diff options
author | kinitrupti | 2017-05-12 18:53:46 +0530 |
---|---|---|
committer | kinitrupti | 2017-05-12 18:53:46 +0530 |
commit | f270f72badd9c61d48f290c3396004802841b9df (patch) | |
tree | bc8ba99d85644c62716ce397fe60177095b303db /Elements_of_Electric_drives_by_J.B._Gupta/Chapter3.ipynb | |
parent | 64d949698432e05f2a372d9edc859c5b9df1f438 (diff) | |
download | Python-Textbook-Companions-f270f72badd9c61d48f290c3396004802841b9df.tar.gz Python-Textbook-Companions-f270f72badd9c61d48f290c3396004802841b9df.tar.bz2 Python-Textbook-Companions-f270f72badd9c61d48f290c3396004802841b9df.zip |
Removed duplicates
Diffstat (limited to 'Elements_of_Electric_drives_by_J.B._Gupta/Chapter3.ipynb')
-rwxr-xr-x | Elements_of_Electric_drives_by_J.B._Gupta/Chapter3.ipynb | 1133 |
1 files changed, 1133 insertions, 0 deletions
diff --git a/Elements_of_Electric_drives_by_J.B._Gupta/Chapter3.ipynb b/Elements_of_Electric_drives_by_J.B._Gupta/Chapter3.ipynb new file mode 100755 index 00000000..ed18a8f7 --- /dev/null +++ b/Elements_of_Electric_drives_by_J.B._Gupta/Chapter3.ipynb @@ -0,0 +1,1133 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:d7bcb2cff24daf3bf697643c2949d172c753aada733ca26e5769ceae0bfe8259"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 3 - Thyristor control of electric motors"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1 - pg 215"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the Efficiency, Form Factor, Ripple Factor, Transformer Utilisation Factor and Peak Inverse Voltage\n",
+ "#Initialization of variables\n",
+ "import math\n",
+ "from math import sqrt\n",
+ "V=120.;#in Volts\n",
+ "V_dc=40.5;#in volts\n",
+ "V_rms=76.1;#in volts\n",
+ "R=10.;#in ohms\n",
+ "#Calculations\n",
+ "I_dc=V_dc/R;#in Amperes\n",
+ "I_rms=V_rms/R;#in Amperes\n",
+ "P_dc=V_dc*I_dc;#in watts\n",
+ "P_ac=V_rms*I_rms;#in watts\n",
+ "Eff=P_dc/P_ac;#in per unit\n",
+ "K_f=V_rms/V_dc;#in per unit\n",
+ "Y=sqrt(K_f**2-1);\n",
+ "T_f=P_dc/(V*I_rms);\n",
+ "P_iv=sqrt(2)*V;\n",
+ "#Results\n",
+ "print '(a) Efficiency (in Per Unit=)',round(Eff,3)\n",
+ "print '(b) Form Factor (in Per Unit=)',round(K_f,3)\n",
+ "print '(c) Ripple Factor (in Per Unit=)',round(Y,2)\n",
+ "print'(d) Transformer Utilisation Factor=',round(T_f,2)\n",
+ "print '(e) Peak Inverse Voltage (in volts)=',round(P_iv,1)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) Efficiency (in Per Unit=) 0.283\n",
+ "(b) Form Factor (in Per Unit=) 1.879\n",
+ "(c) Ripple Factor (in Per Unit=) 1.59\n",
+ "(d) Transformer Utilisation Factor= 0.18\n",
+ "(e) Peak Inverse Voltage (in volts)= 169.7\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2 - pg 216"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the field current, firing angle and power factor of the converter\n",
+ "#Initialization of variables\n",
+ "import math\n",
+ "from math import sqrt\n",
+ "alpha_f=0;\n",
+ "R_f=250.;#in ohms\n",
+ "K_f=0.8;#torque constant\n",
+ "R_a=0.2;#in ohms\n",
+ "V_const=0.8;#in volt/Amperes-radian/sec\n",
+ "N=1000.;# in rpm\n",
+ "T_d=50.;#In Newton-meter\n",
+ "V_rms=220.;#in volts\n",
+ "#Calculations\n",
+ "V_f=int(V_rms*sqrt(2.)*(1+math.cos(alpha_f*math.pi/180.))/math.pi);# Feild Circuit Voltage (in volts)\n",
+ "I_f=V_f/R_f;#in Amperes\n",
+ "I_a=T_d/(K_f*I_f);#in amperes\n",
+ "w=2*N*math.pi/60;# in radian/sec\n",
+ "E_b=V_const*w*I_f;#Back emf (in volts)\n",
+ "V_a=E_b+(I_a*R_a);#armature voltage (in volts)\n",
+ "alpha_a=math.acos(((V_a*math.pi/(V_rms*sqrt(2))))-1)*180/math.pi;\n",
+ "P_o=int(V_a*I_a);#in watts\n",
+ "I=52.66;#in amperes\n",
+ "pf=P_o/(V_rms*I);\n",
+ "#Results\n",
+ "print '(a) Field Current (in Amperes)=',I_f\n",
+ "print '(b) Firing angle of the converter (in degrees)=',round(alpha_a,2)\n",
+ "print '(c) Power factor of the converter=',round(pf,2)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) Field Current (in Amperes)= 0.792\n",
+ "(b) Firing angle of the converter (in degrees)= 99.83\n",
+ "(c) Power factor of the converter= 0.56\n"
+ ]
+ }
+ ],
+ "prompt_number": 30
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3 - pg 217"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the Speed of Motor and Motor Torque\n",
+ "#Initialization of variables\n",
+ "import math\n",
+ "from math import sqrt\n",
+ "alpha_a=45.;#in degrees\n",
+ "V=230.;#in volts\n",
+ "K=1.668;#K_a*Phy (in volt/radian/second)\n",
+ "R_a=0.2;#in ohms\n",
+ "I_a=30.;#in amperes\n",
+ "#Calculations\n",
+ "V_a=2*V*math.sqrt(2)*math.cos(alpha_a*math.pi/180.)/math.pi;#in volts\n",
+ "E_b=V_a-(I_a*R_a);# in volts\n",
+ "w=E_b/K;#in radian/seconds\n",
+ "N=math.ceil(w*60./(2*math.pi));\n",
+ "T=K*I_a;\n",
+ "#Results\n",
+ "print '(a) Speed Of Motor (in rpm)=',N\n",
+ "print '(b) Motor Torque (in Newton-meter)=',T"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) Speed Of Motor (in rpm)= 804.0\n",
