqirU1cOYMS99zdARSU4VWxLhxg20IXrvG1oAdHYVWxFEmI0cyg79du9i+0uPHQitixMSw\nFF2ZjKXpdu4stCKOKlF7Itr+/fuhr6//kiOsOq026krLluyDunkzuynPm8c244RI4ysrY3skQUHA\nggXMU5+v+2on3boB8fHA/PlAz57At98KV3mdl8eut99+Y35SQ4YIo4NTO5RltVHlvCM4OFj+/e7d\nuyv87uOPP652WuLm5kbW1tYvfe3fv58cHBwoKyuLiIiMjY3p4cOHRET0ySef0IYNG+TvMWbMGDp+\n/HiF961GrtpISyNydSXq04fo1Cn1jn3+PNGAAUT9+hGlpqp3bI6wxMYS9ehB5OtLdPOm+sYtK2N7\ncSYmROPHE5XbMuRoEIreO6t8lUwmq/T7yn6uLRcuXKAOHTqQsbExGRsbU+PGjcnIyIju3btHYWFh\nFBgYKP9/bWxsKDs7u6JYEQQIIvah2b6dqGtXorfeYkFDldy+TTR5MlGHDkTffUdUUqLa8TjipKCA\naOFCorZtiebPJ/r3OUtlnDvHHoYsLYkiI1U7Fke1KHrvVOsehLW1Ne7fv4+0tDSkpaVBX18fSUlJ\n6NixI+zt7XH06FGkp6cjOjpabVYbiiCRABMmAJcuAd27szXZSZNYqqkyuXaNVdhaWzMH2suXgenT\ntcMKhFN3dHVZJ7a//gLu3mVLUB9/zL5XFkSsmdSQIawuY/hw4M8/ATc35Y3B0RwErXcs79basWNH\nBAQEwMXFBdOnT0dISIiAympHixbA4sXMLsHcnNUgDBjAbAYU3VTMzmZWH66ubOO5Y0cWGJYtA1q3\nVq5+jmair8+K6RITmUWMpSXb1N67lxnlKUJGBrByJXsYefttVtV97RorGtVk2xlO/aiykrpRo0Z4\n5d9+lAUFBWherrSzoKAAJSUl6lFYDnVUUteH4mLmfbRtG7MSt7BgN/pevZiDp74+s+9o1IhtNufm\nsg9maiqQnMwKpf76ixVKTZrErAt4wRunJp4+ZZvHO3awws5+/dg11LMn0KMHu+5eeYXNfEtKgCdP\n2HV34QKbHURGssK8oUOByZOBgQN54oO2oXSrDTEi9gBRnmfPmF1HTAxw8SKQksKWAnJyWOOUZ89Y\nP4AuXVggsbICnJ2B11/XLJsFjrh48oS1k42NZQ8eV64wr6dnz5izanEx66rYpQsLIL16seuub1++\ndKnN8AAhIqKjo6tMvy0rY4Z6urrCG5pVp1NMcJ31p/x1FxsrXp3lEfP5fI4maARU2JNaFWzduhUW\nFhawsrLC/5XzOF6zZg3MzMxgaWmJ+Ph4IaQpheryj3V02HRf6OAAVK9TTHCd9af8dSdmneXRBJ2a\noLE+qL3U6+LFi9i0aRPCwsJgZmaGzMxMAMCDBw+wbt06HD9+HGlpaQgMDERSUpK65XE4HA7nX9Qe\nIMLDw+Hv7w8zMzMAQPv27QFUtNowNDSUW22INdWVw+FwtB2170G4u7vDysoK8fHxkMlkmDt3Liwt\nLfHZZ59BX18fU6dOBQD4+fnh3XffrWC1IeGpFRwOh6MQitzqVTKDcHd3x71KDO2/+uorFBYW4vHj\nx4iLi8OxY8cwc+ZMREVFVSr+xYCgCRvUHA6Hoy2oJEBERkZW+bu4uDg4OTmhefPm8Pb2xtSpU1FY\nWAgHBwccO3ZM/v9dunQJdnZ2qpDH4XA4nFqg9lyafv36ITw8HESEhIQEdO/eHbq6uhpltcHhcDgN\nAbVvUvv4+CAiIgKWlpaQSqVYuXIlgIpWG02bNsXGjRvVLY3D4XA45amPQ6C6mDdvHkmlUrK1taVZ\ns2ZRfrnWbjW1KVUnu3fvJktLS9LR0aFz587Jj6elpZGuri7JZDKSyWQUEBAgoMqqdRKJ63yWJygo\niLp27So/h+Hh4UJLqkBMTAxJpVIyNTWlNWvWCC2nSoyMjKhnz54kk8nIzs5OaDly3nnnHerQoQNZ\nW1vLj2VnZ9OwYcPIwMCAfHx8KCcnR0CFjMp0iu3aTE9PJycnJ7K0tKQ33niDfvzxRyJS7HxqRICI\niIig0tJSKi0tpSlTptD3339PRLVrU6pOUlNT6fLly+Tk5PRSgCh/QQlNVTrFdj7Ls2jRIlqxYoXQ\nMqpEJpNRTEwM3bhxg8zNzSkzM1NoSZVSvs2vmIiNjaWkpKQKn5Pg4GCaOXMmFRYW0owZM2jZsmUC\nKmRUplNs1+bdu3fp/PnzRESUmZlJJiYmlJ2drdD5FEE9b824u7tDR0cHOjo68PT0RExMDADxtSmV\nSqXo0aOHYOPXlqp0iu18vgiJNIstKysLADBo0CAYGRnBw8MDCQkJAquqGjGex4EDB6JNmzYVjiUm\nJsLf3x/NmjXD5MmTRXFOK9MJiOucdurUCTKZDACgp6cHKysrnDlzRqHzqREBojybN2+Gt7c3gKrb\nlIqRtLQ0yGQyTJ06FX/99ZfQcipF7Odz7dq1cHR0RHBwsKgC15kzZyCVSuU/W1pa4vTp0wIqqhqJ\nRAIXFxcMHz4cYWFhQsuplvLnVSqViupafBGxXpvXrl1DSkoK7O3tFTqfAnRVrpyqaieWLFkiDwiL\nFy9Gy5YtMXr0aACVR21VF9PVRueLdOnSBRkZGWjTpg3Cw8MxYcIEJCcni06nEOezPNXVzwQEBGDh\nwoXIzs7Ghx9+iI0bN2LevHlq06YtnDx5Ep07d0Zqaiq8vb1hb2+PTp06CS2rUsT0VF4dYr02c3Jy\nMGbMGKxatQotWrRQ7HyqaBmsRnJzc2nixIlkZmZGFhYWdPr06Wo3UbZu3Ur9+/engoIC+bHatCkV\nghfX9l/E1taWrl69qkZFlfOiTrGezxf5888/qX///kLLkPP06dMKbXhnzpxJBw8eFFBR7ZgzZw5t\n2rRJaBlyXtyrGzlyJCUlJRER0dmzZ8nX11coaRWobk9RLNdmUVERubu706pVq+THFDmfgi0xBQUF\nwdDQEMnJyUhOToZUKsX69ethaGiIq1evQl9fHxs2bAAAHDlyBMuWLUNYWBh0y3XQEXPtBJWL1g8f\nPkRpaSkAICkpCQUFBTA1NRVKWgXK6xTz+bz7b1/NkpIS7Nq1C4MHDxZY0X+0atUKABAbG4sbN24g\nMjISDg4OAqt6mfz8fPnyR2ZmJo4ePQovLy+BVVWNg4MDQkNDUVBQgNDQUDg6OgotqVLEdm0SEfz9\n/WFtbY3Zs2fLjyt0PlUTv2rGxsamQroqEZGvr6989/3cuXM0atQoIiIyNTUlQ0PDStNEV69eTd27\ndycLCwuKjY1V3x9QCb///jvp6+uTrq4udezYkby8vIiIaM+ePWRlZUU2Njbk6+tLMTExotRJJK7z\nWZ4JEyZQz549qU+fPjRnzhzRZeJER0eTVCql7t27U0hIiNByKuX69etkY2NDNjY25OLiQlu2bBFa\nkhw/Pz/q3LkzNW3alPT19Sk0NFSUaa7PdTZp0oT09fVpy5Ytors24+LiSCKRkI2NTYXUW0XOpyAN\ng27dugU3Nzc4OjoiNTUVI0eORGBgIKRSKS5fvgxdXV3k5+fDwsICN2/elL+Om/VxOByOYihyqxdk\niamwsBBXrlyBr68voqOjkZKSgt27d9fqDyBWuyHqr6CgIME1cJ1cJ9fJNT7/UhRBAoSpqSnMzc3h\n7e2N5s2bY+zYsThy5Ajs7OyQmpoKAEhNTeVmfRwOhyMggm1Sm5mZISEhAWVlZTh06BDc3Nw0ZlOK\nw+FwGgKC1UEsX74cEydORGFhIdzc3ODn54eysjKMHz8e5ubm6N27N4KDg4WSVy80oYk5wHUqG65T\nuWiCTk3QWB8E2aRWFIlEUq/1NA6Hw2mIKHrvFE0lNUe9FJcW4/y98ziZfhJXHl/BP4//wf28+ygq\nLUJxaTFa6bZC+1faw7CVIWSdZLDtZIu+XfqiSaMmQkvnaDB5RXmIT49H0t0kXH50GdefXEf2s2zk\nFuWisU5jtNZtjXavtINUTwrr9tZw0HeAhZ4Fz2AUCD6DaEAUFBfg4JWD+OniTzh2/RiMWxtjoNFA\nWOpZolubbujUohOaNW6GJjpN8LTwKR7mP8T1J9fx5/0/ceb2GaRnpcOjuwdGSEdguHQ4mjVuJvSf\nxNEAHuY/xC8Xf8Huv3fj3J1z6NOlD+y72kPaTorubbujtW5rvNrkVZRSKZ4UPEFmfiZSM1Nx4cEF\nxKfHo4zK4GXqhQm9JmCA4QAeLBRA0XtnjQEiLS0NJiYmFY4lJyejV69edR6sPKWlpejbty/09fVx\n4MAB5OTkYPz48Th//jx69+6NnTt3okWLFhXF8gChEOlZ6QhJCMHW81vRt0tf+Fn7wcfcB+1eaVen\n97mbcxeHrx7GTxd/QvL9ZEySTcIsh1nQf01fRco5mszZO2ex9ORSRPwTgcFmgzGu5zg4GTvh1aav\n1vo9iAiXH13GgcsHsPXPrSguK0ZA3wBM7TO1Tu/T0FH03lllFtORI0fQo0cPDBs2DDKZDGfOnJH/\nbtKkSYqpLEdISAgsLS3lTwNV2WxwFCcjKwOT90+G7UZbSCDBn9P+RMSECEy2nVzn4AAAnVt2hn9v\nfxybeAwnJ59EGZWh1/pemH5oOm5l31LBX8DRRBJvJ8JtuxtG/DIC/fT7IX1OOnb57sKQHkPqfFOX\nSCSQ6knx4esfImV6CnaM2IE/bv0BkxATfBX7FfKK8lT0V3AAVG214eHhITeUi4uLox49etBvv/1G\nRNqCjLkAAB8ESURBVFTBmEwRMjIyyNXVlaKiomjo0KFEVLXNRnmqkcspR+6zXPr42MfUNrgtLTi+\ngJ4WPFXZWPdz79NHkR9R2+C29EXMF1RQXFDzizhaSfrTdBr32zjqsqILbT63mZ6VPFPZWH8/+JvG\n/DqGDFYa0I/JP1JZWZnKxtIGFL13VrlJfefOHbmh3IABAxAVFQVvb2/culX/J8U5c+Zg2bJlyM7O\nlh+rrVf5okWL5N87OTlpfZpZXYn4JwLTDk5DP4N++GvaXypf/unwagcEuwUjoG8A5h6dC6t1Vtjs\nvRkuJi4qHZcjHsqoDOvPrEdQdBCm203HhqEb0KJpi5pfWA8s2lvg51E/Iz49HrOOzMKmc5sQ6hOK\nbm26qXRcTSE6OhrR0dH1f6OqIoejoyNdu3atwrGsrCxycXGhJk2aKBSNiIgOHDhA06dPJyKiEydO\nyGcQBgYGcivvvLw8MjQ0fOm11cht8OQ+yyX//f5ktMqIwq8K1xP34OWD1HVFV3r/8PuUV5QnmA6O\nekh7kkYDQwdS/y39KTUzVRANJaUltPzkcmoX3I7WJqzls4lKUPTeWeUexIYNG1BWVlbh2GuvvYbw\n8HCEhoYqHJBOnTqFsLAwmJiYYOzYsYiKisKECRO4zUY9SL6fjL6b+6KotAgXAi7Ay1Q4C+chPYYg\nOSAZjwoeoc+mPkjNTBVMC0e17Lu0D/ab7THMfBhi346FVE9a84tUQCOdRvig/wc45X8KO5J3YPgv\nw/Gk4IkgWrSOqiKHh4cHrVy5klJTVfdUEB0dLZ9BPG+onZ+fT9OnT6+0oXY1chssG89uJL2levTD\nnz8ILeUltiRtIb2levTzhZ+FlsJRIs9KntGs8FlktMqI/sj4Q2g5FXhW8owCwwPJZLUJnb19Vmg5\nokHRe2eVM4ht27ahdevWWLRoEWxtbTFt2jTs378feXnKzRp4nsUUEBCA9PR0mJub4/bt25g2bZpS\nx9E2ikuLMePwDIQkhCD+nXhMtJkotKSXmGw7GRHjI7AgagFmH5mNkrISoSVx6snD/Idw3e6K60+u\nI2lqEhz1xeWX1rRRU4R4hSDYLRheP3oh9Lziqx2cWhbKlZaWIiEhAeHh4YiKioKuri48PT3x0Ucf\nqUOjHF4HwXhS8AT/2/M/NNFpgp9H/YzXmr0mtKRqeVLwBGN/GwuJRILdo3ajZTNxdKnj1I3UzFQM\n/WkoxliNwZcuX0JHIpjXZ6249PAShu4aiv9Z/U8j9KoSpRfKffvtt5g5c2alL8rMzERERATGjRtX\n5wHrAw8QwPUn1/Hmj29iiNkQLHNfhkY6jYSWVCuez3jO3DmDg2MPoutrXYWWxKkDkf9EYtzv47DM\nfRkmyepfB6UuMvMyMfyX4dB/TR/bfLaheZPmQksSBKUHCFtbW5w/f77ewpRJQw8QyfeTMfjHwVgw\ncAGm200XWk6dISIEnwzGujPrcHjcYVh3sBZaEqcW/HzxZ8w6Mgu/jv4Vg4wGCS2nzhSWFOLtfW/j\nVvYtHHzrIFrrthZaktpReiW1KsnIyICzszOsrKzg5OSEXbt2AQBycnLg4+MDQ0NDDB8+HLm5uULI\nEyUn00/CfYc7Vnqu1MjgALCLdP6A+fja9Wu4bXfDuTvnhJbEqYENZzfgg4gPcGzCMY0MDgCg21gX\nu3x3oW+XvnD+wRkP8h4ILUlzqHL3WkeHWrRoUelXy5YtFdoRf87du3flVdOZmZlkYmJC2dnZ8kym\nwsJCmjFjxkuZTNXI1WrCr4aT3lI9OnL1iNBSlMbe1L3Ufml7ir8ZL7QUTiWUlZXRktglZLLahK49\nulbzCzSAsrIyWnhiIfVY24PSn6YLLUetKHrvrPJV9bXTqAtDhw6l48eP12i30RADxMHLB6n90vZ0\nKv2U0FKUzpGrR0hvqR4dv35caCmcF1h4YiFZfmdJt7NvCy1F6aw4tYKMVhnRP4//EVqK2lD03il4\nP4hr164hJSUF9vb2eOedd2q022hIVhsHrxzE5P2TcWDsATjoOwgtR+l4mnpiz+g9GP3raPww/Ae8\nafam0JI4ABZFL8Kev/fgxKQT6PBqB6HlKJ25/eaieePmcPnBBdFvR8O4tbHQkpSOyq02vvrqK4Wj\nVW3Jzs6m3r170759+4ioZruNauRqHQcuH6D2S9vT6YzTQktROX9k/EHtl7anyH8ihZbS4Fl0YhFZ\nfmdJ93LuCS1F5Xyb8C0ZrzamG09uCC1F5Sh676zVq3bs2EFERNu3b1dokMooKioid3d3WrVqlfzY\nyJEjKSkpiYiIzp49S76+vhVe01ACxPPgkHArQWgpaiP2RizpLdWjmBsxQktpsHwe/TlZfGvRIILD\nc0JOh5DJahO6+fSm0FJUiqL3zlplMa1YsQIAsHLlyvpPWZhS+Pv7w9raGrNnz5Yfd3BwQGhoKAoK\nChAaGgpHR3FVaaqDqLQoTN4/GQffOgj7rvZCy1EbA40G4mffnzFq9yicvnVaaDkNjm/iv8FPF39C\n1KQodGzRUWg5aiPQIRDv278Plx9ceE+TyqhNFHm+Ya2sjeu4uDiSSCRkY2NDMpmMZDIZhYeHU3Z2\nNg0bNowMDAzIx8eHcnJyKryulnI1loRbCdR+aXs6kXZCaCmCcfjKYeqwrAOdu3NOaCkNhvVn1lO3\nkG5auSFdW4Ljg8niWwvKzMsUWopKUPTeKUiAUBRtDhApD1Ko47KOFHYpTGgpgvP7379Tx2UdKfle\nstBStJ6fLvxEXVZ00ZpU1vrw8bGPqc/GPpRVmCW0FKWj6L2z4ZqTiIi0J2nw3OmJFR4r4G3uLbQc\nwRlhMQKrvVbDc6cnrj66KrQcreXw1cOYdWQWjow7gu5tuwstR3C+cvkK9l3t4f2TNwqKC4SWIwp4\ngBCYuzl34b7DHfNfn49xvdTrbSVm/Kz9sNh5Mdx3uCM9K11oOVpH3M04TNo3Cfv99qNnx55CyxEF\nEokE3w7+Fvqv6WP0r6NRXFostCTBqVWAMDc3BwD06NFDpWIAIDY2FhYWFjAzM8PatWtVPp6QPCl4\nAs+dnnhb9jZm2M8QWo7omNJ7CgIdAuG+wx33c+8LLUdrOH/3PHx3+2LXyF2is+sWGh2JDrb5bINE\nIsGkfZNQWlYqtCRBqZXdtzqxtbVFSEgIjIyM4Onpifj4eOjp6QHQLrO+vKI8uO9wh6O+I1Z4rJD3\nxeC8zKLoRdh3aR9OTDqBNs3bCC1Ho7n88DKcf3DGt4O/xUiLkULLES0FxQV488c3YdHeAusGr9P4\nz6fKzPpcXV1rdUwZZGVlAQAGDRoEIyMjeHh4ICEhQSVjCcmzkmcY8csISPWkPDjUgqA3guBs4owh\nu4Ygt4gbOCpKRlYGPHZ64EuXL3lwqIHmTZojbGwYzt45i0+iPhFajmBUabVRUFCA/Px8ZGZm4vHj\nx/LjDx48QE5OjkrEnDlzRm61AQCWlpY4ffo0hgwZIj+m6VYbpWWlGL93PFo2a4lN3pt4cKgFEokE\nKz1WYsqBKRj+83AcfOsgdBvrCi1Lo3iQ9wDuO9wxy2EWJttOFlqORvBas9cQPi4cg7YOQhvdNvjw\n9Q+FllRrlGW1UWWA2LhxI0JCQnDnzh306dNHftzIyKhCcZu6KR8gNA0iwtSDU/Gk4AkOvXUIjXUE\nt8LSGCQSCTYN3YSxv42F3x4//Dr6VzRp1ERoWRpBVmEW3vzxTYyyHIW5/eYKLUej0HtFDxETIjBw\n60C01m2Nd/u8K7SkWvHiw/Pnn3+u0PvUuAexZs0aBAYGKvTmdSUrKwtOTk7yRkXvv/8+vLy85DMI\nTd6D+P/27jyqiXP9A/g3sS5YtRVEQNksQUIACbhQPS7IBaG0Li1WqIptxZZDS+tyaK3t0Xrt7YIr\nyqlVUaxavHUpFqxll80qAUnVqrhwDUVco8iiBMXk+f3Re1PQoPxCkpno+zmHc5IJw3x9zzhPZt6Z\n9yUifJz7MYr/LEburFz06taL60hm6Z76Hqb8OAVWPa2wbcq2p3oayY5QtagQkhICr/5eSHwpkZ2x\n6qmythLjvh+HNcFrMM1jGtdx/t+M1gdhquIAAM899xyAv+5kqqqqQk5ODvz8noxRTL8q/gqZlZn4\ndcavrDh0Qrcu3bB32l5U11cj9tdYs/3CYAot6ha8vud1OPRxwLqX1rHi0AkiSxEyZmTgg4wPkFmZ\nyXUck+Hd16+EhARER0cjMDAQ7733nvYOJnP2bem32HpsK7JnZsPSwpLrOGavZ9ee2P/GfpRdLsOn\nBz/lOg4vaUiDt9LegkAgwNbJW9mZlgEMsRmCn8N/xqx9s3Co+hDXcUzikZeYiAg1NTVwcHAwZaZ2\nmeMlph9O/IBFeYtQ9FYRBvUdxHWcJ8rNppsY+/1YzPSaiUVjFnEdhzeICLEZsTh1/RQyZmTAoqsF\n15GeKNn/ycbM1JnIjsyG1FbKdZwOMdolptDQUL0CMUDamTTEZccha2YWKw5GYNXTCjmROdj8+2Z8\nW/ot13F4Y3H+YshqZEh/I50VByOY4DIB619ej9CUUJy7eY7rOEb1yAIhEAgwcuRIpKWlmSrPEyPv\nQh7e2f8Ofpn+CyTWEq7jPLEG9B6A3MhcfPPbN9hxfAfXcTi36vAq/FTxEzJmZKBP9z5cx3liTZVM\nxRfjv8CEHRNwsf4i13GM53Gj+YnFYhIIBNSvXz/y9PQkT09P8vLy0mtkQCKiuLg4EovF5OPjQ3Pn\nzqWmpibtZ2vXriWRSETu7u5UXFz80LodiMsLJRdLqN