+ "(b) Motor Torque (in Newton-meter)= 50.04\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4 - pg 217"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the Firing angle\n",
+ "#Initialization of variables\n",
+ "import math\n",
+ "R_a=0.06;#in ohms\n",
+ "N1=875.;# in rpm\n",
+ "N2=750.;#in rpm\n",
+ "V_rms=220.;#in volts\n",
+ "V_dc=200.;#in volts\n",
+ "I_a=150.;#in amperes\n",
+ "#Calculations\n",
+ "E_b1=V_dc-(I_a*R_a);#Back emf (in volts)\n",
+ "E_b2=E_b1*(N2/N1);# in volts\n",
+ "V_a=E_b2+(I_a*R_a);#armature voltage (in volts)\n",
+ "alpha_a=math.acos((V_a*math.pi/(2*V_rms*math.sqrt(2))))/math.pi*180.;\n",
+ "#Results\n",
+ "print 'Firing angle (in degrees)=',round(alpha_a,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Firing angle (in degrees)= 29.31\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5 - pg 217"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the Average Load Voltage, Current and Input Power Factor\n",
+ "#Initialization of variables\n",
+ "import math\n",
+ "alpha=30.;#in degrees\n",
+ "V=230.;#in volts\n",
+ "R=2.;#in ohms\n",
+ "#Calculations\n",
+ "V_avg=2*V*math.sqrt(2)*math.cos(alpha*math.pi/180.)/math.pi;#in volts\n",
+ "I_avg=V_avg/R;#in amperes\n",
+ "I_rms=I_avg;#in amperes (as ripple free)\n",
+ "P=V_avg*I_avg;#in watts\n",
+ "Q=2*V*math.sqrt(2)*I_avg*math.sin(alpha*math.pi/180.)/math.pi;# in VAR\n",
+ "pf=math.cos(math.atan(Q/P));\n",
+ "#Results\n",
+ "print '(a) Average Load Voltage (in Volts)=',round(V_avg,2)\n",
+ "print '(b) Average Load Current (in Amperes)=',round(I_avg,3)\n",
+ "print '(c) Input Power Factor (lagging)=',round(pf,3)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) Average Load Voltage (in Volts)= 179.33\n",
+ "(b) Average Load Current (in Amperes)= 89.665\n",
+ "(c) Input Power Factor (lagging)= 0.866\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6 - pg 218"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the motor Armature Current and motor Speed\n",
+ "#Initialization of variables\n",
+ "import math\n",
+ "alpha=60.;#in degrees\n",
+ "V=250.;#in volts\n",
+ "T=140.;#in Newton-Meter\n",
+ "K_a=2.5;#motor voltage constant (in Volt/radian/sec)\n",
+ "R_a=0.2;#in ohms\n",
+ "#Calculations\n",
+ "V_a=2*V*math.sqrt(2)*math.cos(alpha*math.pi/180.)/math.pi;#in volts\n",
+ "I_a=T/K_a;#in amperes\n",
+ "E_b=V_a-(I_a*R_a);#in volts\n",
+ "w=E_b*I_a/T;\n",
+ "#Results\n",
+ "print '(a) Motor Armature Current (in amperes)=',I_a\n",
+ "print '(b) Motor Speed (in radian/sec)=',round(w,3)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) Motor Armature Current (in amperes)= 56.0\n",
+ "(b) Motor Speed (in radian/sec)= 40.536\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7 - pg 218"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the firing angle in both cases\n",
+ "#Initialization of variables\n",
+ "import math\n",
+ "V_dc=220.;#in volts\n",
+ "V=230.;#in volts\n",
+ "I_a1=10.;#in amperes\n",
+ "N1=1500.;#in rpm\n",
+ "N2=500.;#in rpm\n",
+ "N3=-1000.;#in rpm\n",
+ "R_a=2.;#in ohms\t\n",
+ "#Calculations\n",
+ "E_b1=V_dc-(I_a1*R_a);#in volts\n",
+ "E_b2=E_b1*(N2/N1);#in volts\n",
+ "I_a2=I_a1/2;#in amperes\n",
+ "V_a1=E_b2+(I_a2*R_a);#in volts\n",
+ "alpha_a1=math.acos((V_a1*math.pi/(2*V*math.sqrt(2))))*180/math.pi;\n",
+ "E_b3=E_b1*(N3/N1);#in volts\n",
+ "I_a3=I_a1;#in amperes\n",
+ "V_a2=E_b3+(I_a3*R_a);#in volts\n",
+ "alpha_a2=math.acos((V_a2*math.pi/(2*V*math.sqrt(2))))*180/math.pi;\n",
+ "#Results\n",
+ "print '(a) Firing angle (in degrees) at half the rated torque=',round(alpha_a1,2)\n",
+ "print '(b) Firing angle (in degrees) at rated motor torque=',round(alpha_a2,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) Firing angle (in degrees) at half the rated torque= 68.27\n",
+ "(b) Firing angle (in degrees) at rated motor torque= 123.18\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8 - pg 219"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the Torque developed and motor Speed\n",
+ "#Initialization of variables\n",
+ "import math\n",
+ "alpha_f=0;#in degrees\n",
+ "alpha_a=30.;#in degrees\n",
+ "V=220.;#in volts\n",
+ "I_a=40.;#in amperes\n",
+ "R_a=0.2;#in amperes\n",
+ "K_t=1.12;#motor voltage constant (in Volt/radian/sec)\n",
+ "R_f=200.;#in ohms\n",
+ "#Calculations\n",
+ "V_f=2*V*math.sqrt(2)*math.cos(alpha_f*math.pi/180.)/math.pi;#in volts\n",
+ "I_f=V_f/R_f;#in amperes\n",
+ "V_a=2*V*math.sqrt(2)*math.cos(alpha_a*math.pi/180.)/math.pi;#in volts\n",
+ "E_b=V_a-(I_a*R_a);#in volts\n",
+ "T_d=K_t*I_a*I_f;\n",
+ "N=E_b*60/(2*math.pi*K_t*I_f);\n",
+ "#Results\n",
+ "print '(a) Torque developed (in N-m)=',round(T_d,3)\n",
+ "print '(b) Motor Speed (in rpm)=',math.ceil(N)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) Torque developed (in N-m)= 44.368\n",
+ "(b) Motor Speed (in rpm)= 1408.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9 - pg 221"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the Firing Angle\n",
+ "#Initialization of variables\n",
+ "import math\n",
+ "from math import sqrt\n",
+ "R_a=0.2;#in ohms\n",
+ "alpha_f=0;#in degrees\n",
+ "V=400.;#in volts\n",
+ "R_f=250.;#in ohms\n",
+ "K=1.3;#Volts/Ampere-radian/second\n",
+ "N=1200.;#in rpm\n",
+ "I_a=60.;#in amperes\n",
+ "#Calculations\n",
+ "V_f=3*sqrt(3)*V*sqrt(2)/(sqrt(3)*math.pi);#in volts\n",
+ "I_f=V_f/R_f;#in amperes\n",
+ "E_b=K*I_f*2*math.pi*N/60;#in volts\n",
+ "V_a=E_b+(I_a*R_a);#in volts\n",
+ "alpha_a=math.acos((V_a*math.pi)/(3*V*sqrt(2)))*180/math.pi;\n",
+ "#Results\n",
+ "print'Firing Angle (in degrees)=',round(alpha_a,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Firing Angle (in degrees)= 47.49\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10 - pg 221"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the No-Load Speed and Firing Angle\n",
+ "#Initialization of variables\n",
+ "import math\n",
+ "from math import sqrt\n",
+ "alpha_a=45.;#in degrees\n",
+ "R_a=0.2;#in ohms\n",
+ "K=0.25;#in volts/rpm\n",
+ "V=400.;#in volts\n",
+ "I_ao=5.;#in amperes (no load armature current)\n",
+ "N=1500.;#in rpm\n",
+ "I_a=100.;#in amperes\n",
+ "#Calculations\n",
+ "V_ao=3*sqrt(3)*V*sqrt(2)*(1+math.cos(180/math.pi*alpha_a))/(sqrt(3)*math.pi*2);#in volts\n",
+ "E_bo=V_ao-(I_ao*R_a);#in volts\n",
+ "N_o=E_bo/K;\n",
+ "E_b=N*K;#in volts\n",
+ "V_a=E_b+(I_a*R_a);#in volts\n",
+ "alpha_ao=math.acos(((V_a*math.pi*2)/(3*V*sqrt(2)))-1)*180/math.pi;\n",
+ "#Results\n",
+ "print'No-Load Speed (in rpm)=',int(N_o)\n",
+ "print 'Firing Angle (in degrees)=',round(alpha_ao,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "No-Load Speed (in rpm)= 436\n",
+ "Firing Angle (in degrees)= 62.45\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11 - pg 222"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the speed-torque characteristics\n",
+ "#Initialization of variables\n",
+ "import warnings\n",
+ "warnings.filterwarnings(\"ignore\")\n",
+ "import math\n",
+ "import numpy\n",
+ "import matplotlib\n",
+ "from matplotlib import pyplot\n",
+ "Vm=400. #V\n",
+ "alp=90 #degrees\n",
+ "Ia=([5,10,20,30,40])\n",
+ "Ra=0.8\n",
+ "Kt=2.\n",
+ "n=len(Ia)\n",
+ "Ta=numpy.zeros(n)\n",
+ "Eb=numpy.zeros(n)\n",
+ "RPM=numpy.zeros(n)\n",
+ "#Calculations\n",
+ "Va=3*math.sqrt(2)/2./math.pi *Vm*(1+math.cos(alp*math.pi/180.))\n",
+ "for i in range (0,n):\n",
+ "\tTa[i] = 2*Ia[i]\n",
+ "\tEb[i] = Va-Ia[i]*Ra\n",
+ "\tRPM[i] = round(Eb[i] /Kt *60./2/math.pi,0)\n",
+ "\n",
+ "#Results\n",
+ "print RPM\n",
+ "pyplot.plot(Ta,RPM)\n",
+ "pyplot.xlabel('Ta')\n",
+ "pyplot.ylabel('RPM')\n",
+ "pyplot.title('speed-torque characteristic curve')\n",
+ "pyplot.show()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "[ 1271. 1251. 1213. 1175. 1137.]\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEZCAYAAABrUHmEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcVNWZ//HPl01ZBHdFNEEngIjgggpGI+2+xET9GY0k\nEhWjcUzGZRxUotHWMXGLe0YmibuJTBI1RkNc0NCRuKEI2IAIGhdEQAwo7ig8vz/Oba2U3dANXX2r\nur/v16teVJ271FNVTT11z3PuuYoIzMzMGqNd3gGYmVnlcNIwM7NGc9IwM7NGc9IwM7NGc9IwM7NG\nc9IwM7NGc9KwkpD0iqS9846jlCQdK2li3nE0B0lfkvSuJK3GtmMknVuKuKz8OGlYqUR2+wJJvSWt\nkOS/v2YgqUrS3DXZR0S8FhHrxCpO3KovUUbEv0fERWvy/FY5/J/W8tTkX7UAkjo0dyB5y/M1VfL7\nqUzecbQlThqtkKSzJL0uaamkWZL2ytqrJd0p6f+yZZMlDSrYbjNJd0l6U9I/JP1HwTJJOlvSi5Le\nkvQ7SesVLB8h6dVs2Y9XEeKj2b9vZ10iQ7L9n5t1ay2UdKuk7tm+645MRkp6FXhYUjtJP5e0SNJL\nkn5YePRS3D2WvfbbCx4PlfS4pCWSpkoatpL3cwtJd2fvy1uSritafrmkxdl7dkBB+3GSZmbv9UuS\nTixYVpV9RmdKmg/cKGldSX/OnmexpPsk9SrYZn1JN0ualy2/W1IX4H5gs+y9XCpp05V9Xg28n18u\nev+OzWJemr2u70jaGvhfYNfsuRZn694i6b8L4jwke0/fyZ5//6a8r/V8Vr2LYquRdJGkx4D3gVGS\nni7a9+mS/pTdXyv7W3lV0gKl7rS1G/q8bRUiwrdWdAP6Aa8Bm2aPvwRsld2vBpYB/w9oD5wB/CO7\n3w6YDJwLdAC2BF4C9su2PRV4HNgM6Ej68rgjW7YN8C6wO9AJuAL4BNirgRi/DKwA2hW0jQTmAL2B\nrsBdwG3Zst7Z+rcAnYG1gZOA54FewHrABGB53T6BlwufHzgfuD273wt4Czgge7xP9njDemJtD0zL\nXlNnYC3gq9myY7P383jSUdNJwLyCbQ8Ctszu70H6gtshe1yVvUcXZ+/n2sD6wGHZ/W7A74E/Fuxv\nHDAW6JF9Rl/L2ocBc4viXtnnVfx+rlXQ1i57/98B+mTrbwJsk90/BphY9Fw3Axdm93cB3gb2zh5v\nBvRr4vv62WdVFG/dZ1sDvAL0z+LtDiwFvlKwzdPAkdn9q4B7gHWz9/Ve4Gd5/1+t1FvuAfjWzB8o\nfAVYCOwNdCxaVg08XvBYwBukL/shwKtF648GbsruP8+/fgn3JH1htgfOq/tCypZ1AT6m4aTxL18C\nWdsjwEkFj/tm+29XsH7vguV/BU4seLxv0RdLcdKo5vOkcRZZQipY/gDwvXpi3RV4szDWgmXHAnOK\nXvcKYOMGXvcfgVOy+1XZe9RpJZ/l9sDigvd7OdCjnvWq+GLSmNnA59XQ+/nZZ0JKGktIPy461/Oa\nV5Y0fglc0Yi/05W9r599VvX9vZB+IFQXbXM78JPsfh9SElmb9Df+HtkPp4Ln/kfe/1cr9ebuqVYm\nIl4ETiP9x1soaaykngWrvF6wbmSPNyMdkWyWddcskbSElDQ2zlb/MvDHgmUzgU9Jv0J7Fu33A+Cf\ndY8lvVfQdbJ5A6H3BF4tePwa6df0JgVtc4vWn1u0fmN9GTii6LXuBmxaz7pbkJLpigb2taDuTva6\nIf2aRdKBkp6U9M/sOQ4CNijYdlFELKt7IKmLpF9mXWvvAH8DekhSFsfiiHinka+xNw1/XnXqLZ5H\nxPvAt0lHTm9kXWb9Gvm8m5OOUFdlVe/rqhTHfgcwPLv/HdIR2kfARqRkPrngvbgf2HA1n7fNc9Jo\nhSJibER8jfTlGMClBYu3qLuT9RFvDswj/Sd8OSLWK7h1j4iDs9VfI3XnFC7vEhFvAPOL9tuFgi/H\niOgWaWRO94h4nfpHVb1B+qKr8yXSl9zCwpdWcH9+tk7h+oXeJ/1irrNpwfavkX7JFr6WdSLisnri\nmgt8SVL7epY1SNJapC62y0hHHusBf+Ffi//F78MZpCOsXSKiB6nbSdltLrC+pB71PF1972dDn9f8\nVWyXFkQ8FBH7kd63WcCvV7VNZi7paHdVVva+vkf6oq9TXzIvjuNhYCNJ2wFHkZIIpG7HD0nda3Xv\nw7oR0b0RMVo9nDRaGUl9Je2VfWl9DHxE6taoM1jSYUojZk7Llj9J6gN+NyvMdpbUXtK2knbKtvtf\n4GeSvpQ9z0aSvpktuxM4WNJukjoBF7Lyv61FpO6GfytoGwucnhU9uwE/A/5vJb9Efw+cIqlXVuA9\nm3/9IpkKHCWpQ/YaDi9Y9hvgG5L2y17n2kqF6V580VOkBHVJdiSwtqSvruS11emU3d4CVkg6ENhv\nFdt0I33BvSNpfVLfPgDZl/39wPVKBfOOkvbIFi8ENlA2cCCzss9rpSRtnBWzu5LqLu/z+d/QQmBz\nSR0LN+HzZHgjcFz2N9gu+3zqO0pZ2fs6FdgjK5T3IB3xfiHMwgcR8QnwB+DnpBrX+Kx9BSnhXS1p\no+z19ZK0qs/CGuCk0fqsRSquLiL9p9yQz//TBfAnUtfDYuC7wP+LiOURsRw4mNSP/o9s+1+RiowA\n15AKiA9JWgo8QSp6EhEzgR+Sft29ke27wfMGsm6cnwKPZV0GuwA3kfqlH82e/wPgPwo3K9rNr4EH\nScXUZ0i/6gu/SH5CSkpLSF11vy14/teBQ4Afk/rVXyP9yv/C/4fsS+cbpF/Pr2Wv68iCmIrjimy7\nd4FTSMltManr5E/1rVvgalJR+C1SEfv+onVGkL7EZ5G+vE/JnmsWKen+Q2lU1aas5PNq4LkL29oB\np5OOQP8JfA3492zZI8AMYIGkN4vfh4h4GjiOVHx+m1R/KD4KXOn7GhEPA78DniP9mLmvnnjri/8O\nUi3vD0U/Ns4CXgSezLr9xpOO6Gw1KHVrl2DH0k3A14E3I2Jg1nY56YtpGanf87iIeCcb/nYzMIDU\nj31bRFySbTOYNMpjbeAvEXFqSQJuAySdTxphMiLvWJqbpN6kZNNhDfrJzWwVSnmkcTNwQFHbQ8CA\niNgOmM3nv4CPAoiIQcBg4Ad1h9XAGOD4iOgD9FHBOHhrMp8EZWZrpGRJIyImkroGCtvGF/wKfIpU\nhIXUjdI1K4p1JR2JLM1G/awTEZOy9W4DDi1VzG1Ag1N7tBKt+bWZlYU8pw8YSeqHJSIelDSClDy6\nAKdFxNuSvkLBUE5SH2t9xUprhIi4IO8YSiUiXiGdM2JmJZRL0pB0DrAsIu7IHh9NKgD2JJ0VO1HS\nI3nEZmZmDWvxpCHpWNJJToXTZn+VdDLOcmBRNqfMYODvfN6FBZ+fU1Dfft01YWa2GiKi0fXOFh1y\nmxWxRwGHZGdr1pkF1E2q1xUYCsyKiAWk2saQ7KzYEaQ5ZOqV9+n1a3I7//zzc4+hLcbu+PO/Of58\nb01VsqQhaSxprHk/SXMljQSuI53ANF7SFEnXZ6v/EugkqRaYRJrvaHq27GTgBtJkdi9GxAOlitnM\nzFauZN1TETG8nuabGlj3Y+DoBpZNBgY2Y2hmZraafEZ4maiqqso7hNVWybGD48+b468sJTsjvKVJ\nitbyWszMWookolwL4WZmVtmcNMzMrNGcNMzMrNGcNMzMrNGcNMzMrNGcNMzMrNFaVdK44gpYtizv\nKMzMWq9WlTQefhgGDYIHPNGImVlJtKqT+1asCMaNg9NPh623hquugq98Je/IzMzKV5s+uU+Cgw+G\n6dPha1+DoUPh7LPh3XfzjszMrHVoVUmjzlprwZlnQm0tzJ+fjjpuvx1WrFj1tmZm1rBW1T3V0Gt5\n8kk45RRo3x6uvRZ23rmFgzMzK1NtunuqIUOHpsRx4olwyCFw/PGwcGHeUZmZVZ42kTQA2rWD446D\nWbNg/fVh2209RNfMrKnaTNKo0707XH45/P3v8MgjHqJrZtYUbaKmsTLjxsFpp3mIrpm1Ta5pNNHX\nv+4humZmjVWypCHpJkkLJdUWtF0u6XlJ0yTdLalHwbJBkp6QNF3Sc5I6Ze2DJdVKmiPpmlLEWt8Q\n3dtu8xBdM7NipTzSuBk4oKjtIWBARGwHzAZGA0jqANwOnBgR2wLDgE+zbcYAx0dEH6CPpOJ9Npue\nPeHWW+Guu+AXv4DddoOnny7Vs5mZVZ6SJY2ImAgsKWobHxF1v9+fAjbP7u8HPBcRtdl6SyJihaSe\nwDoRMSlb7zbg0FLFXMdDdM3M6pdnTWMk8Jfsfl8gJD0gabKkUVl7L+D1gm3mZW0l5yG6ZmZf1CGP\nJ5V0DrAsIu4oiGN3YCfgQ+ARSZOBd5qy3+rq6s/uV1VVUVVVtcax1g3R/f7300SIv/41XH01HFCy\nTjIzs9KpqamhpqZmtbcv6ZBbSb2B+yJiYEHbscAJwN4R8VHW9m3gwIg4Nnt8LvAR8BtgQkT0z9qH\nA8Mi4qR6nmu1htw2Vd0suv36eYiumVW+sh5ymxWxRwGH1CWMzIPAQEmds6L4MGBGRCwAlkoaIknA\nCOCeloy52Ne/nkZZeYiumbVFpRxyOxZ4HOgnaa6kkcB1QDdgvKQpkq4HiIi3gSuBp4EpwOSIuD/b\n1cnADcAc4MWIyP38bQ/RNbO2qs2fEd4cPIuumVWqsu6eaq2Kh+iOHOkhumbWOjlpNJPCIbobbAAD\nBniIrpm1Pk4azaxuiO5jj3kWXTNrfVzTKDEP0TWzcuaaRpnxEF0za02cNFpA4RDdBQs8RNfMKpe7\np3LgIbpmVi7cPVUB6huiO39+3lGZma2ak0ZOCofobrhhmkX3ggvg/ffzjszMrGFOGjnr3h0uuwwm\nT4YXXoC+feHGG2H58rwjMzP7Itc0ysykSfBf/wVvv53O99h//7wjMrPWrKk1DSeNMhQB996bRlz1\n7p2Sx6BBeUdlZq2RC+GtgJQK5NOnwze/Cfvtly45O29e3pGZWVvnpFHGOnaEH/4w1To23jgdbZx3\nnk8ONLP8OGlUgB494OKL4dln4eWX05Qkv/oVfPpp3pGZWVvjmkYFmjw5FcvffDPVOw48MHVpmZk1\nlQvhbUQE/PnPqVjeq1dKHjvskHdUZlZpXAhvIyT4xjfSfFbf+hYcdBAccwzMnZt3ZGbWmjlpVLgO\nHeCkk1KxfIstYPvt4ZxzYOnSvCMzs9aoZElD0k2SFkqqLWi7XNLzkqZJultSj6JtviTpPUlnFLQN\nllQraY6ka0oVb6Xr3h0uugimTUtDc/v2hTFj4JNP8o7MzFqTUh5p3AwcUNT2EDAgIrYDZgOji5Zf\nCYwrahsDHB8RfYA+kor3aQU23xxuuSVdLfCuu9Iw3XvvTTUQM7M1VbKkERETgSVFbeMjou4qEk8B\nm9ctk3Qo8A9gZkFbT2CdiJiUNd0GHFqqmFuT7beH8ePhyith9GjYc0945pm8ozKzSpdnTWMk8BcA\nSd2AM4HqonV6Aa8XPJ6XtVkjSGk47rRp8N3vprPLjz4aXn0178jMrFJ1yONJJZ0DLIuIO7KmauCq\niPhAWv0zDqqrqz+7X1VVRVVV1RpE2Xp06AAnnADDh6ehuTvumB6PHp1OHDSztqOmpoaamprV3r6k\n52lI6g3cFxEDC9qOBU4A9o6Ij7K2R4EtslXWBVYAPwHuBiZERP9sveHAsIg4qZ7nalPnaayJN95I\n05Hcdx+ce24afdWxY95RmVkeyvo8jayIPQo4pC5hAETEHhGxZURsCVwN/DQiro+IBcBSSUOyI5AR\nwD0tGXNrtNlmcMMNqeYxbhwMGAB//KOL5Wa2aqUccjsWeBzoJ2mupJHAdUA3YLykKZKub8SuTgZu\nAOYAL0bEA6WKua0ZNCiNsrruOjj/fNhjD3jqqbyjMrNy5mlEDEhXCrz1VvjJT1Ly+NnPYMst847K\nzEqtrLunrHy1bw8jR8Ls2dC/P+y0U5oUccmSVW9rZm2Hk4b9i65dU5F8+vQ0FUm/fnD11bBsWd6R\nmVk5cNKwevXsma7ZMWFCKphvsw3ceaeL5WZtnWsa1igPP5y6q7p0gSuugF13zTsiM2sOrmlYSeyz\nT7r40w9+AEcemW4vvZR3VGbW0pw0rNHat0/X7HjhBdhuOxgyBP7zP2Hx4rwjM7OW4qRhTdalS7pm\nx4wZ8NFHqVh+xRXw8cd5R2ZmpeakYattk03g+uvh0Ufhb39LQ3V/9zsXy81aMxfCrdlMmJCK5R07\nws9/DrvvnndEZrYqTS2EO2lYs1qxAu64I3Vf7bQTXHIJ9OmTd1Rm1hCPnrJctWuXrtkxaxbsvHMa\nmnvKKfDWW3lHZmbNwUnDSqJzZzj7bHj++XT0sfXWcNllqXBuZpXLScNKaqON4Be/gMcegyeeSMnj\njjtSIjGzyuOahrWoRx9NxfKIVCwfNizviMzaNhfCreytWJGG5o4enU4SvPTSdARiZi3PhXAre+3a\npeuVz5oFX/tauv3wh/Dmm3lHZmar4qRhuVl77dRVNWtWOrdjm23g4ovhww/zjszMGuKkYbnbYIN0\nzY4nnkiTIvbrB7fd5mK5WTlyTcPKzmOPwRlnpAs//fznsNdeeUdk1nqVTU1D0k2SFkqqLWi7XNLz\nkqZJultSj6x9X0nPSHou+3fPgm0GS6qVNEfSNaWK18rHbrulo47Ro+GEE+Dgg2HmzLyjMjMobffU\nzcABRW0PAQMiYjtgNjA6a18EHBwRg4BjgNsLthkDHB8RfYA+kor3aa2QBEcckZLF3ntDVRWcdBIs\nWJB3ZGZtW8mSRkRMBJYUtY2PiLqe6qeAzbP2qRFR93UwE+gsqaOknsA6ETEpW3YbcGipYrbys9Za\ncPrpqVjetSsMGAAXXQQffJB3ZGZtU56F8JHAX+ppPxyYHBGfAL2A1wuWzcvarI1Zf/10zY6nn4ba\nWujbF265BZYvzzsys7alQx5PKukcYFlE3FHUPgC4BNh3dfZbXV392f2qqiqqqqpWP0grS1ttlU4M\nfPLJVCy/6qpULN93tf5izNqempoaampqVnv7ko6ektQbuC8iBha0HQucAOwdER8VtG8OPAIcGxFP\nZG09gb9GRP/s8XBgWEScVM9zefRUGxMBd98NZ52Vpl+//HLYdtu8ozKrLGUzeqo+WRF7FHBIUcJY\nFxgHnFWXMAAiYj6wVNIQSQJGAPe0ZMxWviQ4/PBULD/wwDQ094QTYP78vCMza71KOeR2LPA40E/S\nXEkjgeuAbsB4SVMkXZ+t/iPg34Dzs/YpkjbMlp0M3ADMAV6MiAdKFbNVpk6d0jU7Zs+G9dZLRxsX\nXADvvZd3ZGatj0/us1bnlVfgxz+Gmhq48EI47jho3z7vqMzKk2e5NctMmpTmtlqyJNU79t8/dWmZ\n2eecNMwKRMC998KZZ8KXv5ySx3bb5R2VWfko60K4WUuT4JBDYPr09O9++8HIkTBvXt6RmVUmJw1r\nEzp2TNfsmD0bNtkEBg2Cn/wE3n0378jMKouThrUpPXqka3ZMmQKvvprOLP/lL+HTT/OOzKwyuKZh\nbdrkyalYvnBhqnccdJCL5da2uBBu1kQRMG4cjBoFPXumaUl23DHvqMxahgvhZk0kpWt21NbCkUfC\n178O3/sezJ2bd2Rm5cdJwyzToUO6Zsfs2Wl47vbbp5MEly7NOzKz8uGkYVZknXXgv/8bpk1L81j1\n7QvXXw+ffJJ3ZGb5c03DbBWmTk3F8rlz4bLL4JvfdLHcWg8Xws1KIAIeeCAVyzfYIBXLd94576jM\n1pwL4WYlIKXp16dOhREj0tnl3/1umhzRrC1x0jBrgg4d4PvfT8XyPn1g8OB0Eai33847MrOW4aRh\nthq6dYPq6jRM95//hH794NprYdmyvCMzK60GaxqSrgMCqK+vKyLilFIG1lSuaViennsuzaT70ktw\n6aVw2GEulltlaLZCuKRPgOnA74E36pqzfyMibl2TQJubk4aVg4ceSsXyddaBK66AIUPyjshs5Zoz\naWwIHAEcCSwHfgf8ISLKsvfWScPKxfLlcNttaRbd3XeHn/0Mttoq76jM6tdso6ci4q2IGBMRewLH\nAj2AmZJGrHmYZq1X+/bpErMvvAADBqShuWecAYsX5x2Z2ZpbZSFc0mDgVOBo4H5gcmN2LOkmSQsl\n1Ra0XS7peUnTJN0tqUfBstGS5kiaJWm/wueXVJstu6YpL84sT127pqONGTPgvfdg663hqqvg44/z\njsxs9TWYNCT9t6TJwOnA34CdI+L4iJjZyH3fDBxQ1PYQMCAitgNmA6Oz59oG+DawTbbN9dJnZcQx\nwPER0QfoI6l4n2ZlbdNN0zU7JkyARx6BbbaBP/whnTBoVmlWVtNYAbwMfFDP4oiIQavcudQbuC8i\nBtaz7DDg8Ig4WtJoYEVEXJotewCoBl4F/hoR/bP2o4CqiDipnv25pmEV4ZFH0rQknTunM8u/+tW8\nI7K2rKk1jQ4rWbYVacgt1D/sdk2NBMZm9zcDnixY9jrQC/gku19nXtZuVrH23jtd/Ok3v4FvfxuG\nDk1XE/zKV/KOzGzVVpY0XgUOBb4CPBcRDzbXk0o6B1gWEXc01z4BqqurP7tfVVVFVVVVc+7erNm0\na5eu2fGtb8HVV6fEcfTRqQaywQZ5R2etWU1NDTU1Nau9/cq6p8aQagyPA3sDf46IC5u083q6pyQd\nC5wA7B0RH2VtZwNExCXZ4weA80mJa0JB99RwYJi7p6y1WbgQLrgg1TrOOgt+9CNYe+28o7K2oDkn\nLNwD2CsiRgNVpKOONZIVsUcBh9QljMy9wFGSOknaEugDTIqIBcBSSUOywvgI4J41jcOs3GyySbpm\nx8SJ6da/P/zf/7lYbuVnZUljWUQsB4iID2hiXUPSWNJRSj9JcyWNBK4DugHjJU2RdH22/5mkM89n\nkob1nlxw2HAycAMwB3gxIh5oShxmlWTrreFPf4Kbb05F8qFDUxIxKxcr6576EHixoOnfgJey+40a\nPdWS3D1lrc2KFTB2bLrk7I47pjmt+vbNOyprbZpzGpHeK9kuIuLVpoVWWk4a1lp9+GGaQffyy2H4\ncDjvPNhoo7yjstaiOacReaW+G6k4PbQZYjWzRujcORXHn38+zZzbv3866vjww7wjs7ZoZWeEd5N0\nhqTrJZ0sqV12Qt4M4LstF6KZQTq6uPZaePxxeOqpVP/47W9TN5ZZS1lZ99TdwFLgCWA/YAvgI+CU\niJjaYhE2krunrK2ZODFNhLh8eZqG3acl2epozprGc3XFbkntgfnAlyOiLA+KnTSsLVqxAn7/exg9\nGgYOTN1W/fvnHZVVkuY8T2N53Z1s6O28ck0YZm1Vu3Zw1FEwaxYMGwZ77AEnnwxvvpl3ZNZarSxp\nDJL0bt0NGFjweGlLBWhmq7bWWqmratasdH+bbdLFnz6ob7pRszWwstFT7SNinYJbh4L73VsySDNr\nnA02SNfsePJJmDIF+vWDW291sdyaT4M1jUrjmobZFz3+eDoC+eijdIb53nvnHZGVm2YrhFcaJw2z\n+kXAXXelcz223houuyxdhtYMmrcQbmatgJSmYJ85E/bdF/bcE048ERYsyDsyq0ROGmZtxFprwWmn\nwQsvQPfu6Wjjwgvh/ffzjswqiZOGWRuz3nqpvvHMM2lqkr594aab0kmCZqvimoZZG/fUU+ma5e+8\nk5LJfvvlHZG1JBfCzazJIuCee+DMM2GrrdKMuoPK6uIHViouhJtZk0lw2GEwYwYcfHAqmB9/PLzx\nRt6RWblx0jCzz3TqBP/xH6lYvtFGaT6r88+H997LOzIrF04aZvYF664Ll1wCzz4LL72UiuW//jV8\n+mnekVneXNMws1V65plULF+0KNU7DjwwdWlZ5SubmoakmyQtlFRb0HaEpBmSlkvasaB9bUljJT0n\naaakswuWDZZUK2mOpGtKFa+ZNWynnWDCBLj4YvjP/0w1j6lld1Udawml7J66GTigqK0WOAx4tKj9\nKIDs+h2DgR9I+lK2bAxwfET0AfpIKt6nmbUACb75TaithcMPhwMOgGOPhddfzzsya0klSxoRMRFY\nUtQ2KyJm17P6fKBrdrGnrsAyYKmknsA6ETEpW+824NBSxWxmq9axI/z7v8Ps2dCrF2y3HZx7Liz1\nBRPahLIohEfEg6RLy84HXgEuj4i3gV5A4e+YeVmbmeWse3f46U9TN9XcualYPmaMi+WtXYe8AwCQ\ndDTQGegJrA9MlPRIU/dTXV392f2qqiqqfNFks5LbYot0zY5nn4VRo+Daa9NMugcf7GJ5OaqpqaGm\npma1ty/p6ClJvYH7ImJgUfsE4IyIeDZ7fD3weET8Jnt8I3A/8HdgQkT0z9qHA8Mi4qR6nsujp8xy\nFgH335+Sx8Ybp2lJBg/OOypbmbIZPdUIhUHOAvYCkNQVGArMiogFpNrGEEkCRgD3tHikZtYoEhx0\nEEybBsOHp6ONESPgtdfyjsyaSymH3I4FHgf6SZoraaSkQyXNJSWFcZLuz1b/JdApG547CbgpIqZn\ny04GbgDmAC9GxAOlitnMmkeHDumaHbNnw5Zbwg47wOjRaVJEq2w+uc/MSm7ePDjvPBg3Lo20+sEP\n0igsy18ldU+ZWRvRqxfceCM8+CDcey9su22aVde/8yqPjzTMrMU9+GCalqTuglC77JJ3RG2XjzTM\nrOztv386v+OYY9KU7N/5DrzySt5RWWM4aZhZLtq3T9fsmD0btt46Dc0dNQqWLFn1tpYfJw0zy1XX\nrqlIPn16Gl3Vrx9ccw0sW5Z3ZFYfJw0zKws9e8KvfgV//WuqeWyzDdx1l4vl5caFcDMrS+PHp+6q\nrl3hiitg6NC8I2qdXAg3s1Zh331h8uR0kuARR8CRR6arCFq+nDTMrGy1b59GWL3wQpqCfciQdBGo\nxYvzjqztctIws7LXpQuccw7MmAEffpiK5VdeCR9/nHdkbY+ThplVjE02Sdfs+Nvf0uVn+/eH3//e\nxfKW5EK4mVWsv/41nVneqVM6s3z33fOOqPI0tRDupGFmFW3FCvjtb1P31c47wyWXQJ8+eUdVOTx6\nyszalHZxa8BkAAAM00lEQVTt0jU7XnghJY1dd4VTT4W33so7stbJScPMWoXOneHss2HmTFi+PNU7\nLr8cPvoo78haFycNM2tVNt4YfvEL+Pvf4bHH0rxWY8embixbc65pmFmr9uijcMYZ6VK0P/857LFH\n3hGVFxfCzcyKrFgBv/tduuTs9tvDpZemcz3MhXAzsy9o1w6GD4dZs2C33dLQ3B/9CBYtyjuyylOy\npCHpJkkLJdUWtB0haYak5ZJ2LFp/kKQnJE2X9JykTln7YEm1kuZIuqZU8ZpZ67f22mkSxOefT1OU\n9O+fhuh++GHekVWOUh5p3AwcUNRWCxwGPFrYKKkDcDtwYkRsCwwDPs0WjwGOj4g+QB9Jxfs0M2uS\nDTdM1+x44gl45plULL/9dhfLG6NkSSMiJgJLitpmRcTselbfD3guImqz9ZZExApJPYF1ImJStt5t\nwKGlitnM2pY+feDOO+GOO+B//ied5zFhQt5RlbdyqWn0AULSA5ImSxqVtfcCXi9Yb17WZmbWbHbb\nLR11nHVWugTtN76RurDsizrkHUCmI7A7sBPwIfCIpMnAO03ZSXV19Wf3q6qqqKqqar4IzaxVk9I1\nOw45JB117LEHfOtbUF2dJkpsLWpqaqipqVnt7Us65FZSb+C+iBhY1D4BOCMins0efxs4MCKOzR6f\nC3wE/AaYEBH9s/bhwLCIOKme5/KQWzNrNosXw09/CrfeCqedlq7j0aVL3lE1v0oaclsY5IPAQEmd\ns6L4MGBGRCwAlkoaIknACOCeHGI1szZm/fXTZWafegpqa9N5HbfckqYoactKdqQhaSzpy39DYCFw\nPrAYuC5reweYEhEHZut/FxgNBDAuIs7O2gcDtwCdgb9ExCkNPJ+PNMysZJ54Ik3D/v776czyffbJ\nO6Lm4TPCzcxKJALuvjsVzPv2hcsug223zTuqNVNJ3VNmZhVFgsMPTzPp7r8/7LUXnHgizJ+fd2Qt\nx0nDzKyJOnVK1+x44QXo0SMdbVx4Yeq6au2cNMzMVtN666VrdjzzTJrXqm9fuPHG1l0sd03DzKyZ\nTJqUiuVvv52Syf775x3RqrkQbmaWowj405/gzDNhyy1T8hg0KO+oGuZCuJlZjiQ49FCYMSNNR7Lv\nvmlqknnz8o6seThpmJmVQMeO6Zods2enS9AOGgTnnQfvvpt3ZGvGScPMrIR69ICLL4Znn4WXX05n\nlv/qV/Dpp6vethy5pmFm1oImT07F8jffTPWOAw9MXVp5cSHczKzMRcCf/5yK5b16peSxww75xOJC\nuJlZmZNSkby2Nk2/ftBBcMwxMHdu3pGtmpOGmVlOOnSAk05KZ5ZvsQVsvz2ccw4sXZp3ZA1z0jAz\ny1n37nDRRTBtWhqa27cvjBkDn3ySd2Rf5JqGmVmZmTo1FcvnzYNLL01dWaUqlrsQbmbWCkTAAw+k\n5LHxxukaHoMHN//zuBBuZtYKSGk47rRp8J3vpKONESPgtdfyjctJw8ysjHXoACeckM4s32qrNDT3\n7LPhnXfyicdJw8ysAnTrBhdcAM89B4sWpWL5L37R8sXykiUNSTdJWiiptqDtCEkzJC2XtGM923xJ\n0nuSzihoGyypVtIcSdeUKl4zs0rQq1e6Zsf48XDffTBgANxzT6qBtIRSHmncDBxQ1FYLHAY82sA2\nVwLjitrGAMdHRB+gj6TifZqZtTmDBsGDD8J116WJEPfYI13Po9RKljQiYiKwpKhtVkTMrm99SYcC\n/wBmFrT1BNaJiLq34jbg0NJEbGZWefbfH6ZMgeOOg8MOg+HD08SIpVIWNQ1J3YAzgeqiRb2A1wse\nz8vazMws0749jByZiuX9+8NOO8GoUbBkyaq3baqySBqkZHFVRHwA5Djfo5lZ5eraNXVVTZ+eRlf1\n6wfXXAPLljXfc3Rovl2tkV2AwyVdBqwLrJD0IXA3sHnBepuTjjbqVV1d/dn9qqoqqqqqShGrmVlZ\n69kzXbPj1FPTTLrXXQeXXAKHHw5/+1sNNTU1q73vkp4RLqk3cF9EDCxqnwD8V0RMrmeb84F3I+LK\n7PFTwCnAJFKR/NqIeKCe7XxGuJlZPR5+OJ1Z3qULXHEF7Lrr58vK5oxwSWOBx4F+kuZKGinpUElz\ngaHAOEn3N2JXJwM3AHOAF+tLGGZm1rB99kkXf/rBD+DII9PtpZdWb1+ee8rMrA354AO46qp0+973\n4KqryuRIw8zMyk+XLumaHTNmrN7MuT7SMDNrw8qmpmFmZq2Pk4aZmTWak4aZmTWak4aZmTWak4aZ\nmTWak4aZmTWak4aZmTWak4aZmTWak4aZmTWak4aZmTWak4aZmTWak4aZmTWak4aZmTWak4aZmTWa\nk4aZmTWak4aZmTWak4aZmTVayZKGpJskLZRUW9B2hKQZkpZLGlzQvq+kZyQ9l/27Z8GywZJqJc2R\ndE2p4jUzs1Ur5ZHGzcABRW21wGHAo0DhtVkXAQdHxCDgGOD2gmVjgOMjog/QR1LxPluFmpqavENY\nbZUcOzj+vDn+ylKypBERE4ElRW2zImJ2PetOjYgF2cOZQGdJHSX1BNaJiEnZstuAQ0sVc54q+Q+v\nkmMHx583x19ZyrGmcTgwOSI+AXoBrxcsm5e1mZlZDjrkHUAhSQOAS4B9847FzMzqEREluwG9gdp6\n2icAOxa1bQ68AOxa0NYTeL7g8XDgfxt4rvDNN998863pt6Z8r+d5pKHP7kjrAuOAsyLiibr2iJgv\naamkIcAkYARwbX07iwjV125mZs1H2a/05t+xNBYYBmwILATOBxYD12Vt7wBTIuJASecCZwNzCnax\nb0S8lQ3NvQXoDPwlIk4pScBmZrZKJUsaZmbW+pTj6KmVauCkwfUljZc0W9JDWXdXWZK0haQJ2UmO\n0yWdkrVXxGuQtLakpyRNlTRT0sVZe0XEX0dSe0lTJN2XPa6Y+CW9kp0IO0XSpKytIuKXtK6kOyU9\nn/39DKmg2Ptl73nd7R1Jp1RK/ACSRmffPbWS7pC0VlPjr7ikQf0nDZ4NjI+IvsAj2eNy9QlwekQM\nAIYCP5TUnwp5DRHxEbBnRGwPDAL2lLQ7FRJ/gVNJ5wTVHWpXUvwBVEXEDhGxS9ZWKfFfQ+pm7k/6\n+5lFhcQeES9k7/kOwGDgA+CPVEj8knoDJ5AGIQ0E2gNH0dT4Szl6qqVGZZH+8DbJ7m8KzMo7xia8\nlnuAfSrxNQBdgKeBAZUUP2mk3sPAnsB9lfY3BLwMbFDUVvbxAz2Af9TTXvax1xPzfsDESoofWJ80\nQnU90ukW95FOb2hS/JV4pFGfTSJiYXZ/IbBJnsE0Vpb5dwCeooJeg6R2kqaS4pwQETOooPiBq4BR\nwIqCtkqKP4CHs3naTsjaKiH+LYFFkm6W9KykX0vqSmXEXuwoYGx2vyLij4jFwBXAa8AbwNsRMZ4m\nxt9aksZnIqXLsq/uS+oG3AWcGhHvFi4r99cQESsidU9tDuxROMFktrxs45d0MPBmREyhYNh3oXKO\nP7NbpC6SA0ndm18rXFjG8XcAdgSuj4gdgfcp6gop49g/I6kT8A3gD8XLyjl+Sf8GnEbqqdkM6Cbp\n6MJ1GhN/a0kaCyVtCpDNV/VmzvGslKSOpIRxe0TckzVX1GsAiIh3SOfXDKZy4v8q8E1JL5N+Ke4l\n6XYqJ34iYn727yJSn/ouVEb8rwOvR8TT2eM7SUlkQQXEXuhA0lRHi7LHlfDeA+wEPB4R/4yIT4G7\ngV1p4vvfWpLGvaTZccn+vWcl6+ZKkoAbgZkRcXXBoop4DZI2rBtdIakzqU90ChUSf0T8OCK2iIgt\nSV0Mf42IEVRI/JK6SFonu9+V1LdeSwXEH2lS0rmS+mZN+wAzSH3rZR17keF83jUFFfDeZ2YBQyV1\nzr6H9iENBmna+593cWY1ijljSf1xy4C5wHGkAs/DwGzgIWDdvONcSfy7k/rSp5K+bKeQRoNVxGsA\nBgLPZvE/B4zK2isi/qLXMgy4t5LiJ9UFpma36cDoCot/O9LgiWmkX7o9KiX2LP6uwFuk2bfr2iop\n/jNJiboWuBXo2NT4fXKfmZk1WmvpnjIzsxbgpGFmZo3mpGFmZo3mpGFmZo3mpGFmZo3mpGFmZo1W\nVtcIN6t0kjYgjXmHNPnbcmARaWqGXSKdiWtWsXyehlmJSDofeDcirsw7FrPm4u4ps9KSpO9LmpRd\nuOrObPoVs4rkpGFWendHxC6RZgZ+Hjg+74DMVpdrGmalN1DSRaR5lroBD+Ycj9lqc9IwK72bgUMi\nolbSMUBVzvGYrTZ3T5mVXjfSNQs6AkevamWzcuYjDbPSO490Sd9F2b/d8g3HbPV5yK2ZmTWau6fM\nzKzRnDTMzKzRnDTMzKzRnDTMzKzRnDTMzKzRnDTMzKzRnDTMzKzRnDTMzKzR/j+cl1XzqyPrGQAA\nAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x312a450>"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12 - pg 226"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the Average Load Voltage, thyristor current, Diode current, Effective input resistance\n",
+ "#Initialization of variables\n",
+ "alpha=0.4;#duty cycle\n",
+ "V_dc=200.;#in volts\n",
+ "R=10;#in ohms\n",
+ "#Calculations\n",
+ "V_a=alpha*V_dc;\n",
+ "I=V_a/R;\n",
+ "I_d=0;\n",
+ "R_eff=R/alpha;\n",
+ "#Results\n",
+ "print '(a) Average Load Voltage (in volts)=',V_a\n",
+ "print '(b) Average thyristor current (in amperes)=',I\n",
+ "print '(c) Diode Current (in amperes)=',I_d\n",
+ "print '(d) Effective input resistance (in ohms)=',R_eff"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) Average Load Voltage (in volts)= 80.0\n",
+ "(b) Average thyristor current (in amperes)= 8.0\n",
+ "(c) Diode Current (in amperes)= 0\n",
+ "(d) Effective input resistance (in ohms)= 25.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 13 - pg 228"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the average load Current and Firing Angle\n",