/yflSgKOA6ylPj1PVTZLvSllJPp3IdhTNJ\n5UnktMaJquuquY7y1Fj520pyS3Sj67evcx3lkfQ9dj52LYVCof2pqqrSvtZXdnY2qdVqUqvVNGfO\nHNq8eTMREV27do3c3Nzozz//pIKCAvLx8Xk4rBkUiLJLZWS93Jr2n93PdZSnTvnlcrJebk3Zldlc\nRzG5ZHky2a+2p/M3z3Md5anzWd5n5LvRl26pbnEdpV36Hjsf2wfh7OwMS0tLyGQyyGQyWFlZwdnZ\nWe8zlqCgIAiFQgiFQgQHB6OwsBAAIJPJEBISAkdHR4wbNw5EZLQnto2l/HI5Xt75MjZP2oxXBr/C\ndZynjq+dL1LDUzEjdQYOXzzMdRyT2XZsGxbnL0berDyILEVcx3nqfDH+C4x2HI0JOyagrrmO6zgG\n9dhHefft24dPPvkEgYGBICIsWbIEX3/9NV599dVObzwpKQlz5swBAJSWlsLd3V37mZubG0pLSx8a\n94mvQ23Ir8gRujMUG1/ZiEluk7iO89Qa7TgaO17dgSk/TkHWzCz42PlwHcmofjjxAz49+CnyZuVh\nsJXxR1tmHiYQCJAQnID5WfMRtCMI2TOzOR9U0lBDbTz2vGP8+PFUU1OjfX/p0iUaP378I9cJDAzU\n9le0/klP/3u2tH/+858UFhamff/ZZ5/Rhg0btO/Dw8MpLy+vzd/tQFxOyC/LyWaFzVN9/Ztv9p7a\nS7YrbenU9VNcRzGalBMpZLfS7on+N5oTjUZD8zLn0dCNQ6m2qZbrOG3oe+zs0GBAQqGwzWt6zP20\nOTk5j/z8+++/R1ZWFvLy8rTL/Pz8kJubq31/5swZDB8+vCPxOFVSU4LJP07G+tD1eNW982dVjGGE\nScLQfL8Z/9j+D+x/Yz+GDRjGdSSDSipPwtLCpciOzGZ3yfHE/waVjMuJQ+COQORE5pj/g7GPqyB7\n9uwhNzc3+uCDDyg2NpbEYjHt2bNHr2pERJSRkUESiYRu3LjRZvnVq1e1ndT5+flm0Umd858csl5u\nTQfOHeA6CtOOnyt+Juvl1k/UHWWrDq8i5wRn1iHNUxqNhj7O+Zg813tSTX3N41cwAX2Pne2udeHC\nBe3r2tpaSklJoZ07d1JtbedOnUQiETk6OpJUKiWpVEoxMTHazxISEsjFxYXc3d2pqKjo4bA8KhCp\np1PJerk1FVU9nJPhl7wLeU/EnWUajYaW5C8ht0Q3diurGYg/FE/OCc509sZZrqMYvkD4+voSEVFA\nQIB+iYyALwXiu7LvyHalLZVfLuc6CtNBshoZ2aywoW3HtnEdRS/37t+j2WmzyXejL127fY3rOEwH\nbZFvIduVtlR2qYzTHPoeO9vtg3j++eexdOlSnD17FqtXr27T7yAQCLBgwdM3rrxao8ZHOR/h1/O/\n4tDbh+Bi6cJ1JKaDRgwcgYNvHsTLO1/GuZvnsGz8MrMZwK6uuQ5Td09Fz649UfhWIRsN2IzM9pkN\nKwsrhKaEYsMrG8xuJr92/4ds374dlpaWUKvVaGxsxO3bt7U/5vZ8giHcvncbr+1+DceuHsORqCOs\nOJghibUEsjky5FflI3xvOJpamriO9FiKWwqMTh4NibUE+8L3seJghiaLJyNzZibmZc7Dv4r+ZV4D\njj7uFOPAAeN0wK5cuZIEAgHdvHlTu4yvQ22cvn6aPL71oKi0KLp7/y4nGRjDUbWoaGbqTPLd6EuV\nNyu5jtOu9DPp1H9Ff1pXso7rKIwBXG64TH5JfhS+J5wa7zaadNv6Hjs5OeJWV1dTcHAwOTs7awsE\nX4fa2HF8B/Vb3o+2yLeQRqMx+fYZ49BoNJRwJIGsl1vTrpO7uI7TRou6hT7J/YQcVjvQ4erDXMdh\nDEjVoqLZabNpcOJgkl+Wm2y7ZlUgpk6dSsePH29TINLT02nu3Lna35FKpdTQ0NBmPVMWiPrmeopK\ni6LBiYPp+NXjJtsuY1pll8rIZa0LRe+Ppjv37nAdhypvVtKY5DEUuD2Q9wPAMfrbeWInWS+3pjVH\n1pjki6e+x84OPShnSGlpabC3t8eQIUPaLOfTUBtZlVl495d3EfRCEI6+cxS9u/c2+DYYfhg2YBjK\n3y3H+7++D6/vvJA0MQkBgwJMnkNDGmw4ugFL8pfg0zGfYq7fXHQRdjF5DsY03vB6A372fpj+03Ts\nP7cfG17eAFcrV4P9faMPtREfH699vXv37jafLVq06JFVp72hNtLS0sjPz4/q6+uJiMjZ2Vn7wBwf\nhtqoulVFEXsjyGmN01M5IujTbv/Z/eSw2oHe3PcmXWq4ZLLtllwsoeGbhtPIzSOpQllhsu0y3GtR\nt9Dqw6vJKt6KlhUsM9pZrL7HznbXkkqlOl/ret9Rf/zxB/Xv35+cnZ3J2dmZnnnmGXJycqKrV69S\neno6ffjhh9rf9fb2NtklJuUdJS3KXUSW8Zb0ef7ndPvubaNsh+G/+uZ6WpizkCzjLWlJ/hKqU9UZ\nbVsVygqa/tN0GrBqAG0/tp3UGrXRtsXwW9WtKgrbFUYDVw2kpPIkalG3GPTv63vsNOmN4J6enrh2\n7RoUCgUUCgXs7e0hl8thY2ODESNGICsrC9XV1SgoKIBQKETv3sa9tKO4pcCCrAUYnDgYyiYljkUf\nw1L/pXi227NG3S7DX32698E3gd9A/q4cVXVVeGHdC4jLjjPYrGFEhMMXDyNibwTGbh0LST8JKt6v\nQKR3pNk8l8EYntPzTtg7bS9+mvYTUv5IgWidCKsOr0J9cz2nuUzeB9GaQCDQvraxsUFMTAwCAgLQ\nrVs3bNy40SjbrGmoQWZlJnac2IEKZQVmec/CHzF/YGCfgUbZHmOenJ53wrYp21BdX42EkgR4b/CG\nj50PZnjNQKhrKGx72Xb4bxERTl4/iQPnD2D78e1Qkxrv+r6LpIlJrH+LacPP3g/5b+aj9FIpEkoS\n8EXCFwgRhWCaxzQEuwSb/Mur4L+nHw/p0qULevbsCQBQqVSwsPh78nOVSoX79++bJmErAoGgQw+Z\n1KpqUVVXhYa7DbiluoXztedxWnkasksyKO8oEfhCICI8IxDqGopuXbqZIDlj7prvN+PAuQP498l/\nI0+RB9tethjlMApuVm5wtXSFVU8rWDxjAaFAiFpVLW6qbuLsjbM4cf0ESi+VoquwK15yfQkRHhEY\n7Ti6zZcjhmmP8o4SqRWp2HVqF2SXZPCw9sBIh5EQ9RVhUN9BsHnWBm793B47/3hHj50PrddegeCj\njv4jd53chfjf4tGnex/06d4HIksRJNYS+Nr5QmorZafyTKeoNWqcuHYCJTUlOF97HpW1lbjVfAuq\nFhXUpIalhSWsLKwgshRhiM0QDLUbCpGliBUFplNULSocvXwUJTUlUNQpoKhTQHlHiZUTVsLf2f+R\n67ICwSMFBQW8menuUVhOw2I5DcsccppDRkD/YycnX6W3bt0Kd3d3eHh4YOHChdrl69atg6urKyQS\nCQ4dOsRFNIMwyP3HJsByGhbLaVjmkNMcMnaGyTupT548iU2bNiE9PR2urq5QKpUAgOvXr2P9+vXI\ny8uDQqHAhx9+CLlcbup4DMMwzH+ZvEBkZGQgKioKrq5/PTVobW0NAJDJZAgJCYGjoyMcHR1BRGhs\nbDT6ra4MwzCMbibvgwgKCoKHhwcOHToEqVSKBQsWQCKRYPHixbC3t0d0dDQAICIiAu+8806boTZY\nJx/DMIx+9DnUG+UMIigoCFevXn1o+Zdffonm5mbU1taiuLgYubm5iI2NxcGDB3WGf7AgmEMHNcMw\nzJPCKAUiJyen3c+Ki4vh7+8PCwsLTJw4EdHR0Whuboafnx9yc3O1v3fmzBkMHz7cGPEYhmGYDjD5\nXUwjR45ERkYGiAgymQwuLi7o0aMHJ0NtMAzDMO0zeSf15MmTkZ2dDYlEArFYjNWrVwMw3VAbDMMw\nTAfpPz6g6cTFxZFYLCYfHx+aO3cuNTU1aT973DSlprR7926SSCQkFAqpvLxcu1yhUFCPHj1IKpWS\nVCqlmJgYDlO2n5OIX+3Z2ueff04DBw7UtmFGRgbXkdooLCwksVhMIpGI1q3j7xShTk5O5OXlRVKp\nlIYPH851HK23336b+vfvT56entplDQ0NNGnSJHJwcKDJkydTY6Npp+nURVdOvu2b1dXV5O/vTxKJ\nhMaNG0cpKSlEpF97mkWByM7OJrVaTWq1mubMmUObN28moo5NU2pKFRUVdPbsWfL393+oQLTeobjW\nXk6+tWdrS5cupVWrVnEdo11SqZQKCwupqqqK3NzcSKlUch1Jp9azOPJJUVERyeXyNv9P4uPjKTY2\nlpqbm+n999+nFStWcJjwL7py8m3fvHLlCv3+++9ERKRUKmnQoEHU0NCgV3uaxaBEQUFBEAqFEAqF\nCA4ORmFhIYC2z06MGzdO++wEV8RiMQYPHszZ9juqvZx8a88HEU/vYquv/2tI5rFjx8LJyQkTJkyA\nTCbjOFX7+NiOY8aMQd++fdssKy0tRVRUFLp3747Zs2fzok115QT41aa2traQSqUAgH79+sHDwwNl\nZWV6tadZFIjWkpKSMHHiRADtT1PKRwqFAlKpFNHR0Th+/DjXcXTie3smJibixRdfRHx8PK8KV1lZ\nGcRisfa9RCJBSUkJh4naJxAIEBAQgClTpiA9PZ3rOI/Uul3FYjGv9sUH8XXfrKysxKlTpzBixAi9\n2pPT+SBaa+/Zia+++kpbEJYtW4bevXvj9ddfB6C7ahv7YbqO5HzQgAEDcPHiRfTt2xcZGRmIjIzE\niRMneJeTi/Zs7VHPz8TExGDJkiVoaGjARx99hI0bNyIuLs5k2Z4Uv/32G+zs7FBRUYGJEydixIgR\nsLXt+NwWpsSnb+WPwtd9s7GxEeHh4VizZg169eqlX3sa6TKYwW3dupVGjRpFKpVKu6wj05Ry4cFr\n+w/y8fGh8+fPmzCRbg/m5Gt7PujYsWM0atQormNo1dXVtZmGNzY2ln755RcOE3XM/PnzadOmTVzH\n0Hqwr+61114juVxORERHjx6lsLAwrqK18ag+Rb7sm/fu3aOgoCBas2aNdpk+7WkWl5gyMzOxYsUK\npKeno0ePHtrlfH52glpV6xs3bkCtVgMA5HI5VCoVRCIRV9HaaJ2Tz+155coVAMD9+/exc+dOhIaG\ncpzob8899xwAoKioCFVVVcjJyYGfnx/HqR7W1NSkvfyhVCqRlZWFkJAQjlO1z8/PD8nJyVCpVEhO\nTsaLL77IdSSd+LZvEhGioqLg6emJefPmaZfr1Z7GqV+GJRKJyNHRUedtogkJCeTi4kLu7u5UVFTE\nYUqi1NRUsre3px49epCNjQ2FhIQQEdHevXvJw8ODvL29KSwsjAoLC3mZk4hf7dlaZGQkeXl50dCh\nQ2n+/Pm8uxOnoKCAxGIxubi40Nq1a7mOo9OFCxfI29ubvL29KSAggLZs2cJ1JK2IiAiys7Ojbt26\nkb29PSUnJ/PyNtf/5ezatSvZ29vTli1beLdvFhcXk0AgIG9v7za33urTnmY1YRDDMAxjOmZxiYlh\nGIYxPVYgGIZhGJ1YgWAYhmF0YgWCYRiG0YkVCIbppLKyMnh7e+Pu3bu4c+cOPD09cfr0aa5jMUyn\nsbuYGMYAFi9ejObmZqhUKjg4OGDhwoVcR2KYTmMFgmEMoKWlBcOGDYOFhQWOHDnC5k9nngjsEhPD\nGMCNGzdw584d3L59GyqVius4DGMQ7AyCYQxg0qRJmD59Oi5cuIArV64gMTGR60gM02m8Gc2VYczV\n9u3b0b17d0RERECj0WDUqFEoKCiAv78/19EYplPYGQTDMAyjE+uDYBiGYXRiBYJhGIbRiRUIhmEY\nRidWIBiGYRidWIFgGIZhdGIFgmEYhtHp/wBv2SibrE7lggAAAABJRU5ErkJggg==\n", + "text": [ + "<matplotlib.figure.Figure at 0x60587d0>" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Since the argument of cosine function is positive, \n", + "the wave is propagating in the negative x direction.\n", + " B = 0.3333 rad/m\n", + "Time taken to travel a distance of lambda/2 = 31.42 n sec\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 10.2, Page number: 428<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "import cmath\n", + "import scipy\n", + "\n", + "#Variable Declaration\n", + "\n", + "Ho=10 \n", + "n=200*scipy.exp(1)**(1j*scipy.pi/6) \n", + "b=0.5\n", + "\n", + "#Calclations\n", + "\n", + "Eo=n*Ho #amplitude of electric field in kV/m\n", + "P=scipy.arctan(scipy.sqrt(3)) \n", + "a=b*((scipy.sqrt(((1+(scipy.tan(P))**2)**0.5)-1))/(scipy.sqrt(((1+(scipy.tan(P)\n", + ")**2)**0.5)+1)))\n", + "delta=1/a\n", + "\n", + "#Results\n", + "\n", + "print 'E has the same form as H except for amplitude and phase.'\n", + "print 'The amplitude and phase of E =',Eo,'kV/m'\n", + "print '= magnitude of 2000 and angle of pi/6'\n", + "print 'a =',round(a,4),'Np/m'\n", + "print 'Skin depth =',round(delta,3),'m'\n", + "print 'The polarization of wave is in z direction since it has an z component.'\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "E has the same form as H except for amplitude and phase.\n", + "The amplitude and phase of E = (1732.05080757+1000j) kV/m\n", + "= magnitude of 2000 and angle of pi/6\n", + "a = 0.2887 Np/m\n", + "Skin depth = 3.464 m\n", + "The polarization of wave is in z direction since it has an z component.\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 10.3, Page number: 430<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "\n", + "import scipy\n", + "\n", + "#Variable Declaration\n", + "\n", + "B=1\n", + "n=60*scipy.pi \n", + "Ur=1 #relative permeability\n", + "Eo=10**-9/(36*scipy.pi) #permittivity of free space\n", + "Uo=4*scipy.pi*10**-7 #permeability of free space\n", + "\n", + "#Calculations\n", + "\n", + "Er=Uo*Ur/(n**2*Eo) #relative permittivity\n", + "w=B/scipy.sqrt(Eo*Er*Uo*Ur) #in rad/sec\n", + "eps=Eo*Er #permittivity of the medium in Farad/m\n", + "H1o=-0.1\n", + "H2o=0.5\n", + "Ex=H2o/(eps*w) #amplitude of x component of E in V/m\n", + "Ey=H1o/(eps*w) #amplitude of y component of E in V/m\n", + "\n", + "\n", + "#Results\n", + "\n", + "print 'er =',Er\n", + "print 'w =',w,'rad/sec'\n", + "print 'E =',round(Ex,2),'sin(wt-z)ax +',round(-Ey,2),'cos(wt-z)ay V/m'" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "er = 4.0\n", + "w = 150000000.0 rad/sec\n", + "E = 94.25 sin(wt-z)ax + 18.85 cos(wt-z)ay V/m\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 10.4, Page number: 432<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "import scipy\n", + "\n", + "#Variable Declaration\n", + "\n", + "E=2 #amplitude of E in V/m\n", + "sigma=3 #in mhos/m\n", + "w=10**8 #in rad/sec\n", + "Ur=20 #relative permeability\n", + "Eo=10**-9/(36*scipy.pi) #permittivity of free space in Farad/m\n", + "Er=1 #relative permittivity\n", + "Uo=4*scipy.pi*10**-7 #permeability of free space\n", + "\n", + "#Calculations\n", + "\n", + "a=round(scipy.sqrt(Uo*Ur*w*sigma/2),1) #in Np/m\n", + "B=a #rad/m\n", + "theta=scipy.arctan(sigma/(w*Eo*Er))*0.5 #in radians\n", + "thetad=round(theta*180/scipy.pi,0) #in degrees\n", + "H=E/(scipy.sqrt(Uo*Ur*w/sigma))*10**3 #amplitude of H in mA/m\n", + "\n", + "#Results\n", + "\n", + "print 'alpha =',a,'Np/m'\n", + "print 'beta =',B,'rad/m'\n", + "print 'H =',round(H,1),'e^ (',a,'z ) sin(wt - Bz -',thetad,') mA/m'" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "alpha = 61.4 Np/m\n", + "beta = 61.4 rad/m\n", + "H = 69.1 e^ ( 61.4 z ) sin(wt - Bz - 45.0 ) mA/m\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 10.6, Page number: 434<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "import scipy\n", + "\n", + "#Variable Declaration\n", + " \n", + "a=2*10**-3 #in m\n", + "b=6*10**-3 #in m \n", + "t=10**-3 #in m\n", + "l=2 #in m\n", + "c=5.8*10**7 #conductivity in seimens\n", + "f=100*10**6 #frequency in Hz\n", + "mu=4*scipy.pi*10**-7 #permeability of free space\n", + "\n", + "#Calculations\n", + "\n", + "Ri=l/(c*scipy.pi*a*a) #dc resistance of inner cable in ohms\n", + "Ro=l/(c*scipy.pi*((b+t)**2-b**2)) #dc resistance of outer cable in ohms\n", + "Rdc=Ro+Ri #total dc resistance in ohms\n", + "\n", + "Ria=round(l/(2*scipy.pi*a)*scipy.sqrt(scipy.pi*f*mu/c),1)\n", + "Roa=round(l/(2*scipy.pi*b)*scipy.sqrt(scipy.pi*f*mu/c),4)\n", + "Rac=Ria+Roa #ac resistance in ohms\n", + "\n", + "#Results\n", + "\n", + "print 'Rdc =',round(Rdc*10**3,3),'m ohms'\n", + "print 'Rac =',round(Rac,4),'ohms'\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Rdc = 3.588 m ohms\n", + "Rac = 0.5384 ohms\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 10.7, Page number: 439<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "\n", + "import scipy\n", + "from numpy import *\n", + "\n", + "#Variable Declaration\n", + "\n", + "ax=array([1,0,0]) #Unit vector along x direction\n", + "ay=array([0,1,0]) #Unit vector along y direction\n", + "az=array([0,0,1]) #Unit vector along z direction\n", + "a=0 #alpha in m^-1\n", + "b=0.8 #beta in m^-1\n", + "Eo=10**-9/(36*scipy.pi) #permittivity of free space in farad/m\n", + "Uo=4*scipy.pi*10**-7 #permeability of free space\n", + "Ur=1 #relative permeability of medium\n", + "w=2*scipy.pi*10**7 #omega in rad/s\n", + "Eamp=4 #amplitude of the field in V/m\n", + "\n", + "#Calculations\n", + "\n", + "Er=b**2/(Uo*Eo*w*w) #relative permittivity of the medium\n", + "n=scipy.sqrt(Uo/(Eo*Er)) #eta in ohms\n", + "Pav=Eamp**2/(2*n)*ax #average power in W/m^2\n", + "an=(2*ax+ay)/scipy.sqrt(5) #normal to the plane\n", + "S=100*10**-4*an #area in m^2\n", + "P=dot(Pav,S)*10**6 #power through the plane in micro W\n", + "\n", + "#Results\n", + "\n", + "print 'Er=',round(Er,2)\n", + "print 'eta= ',round(n,1),'ohms'\n", + "print 'The time-average power =',round(dot(Pav,ax)*10**3,0),'ax mW/m^2'\n", + "print 'The total power crossing 100 cm^2 of the plane =',round(P,2),'micro W'\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Er= 14.59\n", + "eta= 98.7 ohms\n", + "The time-average power = 81.0 ax mW/m^2\n", + "The total power crossing 100 cm^2 of the plane = 725.0 micro W\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 10.10, Page number: 458<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "import scipy \n", + "from numpy import *\n", + "\n", + "#Variable Declaration\n", + "\n", + "ax=array([1,0,0]) #Unit vector along x direction\n", + "ay=array([0,1,0]) #Unit vector along y direction\n", + "az=array([0,0,1]) #Unit vector along z direction\n", + "kx=0 #in m^-1\n", + "ky=0.866 #in m^-1\n", + "kz=0.5 #in m^-1\n", + "Eo=10**-9/(36*scipy.pi) #permittivity of free space in farad/m\n", + "Uo=4*scipy.pi*10**-7 #permeability of free space\n", + "c=1/(scipy.sqrt(Uo*Eo)) #speed of light in m/s\n", + "kvect=kx*ax+ky*ay+kz*az #propogation vector in m^-1\n", + "Eo=100 #amplitude of electric field\n", + "\n", + "#Calculations\n", + "\n", + "k=round(scipy.sqrt(kx*kx+ky*ky+kz*kz),0) #magnitude of k in m^-1\n", + "w=k*c #omega in rad/sec\n", + "lam=2*scipy.pi/k #wavelength in m\n", + "Ho=cross(kvect,Eo*ax*10)/(Uo*w) #amplitude of magnetic field in mA/m\n", + "Hoy=round(dot(Ho,ay),2) #y component of Ho\n", + "Hoz=round(dot(Ho,az),1) #z component of Ho\n", + "Hr=array([0,Hoy,Hoz]) #Ho with components rounded off\n", + "P=Eo**2/(2*120*scipy.pi)*kvect #average power in W/m^2\n", + "Py=round(dot(P,ay),2) #y component of P\n", + "Pz=round(dot(P,az),3) #z component of P\n", + "Pr=array([0,Py,Pz]) #P with components rounded off\n", + "\n", + "#Results\n", + "\n", + "print 'w =',w,'rad/sec'\n", + "print 'lambda =',round(lam,3),'m'\n", + "print 'The magnetic field component =',Hr,'e^j(0.866x-0.5z) mA/m'\n", + "print 'The time average power in the wave =',Pr,'W/m^2'" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "w = 300000000.0 rad/sec\n", + "lambda = 6.283 m\n", + "The magnetic field component = [ 0. 1.33 -2.3 ] e^j(0.866x-0.5z) mA/m\n", + "The time average power in the wave = [ 0. 11.49 6.631] W/m^2\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 10.11, Page number: 459" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + " \n", + "import scipy\n", + "\n", + "#Variable Declaration\n", + "\n", + "ax=array([1,0,0]) #Unit vector along x direction\n", + "ay=array([0,1,0]) #Unit vector along y direction\n", + "az=array([0,0,1]) #Unit vector along z direction\n", + "Ei=8 #incident wave amplitude\n", + "k=5 #propogation constant\n", + "Eo=10**-9/36*scipy.pi #permittivity of free space\n", + "Erel=2.5 #relative permittivity\n", + "muo=4*scipy.pi*10**-7 #permeability of free space\n", + "mur=1 #relative permeability\n", + "c=3*10**8 #speed of light\n", + "etao=377\n", + "\n", + "#Calculations\n", + "\n", + "w=k*c #frequency in rad\n", + "theta=scipy.arctan(4/3.0) #angle of incidence in rad\n", + "eta1=etao\n", + "eta2=377/scipy.sqrt(2.5)\n", + "thetai=scipy.arcsin(sin(theta)/scipy.sqrt(2.5))\n", + "gamm=(eta2*cos(theta)-eta1*cos(thetai))/(eta2*cos(theta)+eta1*cos(thetai))\n", + "Er=Ei*gamm #reflected E field amplitude in V/m\n", + "kt=w*scipy.sqrt(mur*Erel)/c\n", + "tao=2*eta2*cos(theta)/((eta2*cos(theta)+eta1*cos(thetai)))\n", + "Et=tao*Ei*ay\n", + "Ht=cross((4*ax+6.819*az)/(eta2*kt),Et)*10**3\n", + "Htx=round(dot(Ht,ax),2)\n", + "Hty=round(dot(Ht,ay),2)\n", + "Htz=round(dot(Ht,az),2)\n", + "Htc=array([Htx,Hty,Htz]) #transmitted H field amplitude\n", + "\n", + "#Results\n", + "\n", + "print 'Polarisation is perpendicular polarization'\n", + "print 'Angle of incidence is ',round(180*theta/scipy.pi,2),'degrees'\n", + "print 'Er =',round(Er,3),'cos(',w,'t - 4x + 3z) V/m'\n", + "print 'Ht =',Htc,'cos(',w,'t - 4x - 6.819z) mA/m'\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Polarisation is perpendicular polarization\n", + "Angle of incidence is 53.13 degrees\n", + "Er = -3.112 cos( 1500000000 t - 4x + 3z) V/m\n", + "Ht = [-17.68 0. 10.37] cos( 1500000000 t - 4x - 6.819z) mA/m\n" + ] + } + ], + "prompt_number": 25 + } + ], + "metadata": {} + } + ] }
\ No newline at end of file |