+ "#Initialization of variables\n",
+ "V_dc=220.;#in volts\n",
+ "V_a=250.;#average load voltage (in volts)\n",
+ "R=10.;#in ohms\n",
+ "#Calculations\n",
+ "alpha=1.-(V_dc/V_a);\n",
+ "I=V_a/R;\n",
+ "#Results\n",
+ "print 'Average Load Current (in amperes)=',I\n",
+ "print 'Firing Angle (in degrees)=',alpha"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Average Load Current (in amperes)= 25.0\n",
+ "Firing Angle (in degrees)= 0.12\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 14 - pg 229"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the Frequency of Switching pulse\n",
+ "#Initialization of variables\n",
+ "V_dc=125.;#in volts\n",
+ "V_a=200.;#average output voltage (in volts)\n",
+ "T_on=1*10**-3;#in seconds\n",
+ "#Calculations\n",
+ "alpha=V_a/(V_a+V_dc);#duty cycle\n",
+ "f=alpha/T_on;\n",
+ "#Results\n",
+ "print'Frequency Of Switching pulse (in hertz)=',round(f,1)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Frequency Of Switching pulse (in hertz)= 615.4\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 15 - pg 234"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the Frequency\n",
+ "#Initialization of variables\n",
+ "alpha=0.25;#duty cycle\n",
+ "V=400;#in volts\n",
+ "L=0.5;#in henery\n",
+ "I=10;#ripple current (in amperes)\n",
+ "#Calculations\n",
+ "V_a=alpha*V;#in volts\n",
+ "T_on=L*I/(V-V_a);#in seconds\n",
+ "T=T_on/alpha;#in seconds\n",
+ "f=1./T;\n",
+ "#Results\n",
+ "print 'Frequency (in hertzs)=',f"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Frequency (in hertzs)= 15.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 16 - pg 234"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the Range of Speed Control and duty cycle\n",
+ "#Initialization of variables\n",
+ "V_a=120.;#in volts\n",
+ "I_a=20.;#in amperes\n",
+ "R_a=0.5;#in ohms\n",
+ "K=0.05;#Motor constant (in volts/rpm)\n",
+ "#Calculations\n",
+ "E_b=V_a-(I_a*R_a);#in volts\n",
+ "N=E_b/K;#in rpm\n",
+ "E_bo=0;#in volts\n",
+ "V_a1=E_bo+(I_a*R_a);#in volts\n",
+ "alpha=V_a1/V_a;\n",
+ "#Results\n",
+ "print 'Range of Speed Control is :'\n",
+ "print 'Lowest Speed (in rpm) = 0'\n",
+ "print 'Highest Speed (in rpm)=',N\n",
+ "print 'Range of duty cycle is :'\n",
+ "print 'lowest value of duty cycle=',round(alpha,3)\n",
+ "print 'Highest value of duty cycle= 1'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Range of Speed Control is :\n",
+ "Lowest Speed (in rpm) = 0\n",
+ "Highest Speed (in rpm)= 2200.0\n",
+ "Range of duty cycle is :\n",
+ "lowest value of duty cycle= 0.083\n",
+ "Highest value of duty cycle= 1\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 17 - pg 235"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the Duty Cycle of the Chopper\n",
+ "#Initialization of variables\n",
+ "V=200;#in volts\n",
+ "I_a=100;#in amperes\n",
+ "R_a=0.02;#in ohms\n",
+ "N1=940;#in rpm\n",
+ "N2=500;#in rpm\n",
+ "#Calculations\n",
+ "E_b1=V-(I_a*R_a);#in volts\n",
+ "E_b2=E_b1*N2/N1;#in volts\n",
+ "V_a=E_b2+(I_a*R_a);#in volts\n",
+ "alpha=V_a/V;\n",
+ "#Results\n",
+ "print 'Duty Cycle Of The Chopper=',round(alpha,4)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Duty Cycle Of The Chopper= 0.5366\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 18 - pg 235"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the power input, motor speed, Torque developed, Minimum and Maximum speed\n",
+ "#Initialization of variables\n",
+ "import math\n",
+ "alpha=0.6;#duty cycle\n",
+ "alpha1=0.1;#duty cycle\n",
+ "alpha2=0.9;#duty cycle\n",
+ "V=400.;#in volts\n",
+ "R_a=0.1;#in ohms\n",
+ "K=4;#Motor Constant (in Volts/radians)\n",
+ "I_a=150.;#in Amperes\n",
+ "#Calculations\n",
+ "P_in=alpha*V*I_a/1000;\n",
+ "V_a=alpha*V;#in volts\n",
+ "E_b=V_a-(I_a*R_a);#in volts\n",
+ "N=60*E_b/(2*math.pi*K);\n",
+ "T=E_b*I_a*60/(2*math.pi*N);\n",
+ "E_b1=(alpha1*V)-(I_a*R_a);#in volts\n",
+ "N1=60*E_b1/(2*math.pi*K);\n",
+ "E_b2=(alpha2*V)-(I_a*R_a);#in volts\n",
+ "N2=60*E_b2/(2*math.pi*K);\n",
+ "#Results\n",
+ "print '(a) Power input (in Kilo-Watts)=',P_in\n",
+ "print '(b) Motor Speed (in rpm)=',int(N)\n",
+ "print '(c) Torque developed (in Newton-meter)=',T\n",
+ "print '(d) Minimum Speed (in rpm)=',math.ceil(N1)\n",
+ "print ' Maximum Speed (in rpm)=',math.ceil(N2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) Power input (in Kilo-Watts)= 36.0\n",
+ "(b) Motor Speed (in rpm)= 537\n",
+ "(c) Torque developed (in Newton-meter)= 600.0\n",
+ "(d) Minimum Speed (in rpm)= 60.0\n",
+ " Maximum Speed (in rpm)= 824.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 19 - pg 236"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the Average Voltage, Power Dissipated and Speed\n",
+ "#Initialization of variables\n",
+ "import math\n",
+ "alpha=0.4;#duty cycle\n",
+ "R_b=7.5;#in ohms\n",
+ "R_a=0.1;#in ohms\n",
+ "I_f=1.5;#in amperes\n",
+ "K=1.6;#Voltage Constant (in V/A-rad/sec)\n",
+ "I_a=150;#in amperes\n",
+ "#Calculations\n",
+ "V_b=(1-alpha)*R_b*I_a;\n",
+ "P_b=I_a**2*R_b*(1-alpha);\n",
+ "E_g=V_b+(I_a*R_a);#in volts\n",
+ "N=60*E_g/(K*I_f*2*math.pi);\n",
+ "#Results\n",
+ "print'(a) Average Voltage (in volts)=',V_b\n",
+ "print'(b) Power Dissipated (in kilo-watts)=',P_b/1000.\n",
+ "print'(c) Speed (in rpm)=',int(N)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) Average Voltage (in volts)= 675.0\n",
+ "(b) Power Dissipated (in kilo-watts)= 101.25\n",
+ "(c) Speed (in rpm)= 2745\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 20 - pg 236"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the Firing Angle and Power Supplied\n",
+ "#Initialization of variables\n",
+ "import math\n",
+ "E_g=-163.53;#in volts\n",
+ "I_a=40.;#in amperes\n",
+ "R_a=0.2;#in ohms\n",
+ "V=220.;#in volts\n",
+ "#Calculations\n",
+ "V_a=E_g+(I_a*R_a);#in volts\n",
+ "alpha_a=math.acos(V_a*math.pi/(2*V*math.sqrt(2)))*180/math.pi;\n",
+ "P=V_a*I_a*(-1);\n",
+ "#Results\n",
+ "print 'Firing Angle (in degrees)=',round(alpha_a,2)\n",
+ "print 'Power Supplied (in Kilo-Watts)=',P/1000."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Firing Angle (in degrees)= 141.74\n",
+ "Power Supplied (in Kilo-Watts)= 6.2212\n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 21 - pg 236"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the Pulse Width\n",
+ "#Initialization of variables\n",
+ "E_b=100;#in volts\n",
+ "I_a=25;#in amperes\n",
+ "R=0.2;#(R_a+R_se) in ohms\n",
+ "V=220.;#in volts\n",
+ "f=200.;#in hertz\n",
+ "#Calculations\n",
+ "V_a=E_b+(I_a*R);#in volts\n",
+ "T_on=V_a/(V*f);\n",
+ "#Results\n",
+ "print ' Pulse Width (in mili-seconds)',round(T_on*1000,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Pulse Width (in mili-seconds) 2.39\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 22 - pg 244"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the Armature Current and Motor Torque\n",
+ "#Initialization of variables\n",
+ "import math\n",
+ "N=1000.;#in rpm\n",
+ "V=240.;#in volts\n",
+ "w=2*math.pi*N/60.;#in rad/sec\n",
+ "alpha=30*math.pi/180.;#in radians\n",
+ "R=0.25;#in ohms\n",
+ "K=0.025;#in Nm/A**2\n",
+ "#Calculations\n",
+ "V_a1=math.sqrt(2)*V*(1+math.cos(alpha))/math.pi;#in volts\n",
+ "I_a1=V_a1/(R+(K*w));\n",
+ "T_1=K*I_a1**2;\n",
+ "V_a2=2*math.sqrt(2)*V*math.cos(alpha)/math.pi;#in volts\n",
+ "I_a2=V_a2/(R+(K*w));\n",
+ "T_2=K*I_a2**2;\n",
+ "#Results\n",
+ "print 'When controlled through semiconverter'\n",
+ "print 'Armature Current (in Amperes)=',round(I_a1,1)\n",
+ "print 'Motor Torque (in N-m)=',round(T_1,2)\n",
+ "print 'When controlled through full converter'\n",
+ "print 'Armature Current (in Amperes)=',round(I_a2,2)\n",
+ "print 'Motor Torque (in N-m)=',round(T_2,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "When controlled through semiconverter\n",
+ "Armature Current (in Amperes)= 70.3\n",
+ "Motor Torque (in N-m)= 123.53\n",
+ "When controlled through full converter\n",
+ "Armature Current (in Amperes)= 65.25\n",
+ "Motor Torque (in N-m)= 106.43\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 23 - pg 244"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the Average Motor Current and Speed\n",
+ "#Initialization of variables\n",
+ "import math\n",
+ "from math import sqrt\n",
+ "V=230.;#in volts\n",
+ "K_t=0.3;#torque constant (in N-m/A^2)\n",
+ "T_L=30.;#in N-m\n",
+ "#Calculations\n",
+ "V_dc=sqrt(2)*V*2/math.pi;#in volts\n",
+ "I_a=sqrt(T_L/K_t);\n",
+ "w=(207.-I_a)/(K_t*I_a);# in rad/sec\n",
+ "N=w*60./(2*math.pi);\n",
+ "#Results\n",
+ "print 'Average Motor Current (in Amperes)=',I_a\n",
+ "print 'Speed (in rpm)=',round(N,0)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Average Motor Current (in Amperes)= 10.0\n",
+ "Speed (in rpm)= 627.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 24 - pg 245"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the Armature current and Firing angle\n",
+ "#Initialization of variables\n",
+ "import math\n",
+ "from math import sqrt\n",
+ "I_a1=36;#in amperes\n",
+ "N1=400;#in amperes\n",
+ "N2=600;#in amperes\n",
+ "alpha_1=100*math.pi/180.;#in radians\n",
+ "V=675;#in volts\n",
+ "R=0.4;#in ohms\n",
+ "#Calculations\n",
+ "V_a1=sqrt(2)*V*(1+math.cos(alpha_1))/math.pi;#in volts\n",
+ "E_b1=V_a1-I_a1*R;#in volts\n",
+ "I_a2=I_a1*N2/N1;#in amperes\n",
+ "E_b2=E_b1*I_a2*N2/(I_a1*N1);#in volts\n",
+ "V_a2=E_b2+21.6;#/in volts\n",
+ "alpha=math.acos((V_a2*math.pi/(sqrt(2)*V))-1)*180/math.pi;\n",
+ "#Results\n",
+ "print 'Armature current (in Amperes)=',I_a2\n",
+ "print 'Firing angle (in degrees)=',round(alpha,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Armature current (in Amperes)= 54\n",
+ "Firing angle (in degrees)= 34.54\n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |