diff options
author | Jovina Dsouza | 2014-07-07 16:34:28 +0530 |
---|---|---|
committer | Jovina Dsouza | 2014-07-07 16:34:28 +0530 |
commit | fffcc90da91b66ee607066d410b57f34024bd1de (patch) | |
tree | 7b8011d61013305e0bf7794a275706abd1fdb0d3 /Electronic_Devices/Chapter2.ipynb | |
parent | 299711403e92ffa94a643fbd960c6f879639302c (diff) | |
download | Python-Textbook-Companions-fffcc90da91b66ee607066d410b57f34024bd1de.tar.gz Python-Textbook-Companions-fffcc90da91b66ee607066d410b57f34024bd1de.tar.bz2 Python-Textbook-Companions-fffcc90da91b66ee607066d410b57f34024bd1de.zip |
adding book
Diffstat (limited to 'Electronic_Devices/Chapter2.ipynb')
-rwxr-xr-x | Electronic_Devices/Chapter2.ipynb | 629 |
1 files changed, 629 insertions, 0 deletions
diff --git a/Electronic_Devices/Chapter2.ipynb b/Electronic_Devices/Chapter2.ipynb new file mode 100755 index 00000000..3934869f --- /dev/null +++ b/Electronic_Devices/Chapter2.ipynb @@ -0,0 +1,629 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:d0aa9e80db4a8882af89cf646425004e4e19d2bf8cf22acae2943bf211cb0ab1" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h1>Chapter 2: Diode Application<h1>" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 2.1, Page Number: 46<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "%pylab inline" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n", + "For more information, type 'help(pylab)'." + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math\n", + "\n", + "# variable declaration\n", + "V_p=50; #Peak value is 50V\n", + "\n", + "#calculation\n", + "V_avg=V_p/math.pi;\n", + "\n", + "#result\n", + "print \"average value of half wave rectifier = %.2f volts\" %V_avg" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "average value of half wave rectifier = 15.92 volts" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 2.2(a), Page Number: 46<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math\n", + "\n", + "\n", + "f=1; #frequency\n", + "V_p_in=5; #peak input\n", + "\n", + "#calculation\n", + "V_pout=V_p_in-0.7; #output voltage\n", + "t_d=(math.asin(0.7/V_p_in))/(2*math.pi*f);\n", + "\n", + "#result\n", + "print \"half wave rectifier output = %.2f volts\" %V_pout;" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "half wave rectifier output = 4.30 volts" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 2.2(b), Page Number: 46<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math\n", + "\n", + "\n", + "f=1; #frequency\n", + "T=1/f; #time period\n", + "V_p_in=100; #peak input voltage\n", + "\n", + "#calculation\n", + "V_pout=(V_p_in-0.7); #peak output \n", + "t_d=(math.asin(0.7/V_p_in))/(2*math.pi*f) \n", + "\n", + "#result\n", + "print \"output of half wave rectifier = %.2f volts\" %V_pout" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "output of half wave rectifier = 99.30 volts" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 2.3, Page Number: 48<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math\n", + "\n", + "# variable declaration\n", + "V_p_in=156; #Peak input voltage\n", + "V_p_pri=156; #Peak voltage of primary of transformer\n", + "n=0.5; #Turn ratio is 2:1\n", + "\n", + "#calculation\n", + "V_p_sec=n*V_p_pri;\n", + "V_p_out=(V_p_sec-0.7); #Peak output voltage\n", + "\n", + "#result\n", + "print \"peak output voltage of half wave rectifier = %.1f volts\" %V_p_out" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "peak output voltage of half wave rectifier = 77.3 volts" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 2.4, Page Number: 49<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math\n", + "\n", + "# variable declaration\n", + "V_p=15; #Peak voltage in volt\n", + "\n", + "#calculation\n", + "V_avg=(2*V_p)/math.pi;\n", + "\n", + "#result\n", + "print \"Average value of output of full wave rectifier = %.2f volts\" %V_avg" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Average value of output of full wave rectifier = 9.55 volts" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 2.5, Page Number: 52<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "V_p_pri=100.0; #Peak voltage across primary winding\n", + "n=1.0/2; #tun ratio is 2:1\n", + "V_p_sec=n*V_p_pri;\n", + "V_sec=V_p_sec/2; #voltage across each secondary is half the total voltage\n", + "V_pout=V_sec-0.7;\n", + "\n", + "print('full wave rectifier output voltage = %f V'%V_pout)\n", + "PIV=2*V_pout+0.7;\n", + "print('PIV = %fV'%PIV)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "full wave rectifier output voltage = 24.300000 V\n", + "PIV = 49.300000V" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 2.6, Page Number: 54<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math\n", + "\n", + "# variable declaration\n", + "V_rms=12.0; #rms secondary voltage\n", + "\n", + "#calculation\n", + "V_p_sec=math.sqrt(2)*V_rms; #peak secondary voltage\n", + "V_th=0.7; #knee voltage of diode\n", + "V_p_out=V_p_sec-2*V_th; #in one cycle, 2 diodes conduct\n", + "PIV=V_p_out+V_th; #applying KVL\n", + "\n", + "#result\n", + "print \"Peak output voltage = %.2f volt\" %V_p_out\n", + "print \"PIV across each diode = %.2f volt\" %PIV" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Peak output voltage = 15.57 volt\n", + "PIV across each diode = 16.27 volt" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 2.7, Page Number: 58<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math\n", + "\n", + "# variable declaration\n", + "R_l=2200; #load resistance in Ohm\n", + "C=50*10**-6; #capacitance in Farad\n", + "V_rms=115; #rms of primary\n", + "\n", + "#calculation\n", + "V_p_pri=math.sqrt(2)*V_rms; #peak voltage across primary\n", + "n=0.1; #turn ratio is 10:1\n", + "V_p_sec=n*V_p_pri; #primary voltage across secondary\n", + "V_p_rect=V_p_sec-1.4 #unfiltered peak rectified voltage\n", + "#we subtract 1.4 because in each cycle 2 diodes conduct & 2 do not\n", + "f=120; #frequency of full wave rectified voltage\n", + "V_r_pp=(1/(f*R_l*C))*V_p_rect; #peak to peak ripple voltage\n", + "V_DC=(1-(1/(2*f*R_l*C)))*V_p_rect;\n", + "r=V_r_pp/V_DC;\n", + "\n", + "#result\n", + "print \"Ripple factor = %.3f \" %r" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Ripple factor = 0.079 " + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 2.8, Page Number: 62<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math\n", + "\n", + "# variable declaration\n", + "V_REF=1.25; #in volts\n", + "V_R1=V_REF; #voltage in volt\n", + "R1=220.0; #in ohms\n", + "I_ADJ=50*10**-6 #in amperes\n", + "\n", + "#calculation\n", + "# MAX VALUE OF R2=5000 Ohms\n", + "R2_min=0.0; #min resistance\n", + "V_out_min=V_REF*(1+(R2_min/R1))+I_ADJ*R2_min;\n", + "R2_max=5000.0; #max value of resistance\n", + "V_out_max=V_REF*(1+(R2_max/R1))+I_ADJ*R2_max;\n", + "\n", + "#result\n", + "print \"minimum output voltage = %.2f volt\" %V_out_min\n", + "print \"maximum output voltage = %.2f volt\" %V_out_max" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "minimum output voltage = 1.25 volt\n", + "maximum output voltage = 29.91 volt" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 2.9,Page Number: 64<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "V_NL=5.18 #No load output voltage\n", + "V_FL=5.15 #Full load output voltage\n", + "load_reg=((V_NL-V_FL)/V_FL)*100 #In percentage\n", + "print('load regulation percent = %.2f%% '%load_reg)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "load regulation percent = 0.58% " + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 2.10, Page Number: 66<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import pylab as py\n", + "import numpy as np\n", + "\n", + "#let input wave be V_in=V_p_in*sin(2*%pi*f*t) \n", + "f=1.0; #Frequency is 1Hz\n", + "T=1/f;\n", + "R_1=100.0; #Resistances in ohms\n", + "R_L=1000.0; #Load\n", + "V_p_in=10.0; #Peak input voltage\n", + "V_th=0.7; #knee voltage of diode\n", + "\n", + "V_p_out=V_p_in*(R_L/(R_L+R_1)); #peak output voltage\n", + "print('peak output voltage = %.2f V'%V_p_out)\n", + "\n", + "t = np.arange(0, 3.5 , 0.0005)\n", + "z=V_p_in*np.sin(2*np.pi*f*t)*(R_L/(R_L+R_1))\n", + "\n", + "subplot(211)\n", + "plot(t,z)\n", + "ylim(-9.09,9.09)\n", + "title('Input Voltage Waveform')\n", + "\n", + "subplot(212)\n", + "plot(t,z)\n", + "ylim(-0.07,9.09)\n", + "title('Output Voltage Waveform')" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "peak output voltage = 9.09 V" + ] + }, + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 12, + "text": [ + "<matplotlib.text.Text at 0xa3bf44c>" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEICAYAAACgQWTXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXl4TNcbx78TiSWWiC1kIYgtliSEoEJCa21SlFoqYqvu\npTtKaavtT1vVhaou9tpVaZFaakpjJ4RErImEBIkQ2cgy5/fHa0YSk2Qy9965986cz/N4Hpm5c86b\nd06+973vOec9GsYYA4fD4XCsAju5DeBwOByOeHBR53A4HCuCizqHw+FYEVzUORwOx4rgos7hcDhW\nBBd1DofDsSK4qHMUj1arhYeHh9xmKIbc3FyEhISgdu3aGDFihNzmcBQGF3Urx9PTE3v37pW8nzlz\n5iAsLKzU9/v374/Zs2c/9vrWrVvRqFEj6HQ6k/vy9PTEP//8Y5adQli7di28vb2LvfbUU08ZfW3e\nvHmS2bFp0ybcunUL6enpWL9+vWT9cNQJF3UrR6PRQKPRyG0Gxo0bh9WrVz/2+qpVqzBmzBjY2Zk+\nFDUaDeTYM9ezZ0/ExcXh9u3bAICCggKcPn0a9+/fR1pamuG1w4cPo1evXpLZcfXqVbRs2bJCPtNT\nUFAggUUcRcE4Vo2npyfbu3cvY4yxZcuWsSeeeIK98847zNnZmTVt2pTt3LnTcG2vXr3YtGnTWJcu\nXVitWrXYM888w9LT0xljjO3bt4+5u7sXa7tJkyZsz549bOfOnaxy5crMwcGB1ahRg/n6+j5mR05O\nDnNycmL79+83vJaens6qVq3KoqOj2f3799mUKVOYq6src3V1ZVOnTmUPHjx4rO8xY8YwOzs7Vq1a\nNVajRg325ZdfMsYYGzZsGGvYsCFzcnJiPXv2ZDExMYZ+0tLS2NNPP81q1arFOnfuzD744APWo0cP\nw/vnzp1jTz75JKtTpw5r1aoV27BhQ6n+bN68Odu8eTNjjLEjR46w4OBgNm7cuGKvOTo6soKCAvbX\nX38xX19fVqtWLebh4cHmzJljaKd///5s4cKFxdru0KED27JlS5k2ffjhh8V8vXTpUqbT6dgnn3zC\nmjRpwho0aMDGjh3LMjIyGGOMxcfHM41Gw3799VfWuHFj1rNnT7Z8+XLWvXt39uabb7LatWuz5s2b\ns8jISLZ06VLm4eHBGjRowFasWFGqDzjKhou6lVNS1B0cHNgvv/zCdDodW7x4MXN1dTVc26tXL+bm\n5sZiYmJYdnY2e/bZZ9mYMWMYY8ZFvWjbc+bMYWFhYWXa8sILL7BJkyYZfv7xxx+Zn58fY4yxWbNm\nsW7durHU1FSWmprKunfvzmbNmmW076L96lm2bBnLyspieXl5bOrUqcVuLCNGjGCjRo1iubm5LDY2\nlnl4eLDAwEDGGGNZWVnM3d2dLV++nBUWFrKoqChWr149Fhsba/R3GD9+PJsyZQpjjLEvv/ySffjh\nh+znn38u9lqfPn0YY4xptVp29uxZxhhj0dHRzMXFhf3xxx+MMcZWrlzJnnjiCUO7MTExrHbt2iwv\nL69cm0r6+tdff2VeXl4sPj6eZWVlsaFDhxre14t6eHg4y8nJYbm5uWzZsmXM3t6eLV++nOl0OjZz\n5kzm5ubGXnvtNZaXl8d27drFatasybKzs8v8PjnKhIu6lVNS1L28vAzvZWdnM41Gw27evMkYYywo\nKIhNnz7d8H5sbCyrXLky0+l05Yr67NmzDTeA0vjvv/9Y7dq1DRF49+7d2TfffMMYowi46FPD33//\nzTw9PRljpol6Ue7cucM0Gg27d+8eKygoYA4ODuzChQuG92fOnGmI1NetW2cQeD2TJ09mH330kdG2\nly9fbrgRhYaGsj179rC4uLhir3388cdGPztlyhT25ptvMsYYu3fvHqtevTpLTExkjDE2Y8YMNnHi\nRJNsKunr3r17s8WLFxt+Pn/+PHNwcGCFhYUGUY+Pjze8v2zZMtaiRQvDz9HR0Uyj0bBbt24ZXqtb\nty47ffq00d+Do2x4Tt3GaNiwoeH/jo6OAICsrCzDa0VXmTRu3Bj5+fmGfLFQnnjiCdSrVw9btmzB\n5cuXcezYMYwePRoAkJycjCZNmhTrOzk52aR2dTodpk2bBi8vLzg5OaFp06bQaDRIS0tDamoqCgoK\niv1e7u7uhv9fvXoVR44cgbOzs+HfmjVrcPPmTaN9BQYGIjo6Gnfv3sWRI0fQrVs3tGrVCikpKbh7\n9y4iIyPRs2dPAMCRI0cQHByMBg0aoHbt2liyZIkhH1+zZk0MGjQIa9euBQCsW7cOzz//vFk2paSk\nPOa7goKCYteXXD3k4uJi+H+1atUAAPXr1y/2WtFxwVEPXNQ5xUhMTCz2fwcHB9SrVw/Vq1dHTk6O\n4b3CwkKkpqYafjZ1Mnbs2LFYuXIlVq9ejf79+xuExNXVFQkJCcX6dnV1NdpGyb5+++03bNu2DXv3\n7kVGRgbi4+PB6CkU9evXh729PZKSkgzXF/1/48aN0atXL9y5c8fwLzMzE4sWLTLad7NmzeDq6oqf\nfvoJjRs3NtwYu3XrhiVLliArKwtdu3YFAIwePRqDBw/GtWvXcPfuXbz00kvFVvmMGjUKa9euxaFD\nh3D//n0EBwebZFPJ39+Y7+zt7YsJtxImyzmWgYs6xwBjDKtXr8a5c+eQk5ODDz/8EMOHD4dGo0HL\nli1x//597NixA/n5+Zg7dy4ePHhg+GzDhg2RkJBQ7qqUsWPHYvfu3fjll18QHh5ueH3UqFGYO3cu\n0tLSkJaWho8//rjUJZIuLi64fPmy4eesrCxUqVIFderUQXZ2NmbMmGF4r1KlShg6dCjmzJmD3Nxc\nxMXFYdWqVQaRGzRoEC5cuIDVq1cjPz8f+fn5OHbsGOLi4kr9HQIDA/H1118bInIA6NGjB77++mt0\n7twZVapUMdjl7OyMypUr4+jRo1izZk0xcR04cCCuXr2K2bNnY+TIkYbXn3766TJtKunjUaNGYcGC\nBUhISEBWVhZmzJiBkSNHmrU6hqN++LduQxhb3lj0Z41Gg7CwMIwbNw6NGjVCXl4evvvuOwCAk5MT\nfvjhB0yaNAnu7u6oUaNGsUf64cOHAwDq1q0Lf3//Um1o0qQJnnjiCeTk5CA0NNTw+syZM+Hv748O\nHTqgQ4cO8Pf3x8yZM43aOX36dMydOxfOzs74+uuvMXbsWDRp0gRubm5o164dunXrVuz6hQsXIiMj\nAw0bNkR4eDhGjRqFypUrA6A0yK5du7Bu3Tq4ubmhUaNGmD59OvLy8kr9HXr16oXU1FT06NHD8Fpg\nYCBSU1OLCf0PP/yADz/8ELVq1cInn3zy2EahypUrY+jQodi7d68hDQUANWrUKNOmkt/jhAkTEBYW\nhp49e6JZs2ZwdHTE999/b9R3xj5v7BqOetGw8kIrjs0QHByMsLAwTJgwQW5TJOX999/HrVu3sGzZ\nMrlN4XBEh0fqnGJY4z3+/PnziI6OBmMMR48exdKlSzFkyBC5zeJwJMFebgM4ysIaH8MzMzMxatQo\nJCcnw8XFBe+8806x1A+HY03w9AuHw+FYEZJG6tYY9XE4HI4lMDfeljynrl8vLMa/5GSGPn0Y/PwY\nVq1iuHCB4cwZhq++YnBzY3jtNYYHD8Trb/bs2aLab+l/Ytv/998Mrq4MYWEMe/cyxMcz7N/PMHky\nQ4MGDJs2Kdd2tfu+oIBhxgwGFxeGTz9liIpiuHSJYf16hu7dGQICGC5fVq79avd/UhJDz54MnTsz\n/PYbw8WLDNHRDF98wdCoEcObbzLk5YnXnxBUk1O/cgV48kkgLAyYNQuwL2J5u3bAhAnA+PFASAiw\nZQvwcE8IRyRWrwbefRdYuxYICnr0uqcnEBgITJoEPPsskJwMvP66XFZaJ3l5wJgxwO3bwOnTQJE9\nRWjeHBg2DPjmG/oeIiKA9u3ls9UauXABeOopYPJkYNo0oFKlR++1b0/aM3YsMGQIsGkTULWqfLYC\nKln9cvs20Lcv8PbbwEcfFRd0Pc7O5NB69YDnnwcqUJ6bUw47d5Kg791bXNCL0rkzcOAAMH8+sGaN\nRc2zahgDXnoJyMkBtm8vLuh67OyAt94CvvwSGDgQuHbN8nZaK7duAf36USD5wQfFBV1P3brAH38A\n1aoB48YpQHuYhIjRfEEBY717M/bOO6Zdf/8+Yz17MvawwJ8g9u3bJ7wRGRHD/vPnGatfn7HISNOu\nj46m60+cENYv9z3x7beM+fgwlplp2vX/+x9jnTox9rBmmtlw/zOWn89Yjx6MzZxp2vW5uYx168bY\np58K7lqQdipe1OfPZywwkMTdVFJSGHNxYezgQcHd2zQFBYx17crYd99V7HOrVzPWpg1jOTnS2GUr\nxMQwVq8eY1eumP4ZnY6xp59mrEixTY6ZfPYZY08+yVhhoemfSUqioObYMWF9W62ox8UxVrcuY5cu\nVfyzmzcz1qIFRe4c8/jiC8aCgys2qBkjYXnuOcbefVcau2yB/HzGOndm7McfK/7ZGzcoqDl6VHy7\nbIUzZ+iGevVqxT+7Zg1j3t6M5eWZ378Q7ZR0nbrQY8cGDKBc+ptvmvf50FDgiSeA99832wSbJTmZ\nJoGOHQOaNav452/coAnsgweBli3Ft8/a+ekn4LffAK0WMGdl8LJl1EZkJOXcOabDGNCnDzB8OPDy\ny+Z9vn9/0q+pU82zQYh2KlbUIyJoFUVMDPCw9lKFuXQJ6NoViI4GSqniyimFCROABg2A//3P/Dbm\nz6fJ1R07xLPLFrh3D2jViiZGO3Y0rw2djsb+a6/RygyO6WzbBkyfTiuNjC3KMIVz54CePUm/GjSo\n+OetTtQLCwEfH2DuXGDwYGE2vPsurRwopTw2xwinTlGkcf484ORkfjt5eUCbNhQ1FileyCmHDz4A\nrl8Hli8X1s7Bg8Do0bQkz9zAyNbIz6cnzG++oUhbCG+8QTeFr7+u+GetTtQ3bAAWLKBBKXRT6q1b\nQOvWdNctcfgLpxSGDgV69QKmTBHe1rJlwKpVwD//CG/LFrh9G2jRgm6sjRsLb69fP/o+X3xReFu2\nwKpVwK+/Avv2Cdee5GS6QcTEAI0aVeyzViXqjAF+fhSlP/20OHa8/z6QmQn88IM47VkzsbFA7960\n2UuMDVwFBXRT/fVXulFwymbOHFpn/ssv4rR3+DAwYgRw8SKP1stDpyMR/vZb2mwkBlOn0s1hwYKK\nfc6qRH37dmDGDIpUxCodk5pKk3XnzgFFjujkGCEsDPD2ppyiWCxbBqxbB/z9t3htWiOZmTQpffAg\nReti0a8fCbuVl8kXzO+/0xzSkSPiaU9KCv09XbxIGyNNRYioK25e/PPPSdTFrAVWvz4wciSweLF4\nbVojCQm0e/SVV8Rtd/RomqyOiRG3XWtjyRIqhSGmoAO0E/ubb+gpmGMcxkh7PvhAXO1p1IjKB/z0\nk3htloeiIvWTJ2li9MoV82edS+PcOdrifvWq/LUZlMp779Ek9fz54rf98cc0+bdkifhtWwOFhVTH\nZeNGKrkgJowBbdsCCxdSao3zOIcO0Sqh8+fFXwJ6+jSVb4iPNz0FZjWR+qJFVOdCbEEHaBVGx468\nLklp5OZSmsScdbmm8NJLNAGeliZN+2pn505a+ia2oAMUeU6dStE6xziLFtHYl2JNv48PLVHdtEn8\nto2hGFFPT6ec1qRJ0vUxdSrw/ff8MdQYGzYA/v6Al5c07TdoQE9hv/4qTftqZ9Ei4NVXpWs/LIyi\n0StXpOtDrdy6RXN548dL14deeyyBYkR92TJg0CDzFuqbylNPAXfvUpqHUxypRQWgZXW//MJvqiW5\ndAk4cYImM6WiWjUq38vP2n6cX36hstHOztL1MXAgkJQEnD0rXR96FCHqjAE//ij+BF1J7OyAiRPF\nWy5mLZw4QdGK0M0W5REQAFSpAuzfL20/amPJEirZKvVcz8SJJOoFBdL2oyZ0OvK/1Npjb0/fsSWe\nVBUh6gcP0i/drZv0fY0bB6xfD2RnS9+XWli+nB49jdWKFhONhtJr/Kb6iIICOoBk4kTp+2rXDnB3\n50tLi6LVAnXqmF+OoSJMmEDf9YMH0vYjWNQ9PT3RoUMH+Pn5oUuXLma1sWIFEB4u7lKi0nB3B7p3\nt9ykhdLJy6M15GFhlulvzBjgzz8pDcYBdu8GmjShiTRLwG+qxdFrjyVo1owmTf/4Q9p+BIu6RqOB\nVqtFVFQUjh49WuHP5+aSwI4ZI9QS05k4kU/Y6dmxg1YGmVOJ0Rzq1aPNMHwVErFihWULbo0YQdHp\nzZuW61OpZGUBW7cCo0ZZrk9LaI8oiwfLWk85Z84cw/+DgoIQVOI8tG3baNWFu7sYlpjGoEHACy8A\niYni1NdQM5aMVPSMHUsbPaTOYyqdu3epGqkly1fUrEnlNzZupAqOtszvv9O5rsaOCJSKwYNp3N+4\nUXx3u1arhVarFaUPwZuPmjVrBicnJ1SqVAkvvvgiXnjhhUeNm7CAfuBA2nFoyUgdoJUYzZvThhtb\nJS2NfJCUBNSqZbl+8/OpFPKxY3Rwta3y00/Arl2WTwXu3Al88gnNZdkyffrQ2vRhwyzbb3g40KkT\nVXEsDVk3H0VGRiIqKgo7d+7EokWLcODAAZM/e+MGrZ0dMkSoFRVn9GieAli3jp5aLCnoAODgQH9I\n69ZZtl+lsXKlPLXOn3ySllHa8pr1xESqLyVW0cCKMHo0HYAiFYJFvdHDmpL169fHkCFDKpRX37gR\nCAkBqlcXakXFCQykSNWW65GsXQs8/7w8fdv6TTUxkUpX9O9v+b4dHOhUH1u+qW7YQCWJ5SgZ0qcP\n1Vm6dEma9gWJek5ODjIzMwEA2dnZ2LVrF9q3b2/y5zduBJ57TogF5mNnR0W+1q6Vp3+5uXaNREWs\nEqMV5YknKKd85ow8/cvNpk2UX5WrHK4+WrTVjWByao+9PfUtlfYIEvWbN28iMDAQvr6+CAgIwNNP\nP42+ffua9NnkZNpdJZeoAI+iRVsc2Js2Ac88I5+o2NnRqgNbvanKKSoA7QnJzrbNm2pCAqWegoPl\ns0HKm6qg1S9NmzbFqVOnzPrs5s2UeqlSRYgFwvDzo0fRY8cAM5fYq5aNG4GZM+W1YdQoegT+9FPL\n7FFQComJVF9bzoqJ+ifVdeuADh3ks0MONm2ieTwpCgeaSteutAkpOprWrouJbDtKN2yQN1IBSEie\nfZZuMLZEUhIQF0e5PTnx8aHvwMy4QLXoUy8ODvLaoR/7tvakqhTtGTpUGu2RRdSvX6cJSjlTL3ps\ncWBv3ixv6kWPrd5UlSAqAO0PuX/fthYLJCTQvxLbZWRBqrEvi6hv3gyEhsovKgDVfCgstK3c4oYN\ntPpBCTz7LG0CsRWuXqVVD3Lmc/VIGS0qlY0b5U+96OnalRYLxMWJ264soq4kUbG1gZ2URKe7yJ16\n0dO5M53Nee6c3JZYBn0+V+7Uix5be1JSkvbY2dFYEDuosbioJyfTifVKSL3osaWBrZTUix79wLYV\n/2/apBxRAWgVzK1bNHFr7Vy9qpzUix4ptMfiov7nn7ThQimiAtBj0J07FMFaO1u30iSdkrCVm+qN\nG/SorSRRqVRJmmhRiWzdSjtIlZB60RMYSE/P8fHitWlxUd+2jSJFJSHVY5DSSE+nAzGefFJuS4rT\nowc9wVn7tvW//lJeQAPYzk1Vidpjb082bdkiXpsWFfWsLODAAXm2RpeHLeTVd+ygCTpHR7ktKU6l\nSvT0YO031a1baYGA0ujVi26oiYlyWyIdd+8CR48qK+2rR2ztsaio79pFqQ4nJ0v2aho9e1K+LSlJ\nbkukQ4mRip4hQ6Q/PEBOsrOBf/+V/shAc3BwoLTE1q1yWyIdO3fSzUuOOlPl0acPLSsVq8a9RUVd\nqZEKQI9BAwfSI7I18uAB3VQHDZLbEuMEB1PZiNRUuS2Rhj17aNdy7dpyW2Kc0FCa77JWtm1TrvZU\nrkwHx2zfLk57FhP1ggIyWqmOBci2bdvktkIatFqgbVvLHghQEapUoVz/jh1yWyINW7cq9ykJAPr2\npTLYGRlyWyI+eXl0GElIiNyWlI6Y2mMxUT94EPDwUPZJQ/36AZGRtG7a2lBypKLHWm+qhYX0BKhk\nUalRg1ZiWOOh1Pv30xmwRU8aUhoDBgD79tHxnkKxmKgrOZ+rp2ZNOpR61y65LREXxtQh6gMHUpri\n/n25LRGXw4eBRo2Uf8qTtd5UlZz21VOnDu1u37tXeFsWEXXG1OFYwDoHdlQUUK0a0Lq13JaUTb16\nVORr3z65LREXNQQ0AE2W7txJxw1aC/qARg3+DwkRR3ssIupxcRR9+flZojdhPP005f4LCuS2RDz0\nN1Q1lLcVa2ArCbUENO7uQNOmlIK0Fk6fpkUQ3t5yW1I+ISE0Wa3TCWvHIqKuJlFp3Jhy/4cOyW2J\neKglUgEePSlZS9XM8+dpjqZTJ7ktMQ1re1LVj301aE+LFoCzM3D8uLB2LCLqahIVwLoG9tWrdHRd\nt25yW2IarVrRpN3Jk3JbIg76uQw1iApgfTdVtTwl6RFDeyQX9Zs3qYBXr15S9yQe1iTqf/5Ja9OV\nVO+iPKzJ/2oLaHx8aAmg2OVg5eDaNdpQ2KOH3JaYjuyiHhERgdatW6NFixaYN2+e0Wv++ouWCsp5\nbF1F6diRShpYQ4EvNax6KYm1iHpqKtXpV0LtdFPRaKzH/3/+SSuq1BTQBARQ4TchmC3qhYWFeO21\n1xAREYHY2FisXbsW54wUxVbb4w9gPQM7I4OW05l4Frhi6NaNyjWovRbJ9u20oUpNAQ1gHWMfUKf2\nVKpEizWEYLaoHz16FF5eXvD09ISDgwNGjhyJrUaKR2i1dLdUG9YwsCMiaENJjRpyW1Ix7O0pZaT2\nbetqS73o6dWLapHcuiW3JeZz7x6t4lFi8cDyEHojMvvB5Pr16/Dw8DD87O7ujiNHjjx2Xd26c/Dt\nt/T/oKAgBCmpmHQZBAfTaeupqUD9+nJbYx5qjFT0hIYCS5YAr74qtyXmkZtLG0l+/lluSypOlSr0\ndPfXX8CECXJbYx5//w088QRtKFQDWq0WWq0WgPB9AmaLusbE6fz33puDl182txf5qFr1US2S8HC5\nrak4+fkUqX/1ldyWmEffvsD48RRx1aoltzUV559/AF9foG5duS0xj9BQKgerVlFX21xSyYD3s88+\nMrsts9Mvbm5uSCpSpzYpKQnu7u6PXadGQdcTGqrecqQHDgBeXoCrq9yWmEfNmhRpRUTIbYl5qDX1\nomfgQLoxiVGLxNIUFFAwpiZRFxOzRd3f3x8XL15EQkIC8vLysH79eoRamRcHDaJHaDXWIlFbpGKM\nZ55R57yGTkfzAUou4FUeYtYisTSRkVRnx0iMaROYLer29vZYuHAh+vXrB29vb4wYMQJt2rQR0zbZ\n0dciUdvAVksBr/IICaGIS221SE6coLrpLVrIbYkw1Pqkag1jXwgaxqTbO6bRaCBh8xZh/nzgwgWa\ntFMLZ8/Ssqj4ePXsZCyNzp2BL75Q11rvWbPoRvS//8ltiTAuX6YUWHIyneOrBhijm+nGjeqoNVUa\nQrRTJV+VfOhPhBFaZMeSqG1relmocWnptm3qTr3oad6cnlaPHpXbEtOJi6NTvnx95bZEPriol0OL\nFvQoLbTIjiWxpsfPZ56hFIBaHvgSEoCUFDqL1xpQ27yGNQU05sJF3QTUFC3euEHlDXr2lNsScWjf\nnp6SYmLktsQ09LV2KlWS2xJxUFte/c8/rSegMRcu6iagpoG9fTvV2qlcWW5LxEFfskEt/rempySA\n5jTS04FLl+S2pHxSU2k+SSX7GyWDi7oJBATQlukrV+S2pHysTVQA9aQAMjKAI0eAp56S2xLxsLNT\nz8El27eT79VWa0dsuKibgL7IjtIHdk4OHQU3YIDclohLz57AxYu0CkPJqLXWTnmoJf1ojQGNOXBR\nNxE1RIt799IJO87OclsiLg4OVJjpr7/ktqRsrFVU+vShc25v35bbktK5f5/GvxqLB4oNF3UTefJJ\nWgGTni63JaVjraICKD+vnp9PhzYLLZuqRKpVA3r3po1gSuWff2ijoFpr7YgJF3UTcXSkDTA7d8pt\niXH0W9OtVdQHDKB6NllZcltinP/+A5o1A9zc5LZEGvRLS5WKNQc0FYWLegVQcrR49CjV62jeXG5L\npMHJiSasd+2S2xLjbN1qHRuOSmPQIGDPHmXWQbKGWjtiwkW9Ajz9NInKgwdyW/I4v/8ODB0qtxXS\notR5DcaALVus2//169OegX375LbkcY4coQ2CrVrJbYky4KJeAVxcAG9v4N9/5bakOIxR7etnn5Xb\nEmkJCaFla4WFcltSnOPHaRldu3ZyWyItSl0FYwtjvyJwUa8gSswtRkeTsFt7vYsmTaic6sGDcltS\nnN9/J1Gx9q3p+iclJdVBspWApiJwUa8ggwfTo7aSBrZ+UFu7qADk/99/l9uKR9iSqLRsSXMbSirw\nFRVF+0g6dJDbEuXARb2CtGpFlesiI+W25BGbN1t3Prcow4dTWVWl3FTPngXy8mh/gC0wfDiwYYPc\nVjxCP5dkCwGNqXBRN4PnniNhUQJxccDdu7QyxBbw9qZJscOH5baE0N9QbUVUhg8HNm1Szk3VVp6S\nKgIXdTPQD2wlTNjpIxW1HGIgBkqKFvX5dFuhbVsqg3DkiNyWALGxtG+hc2e5LVEWNiQF4tGqFS3x\nUkIKxhYjFaWkYC5epMqA3brJa4cl0Wge+V9u9E9JthTQmAJ3h5koIQVz+TJw7RrQo4e8dlgab2/a\naHXokLx2bNxom6KiH/ty31Q3brS9gMYUzB6Oc+bMgbu7O/z8/ODn54eIiAgx7VI8SkjBrF1Lf2D2\n9vLZIBdyp2AYA377DRg9Wj4b5KJtW6BmTXlTMGfOAHfu2F5AYwpmi7pGo8Fbb72FqKgoREVFoX//\n/mLapXhatqTNSHKlYGxZVAD5J+zOnAGys20r9VKU556T96a6di0wapTtPSWZgiCXmHvatbUwfDiw\nbp08fZ8+TXU4rOUszIrSpg2lYP77T57+16yxbVGRc16DMfK/rQY05SHowf3777/HypUr4e/vj/nz\n56N27dpnHaG0AAAgAElEQVSPXTNnzhzD/4OCghBkRWdNjR5NM+8LFlj+tBX9oLaVpXTGeP55YNUq\ny5/HqtNRpKj0+u5S0rYt7dfYt4/qrVuSQ4eA6tWp1K61oNVqodVqRWlLw8oIt5966incuHHjsdc/\n/fRTdO3aFfXr1wcAzJo1CykpKfj111+LN67RWH0036sXMHUqMGSI5frU6WjLfEQE/XHZKteu0U7C\n69ep5rel+O8/4OWXKQVjyyxYAJw6BaxYYdl+X3sNaNQI+OADy/ZrSYRoZ5mibioJCQkICQnBmRKj\n3BZEfelSqofxxx+W6/Pff4E33qAUjK3Tty8wYQIwcqTl+nz5ZaBxY2D6dMv1qURu3qTlvdeuWe4I\nv/x8qll/+DDVr7dWhGin2RnBlJQUw/+3bNmC9u3bm9uUqhk2DNBqab2ypVi+HAgLs1x/SiY83LKR\nYm4uTRDyfC4tFAgMpPXilmLHDlqkYM2CLhSzRf39999Hhw4d4OPjg3///RcLFiwQ0y7VUKsW1Vm3\n1IRpRgYVFBs71jL9KZ0hQyhqKxJjSMrvv9M8SpMmlulP6YSHAytXWq6/X34BJk2yXH9qRJT0S6mN\n20D6BaCDM2bMoLraUrNkCbB7Ny3n4xATJtCGpHfekb6v3r2BV16hJzQOrcBycwNOnpT+Rnf9Oh3U\nkZREE6XWjCzpF84j+vSh9MuJE9L39csvwMSJ0vejJiZOBH76SfrldZcuUVVGfhbmI6pWpVRUiTUS\nkrBiBS2ltHZBFwoXdRGoVAl46SXghx+k7ef0aeDGDZoc5Dyie3da/bJ3r7T9LF1KcxmVK0vbj9p4\n+WXg55+pBLFU6HR04+Cpl/Lhoi4SEydSvjU9Xbo+fviBBnWlStL1oUY0GuDVV4FFi6Tr4/59EvUX\nXpCuD7Xi7U2bwaQ8vGTXLpq/8veXrg9rgYu6SDRoQCeuL1smTfu3b9Oqi5dekqZ9tTN6NHDgAJCY\nKE3769YBfn5A69bStK92pL6pfvMN7Qex5c12psJFXURefZWiaSmKfC1ZQke5ubiI37Y1UKMGMGYM\nsHix+G0zRhttpk4Vv21r4ZlngPh4afZOxMbSJidL7kVQM1zURaRrV4rYxX4MzcujKIiLStm88Qbl\ndu/dE7ddrZY2vfC5jNKxtyf/f/GF+G1/+y3l7S1dikOtcFEXEY2GljZ++ilFd2Lx22/02G9NtS6k\noHlzoF8/8Ses580D3nyTP/qXx0svUe770iXx2kxJocJhPO1oOnydusgwBvj6Ap9/DgwcKLy9/HwS\n9KVLqc4Mp2zOngWefBK4cgVwdBTe3qFD9Nh/8SJf9WIKs2eTEP/0kzjt6fPotra3UfbaL6U2boOi\nDgDr19MgPHRIeHS3dCmwejXwzz/i2GYLDBlClRvffFN4W/360ek6kycLb8sWuH2btvGfOAF4egpr\nKzmZNhvFxAANG4pinmrgoq4wdDpaejVtGh0mYC65ubRcbOVKqrHBMY2YGCA4GIiLo5rr5vLvv7QN\n/sIFHqVXhDlzyGdr1ghr55VXaP/B/PmimKUquKgrkH37aPv6uXO0684c5s4FoqIsWzDJWnjpJUq/\nfP21eZ8vKAA6daLyrkJuzLZIdjZVb9y8GQgIMK+N06dpYvrcOWE3ZrXCRV2hPPMMReyzZlX8s0lJ\ntC76+HHhj7G2yM2bQLt2tHLFnJrzixdTGm3fPj5Bag7Ll9OE9cGDFT9DlzEgKIhOlrLVCVIu6gol\nKQno2JG2r3foYPrndDqgf3/KC8+cKZ191s5PP9ESx0OHKiYs8fFAly4k6O3aSWefNaPTAU89RdH2\n++9X7LM//EA3hUOHbHf3NC/oJRFCj5fy8KDlcGPHAjk5pn9u4UJaaz1tmqDuRTseSw7EsP2FFwBn\nZ+CTT0z/TEEBfV/vvy9M0NXse0C4/XZ2VKvlq68ohWgqcXHAhx/SMYVCBF3t/hcCF/UyEGNgjB9P\n4jBhgmlr1/fuBT77jFa8VPSxtSRqHthi2K7RUGW/ZctMm5dgjDbQ1KghfOWMmn0PiGO/pydF3YMH\nUyG68rh9GwgJoQ1MrVoJ61vt/hcCF3WJ0WgoBZCYSLP5ZZWHPXCA8ojr1wNeXpaz0Zpp1IiOGnz5\nZWD79tKvY4zmPg4cIP/b6mO/2AwfTsXu+vYtW9hv3wYGDACGDqUAiGM+XNQtQLVqdEh0XBydkpSc\nXPz9wkIqAzB0KO0e5ZuMxKVjR+DPP0ksPv+cNnQVJS2NNhhFRNB+gFq15LHTWpk1i8S9a1eauC7J\noUP0Xu/ewP/+Z3HzrA7JJ0o5HA6HU3HMlWaBWduyseWVLxwOhyMHPP3C4XA4VgQXdQ6Hw7EiuKhz\nOByOFSGKqEdERKB169Zo0aIF5s2bZ/SaN954Ay1atICPjw+iKrIbwQKUZ79Wq4WTkxP8/Pzg5+eH\nuXPnymClcSZMmAAXFxe0b9++1GuU7Pvy7Fey7wEgKSkJwcHBaNu2Ldq1a4fvvvvO6HVK/A5MsV3J\n/r9//z4CAgLg6+sLb29vTJ8+3eh1SvQ9YJr9ZvmfCaSgoIA1b96cxcfHs7y8PObj48NiY2OLXbN9\n+3Y2YMAAxhhjhw8fZgEBAUK7FQ1T7N+3bx8LCQmRycKy2b9/Pzt58iRr166d0feV7HvGyre/NN+H\nh4ezmTNnSm1euaSkpLCoqCjGGGOZmZmsZcuWsoz///77j3l5ebEaNWqwrVu3mvQZU2xX8thnjLHs\n7GzGGGP5+fksICCAHThwoNj7Sh//5dlvjv8FR+pHjx6Fl5cXPD094eDggJEjR2Lr1q3Frtm2bRvC\nw8MBAAEBAbh79y5u3rwptGtRMMV+QLkreQIDA+Hs7AwAWL58Odq3b4/q1aujUaNGeOWVV7Bx40aT\nfe/p6Yl/RCzcXlZ7169fh4ODA9zc3Az26xkyZAjeffddw8/GfK/RaAxLZrVaLTw8PESzuyKEh4dj\n165dAIAaNWrA09MTbdu2xRdFznVbu3YtIiIicOvWLcnG/4cffog33ngDmZmZCA0NNekzDRs2hK+v\nr8H2Nm3aILnkJgood+wDgOPDk1Dy8vJQWFiIOiVKOipZe4Dy7Qcq7n/Bon79+vVif1Du7u64fv16\nuddcu3ZNaNeiYIr9Go0GBw8ehI+PDwYOHIjY2FhLm1kuaWlpmDZtGubPn4979+7h8OHDuHr1Kv74\n4w80atTIcF1Zvhe7AFtZ7bm5uaFPnz5YtWpVsdfT09Oxc+dOjBs3ztBGab5Xgtj06tUL+/fvBwAk\nJCTgxIkTaNmypeE1AIiJiYGHhwcaNGgAQJrxn5iYCG9vb7M+W1hYiISEBERFRSGgRK1cpY99nU4H\nX19fuLi4IDg4+DEfKFl7gPLtN8f/gkXd1A1GJf8AlbIxyRQ7OnbsiKSkJJw+fRqvv/46Bg8ebAHL\nTCczMxO3bt3CwoUL0bdvX1SqVAlNmjTBhg0bkJOTg4iICADAuHHjcPnyZaMRblhYGBITExESEoKa\nNWviq6++QkJCAuzs7PDzzz/Dzc0Nrq6umF/kxIJx48ZhVpG6wuW1V5Lw8PDHRH3dunVo27Yt2rZt\ni3PnzmHmzJnQ6XQoLCxEly5divleo9EgJycHAwYMQHJyMmrWrIlatWrhxo0bOHr0KLp16wZnZ2e4\nurri9ddfR36RraS7du1Cq1atULt2bbz66qvo1asXfv31V8P7S5cuhbe3N+rUqYP+/fsjMTHRqO8D\nAwMRGRmJrKwsDBs2DF26dMFbb72F48ePG65JT083RMRTpkzBf//9h6CgIPj7++O///4DACQnJ8PR\n0RF37twxfC4qKgr169dHYWFhmTY1b94cV65cQUhICGrVqoX8/HwkJycjNDQUdevWRYsWLfDLL78Y\n2p0zZw6GDRuGsLAwODk5YcmSJWjfvj26dOmCfv36oWbNmggNDUVaWhp++OEHFBQUoEqVKnjuuecU\nN/bt7Oxw6tQpXLt2Dfv37zda80Wp2gOUb7852iNY1N3c3JCUlGT4OSkpCe7u7mVec+3aNbi5uQnt\nWhRMsb9mzZqGx6QBAwYgPz8f6enpFrWzLE6ePAmdToehQ4cWe7169erw9PTEv//+C4AGc2ZmplHf\nr1q1Co0bN8Zff/2FzMxMvPPOO4b3tFotLl26hF27dmHevHnYu3evob3S/kDKak/P4MGDkZaWVkwA\nV61ahfDwcOTn5yMkJASDBg1Camoqvv/+e3z99dfIyckx+J4xBkdHR0RERMDV1RWZmZm4d+8eGjZs\nCHt7e3z77be4ffs2Dh06hL179+KHhydSp6WlYfjw4Zg3bx7S09PRqlUrHDp0yPC7bN26FZ9//jm2\nbNmCtLQ0BAYGYtSoUUZ/zy5duuDBgwfo27cvxowZg6SkJDz11FPw8vLCqVOnAAD37t0zjKkuXbrA\nw8MDFy5cwOjRozF8+HDk5eXB1dUV3bp1w+YilcfWrFmD4cOHo1KlSmXadPnyZYOv7927Z0gjNm7c\nGCkpKdi0aRNmzJiBffv2Gdretm0bhg8fjrS0NPz+++9wcXHB6dOnsXr1aly/fh2XL19Gt27d8OKL\nLyI9PR1t2rTB/v37FTf29Tg5OWHQoEHFxhKgbO0pSmn2m6M9gkXd398fFy9eREJCAvLy8rB+/frH\ncnqhoaFYuXIlAODw4cOoXbs2XFxchHYtCqbYf/PmTcPd/ujRo2CMGc19yUV6ejrs7e1hZ/f419mh\nQwdcuHABAJCamooqVapU2PezZ89GtWrV0K5dO4wfPx5r1641vCckBVKtWjUMHz4cv//+OwDg4sWL\nOHnyJEaPHo3Dhw8jOzsb48ePR6VKlRAcHIxu3bohKyvrMd8bs6Fjx47o0qUL7Ozs0KRJE0yePNlw\nc9uxYwfatWuHwYMHw87ODm+88QYaFjkE88cff8T06dPRqlUr2NnZYfr06Th16lQxcdBTuXJl1KpV\nC5UrV8bYsWORkZGBpk2bIjAwEPv370d6ejoyMjIMj83NmzdH3bp10ahRI7z11lt48OABzp8/DwAY\nPXq0wbeMMaxfvx6jR4+usE1JSUk4ePAg5s2bh8qVK8PHxweTJk0y/A0CQPfu3RESEoKJEyeiffv2\n8PDwwPjx49G0aVPUqlULAwYMQMuWLdG2bVvY2dlh+PDhiIyMVNTYT0tLw927dwEAubm52L17N/z8\n/Ipdo2TtMcV+c7RHcJkAe3t7LFy4EP369UNhYSEmTpyINm3aYMmSJQCAF198EQMHDsSOHTvg5eWF\n6tWrY9myZUK7FQ1T7N+0aRMWL14Me3t7ODo6Yt26dTJb/YhRo0bh77//RkFBAdzd3fHxxx8b0gwv\nvvgiHB0dUadOHXh5eSE9PR3PPvtshfsompNs3Lgxzpw5I5r98fHx+Oeff1CpUiV06tQJ3t7e2Lx5\nM44fPw4PD49ivk9NTUVwcLBJ7V64cAFvvfUWTpw4gZycHBQUFMDf3x8ApTpKPo0V/fnq1auYMmUK\n3n777WLXlMzPAkBkZCRu3ryJ+/fvw9/fH5mZmdi5cycyMzPx999/w9PTEx4eHmjbti28vLyQk5OD\nqlWronbt2tBoNLh37x7S0tIAAEOHDsXrr7+OGzdu4Pz587Czs0OPHj0qbFNycjLq1KmD6tWrG15r\n3LhxsSjQ3d0dkZGRWL16NTp06IDLly/j8uXL8PX1RWJiImJjY+Hi4mLwf25uLpKTk4tF+3KTkpKC\n8PBw6HQ66HQ6hIWFoU+fPqrRHlPsN0t7zFyJw1EQd+/eZdWrV2cbNmwo9npmZiZr0KAB+/XXXxlj\njL366qvsrbfeMry/du1a5u7ubvi5adOmbO/evYaf4+PjmUajYXFxcYbX3nvvPTZp0iSz2jOGTqdj\nzZs3Z+vXr2fNmjVjmzdvZozRUseGDRsynU5nuHbUqFHso48+YowxNm7cODZr1izGGGNarbZYv4wx\n1rt3b/buu++yrKwsxhhjCxYsYD169GCMMbZixQrWvXv3YjZ4eHgY/NSvXz+2Zs2aMu0uyp49e1iD\nBg3Y22+/zX744QfGGGPp6emsYcOG7O2332Zjx441/E4NGjRgZ8+eNXzW2dm5mI+eeeYZ9s0337DJ\nkyezadOmGV4vzyZPT09DO4mJiaxSpUosMzPT8P706dPZ+PHjGWOMzZ49m40ZM6bY54OCggy/P2OM\nzZw5k40bN87w8+7du5mXl5fJPuHIB99RagU4OTlh9uzZeP311/H3338jPz8fCQkJeO655+Dh4YGw\nsDAAgK+vL3bs2IE7d+7gxo0b+Oabb4q14+LigsuXLz/W/ty5c5Gbm4uYmBgsX74cI0aMENReUTQa\nDcaOHYv33nsPGRkZCAkJAQB07doVjo6O+OKLL5Cfnw+tVou//voLI0eOBEDpCfbwsdTFxQW3b9/G\nvXv3DO1mZWUZ8pFxcXFYvHix4b2BAwfizJkz2Lp1KwoKCrBo0SLcKFLs+6WXXsJnn31mSJlkZGRg\n48aNpf4O3bp1w507d7B69WoEBgYCAJydnVGvXj2sXr0aPXv2BEAT2vb29qhXrx7y8vLw8ccfF7MZ\noBTMihUrsHnzZkPqpaI2eXh4oHv37pg+fToePHiA6OhoLF26FGPGjCnrqyiWxmIKWFnEMQ8u6lbC\nu+++i88++wzvvPMOnJyc0LVrVzRp0gR79+6Fg4MDAFqR4uPjA09PT/Tv3x8jR44sNtE5ffp0zJ07\nF87Ozvj6668Nr/fq1QteXl548skn8e677+LJJ58U1F5Jxo4di6SkJIwYMcJgq4ODA/7880/s3LkT\n9evXx2uvvYZVq1ahZcuWAIpP0rZu3RqjRo1Cs2bNUKdOHdy4cQNfffUV1qxZg1q1amHy5MnFbKtX\nrx42btyI9957D/Xq1cO5c+fg7++PKlWqAKAJ3Pfffx8jR46Ek5MT2rdvj7///rtU+x0dHeHv74/8\n/Hy0K3IGXs+ePZGammoQ9f79+6N///5o2bIlPD09Ua1aNTRu3LhYW6Ghobh06RIaNWpUbJdtRW1a\nu3YtEhIS4OrqiqFDh+Ljjz9G7969H/NdUYq+ZuwaJa0a4ZSOpPXUOeomISEBzZo1Q0FBgdFJWGtB\np9PBw8MDa9asQS9+QglH5VjvXyqHUwa7du3C3bt38eDBA3z22WcAKOXD4agdLuqcMrHWR+5Dhw7B\ny8sL9evXx/bt2/HHH38Y0i8cjprh6RcOh8OxIiQ9zs5aozwOh8ORGnPjbcnTL/qlZ2L+i41l6NyZ\noX59hlq1GEaMYLh7V/x+Zs+eLYn9lvonlf3LlpHvPTwY6tZl+OYbBp1OHbar3ffZ2QwTJzLUrMnQ\nsCFDu3YMx46px361+z86mqFjR4YGDUh7xoyRRnuEoLqcelwcEBQEvPACcOMGkJIC1KsHBAcD2dly\nW2f9fPstMHcusGcPkJgIHDoELF0KzJ4tt2XWT14eMGAAcP8+kJQEJCcDM2fSa0ePym2d9XPmDNCn\nD/D666Q9yclA1apAv37K0h5Vifr9+8DgwcDnn5Oo29kBjo7A998DPj7Ayy/LbaF1899/5Pu9e4EO\nHei1Fi2A3buBlSuBHTvktc/aee89oHZt8rWTE6DRACNGAL/8AgwbBmRkyG2h9ZKVBQwZAixYAIwb\nR76vXh346SegeXPgrbfktrAITELEbn7WLMaGDjX+XnY2Y02aMLZ7t3j97du3T7zGZEBM+/PyGGvX\njrGNG42//88/jLm70/cgBtz3xTlxgjEXF8bS042//+KLjL38snj9cf8XZ9o0xp5/3vh7GRmMNW7M\nmFYrXn9CtFPS1S9iHrpw4wbg7Q1ERwMlajEZ+OMPYM4cICqK7qQc8fjxR2DTJorKS/Ptc88BHTsC\n06ZZ1jZbICgIGDMGmDTJ+Pvp6UCrVsDBg/T0xBGPq1dpXJ89CxQ5b6YYa9YA331H6UgxtEeIdqom\n/fLVVzSoSxN0AHjmGUrJ/Pmn5eyyBQoKgHnzgE8+KXvAfvIJfU9ZWZazzRY4eJDmLx4eBmWUOnWA\nqVPpO+CIy/z5wMSJpQs6AIwcCeTkADt3Ws6u0lBFpJ6RATRtWnaUrmfTJsp7RUYK7pbzkLVrgcWL\ngSIntJXKkCFA3758fkNMnnmGJuNeeaXs69LTKb977hxQpDw8RwBpaUDLlhSlu7qWfe2KFcBvvwEP\nj6wVhNVH6mvW0KxzeYIO0ERqQgJ9CRxxWLTI9ImgKVPoMVS6UMG2SEykAKWsKF1PnTo0cfrjj5Kb\nZTMsXw6EhpYv6ABF69HRgNzHuKpC1H/+mVa7mIK9PT0q/fSTtDbZChcvApcuAYMGmXa9vh7WoUPS\n2WRLrFxJQv3wRLNyefllYNkyQKeT1i5bgDES9QkTTLu+ShVg/Hj6jJwIEvXPP/8cbdu2Rfv27TF6\n9Gg8ePBALLsMREXRY+XDaq8mMXEiRfdFzhnmmMny5cDzzwMPK+KWi0YDhIUBq1dLapZNoBcVU6J0\nPT4+tNzx4XnWHAEcPw7k5gIPS+SbRFgYac/Ds8JlwWxRT0hIwM8//4yTJ0/izJkzKCwslOSYt/Xr\ngdGjaQLUVJo0oTzYw/OROWbCGLBqVcVEBaDva8MG2izDMZ+DByn6e3gKn8mMGcNvqmKwciUQHl6x\n1Sze3kCDBsDD43BlwezaL7Vq1YKDgwNycnJQqVIl5OTkGD2le86cOYb/BwUFISgoyOQ+GAM2bwbM\nuVc89xwJS//+Ff8shzh+nB77i5zVYBKenkCbNrT80dS0Dedxfv8dGD684kvkRo0CfH1pLsTUJyxO\ncXQ6YMsWGsMV5fnnaXHBwzNJTEKr1UKr1Va8M2MIWSC/ZMkSVqNGDVa/fv3Hzjx8uKpGSPPs9GnG\nPD0ZK3JMpckkJTFWpw5jDx4IMsGmmTGDNl2Yw/z5jE2eLK49toROx1izZoydOmXe5zt3pg1hHPM4\nepSxVq3M++ylS7RRrLDQ/P6FaKfZ6ZfLly/jm2++QUJCApKTk5GVlYXffvtNnDvNQzZtAoYONW8x\nv7s7pWAOHBDVJJvijz9oNZE5hITQfgE+YWceZ8+S7/TlGCpKSAiwbZu4NtkSQsZ+8+ZUj+rYMXFt\nMhWzRf348ePo3r076tatC3t7ewwdOhQHDx4U0zb8+af5jgWo0BGvR2IeFy4Ad+4AnTub9/kWLWjC\n7sQJce2yFbZsobFv7u7E0FBg61a+tNRctmyhPRfmEhoq303VbFFv3bo1Dh8+jNzcXDDGsGfPHnh7\ne4tm2M2bQHw8IOSEsQEDlLHDS43s2AE8/XTFJqhLohcWTsXZsYOibXPp0IFWYMTEiGeTrZCQANy+\nbX5AA8g79s3+k/Xx8cHYsWPh7++PDg+fESdPniyaYbt3UzldIRM9nTrRjrCEBNHMshl27waeekpY\nGwMHAmUceM8phTt3SIyfeML8NjQa7n9z2bOHllALCWi6dKF6Vdevi2eXqQhap/7ee+8hJiYGZ86c\nwYoVK+Ag4lT7rl20NVoIdnbUBo/WK0ZeHs1FVGT23hhdu1L9+zt3xLHLVtBqSdCFHpnapw9f1msO\nYgQ0dnYUlMrhf0XuKGWMRL1vX+Ft9etHd16O6Rw5QpPMdesKa6dKFaB7dxIpjunoI0WhBAfTJiS+\nX8B0dDoS4j59hLcl101VkaJ+5gxQsybQrJnwtnr1oo0AfBWG6ezeLY6oADxaNAex/F+3LuDlxU9F\nqginT9PKFQ8P4W3px76lJ6sVKepaLUUZYuDhQafFyF1kR03s2SP88VMPF/WKcfUqcPeu+UsZS8L9\nXzHEHPteXjS3ceGCOO2ZiiJF/cCBitVbKI9evXgKwFSysiha6d5dnPZ8fYFbt+SZMFIjWi0diCFk\nkq4oXNQrxr594gWUGo08/lecqDMmvqgHBclbi0FNHD1KQlytmjjtVaoE9OjBC0yZSmQk+UssnniC\n9gpIUGvP6tDpqLqokFVHJenVy/IbIBUn6pcv0zLGJk3Ea1OfV+cbMconMlLcQQ1QeyLvS7NaxPZ/\nzZp0zN3Jk+K1aa3ExlI+3cVFvDblGPuKE/UDByhSEfOM0caNgRo1aHkdp2ykEPXu3flJVKaQnk6H\nYvj4iNsu979pSDH2W7SgY+6uXRO33bJQpKiLmXrR060bcPiw+O1aE4WF5COx8ul6/P3piLXsbHHb\ntTYOHaJNK/Zm1041Dn9SMg0pRF2job8nS/pfcaL+33/i5hT1dO3KRb08YmLo0bN+fXHbrVqVok++\ntK5spBAVgNqMjOTpx/KQ2v+WQlGifusW/WvXTvy2uaiXj1SDGrD8wFYjUvm/cWOgcmWar+IY58YN\nWkraurX4bdu0qB87Ro/qYi3nKoqPD521mZkpftvWgpSibulHULWRl0erVIQUsCsL7v+yiYykFK0U\n2tOpk2XTj4oTdSGV0cqicmVaqnf8uDTtWwOHD9PAlgL9nAZPARgnOhpo2pTKFUtBt278MPCykHLs\nV61Kp4dZSnsUJ+pdukjXPk/BlM6dO1TuuFUradpv2BCoXp3KKXMe5/jxip9FWhE6d+a17cvCmvwv\nSNTv3r2LYcOGoU2bNvD29sZhAYrJmLSROsBFvSxOngT8/GizkFT4+/MnpdI4cUJaUfH1pdOUeHGv\nx9HpaPx36iRdH5Yc+4JEfcqUKRg4cCDOnTuH6OhotGnTxuy2EhNJUIycXS0aAQE8BVAaUkcqABf1\nspDa/9Wr0zFrZ89K14dauXgRqFOHNh5JhSpEPSMjAwcOHMCECRMAAPb29nASkBDUR+libjoqiYcH\n3ZVTUqTrQ61wUZeP3Fzg/HnxiniVBve/caR+SgJoVU1KCq2wkRqztznEx8ejfv36GD9+PE6fPo1O\nnTrh22+/haOjY7Hr5syZY/h/UFAQgoKCjLYndeoFoBtGx470qOXqKm1fauP4ceDTT6Xto1Mn+gPS\n6aRZZaBWoqNpLkOsejuloRd1EQ8oswosEdBUqkQpsJMnjR8+o9VqoRWr6iAzk2PHjjF7e3t29OhR\nxslgTQAAABGaSURBVBhjU6ZMYbNmzSp2TUWaDwpiLCLCXGtMZ9o0xj76SPp+1ERqKmO1ajFWWCh9\nX02bMhYXJ30/amLhQsYmTZK+nyNHGPP1lb4ftREYyNiePdL38+abjP3vf6ZdK0Camdnxkru7O9zd\n3dH5YXg9bNgwnDSzapB+okLquyXwKFLnPOLECYqiLRE98xTA41giUgQovXP+PKV7OERhIRAVRbog\nNZYa+2b/GTds2BAeHh648LAC/J49e9C2bVuz2rp0iSYqhB6fZgpc1B/HEjlFPVzUH8dS/q9alXK7\n0dHS96UWzp+n5bbOztL3pXhRB4Dvv/8ezz//PHx8fBAdHY0ZM2aY1c7p0+JXpiuNZs2Ae/eA1FTL\n9KcGjh+XdjlXUfR5dQ6Rk0NBjRSlMYzB/V8cS459Ly+qxHn7trT9CKoH5+Pjg2PHjgk24tQpmkSw\nBBoNrceOihLnYGtr4MQJ4IsvLNOXjw9FioxJu9JJLZw+DbRpQ4d0WwIfH+qTQ+hTj5bAzo52lkZH\ni3e6ktF+pGvadCwZqQM8BVOUu3cpehDjkG9TqFeP1kxfvWqZ/pROdLRlxz4X9eJYo/9tUtT9/Lio\n64mOpkd/Sy4x5MLyiNOnpV+fXpQOHWgDUmGh5fpUKozR+Lek/21C1G/fphy3p6fl+uSR+iMsHakA\nXNSLYmn/OzlRvXxehpcOQ7e3p4lSS2EToq6PVCwZKbZsCSQnA1lZlutTqVg6UgG4qOthDDhzhvtf\nLuQY++3a0bGa+fnS9aEIUbd0pGhvT0u7YmIs268SsfTjP8BFRU9CAh0MbYmlvEXh/ifkeEqtXp3K\nlZw/L10fsou6JVe+FKV9e4qSbJnCQrqxtW9v2X5btKA6GLZ+YIkckSLARV2PHAENIL3/ZRd1OSJ1\ngIs6AFy5QvlVqQ5mKA17e8Dbm/ufi7q8WKv/ZRX1vDx6DLHUxouidOjARUWuSAXgwgLIF9A0bfpo\nKautcv8+BTUCqoWbjVWL+rlzNMCkrk5nDP0mAFuurS5XpAJwUQfk83/RTTC2yrlztMPTUpu+imLV\noi6nqOiXMd24IU//SkCuSBHgop6dDVy7Riux5MDHh+azbBU5n1Ld3SlLIZX2yCrqZ8/Kk3oBaIu6\nrefV5byptm9Pk7S2+qR09iytwHJwkKf/9u1t+xQkOVa+6NFoHm0CkwJZRT0mBjCzsKMo2HJePSOD\nipo1by5P/87OQI0aQFKSPP3LjZw3VID+7mx5Sa81+9+mRd2W84pnz9IKFCkPmi4PWxYWJYhKbKzt\nPikpwf+KFfXCwkL4+fkhJCSkQp/LygJu3pQvUgRsO/0SFyfPzH9RbFnU5fZ/3bq0QOHaNflskIvb\nt4EHD4BGjeSzQdGi/u2338Lb2xuaCtZRPXeOJonkjhTj4oCCAvlskIu4OMrpyknbtrab11WK/23x\npnr+PPleztLPet9L8aQkSNSvXbuGHTt2YNKkSWAVtE7u1AtAOV1XVzqkwNbgoiIfmZkULTZuLK8d\ntup/JYz9evVoOWVysvhtCzok480338SXX36Je/fulXrNnDlzDP8PCgpCUFAQAGWIOvAotyj3l2xp\nlDCwvb3piU2ns2xBN7m5cIFKJcj5lArQ2D9yRF4b5EAJYx94dFN1cwO0Wi20Wq0o7Zot6n/99Rca\nNGgAPz+/Mo0pKupFiY0FJk82t3fxaNOGbBk6VG5LLMeDB7TqRM75DACoXZv+Xb1Km9BsBSWJytKl\ncltheeLigPHj5bbikaj37Vs84AWAjz76yOx2zY6PDh48iG3btqFp06YYNWoU/vnnH4wdO9bkzysl\nUtdHi7bEpUtAkyZA5cpyW2KbKQAlibotroBRkv+lGPtmi/pnn32GpKQkxMfHY926dejduzdWrlxp\n0mezsmiNtBKiM29vGti2hFIGNcBFXU6cnan0b2Ki3JZYjgcP6PeV+ykVIO1RlKiXpCKrX2JjgVat\n5M8pAvTHdf68bR3vpRRRAbioy42t+f/yZWU9pUrxpCSKqPfq1Qvbtm0z+XqlpF4AWgFTvz4dWGAr\ncFGRj8JCSn/JVfOlJLbmfyWNfan2Csiy5iAmhh49lIKt5dWVNLC9vckenU5uSyxDQgLQoAGdgKME\nuKjLixT+l03UlRKpA49WwNgCjNHAbtVKbkuIWrUoYomPl9sSy2ALoqJkbMH/XNRhW5OlycmAoyNQ\np47cljzCloRFaaJSdK+ALaA0/1uFqN+7R7vplLDyRY8tpV+UNqiBRxNGtoB+i7pS0O8VsIUVMEp7\nSgWkGfsWF/Vz58ipStpB2KYN2WUL63WVKOr6FUi2APe/fKSk0MSkkp5S9b4XU3ssLq3nz8tfHbAk\nzs40cWULFeuUKipxcXJbYRm4/+VDib6vV4+Wdt+6JV6bFhd1pT3+6LGVvLoSB7ZeVKz9SUlf8lV/\nlKJS4KIuL2L7X5ZIXYmOtZW8uhIHthTRihJRQslXY3BRlxfVi7pSI3VbWNaolJKvxmjd2vpvqkoW\nFWv3PWA7/reoqBcUAFeuUNlRpWEL6RellHw1hi1Ei0oVFTc3IDsbuHNHbkukRan+V3WknpAAuLjQ\nOmmloRd1a87rKjX1BXBRlxONhp6erXkFTHY2kJam3KdU1Yq6kkWlfn0S9LQ0uS2RDqWKCsBFXW6s\n3f9Kfkr19KTzmnNyxGnPoqKu1Hw6QNGKta/X5aIiH0oq+WoMa/e/kse+vT2NiwsXxGlPkKgnJSUh\nODgYbdu2Rbt27fDdd9+Veb2SI3WAbjh8YMtD06biRitKQ0klX43Rpg0f+3Iipv8FibqDgwMWLFiA\nmJgYHD58GIsWLcK5MqZxlRypA9adVywsBC5eVE7J15JUqgR4eYkXrSgNpY99W4jUbcX/gkS9YcOG\n8PX1BQDUqFEDbdq0QXIZx2OrIVK3VlG/elVZJV+NYc3CovRI0cuLFjLk58ttiTQo3f9ijn2zD54u\nSUJCAqKiohAQEFDsdf3B0/fvA5mZQWjUKEisLkXHmnPqSh/UgPWLepFzhRVHlSqAhweliZQ+TiqK\n0p9SASA7WwutVouHcikMJgKZmZmsU6dObMuWLcVeL9r8oUOM+fuL0Zt03L/PWJUqjD14ILcl4jN/\nPmNvvCG3FWWzejVjI0bIbYU0dO7MWGSk3FaUzdNPM1biT9gquHKFMQ8Pua0om8xMxqpVY6ywkH4W\nIs2CV7/k5+fj2WefxZgxYzB48OBSr1N6TgugaMXdnTZIWRs8UpcPJZZ8NYa1+l8NY79GDTosRowS\nyIJEnTGGiRMnwtvbG1OnTi3zWqXn0/VYa15dDQO7VSuaKLW2AxtSUoCqVemPVslwUZcXsfwvSNQj\nIyOxevVq7Nu3D35+fvDz80NERITRa9UQqQB8YMuJmNGKklCD7wE+9uVGLP8Lmijt0aMHdCaGVWqK\n1A8fltsKcVFqyVdj6Ae2p6fcloiHWsZ+0RLISqskKYS4OGDECLmtKJ/WrYEzZ4S3Y5EdpfpCXl5e\nluhNGNaYflFqyVdjWGO0qJZIsW5dwMGBNoFZE2rxvyLSL6YSHw+4utJRUkrHGpc1qmVQA9ZZBpb7\nXz7S04HcXKBRI7ktKR+xfG8RUVdLPh2gDToFBdZV2EttosIjdfmwNv+r6SnV1ZVuQEJLIFtE1NWS\nUwSsswypmkTF2nyfnU0nOjVpIrclpmFt/lfT2NdoaIOUUP/zSN0IfGDLh5sbkJUFZGTIbYk4KLnk\nqzH42JcXMfzPI3UjWFNeXeklX0siVrSiFGxRVJSELfqfR+pGsKYSvEov+WoMaxIWtYlK06ZAcjLV\narIG1OZ/VYj67dtAXp461kjr4aIiL/qdpdaA2vzv4EB7BC5dktsS4eTlUXVStTylAvSUKnTsSy7q\n58/TH6kaZp/1WFMZUrWJCsDTL3JjLUHN5ct0JmmVKnJbYjotWwq/oVpE1NU2qKtWpQm7+Hi5LREO\nFxX5UEPJV2NYi//VOParVwfq1RPWhuSirrZ8uh5ryaurcWC3bEliqPbCXomJ9Adao4bcllQMLury\nIlQveaReCtYwsNVS8rUkNWsCzs5AUpLclghDzaKi9rEPqNv/QuCReilYw7LGlBQqzVCnjtyWVBxr\nEBY1i8r58xQUqBk1+18IgkQ9IiICrVu3RosWLTBv3jyj1yQkqKOQV0latQKOHNHKbYYg1q3TqnJQ\nA0DNmlpVi7pWq1WtqNSrBxQUaJGaKrcl5rNvn1a1AaVsol5YWIjXXnsNERERiI2Nxdq1a3HOSDUa\nNzeaeFQbrVoBV65o5TZDEHv3qlfUHzzgoi4XGg1Qu7a6/b99uxZVqij/YBJjCJ1YN1vUjx49Ci8v\nL3h6esLBwQEjR47E1q1bH7tOjYMaoHX1hYVU5U2tpKWp1//16vH0i5zUratu/6t57DduLOzzZh+S\ncf36dXh4eBh+dnd3x5EjRx67Lj19juGE7KCgIAQp+Uj1Img0jwZ2t25yW2MeaWnqfPwEyPf798tt\nhfncv6+ekq/GUPtNVW1jX6vVQqvVitKW5uHJ1RVm8+bNiIiIwM8//wwAWL16NY4cOYLvv//+UeNq\n2nHE4XA4CsJMaTY/Undzc0NSkTVnSUlJcHd3F8UoDofD4ZiH2Tl1f39/XLx4EQkJCcjLy8P69esR\nGhoqpm0cDofDqSBmR+r29vZYuHAh+vXrh8LCQkycOBFt2rQR0zYOh8PhVBCzc+ocDofDUR6i7Cg1\nZRPSG2+8gRYtWsDHxwdRUVFidCsa5dmv1Wrh5OQEPz8/+Pn5Ye7cuTJYaZwJEybAxcUF7du3L/Ua\nJfu+PPuV7HuA5pKCg4PRtm1btGvXDt99953R65T4HZhiu5L9f//+fQQEBMDX1xfe3t6YPn260euU\n6HvANPvN8j8TSEFBAWvevDmLj49neXl5zMfHh8XGxha7Zvv27WzAgAGMMcYOHz7MAgIChHYrGqbY\nv2/fPhYSEiKThWWzf/9+dvLkSdauXTuj7yvZ94yVb7+Sfc8YYykpKSwqKooxxlhmZiZr2bKlasa/\nKbYr3f/Z2dmMMcby8/NZQEAAO3DgQLH3lep7PeXZb47/BUfqpmxC2rZtG8LDwwEAAQEBuHv3Lm7e\nvCm0a1EwdRMVU2iWKjAwEM7OzqW+r2TfA+XbDyjX9wDQsGFD+Pr6AgBq1KiBNm3aIDk5udg1Sv0O\nTLEdULb/HR0dAQB5eXkoLCxEnRKFjpTqez3l2Q9U3P+CRd3YJqTr16+Xe821a9eEdi0Kptiv0Whw\n8OBB+Pj4YODAgYiNjbW0mWajZN+bgpp8n5CQgKioKAQEBBR7XQ3fQWm2K93/Op0Ovr6+cHFxQXBw\nMLy9vYu9r3Tfl2e/Of43e/VL0U5NoeTdRikbk0yxo2PHjkhKSoKjoyN27tyJwYMH44KKzltTqu9N\nQS2+z8rKwrBhw/Dtt9+ihpEC6kr+DsqyXen+t7Ozw6lTp5CRkYF+/fpBq9U+tmtdyb4vz35z/C84\nUjdlE1LJa65duwY3NzehXYuCKfbXrFnT8Jg0YMAA5OfnI10lRWGU7HtTUIPv8/Pz8eyzz2LMmDEY\nPHjwY+8r+Tsoz3Y1+B8AnJycMGjQIBw/frzY60r2fVFKs98c/wsWdVM2IYWGhmLlypUAgMOHD6N2\n7dpwcXER2rUomGL/zZs3DXf7o0ePgjFmNPelRJTse1NQuu8ZY5g4cSK8vb0xdepUo9co9TswxXYl\n+z8tLQ13794FAOTm5mL37t3w8/Mrdo1SfQ+YZr85/hecfiltE9KSJUsAAC+++CIGDhyIHTt2wMvL\nC9WrV8eyZcuEdisapti/adMmLF68GPb29nB0dMS6detktvoRo0aNwr///ou0tDR4eHjgo48+Qv7D\nE7OV7nugfPuV7HsAiIyMxOrVq9GhQwfDH+Rnn32GxMREAMr+DkyxXcn+T0lJQXh4OHQ6HXQ6HcLC\nwtCnTx/VaI8p9pvjf775iMPhcKwIyY+z43A4HI7l4KLO4XA4VgQXdQ6Hw7EiuKhzOByOFcFFncPh\ncKwILuocDodjRfwfUaYhEUjyJ+wAAAAASUVORK5CYII=\n" + } + ], + "prompt_number": 12 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 2.11, Page Number: 67<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#from pylab import figure, show\n", + "#from numpy import arange, sin, pi,bool\n", + "#import numpy as np\n", + "import pylab as py\n", + "import numpy as np\n", + "#let input wave be V_in=V_p_in*sin(2*%pi*f*t) \n", + "f=1.0; #Frequency is 1Hz\n", + "T=1/f;\n", + "V_p_in=10; #Peak input voltage\n", + "V_th=0.7; #knee voltage of diode\n", + "print('max output voltage is 5.7V')\n", + "print('min output voltage is -5.7V')\n", + "\n", + "###############GRAPH Plotting#################################\n", + "t = arange(0.0,4.5,0.0005)\n", + "V_in=V_p_in*sin(2*pi*f*t);\n", + "\n", + "Vout=V_in;\n", + "#fig = figure(2)\n", + "subplot(211)\n", + "plot(t,V_in)\n", + "#ax2.grid(True)\n", + "ylim( (-10,10) )\n", + "title('Input to the +ve and -ve diode limiter ')\n", + "subplot(212)\n", + "plot(t,V_in)\n", + "#ax1.grid(True)\n", + "ylim( (-5.7,5.7) )\n", + "title('Output of +ve and -ve diode limiter')\n", + " " + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "max output voltage is 5.7V\n", + "min output voltage is -5.7V" + ] + }, + { + "metadata": {}, + "output_type": "pyout", + "prompt_number": 13, + "text": [ + "<matplotlib.text.Text at 0xa6c976c>" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEICAYAAAC+iFRkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXlYldX2x7+HQQFBZJBZZlBBRcxEUxI0BxxKsxRNzbK5\nvJm3uln5E7uledUGs8G6XdHMuUFTwhGcUKkky1lGmcUEZZLhnP37Y3eODOfAyznvsN/j+3keHuWc\n9+y9zmLt9a537b3XVhFCCBQUFBQUzBoLqQVQUFBQUBAexdkrKCgo3AUozl5BQUHhLkBx9goKCgp3\nAYqzV1BQULgLUJy9goKCwl2A4uwVOJOamooePXpILQYTzJkzB4sWLZJaDMTExODrr78GAHz77bcY\nM2aMUe0kJCRg1qxZRn3W398fhw4dAgAsXboUTz/9tFHtmCK/Qvsozp5n/P39cfDgQcH74TI4mw5C\nY7CwsEB2drbRnzdnVCoVVCqV1GI0k+Oxxx7D3r17jW7HFBm0vPnmm/jqq6+Maqel/Ir98Yvi7HmG\nFScAUFlM3TMn1p47Cwv5maKyH1F4jNVxY2Mjz5LIH/mNMBmRmJiIYcOG4bXXXoOzszMCAwORnJys\nez8mJgYLFy5EVFQUHB0dMWnSJJSXlwPQnzLRPjUkJydj2bJl2Lp1KxwcHBAZGdmq71mzZuHq1auY\nOHEiHBwcsHLlSgDArl27EB4eDicnJ8TGxuLixYt6Zb///vsBABEREXBwcMD27dt1733wwQdwd3eH\nl5cXEhMTda/X1dXh1VdfhZ+fHzw8PPD888/j9u3bxinv7/a6deuGc+fO6V4rKyuDnZ0drl+/DgDY\nvXs3+vfvDycnJwwdOhR//vmnwfZefvll+Pr6wtHREQMHDsSxY8d07yUkJGDq1Kl4/PHH0bVrV/Tp\n0we//fab7v2MjAwMGDAAXbt2RXx8POfvxfd32L9/P3r16oVu3bph3rx5zZxhYmIioqOjdb+npaXh\n3nvvRbdu3TBo0CCcOHFC915OTg6GDx+Orl27YvTo0TpZtJw8eRL33XcfnJyc0L9/fxw+fJjT9236\nxJmbmwsLCwskJibC19cXLi4u+OKLL/DLL7+gX79+cHJywrx58/TKb8j+2tKVv78//vOf/6Bfv35w\ncHCARqPhJPNdA1HgFX9/f3Lw4EFCCCHr1q0j1tbW5L///S/RaDTk888/J15eXrprhw8fTry9vcm5\nc+dIdXU1mTJlCpk5cyYhhJCUlBTi4+NjsO2EhAQya9YszrIQQsilS5dIly5dyIEDB0hjYyP5z3/+\nQ4KDg0l9fb3ez6tUKpKVlaX7PSUlhVhZWZHFixeTxsZGkpSUROzs7EhFRQUhhJD58+eThx56iJSX\nl5PKykoyceJEsnDhQk56U6lUel9/8sknyVtvvaX7fc2aNSQuLo4QQsjp06eJm5sbSU9PJxqNhqxf\nv574+/uTuro6vW1t3LiR3Lhxg6jVarJq1Sri4eGhu3bx4sXExsaG/Pzzz0Sj0ZCFCxeSwYMHE0II\nqaurI76+vuSjjz4ijY2NZMeOHcTa2posWrSI03fj6zuUlZURBwcH8t1335HGxkby4YcfEisrK/L1\n118TQqi9DRs2jBBCyF9//UW6detGNm7cSNRqNdm8eTNxcnIiN27cIIQQMnjwYPLPf/6T1NfXkyNH\njhAHBwedPRUUFBAXFxfy888/E0II2b9/P3FxcSFlZWV6v19Lu9TacE5ODlGpVOT5558ndXV1ZN++\nfaRTp05k0qRJpKysjBQWFhI3Nzdy+PDhVvIT0tr+DOlKa79+fn4kMjKSFBQUkNu3b3P629xNKM6e\nZ1o6++DgYN171dXVRKVSkdLSUkIIITExMc2c4fnz50mnTp2IRqNp19kvXrxYN6i4yEIIIe+88w6Z\nNm2a7neNRkO8vb1Jamqq3s/rc/a2trZErVbrXnNzcyOnTp0iGo2GdOnSpdn1aWlpJCAgoE0ZtXIY\ncvYHDhwgQUFBut/vu+8+8s033xBCCHnuuedaOdyePXvqnEd7ODk5kT/++IMQQvU5atQo3Xvnzp0j\ntra2hBBCDh8+3OwmrZWDq7Pn6zusX7+eDBkypNlrPj4+ep39hg0bSFRUVLNrhwwZQhITE0leXh6x\nsrIiNTU1uvdmzJihc/bvv/9+q0BizJgxZP369Xq/nyG71Dr7oqIi3bUuLi5k27Ztut+nTJlCPvro\no1byE9La/gzp6siRIzo51q1bp1dGBUKUNI7AeHh46P5vZ2cHAKiqqtK91jRV4+vri4aGhlaP1HxR\nXFwMX19f3e8qlQo9evRAUVER5zZcXFya5dft7OxQVVWFsrIy1NTU4J577oGTkxOcnJwQFxdn8Lsc\nO3ZMd52zszMA6H53cnJCWloaAJrqqqmpQXp6OnJzc3HmzBlMnjwZAJCXl4dVq1Y1+1xBQQGKi4v1\n9rly5UqEhYWhW7ducHJyws2bN5vJ5+7u3ux73b59GxqNBkVFRfD29m7Wlp+fn8F8cnh4OBwcHODg\n4IDjx4/z9h2Kiorg4+PT7DVDq6OKioqa/a21MhcWFqK4uBhOTk6wtbXV+33y8vKwffv2ZjIdP34c\nJSUlevtqj6Z6tbW1bfV7dXU1p3YM6aqp/SqrxQxjJbUAdztXr15t9n9ra2u4urqiS5cuqKmp0b2n\nVqtRVlam+53LJHDLa7y8vJrlOAkhyM/Pb+XIjMHV1RW2trY4f/48PD09271+2LBhuvkJgE7QNv1d\ni6WlJaZOnYrNmzfDzc0NEydORJcuXQDQm+Nbb72FN998s93+jh49ihUrVuDQoUMIDw8HADg7O3Oa\nAPT09ERhYWGz1/Ly8hAcHKz3+qb5eS18fAcvLy/s3LlT97v276cPb29vfP/9961kjouLg6enJ8rL\ny1FTU6MLQPLy8mBpaamTadasWfjyyy/blUlMuOiKlcURLKJE9hJCCMHGjRtx4cIF1NTU4P/+7//w\n6KOPQqVSITQ0FLdv30ZSUhIaGhrw7rvvoq6uTvdZDw8P5Obmtums3N3dkZWVpft96tSp2LNnDw4d\nOoSGhgasWrUKNjY2uO+++zh9vi0sLCzw9NNPY/78+bqbUmFhIfbt28fp820xY8YMbNmyBZs2bcKM\nGTN0rz/99NP44osvkJ6eDkIIqqursWfPnmZPTloqKythZWUFV1dX1NfX45133sGtW7c49T9kyBBY\nWVlh9erVaGhowPfff49ffvlF9O8wfvx4nDt3Dj/88AMaGxuxevVqg9F2XFwcLl++jM2bN6OxsRFb\nt27FxYsXMWHCBPj6+mLgwIFYvHgxGhoacOzYMezevVv32ZkzZ+Knn37Cvn37oFarcfv2baSmpra6\n4fGFIRtuaX8d0ZVCaxRnLyD6lmE2/V2lUmHWrFmYM2cOPD09UV9fj9WrVwMAHB0d8dlnn+Gpp56C\nj48P7O3tmz2iPvroowBoWmXgwIF6+1+4cCHeffddODk54YMPPkBoaCg2btyIefPmoXv37tizZw9+\n+uknWFnpf8BLSEjA448/DicnJ+zYsaPdZaXLly9HcHAwBg8eDEdHR4waNQqXL1/mrCtDDBo0CPb2\n9iguLkZcXJzu9XvuuQdfffUVXnrpJTg7OyMkJAQbNmzQ28bYsWMxduxYhIaGwt/fH7a2tq1SWob+\nVp06dcL333+PxMREuLi4YNu2bZgyZQqn78Xnd3BxccH27dvxxhtvwNXVFZmZmRg2bJje7+Di4oLd\nu3dj1apVcHV1xcqVK7F7925dymzTpk04deoUnJ2d8c477+Dxxx/XtePj44OdO3di6dKlcHNzg6+v\nL1atWsVpdUtLPXbkCbTlZ1vanyFdKdE8N1SEy3OsgiDExsZi1qxZePLJJ6UWRUFBwcwxKbJ/8skn\n4e7ujr59++peu3HjBkaNGoXQ0FCMHj0aFRUVJgtpzij3WgUFBTEwydk/8cQTzTYJAcD777+ve3wf\nOXIk3n//fZMENHeUR1AFBQUxMDmNk5ubi4kTJ+pWefTq1QuHDx+Gu7s7SkpKEBMTY3CXpoKCgoKC\nOPC+9LK0tFS3jtbd3R2lpaWtrlGiWQUFBQXjMDY+F3Q1TlurNwjdvWvUT2kpwYABBFOmEKSnE5w5\nQ/DCCwT+/gSXLhnf7uLFi02SS4gfU2V65x0CPz+CzZsJMjMJEhMJvLwIVq9W9NT05/ffqV5efZXg\nzz8J0tII4uIIoqMJysvNR0+mylVXRzB1KsGgQQT79hFcvEiwbBlB9+70d6n+fqzpiRCC77+nevno\nI4LLlwn27CHo25dg7lyCxkbj2jQF3iN7bfrGw8MDxcXFcHNz47X9ujpg0iRg1Chg2TJAey/59FNg\n7VogLg5ITwdcXHjtVpZ8+SWwaRNw8iSg3cgbFATExADDhwNubsC0aZKKyARFRcD48cAHHzTXx+7d\nwAsv0Nf27AEMrFC9q5g3D6iuBg4fBmxs6GtvvAEMGwZMngwcPAj06yetjCxw4gTw7LNAcjIwYAB9\nLSQEuP9+amtvvQWIPZ3Je2T/4IMPYv369QCA9evXY9KkSby2//bbgLs7sHTpHUev5dlngYceov/e\n7Zw7Rw1q5847jl6Lnx/w44/Aiy8CTTbw3pUQAsycCTzzTOsbn4UFsGYN0NAArFghjXwssWULcOQI\nsHnzHUevZdgw4KOPgKlTaUB2N3PrFtXDunV3HL0We3vgu++oDvfvF1kwYgLx8fHE09OTWFtbEx8f\nH/K///2P/PXXX2TkyJEkJCSEjBo1ipSXl7f6nLHdnjlDSPfuhFy7Zvia2lpCQkII2bmz4+2npKQY\nJZeQGCOTRkNIdDQhn37a9nX//jch48eLI5PQGCvTN98QEhlJSGOj4WtycghxcSHkyhVxZBIaY+Sq\nqCDE05OQtLS2r5s0iZD/+z9xZBIaY2V6+WVCnnyy7WuSkggJCCCkurpjbZvisk1y9kZ3aqTAI0YQ\n8tln7V+XnExIz56ENDQY1Y3s2bKFkAED2nZghBBSV0dIcDAhTQpj3lXU1FAHdvJk+9e+9x4hTQqG\n3nW89lr7DowQQvLzCXFyIqRJocu7iosXCXF1JcRANehmTJ5MyIoVHWv/rnD2x47RO6GB0uvN0Ea2\niYlGCCdz1GpCwsNp5MCFb74h5L77qM7uNj7+mEaiXKisJMTdnT5d3m2UlVEHfvUqt+vnzydk3jxh\nZWKV2bPpEzMXzp4lxM2NkFu3uLd/Vzj7MWMIWbuW+/UpKYSEhlLndzfx3XeEDBzI3Xk3NtKnoEOH\nhJWLNW7fJsTbm5Bff+X+mZUrCYmPF04mVnnzTUKeeYb79SUlhHTrRsjfxzbcNWRm0nTf32f5cCI+\nvmPRvSnOXhaF0M6fB86cAZrUamqX4cMBOzuAh6KLsuLDD4F//av15LUhLC2Bl18GPvlEWLlYY/t2\nICwMuOce7p956ilg7166euduobaWrnJ7/XXun3F3B6ZMAYw8d1y2fPIJ8PTTgKMj98+88gpdSahW\nCyeXFlk4+7Vrgblzgc6duX9GpaLLxO4mJ3buHJCVRVckdYRZs+hSurw8YeRikS++oMsqO4KjIzB9\nOv3s3cL27cC999Ilux1h3jzg88/pSqa7gdpaYOPGjq8EHDSI3hybVJgWDOadfU0N8O239I7ZUaZP\nB06dAnJzeReLSdaupdGntXXHPmdvTx3+3RKJnT0L5OQAEyZ0/LMvvUT11NjIv1wssnYt8NxzHf9c\nRAQQECCOE2OBbduAqCjA37/jn33pJXpjFBrmnf327VSJfn4d/6ytLV07vXEj/3KxRm0tvSk+9ZRx\nn3/iCeCbbwAOJctlz5df0idFYzZJ9e5NbfHAAf7lYo2zZ+nT3vjxxn3+iScAA6X5zY61a43f3/Pw\nwzQoNXCaJm8w7+y//bZjufqWzJpFnZiJO42ZZ88eIDISaHHsKGciIoBu3YCjR/mVizUaG4GtW023\nqbvBiX37LfDYY8bvHH7kESAlBfjrL37lYo3sbCAzExg3zrjP29nR3cebNvErV0uYdvbXrtHSB8Y8\nbmuJiqKOPj2dP7lYZMsWmrYyhdmzzd+JpaTQyLyjOeimTJsGJCXRnZLmCiGm21TXrrR8ydat/MnF\nIlu30hubKeU0Zs+mQamQMO3sd+ygj5B/n4lsFCoV3Q7/7bf8ycUalZV06/Xkyaa1M3068P335r3d\nfcsWID7etDZcXelqrx9/5EcmFvnlF7ogIiLCtHbMfewB1NmbWmPq/vvpE5Ces+p5g2lnz8fABOgy\nsB9/NN9Uzq5dQHQ08Pfxokbj5QWEhwOHDvEjF2vU1VE7mDrV9LamTAF++MH0dlhFO/ZMrUb+wAPU\ngRk4F132XLgAlJXR2kCmYGFBc/dC2hSzzr6wkE4QjR5telthYbRw02+/md4Wi/ARWWiZPNl8ndj+\n/dQWfHxMb2vCBHpTrK42vS3W0Gjo6hI+bKpzZ5rK2bnT9LZYZNs24NFH6X4VUxF67DHr7HfvpkbS\nkbX1hlCp6F3z++9Nb4s1amqA1FTT5jWaMnkyHZhibPIQm127TE91aXF2pmuk9+7lpz2WyMigy3F7\n9+anPXMdewC/NjVsGK1CK9RScaad/cSJ/LVnrhHroUN0F6iTEz/tBQYCnp5AWho/7bECIYpNcYVv\nPcXF0fruFRX8tckChYV0v8bQofy0Z2UFPPigcHNBTDr7mhq6o3PMGP7avPdeunrC3I7D/ekn/qJ6\nLeboxDIyAAcHeoAEX0yaRJe8mtsuUb5tyt6eTmjv2cNfmyywZw8wdiy/h9oIOfaYdPYpKbToP1/R\nKkAnQMaNoyfHmAvaaJVvZz9+vHnpCRBGT15edMfkqVP8tislRUV03fh99/HbrmJT3BgxAjh9Grh5\nk992AUadvRDRKkDvwuZkcL//Tpelhoby2+6AAcD16+ZVK0dIm/r5Z/7blYqkJPpE3dGSG+0xdiyd\n3zCXHdq1tXSubOxYftu1s6M3WiFWxAnm7P39/dGvXz9ERkZi0KBBnD8nRG5VywMPAMeP0zSROfDT\nT1RPpi6Pa4mFBR3w5nJjLC6mOxxNXR6nj7g489ETcMem+Mbfn54Lffo0/21LwaFDdMe6qcud9REX\nJ0wAIZizV6lUSE1NRUZGBtI7sH313Dm6AofvaBWgVQsjI+l8gDmQnGz8Fu32MKenoH376AH1fEer\nADB4MK00WlrKf9tiU19PU6h8zpU1xZxsSoyxx/e+IEHTOMQIaQ8coBE439GqFnMxuJs3gT//FCZa\nBej+hpQU6gDkzoED1NkLgbU1MHKkeSzBPHWKBlkuLsK0by5jDxDWpnr2pE/XFy7w2y6P88jNUalU\neOCBB2BpaYlnn30WT7eoUZyQkKD7f0xMDGJiYgBQJZpSpKo9xo41vYYMCxw+TOv+2NgI03737nTl\nyokTdCWFXCGE2tSSJcL1oXVis2cL14cYaAMtoRg+nG5AKi/nd/GF2BQU0Lpd/fsL075Kdcemrl1L\nRWpqKj8NG33GVTsU/X3i8LVr10hERAQ5cuSI7j1D3dbXE9K1K7fDeo1FrabnPmZnC9eHGMybR8iy\nZcL28dZbhCxcKGwfQnP2LD27WEjy8uhxdHI/AvO++wjZv1/YPsaOJWTHDmH7EJrEREIeeUTYPr7/\nnpDRo1u/borLFiyN4+npCQDo3r07Jk+ezClvf+oUrUbo6iqUVPTxKDaWpijkzMGDwkZhAE1PyL1O\njtDRKkDLSjs50bSaXLl1C/jjD/42CBnCHGxKjLEXE0M3NvKZRhXE2dfU1KCyshIAUF1djX379qFv\n377tfk4MJQLyd/ZFRbSwVGSksP0MGULrE/39p5Qlik1x48gRWv7B1lbYfuSuJ21aUGibcnKi8yd8\nlmYXxNmXlpYiOjoa/fv3R1RUFCZMmIDRHCqaiaFEgG5cSEmRbxXMgwfpnZ+P4kttYWNDHYBcDzRp\naKBzG7GxwveltSm5ItbY69+fBipyrYJ54QLQqRMtKyI0fNuUIM4+ICAAv//+O37//XecPXsWCxcu\nbPczlZV0S7tQq0uaEhxM/83MFL4vIRArWgWoo5TrY/cvv9BB2b278H3FxNDoWK4F5A4epCkWobG0\npLXb5Xpj1I49oVYLNoXvscfMDtojR2j9GlMOKuGKSkXvmnJ0YmI9RmqR82O3mHry8KDlEzIyxOmP\nT0pK6AqTe+4Rpz/FprgRHU0DltpaftpjxtmnpFAHLBZyNbjMTHqz0j6dCM2gQcCVK8CNG+L0xyeK\nTXEjNZUuixQ6LahFroGWWk2DUjHSggAt3Ne3L13+zAfMOPujR+njnVjINW+v1ZMYj5EAzU8OGUKN\nXE7U1wO//sp/Qa+2kGveXuyxFx5ONwXm54vXJx+cPQu4u9MfseAzgGDC2VdVUUV2oISOyfj5AV26\nAOfPi9cnHxw5Qh/vxESOEeuvv9JNYY6O4vU5fDhw7Jj8Sh6LbVMWFnSOQ242Jfexx4SzP3mSztIL\nveyrJXJ0YkePSmNwcnvslkJPLi50QvjXX8Xt1xRu3KDVTYVextsSxaa4MXQorW7Lx/GXTDh7sR8j\ntQwfLq9lhUVF9LQfvo6L48o999Cj0uSUt5diYALys6njx2nZDT4P4OCC3PREiDQ2ZWcHRETQgNhU\nmHH2UgzMYcNo33LJ2x89SmW2EPmvZmVFHcLx4+L2aywaDZVVSpuSC1KNvd69aeBSVCR+38aQlUUn\nsP39xe+bL5uS3NnX19NdYmJOpGkJCKATndnZ4vdtDFI9AQHUIRw7Jk3fHeXsWcDNTdyJNC3R0fRG\nI5dDOqSyKQsLmqKQi02JvTCiKXyNPcmd/W+/0WWE3bqJ37dKJS8nJsUEkZboaPlErFLqycOD5u7l\nMPFfXU3r4URFSdO/YlPcGDqU1g0zdeJfcmcvZbQKyMfgysvpSfZiT6RpGTwYOHOGvw0eQiJVakKL\nXGzq1CmaDxZ7YYQWuegJkNamnJxoFsLUDXtMOHtlYLaPdiJNiNOWuGBnRzd4sH64tlQTaU2Ri01J\nracBA+gmwYoK6WTgQnExDbbCwqSTgQ+bktTZazQ0hSKlwYWH04MIWD9WTuqBCchj8jE7m6bnAgKk\nk0EuE/9S21SnTrRESlqadDJw4ehRmkoRe2FEU2Tv7M+epUWqPDykk8HSkk4Os563lzrdBchjfkPK\niTQtwcE0v5qXJ50M7dHQQJ/ShK5f3x5ysikpGTbMdD1J6uyljiy0sP7YXVND8+VSTaRpGTaMrvdt\nbJRWjraQciJNi3bin2WbOn2abgCT+nhA1vUEsGFTPj60Vo4pKM4e7BvcqVNAv37iVARtCxcXanRn\nzkgrR1soNsUNVvQ0ZAideLx9W2pJ9FNRQVODAwZILYnpfy/JnD0hbNwxAWDgQODSJXZPZGJlYAJs\nO7GSEuCvv+g8jNSwnp5gxabs7ekGq19+kVoS/Rw/Tmt2SbUwoinMOvvk5GT06tULISEhWL58eav3\ntRNpYpz40h6dO9M7N1+lRPmGlYEJ8JM7FAoWJtK09OsHFBYC169LLUlrWFgY0RTWbYoVPTHp7NVq\nNV566SUkJyfj/Pnz2Lx5My5cuNDsGq0SpZxIawqrEat2Ik2ME7y4oNUTiytNWJhI02JpSVMULDqx\nCxdort7LS2pJKKyOPYAtm+rZ07TPC+Ls09PTERwcDH9/f1hbWyM+Ph47d+5sdg1Ld0yAXYPLyKD1\nOKSeSNPi50efhK5ckVqS1rCSFtTCqk2xpqdhw+jyS9aOdKytpRUnBw+WWhKKqYGxILXuCgsL0aNH\nD93vPj4+ONViN86PPyagc2cgIQGIiYlBTEyMEKJw5r77aGnaujrqzFiBtZsicMeJhYZKLckdKipo\nsSoWJtK0REcDr74qtRStOXpUvKP1uODmRpdf//knLXXOCqdO0Y2EUi6MSE1NRWpqKi9tCeLsVRxu\nQUFBCVizho38KgB07Uqd12+/SVOUzRBHjwLx8VJL0Ryts587V2pJ7pCWRjfodOoktSR3GDSI1sip\nqqITkSyg3WG8ZInUkjRHa1MsOXsWAq2WgfASE/5wgrhab29v5Dc5cyw/Px8+Pj7NrklPZ8fRa2Ht\nsZsQtibStLCmJ4CNgdkSGxvqvPioRc4XeXl0HkisM4y5otiU8AjibgcOHIgrV64gNzcX9fX12Lp1\nKx588EEhuuKV6Gi2zlq9cIE+cXh7Sy1Jc7S1yAsLpZbkDqwOTNZsirWFEVq0emJl4r+xkd6kpd5h\nzCeCOHsrKyusWbMGY8aMQVhYGKZNm4beYh+vZATR0WxNFLHqwCws2IrEbt9mayKtKSzpCWDXpvz9\n6Vr2zEypJaH8/jvg60s3EpoLgiVS4uLicOnSJWRmZmLhwoVCdcMr7u50sujsWaklobA6MAG2nFh6\nOq1IyEpevClDh9INQ/X1UktCYdWmWCsxwaqeTIGxrLn0sGRwx46xs76+JYqeuOHoCISE0Il/qSkr\no+V6+/WTWhL9KDYlLIqzbwErBpefTwugmbqRQigiI+lhKuXlUkvCfhTGik0dP043ellaSi2JfljR\nEwtnIgiB4uxbcP/9bOwQ1R4uztpEmhZra5ojl/oQcrWalrlgOQpjxYlpbYpVwsJo8CD1IeSXL9PT\nu3x9pZWDbxRn3wJ/fzoBmZUlrRxyiCxYWGnyxx+Apyc9F4FVtEXRpD6EnHWbsrBg44Ac1vVkLIqz\nbwErE0VyMDhFT9zw8ABcXaWd+K+qohu8Bg2STgYuKDYlHIqz14PUBvfXX8DVq2ztJtRHVBSNrGtq\npJOB9dSEFm16UCpOnqT2ZGMjnQxckHrsAfKxqY6iOHs9SG1waWnUkVoJUsyCP+zs6MoOqQ4hZ3WH\nsT6ktim56GnAAFr+XKpDyAsLgZs36cZBc0Nx9noIDwdu3KDL1KRATo+RUkasWVl0ZYm/vzT9dwSp\nS0PLxaasrWmgI9XEv3bJJWulXPjADL+S6VhY0M0wUjkxuQxMQNpJWla3/usjMJA6+uxs8ftuaKAb\nz1gq8NcWLNiUOaI4ewNI9dhdU0Pz4FIfLs6VoUNpGqehQfy+5TQwpZz41x4u3q2b+H0bg5QpLznZ\nVEdRnL2VR5ppAAAgAElEQVQBpDI4FmpodwQnJyAggB6yIjZym0iTyqbk5sAGD6aH2tfWituv9nDx\nyEhx+xULxdkbYMAAmhMWe6Lo8GFg+HBx+zQVKZxYURGdV+nTR9x+TUGq+Q252ZSdHQ14xJ74P3qU\nPlGzdCYCnyjO3gCdOtE1yWlp4vabkgLExorbp6lI4cRSUqgDk9NEWp8+tD5NSYl4fTY20r+NxAfB\ndRipbEpuY68jyGioiI/YEWtNDS2YJafUBCDNDtFDh4ARI8Trjw+0E/9iHkJ++jTQowfbO4z1IcXT\nohxtqiMozr4N7r+fPgKLRVoaEBHBZqnetvDyopN/58+L16dcozCxbSolRZ4ObOhQuhFMrNLQf/1F\n8/UDB4rTnxQozr4N7ruPHoJ865Y4/cl1YALAyJHAwYPi9JWbC1RX08JZckNMPQE0WpXjTdHZmZ4J\nnZ4uTn+HD9MnamtrcfqTAsXZt4GNDZ2wESsSk+vABKgTO3BAnL60Ub0c1te3pH9/oLRUnCMd6+vp\n06KcJmebIqZNyXnscYV3Z5+QkAAfHx9ERkYiMjISycnJfHchKg88II7BVVbSp4ghQ4TvSwhGjKAb\nYcRYby/XFA5Ad/zGxooT3aen0+jYyUn4voRArLEHyNumuMK7s1epVFiwYAEyMjKQkZGBsWPH8t2F\nqDzwgDgD89gx4N57aR1tOeLqCgQFCf/YTYi8012AeDYldwc2bBhdb19ZKWw/paV0Ka+5rq/XIkga\nh0h98gePREZSQxC6To45PEaKkY/OzKQOPzhY2H6ERBuxCj1M5G5TtrY0ABK6dEJKCp04Z/UEL74Q\npK7iJ598gg0bNmDgwIFYtWoVuunZp52QkKD7f0xMDGIYXQjc9LF75kzh+jlwAFizRrj2xeCBB4D3\n3gP+7/+E6+PAAXpTkWO+XktQEJ0IvHhRuOqK1dXAr7/Ka+esPrQ3xvHjhetDa1MskpqaitTUVF7a\nUhEjwvBRo0ahRM/OkPfeew+DBw9G978X9S5atAjFxcX4+uuvm3eqUskq+v/8c5qeWLdOmPaLi+nK\nkrIy9ssat0V1NeDuTjcNCbV89KGHgPh4YPp0YdoXi6eeopO1L70kTPt79gArVgA8+QnJSE8H5s6l\n81lCQAjdh3DoEJ3fYB1TfKdRrmX//v2crnvqqacwceJEY7pgipEjgaVLqWEIEVHu20cjGDk7egDo\n0oWuUz5yBBg3jv/26+up82oRO8iSkSOBrVuFc/bJyYDMp8sAAPfcAxQU0ADCw4P/9s+do7vlQ0L4\nb5s1eM/ZFzdJbv/www/o27cv312ITkgI3f148aIw7f/8s3kMTAAYNYrevITg+HGgVy86GSx3Ro6k\nS3qFWr1kLs5em0blGF92GK2e5JwW5Arvzv5f//oX+vXrh4iICBw+fBgffvgh312IjkpFc4a7d/Pf\ntlpNDdkcBiZwR09CZOmSk4G4OP7blQI3N5o2EKIkQGYmPXM2IoL/tqVAqLEHmJdNtYdROXuTO5VZ\nzh4AkpKA5cv532B18iTwzDO0hr05oM2BHjhAo3A+iYgA1q6lJXDNgX//GygvBz74gN92P/2UTs4K\nNcckNto5rWvX+N3hWlUFeHrS9uVSosQU36nsoOVIbCzw+++0rC6fmFMKB6BPQRMm8B+JFRXR3O29\n9/LbrpQIoSfA/GzK05MuteW7gFxKCq1sKxdHbyqKs+eIrS0tE7t3L7/t/vSTsMvKpGDiRP6d2E8/\nUQdmTmuh+/enK5guX+avzepqOkE+ahR/bbKAUDZlbmOvLRRn3wEmTKAGwhc5OTRalVtJ4/YYMYKW\n1i0v56/N778HJk/mrz0W0D4F8WlTycm0npOzM39tsgDfelKrgZ07zc+m2kJx9h1g/Hg6mPhaQfHj\njzRiMadoFaBPQcOH03QCH1RUACdOmFdqQgvfTuyHH8zTgUVG0qeWS5f4aS8tjaaHAgL4aU8OKM6+\nA3h50RUUKSn8tPf998DDD/PTFmtMngx89x0/be3eTedMzDG3+sADtP5LaanpbdXX081UkyaZ3hZr\nqFT0e/FlU+Y89gyhOPsOEh8PbNliejulpXRXIKvbtE1l8mS6IoePswDMNVoF6FPQ+PHAjh2mt5WS\nQldAeXmZ3haL8DX2CDFvmzKE4uw7yKOP0vRLXZ1p7Xz3HV3fa2PDj1ys4eREUzk7d5rWzq1btC6R\nGWzENghfTmzbNmDKFNPbYZWhQ+lquHPnTGvnl1/orlk5HVbPB4qz7yDe3vTke1NX5WzYAMyaxY9M\nrDJtmulO7Lvv6CooFxdeRGKS0aPpkY75+ca3UVNDUxMzZvAnF2tYWABTp9IyE6agHXt3w67ZpijO\n3gji44FNm4z//OXL9Gi90aN5E4lJHnyQro2+ft34Nr75xvxvip060ZSCKTfGXbvomnFzTeFo0T4F\nGbsns76e3iyErGDLKoqzN4Jp0+iqHGOd2Dff0AhM7oXP2sPBgTr8DRuM+/zVq3TycsIEfuVikTlz\naIE3Y53Yhg3A7Nm8isQk995Lx42xNe5//pnuxr2bVuFoUZy9ETg7Uye2fn3HP9vYCCQmAo8/zrtY\nTPLss7TEgTFO7H//ozfWzp35l4s1hg6lS3CNKcdx9Spw6pR5rsJpiUp1x6aM4auv7p6x1xLF2RvJ\nc88Z58R+/JFGFeZSpKo9hg6l9Uw6Wle9rg744gvhSgCzhkpFbeqLLzr+2c8/p1F9ly78y8Uis2fT\nWlVlZR37XGYmrY8v97MQjEVx9kYyZAhdNtfRidrVq4F584SRiUVUKuD554FPPunY57ZvpxPhYWHC\nyMUis2bR8tAFBdw/U1sL/Pe/wIsvCicXazg50TXyX37Zsc99+inw5JPyPefZVJSqlyawaRPw2We0\nTC2Xmf0TJ+gEU2Ymv9X7WKemBggMpOvuuSx302jojsmlS++u2iUA8M9/0lTfxx9zu37NGnqD2LVL\nWLlY48IFukorK4vbZrvr14GePYGMDMDXV3DxBEOpeikR06bRsqtcd9QuWkR/7iZHDwB2dsCCBcC7\n73K7fscOmqcX4rQr1nn1VTqBr+fUz1bU1ADLlgGLFwsvF2v07k33cXz+ObfrV6ygyzbl7OhNhkiA\nRN22S0pKSoc/8+23hERGEtLY2PZ1e/cSEhRESH298DIJjTEyVVYS4ulJyIkTbV93+zYhoaGEJCcL\nL5PQGCvTggWEPPlk+9ctXUrI5Mkdb99cdHX2LCHduxNSWtr2dXl5hDg7E5KfL7xMQmOK7zQ6st++\nfTvCw8NhaWmJ06dPN3tv2bJlCAkJQa9evbBPqDPqBMCYU9ynTwccHWk+0BA1NTRvvXp1x6N6vk6W\n5xNjZLK3B1aupJOQbRWSW7qU5unHjBFeJqExVqbFi+lcUFv12zMzgVWr6I9YcgmJMTKFh9N5jtde\nM3wNIcALLwCvvAL4+AgvE8sY7ez79u2LH374Affff3+z18+fP4+tW7fi/PnzSE5OxgsvvACNRmOy\noKyiUtEVFP/+N/Dbb63f1xrbfffdnWmJpkyfTgecocGZmkp1uWaNqGIxR9euNHh47DH9K05qa6ku\n33777lwv3pSEBFrB8ptv9L+/Zg3dmfz666KKxSRGO/tevXohNDS01es7d+7E9OnTYW1tDX9/fwQH\nByM9Pd0kIVmnZ0/qpB58kJ5mpUWtpo7tjz+MW1JnbqhUdFAmJdGbY9N5prQ0Ogfy7be0JMXdzkMP\n0ah17Njm+fuqKlr/JjQUePll6eRjBQcHWtTsn/+k5SKasn49fVL88Ue6S/mux9QcUkxMDPntt990\nv7/00ktk48aNut/nzp1LduzY0ewzAJQf5Uf5UX6UHyN+jKXNDfujRo1CiZ5lAUuXLsXEDpQhVLVY\nl0jMYNmlgoKCgpxo09nv37+/ww16e3sjv0n5voKCAngrz+UKCgoKksLLOvumkfqDDz6ILVu2oL6+\nHjk5Obhy5QoGDRrERzcKCgoKCkZitLP/4Ycf0KNHD5w8eRLjx49HXFwcACAsLAxTp05FWFgY4uLi\n8Nlnn7VK4ygoKCgoiIvRzn7y5MnIz89HbW0tSkpK8HOT06XffPNNZGZm4uLFiyCEoFevXggJCcHy\n5cv1tvWPf/wDISEhiIiIQEZGhrEicSY5OblNmVJTU+Ho6IjIyEhERkbiXa5bP43kySefhLu7O/r2\n7WvwGrF1xEUusfUEAPn5+YiNjUV4eDj69OmD1atX671OTH1xkUlsXd2+fRtRUVHo378/wsLCsHDh\nQr3XiaknLjJJYVMAoFarERkZaXAuUorx15ZMRunJ6KldDjQ2NpKgoCCSk5ND6uvrSUREBDl//nyz\na/bs2UPi4uIIIYScPHmSREVFCSkSJ5lSUlLIxIkTBZWjKUeOHCGnT58mffr00fu+2DriKldKSgoZ\nOnQoCQ4OJvb29mTnzp2Cy1RcXEwyMjIIIYRUVlaS0NBQwWwqJyeHqFQqolarTZbJFJtKSUkhPj4+\nut/Dw8PJ4cOH2/1cdXU1IYSQhoYGEhUVRY4ePUpUKhXJysoihHRMT+vWrSPDhg3T/W5vb09ycnI6\n/F2qq6tJeHg4OXTokE6mpog99rSsWrWKzJgxQ2/fUo2/tmQyRk+C1sZJT09HcHAw/P39YW1tjfj4\neOxscSjprl278PjfBaajoqJQUVGB0tJSSWUChFsxlJiYiL59+6JLly7w9PTECy+8gH79+sHJycng\nZ5rqaNq0aSgsLORNR/7+/jh06JDe96Kjo9uUCwAuXryIf/zjH6isrMSDDz7Ii0xt4eHhgf79+wMA\n7O3t0bt3bxQVFTW7Rmyb4iITwJ9NnT17ttVmRn3Y2dkBAOrr66FWq+Hs7NzsfVP0VFlZCX9//44J\n/rdMZ8+eRVRUFNRqNTZv3oxZLY4iE2rsGaKgoABJSUl46qmn9PYttj1xkQnouJ4EdfaFhYXo0aOH\n7ncfHx8UFha2e01BR2q8CiCTSqVCWloaIiIiMG7cOJw/f56XvletWoU33ngDq1atwq1bt3Dy5Enk\n5eVh1KhRaGijhkBTmVUqFbp3786bjkypoqdSqVBeXo4PP/yQk54SEhKwZMkSo/rSR25uLjIyMhAV\nFdXsdbFtiotMQtlUW2g0GvTv3x/u7u6IjY1FWIt60VLoqaVM3bt3b/Z+R/WkVqtNlumVV17BihUr\nYGGh3x1Koaf2ZDLGngR19lwnZls6GyEndLm0PWDAAOTn5+PMmTOYN28eJvFwBNCtW7eQkJCANWvW\nYPTo0bC0tISfnx+2bduG3Nxc/PjjjwCAOXPmYNGiRbrPpaam4sCBAyCEYNasWbh69SrOnDmD+++/\nHytXrkRubi4sLCzw1VdfwdvbG15eXljVpGCKvva0hqttb+LEiXBwcMDKlSv1yn7jxg2EhITAxcUF\nDz30EIqLiwEATzzxBACgpKQEqampeOihh9rUgSHdL1++HI8++miz115++WW8/PcW0Zs3b2Lu3Lnw\n8vKCj48PFi1ahFu3buGRRx7Bxx9/DPsmNW7T09Nx7NgxjB07Fl5eXpg3bx40Go2ubwsLC6xduxah\noaFwcnLCS01OR9FoNHj11VfRvXt3BAUFYc+ePW1+n5bfYfLkyc1kavodgoKCMGHCBJSVlSE9PR3R\n0dEGy4jU1tZizpw5cHZ2Rnh4OH755Zdm7/v7++PgwYMAgLq6OsyfPx/e3t7w9vbGK6+8gvr6et13\nfeyxx2Bvb4+PP/4Yr7eoGaBWq/HJJ5/Az88PHh4euHjxou6z7WFhYYHs7GwA1MZeeOEFjBs3Dg4O\nDoiOjkZJSQlefvllODk5oXfv3vj9763lFhYWqKiowLfffotdu3Zh6dKl2Lp1KxwcHBAZGYkBAwbg\n7NmzGDhwIE6dOoWIiAgsWrRIp6vExEQMHToUCxYsgKurq8nBw+7du+Hm5obIyMg2gx4xfRQXmYzx\nUYI6+5Zr7vPz8+HTohqR2Ovyucjk4OCgewSOi4tDQ0MDbty4YVK/aWlpuH37Nh5++OFmr3fp0gXj\nxo3Dsb+rXqlUqlaGZGlpifz8fHzzzTfw9fWFl5cXsrOz8eqrr+quSU1NRWZmJvbt24fly5frnIG+\n9rRo29u9ezcqKyubtddU7tLSUmzfvh3FxcXw8/NDfHw8ACA7O1v3+ZqaGjQ2Nhqlp+nTpyMpKQlV\nVVUAqBPavn07HnvsMQDUmXTq1AlZWVnIyMjA3r17MWTIEMycObOVkVtZWSE2NhZffPEFTpw4gYMH\nD+LcuXPNbGrPnj349ddf8ccff2Dbtm3Y+/cJNF9++SX27NmD33//Hb/++it27NjBeVA/8sgj+Omn\nn/Doo49i0qRJrb7DvHnzYGdnh6ysLFy4cAFVVVX42EDR+iVLliAnJwfZ2dnYu3cv1q9f30yOpn/T\n9957D+np6Thz5gzOnDmD9PR03WRdcnIyVq1ahYMHD+L1119vtW+moKAAmZmZOHPmDDIzM1FRUYEt\nRp56vn37drz33nu4fv06OnXqhMGDB+Pee+/FjRs38Mgjj2DBggXN5Le3t8djjz2G2NhYxMfHo7Ky\nEhkZGXBwcMALL7yATp06oaCgAJ6enkhKSsJ///tf3efT09MRFBSEa9eu4c033zRKXi1paWnYtWsX\nAgICMH36dBw6dAizWxzmK7aP4iKTUT7KlAmE9mhoaCCBgYEkJyeH1NXVtTtBe+LECcEnP7jIVFJS\nQjQaDSGEkFOnThE/Pz+T+/3mm2+Ih4eH3vf+9a9/kejoaNKnTx8yZ84c8vbbb+veS0lJIa6urjod\neXp6kl69eune104iXrp0Sffa66+/TubOnUsIIXrbazrZ5+/vTw4ePGhQ7qlTpxJXV1fd71VVVcTa\n2prk5eWRkpIS3ee56Gnx4sUkISFB73vDhg0jGzZsIIQQsm/fPhIUFEQIoX+Lzp07k9raWkIIIRqN\nhgwbNqzZd2hJU5t6+eWXiZOTk+49lUpFjh8/3uz7LV++nBBCSGxsLFm7dq3uvX379nGaoNVoNGTW\nrFnEy8urze9QU1NDCKE25erqSmJjY/W2FxgYSPbu3av7/csvvzT4NwsKCiI///yz7r29e/cSf39/\nUlZWRh577DGycOFCUlNTQ6Kjo0liYqJuglaj0RAbGxsyfPhwQggde2FhYSQgIECvTC0naJtO9M6Z\nM4c888wzuvc++eQTEhYWpvv9jz/+IN26dSNlZWWkvLyc+Pv7k6SkJBIdHU1mz55NZs6cqbv2zz//\n1P29tTa1adMmna7WrVtHfH199cpoKqmpqWTChAmtXhfbR3GRyRgf1eYOWlOxsrLCmjVrMGbMGKjV\nasydOxe9e/fG2r9PC3722Wcxbtw4JCUlITg4GF26dMG6deuEFImTTDt27MDnn38OKysr2NnZGR3t\nNMXV1RXXr1+HRqNplYfbunUrSkpKoFarkZ2djREjRujk6dmzJ2xsbBAYGIjg4GBcv34di/WcVtE0\np+jr64s///zTZJmnT5+OnTt3oqGhAT169MCSJUvQ0NAAW1tbFBYW4vTp0ygsLMTTTz8Nd3d3vXqa\nMGECjh8/DoAuvQOAjz76CACdAN719xFLM2bM0E3Wbdq0SRcR5+XloaGhAZ6engCAxsZGVFVVwcbG\nBpGRkQBo+Y6rV68CAGJjY/HZZ5/h8OHDsLS0BCFEd50WDw8P3f/t7Ox0TxTFxcWt9GiIb7/9Fs89\n9xwAWgH25MmT8PLywosvvogPPvgArq6u6NWrF9auXYvIyEjU19fD3t5eF5Hb2NigzMAhqkVFRZzl\nKCoqgp+fX7Nri4qKUFxcjF27dqFr167YvXs3Zs2ahfj4eDzxxBPYtGkTnnnmGdTV1eHkyZOwtLSE\nSqWCra2t0ekJNzc33f9tbGya/W5ra4uqqioUFxfj8ccfR1FREV588UU8//zzqK6uRnJyMtauXYtn\nn30W69evR11dnS41Z2dnh+eee66ZDprqhm+0319KH8VFJqN8FM83IgUDVFRUkC5dupBt27Y1e72y\nspK4ubmRr7/+mhBCyIsvvkgWLFige3/z5s3NorqAgIBmkbg2sr948aLutddff5089dRTRrXXkrlz\n55LXX39d93vTyJ6Q9p8MmpKQkECWLFmi971r164RW1tbUlBQQLp166b7PkVFRcTW1rbd6FrLiBEj\nyGuvvUaqqqoIIYR8+OGHBiNSQmhUumjRIkIIjey/+OIL3XtcI3u+v0NAQABJbnJ6S3uRfVJSku69\nvXv36qLzJ554grzxxhu69y5fvqz7/mq1mtjZ2ZGioiJOMrUX2Td9evzqq69ITEyM7vcrV64QKysr\nvfInJCQ0i+zb01VLORS4oxxLKBKOjo5YvHgx5s2bh71796KhoQG5ubmYOnUqevTooVt+1r9/fyQl\nJaG8vBwlJSW6KFiLu7s7srKyWrX/7rvvora2FufOnUNiYiKmTZtmUntapk+fjnXr1uHMmTOoq6vD\nm2++icGDB7cZbRqCEGJwwql79+6IiYnBnDlzEBgYiJ49ewIAPD09MXr0aCxYsACVlZXQaDTIysrC\nkSNH9LZTVVWly2devHgRn7dzbl1TmaZOnYrVq1ejsLAQ5eXleP/99zv0/fj6DlOnTsWyZctQUVGB\ngoICfNLGae3Tp0/Hu+++i+vXr+P69et45513MHPmTF07iYmJuHDhAmpqappNZlpYWODpp5/G/Pnz\ndU8YhYWFRh02ZOhvygUPDw/k5ubq2uiorhS4ozh7EXnttdewdOlSvPrqq3B0dMTgwYPh5+eHgwcP\nwvrvI6xmzZqFiIgI+Pv7Y+zYsYiPj2/2aL1w4UK8++67cHJywgcffKB7ffjw4QgODsYDDzyA1157\nDQ888IBJ7WkZOXIk/v3vf2PKlCnw8vJCTk6O0WmttiaLAZrKOXjwIGbMmNHs9Q0bNqC+vh5hYWFw\ndnbGo48+qrcaKwCsXLkSmzZtQteuXfHMM8+0+r4t+28q09NPP40xY8YgIiICAwcOxJQpUzqc1uDj\nOyxevBh+fn4ICAjA2LFjMXv2bINyvP322xg4cCD69euHfv36YeDAgXj77bcBAGPHjsX8+fMxYsQI\nhIaGYuTIkc3aWb58OYKDgzF48GA4Ojpi1KhRuHz5st5+Wv7tDE0Y6/u95fVN0a7CcnFxwcCBA9vV\nVXs2pGAYFTHltqwgObm5uQgMDERjY6PBNbkKCgoKindQUFBQuAtQnL0ZoDzWKigotIeSxlFQUFC4\nCxB0nb0hlEhUQUFBwTiMjc8lS+Nol7zp+/HzI7h82fD7xv7U1BDY2BA0NOh/f/Hixbz3aepPWzK9\n9x7Bq68K0+/jjxN8+aV56On6dQJHRwKNhv9+09IIBg6Uj57ak+vhhwk2bxam3z59CE6flo+u2pIp\nOZkgNlaYfj/5hODZZ/W/ZwrM5ewrK4Fr14DAQP7btrUFvLyANpaVy4pz54A+fYRpu3dv4OJFYdoW\nm3PngLAwQIgHyl69qJ5MHIfMILRNXbggTNtic+4cEB4uTNtCjT3mnP2lS0BoKGBpKUz72sFpDly8\nSA1DCHr1Mp+BeeGCcHpycgK6dAFaVMmWJfX1QG4uEBIiTPvK2OOGUGOPSWf/98ZDQWgruoiJiRGu\nYyMxJBMhwOXL9MYoBG1FF3LSEyCdTbGoJ8CwXDk5gI8P0LmzMP2ay9gDhLUpLy+gthYwsdBuK5hz\n9kI6MMB8DK64GLCzA7p1E6bfwEDaR20td5mkpC2ZhLYpQ5EYi3oCDMulfaoWCnMZe4CwNqVSCfMU\nxJyzFzoKM5dHSaH1ZGVFHb6B3fOyQozI3hxs6vJlYfUUGkrnyxobhetDDG7donOLApa0F8SmmHP2\nYkT25jChJrSeAPOYUKuvB65eFWbCX4u5zG8IHdnb2QEeHjRdJGcuX6bzGkJWJxHCpphy9kLnoQHA\n2RmwsQH0nActK4SOVgHzcPbZ2UCPHsLloQHz0BMgfGQPmIeuhL4pAsLoiSlnX1REVzYIlYfWYg6R\nmBiRvaInbvj4AFVVQHm5sP0IjRhOzFxsSuibotlH9mJEqwDtQ+65aDF0peiJGyoVdZJy1tXNm/SG\nJWQeGjAfmxL6phgUBBQU0DQkXzDl7MW4YwI033blivD9CEV9PZCfL2weGqB6ysyU9/yGmDaVmSl8\nP0KhfQISupKJ3MceII5NWVvT9GN2Nn9tMuXsxbhjAvI3OG0eulMnYftxdKSTasXFwvYjJIpNcUOM\ndBcgfz2JMa+ohW9dCers1Wo1IiMjMXHiRE7XK1EYN8TSE6Doiityd2JipVC9ve+kjORIURFgb08D\nIaHhe+wJ6uw//vhjhIWFca5yKVYUFhREt4XLdb2vWHoC5O3EtE7Fy0v4vuSsJ0C8aNXCgo4/uQYQ\nYt0UAf5tSrASxwUFBUhKSsJbb72l92zThIQE3f9jYmIwZEiMKHlogC69dHcXfv21UFy6BNx7rzh9\nydmJaW+KYlTU1uqJEHH645tLl4BXXxWnL62u+vcXpz8+ETvQWr8+FQkJqby0J5izf+WVV7BixQrc\nunVL7/tNnT1Alxn5+gqfh9aiNTg5OvvLl4HHHhOnr5AQYOtWcfriG7GiVQBwdaWO/q+/6P/lBCF0\nLChPi+0jdgr1+vUYJCTE6F5bsmSJ0e0JksbZvXs33NzcEBkZybkGs5iPRwAQHCxfgxNTV4qeuKFS\nydeJFRYCDg5A167i9KfYFDf8/ICSEuD2bX7aE8TZp6WlYdeuXQgICMD06dNx6NAhzJ49u83PiBmF\nAfIdmDdvAtXVgKenOP2FhNB6JhqNOP3xiWJT3FD0xB0xdWVlRR0+X8svBXH2S5cuRX5+PnJycrBl\nyxaMGDECGzZsaPMzmZn0ji8WcjU4rZ7Eygs7ONAfOZaXUGyKG4qeuNHQQPe3BASI1yefuhJlnT2X\n1ThZWXSWXizkanBi6wmQp64Ikcam5LjKRGw9eXnRVVIGpvOY5epV+kQt1rwiIDNnP3z4cOzatavd\n61cD1/sAABWLSURBVMQ2uMBA+sdraBCvTz5QnD03btygDt/FRbw+5agnQHybUqnkmbeX+9hjYgdt\nfT3dpennJ16fnTvTCCM3V7w++UDuBicWWj2JuQyy6fJLOaHYFDfkricmnH1uLt1ZZ20tbr+KwXFD\n0RM3nJ3ppFpZmbj9moIU6S5AsSmumJ2zl0KJgGJwXFH0xB256er6dXqDcnISt1+56QmQxqZ69KB/\no5oa09tSnL2MDK6uDrh2jRqAmAQH0+Vfclp+qdgUNxQ9cUcKXVla0tU/WVmmt8WEs8/OVgyOCzk5\n1NFbCbbvWT9dutAURX6+uP2aguLEuKHoiRuEyN9PMeHspTK4wEB+60ULjVR6Ami/ctKVVANTsSlu\nuLsDtbXyWX557RpgayveLuOm8GVTzDh7KWrUBATQ5Zdqtfh9G4OUzl5OTqy2luY5fXzE71tuN0Wp\nbEqlkpdNmUOgJbmzl/LxyMYG6N5dPukJqQ2Oj7yhGOTk0GW8lpbi9x0YKB89AdIHEHLRlTmMPUGc\nfX5+PmJjYxEeHo4+ffpg9erVBq8tLqaHATg4CCFJ+8gpEpPqCQhQojCuuLnRifSbN6Xpv6NIaVPK\n2OMG02kca2trfPjhhzh37hxOnjyJTz/9FBcMHJUu5cAE5BWxmkN0IQZS6klO6YnqaqCiQvhDxg2h\n2BQ3/P1p9sHUw5YEcfYeHh7o//fJBPb29ujduzeKDFTSktrZy2VgajR085ncowsxUGyKG9nZ1JFY\nSJTMlYueAGltqnNn+sRoarpZ8EV8ubm5yMjIQFRUVLPXtYeXpKQA/v4xAGKEFkUvQUHADz9I0nWH\nKCoCunWjyyCloHt3WtaiooLKwTJZWcDo0dL1L5eIVaq5Mi1y0RMgnbNPTU1FamoqLC2BFuc9dRhB\nnX1VVRUeeeQRfPzxx7C3t2/2ntbZX74MjBwppBRtI5foQupotWl6YsAA6eTggtS6CgwEzpyRrn+u\nSK0nPz+goICmJ8TeO9IRKivpj1hnSDQlJiYGMTH0yNaoKGDDBsZOqgKAhoYGTJkyBTNnzsSkSZMM\nXie1wcklupBaT4A8dKVWA3l54tYcb4lcJh6ltqnOnQEPD7r8mWWys+kNXMqzhfmwKUGcPSEEc+fO\nRVhYGObPn9/mtVI/Srq4UAdRXi6dDFyQemAC8ngKKiigZ8Da2kong1yWFCo2xQ1W9GSqTQni7I8f\nP46NGzciJSUFkZGRiIyMRHJycqvrbt2iG2Dc3YWQghsqlTwiVhYMTtETN/z86LmurJ+VwIKuFJvi\nBh+RvSCZsmHDhkHDoWqWdu2qlI9HwJ3oYuBAaeVoCxYMLjAQ+O47aWVoDxb01KkTze9evSq9LIZo\nbBT/iD19yCWy79tXWhmYjey5IuVGhaYo0QU35KInVmyKZSeWn0+X83XuLK0ccrEpqcees7PpbUju\n7KVWIsB+dFFeTiMxV1dp5fDzo0tAWU5PSD0HpIX1vL0y9rjDgk1pV8OZguLswX50IcURe/qwtqZH\nOeblSStHW7BkUyw7MZb0lJXF7lGODQ10/kXMI1MNYerfS3H2YD+6YEVPANtOTKoj9vShRPbccHKi\nQcyNG1JLop+rV+n8S6dOUkuiOHte8PWlBdnq66WWRD+s6Alg24lpHQYf+U1TYfmmCLBjU6yvhmNF\nT4CM0zj19dTBsvB4ZG1Ni0Gxmp5gZdIRYNuJsZLuAu7cFFlNT7BkUyw/WbOkJ9lG9rm51MFaW0sl\nQXOU6IIbLEf2LOnJyYmWALh+XWpJWsNSugtQxh5XZBvZs6REgP3oghVdySGyZwVWbaqsjAZZTk5S\nS0JhVU8AWzbVo4dpn5fM2bOwnKkprEYXt2/T8y9N/UPzBcvpCZYGJsCuTSl64g5LujK1WJxgzj45\nORm9evVCSEgIli9f3up9lpQIsBtd5OTQCWRWqgJ260ZXJrCYnlBsihuKnrgh5ZGpQiCIs1er1Xjp\npZeQnJyM8+fPY/Pmza1OqmLN4FiNLljTE8Bu3p41XSk2xY0ePYDSUnqcI0uUltKCel27Si0JPwji\n7NPT0xEcHAx/f39YW1sjPj4eO3fubHYNS7PcwJ3ogrX0BGsDE2Azb19bS5deSnXEnj5YjVhZsykr\nK+rwc3OllqQ5rOnJVARJDhQWFqJHkySzj48PTp061eyaS5cSsG0b8OOPdwr0S4mjI2BjQ/PjUlbh\nbAmLj5EsRqw5OXQZr6Wl1JLcgUU9AdSm5s6VWormaHXVs6fUktyBhbGnPamKDwRx9ioOC53nz0/A\n0qVC9G482kiMJWeflQWMGCG1FM0JDASOHZNaiuawGIX5+NC5jdu3aSDBCizqisWnIBb01DIQXrKE\nsZOqvL29kd/kdNz8/Hz4+Pg0u2bFCiF6Ng0WIzHtKTksoeiJG5aWdHI9J0dqSe5QU0PPEfbyklqS\n5ig2JTyCOPuBAwfiypUryM3NRX19PbZu3YoHH3xQiK54hbWJR42GOgrWDI41PQFsRGH6YE1X2dmA\nvz9gIWmhlNawpieAXZsyFkH+5FZWVlizZg3GjBmDsLAwTJs2Db179xaiK15hLbooLqZzCV26SC1J\nc7y96WRoba3UktyB1SiMNZtS9MQd1haRmIpgq7fj4uIQFxcnVPOCEBQEfP211FLcgdXIwtKSToZm\nZwPh4VJLQ2FVV6w5MVb1FBhIn2I1GjaeOqqrgZs3acVLc4EBtbIDiwOT1ciCJV1pNHTZntRH7OmD\nJT0B7Dp7Bwf6U1wstSSU7GxqTyzcePjCjL6K6Xh50bt5VZXUklBYWPplCJacWFERrfNiZye1JK1h\nSU8Au2kcgC1dsTz2jEVx9k2wsKB3c1aWgCmRPTdY1lNgIH3qUKulloTCamQPKDYlNIqzbwFLBsdy\ndKHoiRt2dvQwlcJCqSWhN5y8PDbTXQBbNsXyTdFYFGffAsXguKHoiTus6KqwEHBxofVeWIQVPQFs\nBxDGojj7FrBS9+XWLboBhqXdvE0JCKDnc7KQnmA5Dw2wY1OsOzCWnL2SxrkLYMXgtA6MhSP29GFj\nA3TvDjTZKC0ZSmTPDdYdGCt6UqtpIMNqustYFGffAlYMjvVoFVB0xRWW9MTyTdHNjZY5rqiQVo6C\nAsDVla16RnygOPsW+PvTaLWxUVo5WI9WATac2K1bdCevm5u0crQFC3oC2I/sVSo2dCWHsWcMvDv7\n1157Db1790ZERAQefvhh3Lx5k+8uBKVzZ8DDgz7GSQnrAxNgZ2CynO4C2NATIA8nxoKuWH9SNBbe\nnf3o0aNx7tw5nDlzBqGhoVi2bBnfXQgOKwbH+sBkoXiVHPTk4kJ3+d64Ia0ccnBiLIw9OdwUjYF3\nZz9q1ChY/L3HOCoqCgUFBXx3ITisGJwyMNtHDnpiIT1RUQHU19NJdZaRWk+APG6KxiDoMdb/+9//\nMH36dL3vJSQk6P7PwklVTZHa4Bob6SSRv790MnBBqydCpEujZGcD/fpJ03dH0Orq3nul6V/7BMRy\nugugMm7dKq0MLEX2kp9UNWrUKJSUlLR6fenSpZg4cSIA4L333kOnTp0wY8YMvW00dfasERQEpKdL\n1//Vq3R9fefO0snABWdnWgHz+nXpIsasLGDSJGn67ghSBxByeAICpNcTwFZkz+dJVUY5+/3797f5\nfmJiIpKSknDw4EGjhJIaqQ1ODnloLVpdSeXs5aKroCDgxAnp+peLnnx9gdJSugRTimCnvJw+Wbu6\nit+30PCes09OTsaKFSuwc+dO2Mh0oWrT9IQUsPQY2R5S3hgbGmi6y89Pmv47gtQBhFwieysroEcP\n6Y5y1I491tNdxsC7s583bx6qqqowatQoREZG4oUXXuC7C8FxdKQbKq5dk6Z/lh4j20NKJ5afTw+X\n6NRJmv47gtTOXi6RPSCtruQ09joK7xO0V65c4btJSdAanBS1abKygEcfFb9fYwgKAo4ckaZvOT0B\n+fjQuY3aWmkKkcklsgekdfZysqmOouygNYASXXBD0RM3tEc5SpGeaGigB7zIId0FKDYlFIqzN4BU\nBkeIvKILJQrjjlS6ysujh8RbW4vftzEoNiUMirM3gFQG99dfdHLIyUn8vo3B25tu2KmuFr9vOaUm\nAOlsStETd+Smq46gOHsDSDkw5bQawMKCbv6Sol673KIwqW1KLmiPctRoxO23rg4oKaHLP80Rxdkb\nQKqBeeUKEBIifr+mIIWuCAEyM+WlK8WmuNGlC9Ctm/hHOWZnU0cvl3RXR1GcvQE8PYHKSvojJnIb\nmIA0Tqy4mDqFrl3F7dcUFGfPHSl0JUc9dQTF2RtApaKPk2KnJ+RocMrA5EZAAJ0sFfsoRznqSrEp\n/lGcfRsoBscNRU/csLWl2/DFLATb2EhvMHKbdFRsin8UZ98GYhscIfI0OCkG5uXL8tMTIL6u8vLo\nYTxyq1yiOHv+EczZr1q1ChYWFrgh9YkNJiC2wV2/TtNHLi7i9ckHAQHiH+Uo14Eptk0peuKOXHXF\nFUGcfX5+Pvbv3w8/uWzZM4BUA1Muyy61dO5My0qIeZSjXAem4uy5IXYxwtpaWgvLXJddAgI5+wUL\nFuA///mPEE2LSmgoTReIhVwHJiCurjQa6giCg8Xpj08Um+KGtsTw9evi9JeVRfeLWAl6nJO08P7V\ndu7cCR8fH/Rr5/gglk+q0uLnR+/2YhWvkuvABO44sbFjhe+roIDuMLa3F74vvpHC2Y8eLV5/fKFS\n3dGVGGclsDr2mD2p6r333sOyZcuwb98+3WvEwHMYyydVabG0pKsYrlwR5+i7K1eAhx4Svh8h6NkT\nuHRJnL6uXKGOQI6EhNAoUq2m9iU0rDoxLmhtauhQ4fti1aaYPanq7NmzyMnJQUREBACgoKAA99xz\nD9LT0+Hm5ma0kFKiNTixnL2cB+ZPP4nTl5z1ZGcHuLmJsxxSe7hLQICw/QiF2AHEPfeI05dU8Jqz\n79OnD0pLS5GTk4OcnBz4+Pjg9OnTsnX0gHiP3XJddqlFzPSEnPUEiKernBxaqE4Oh7voQ7EpfhF0\nnb1KbstK9CBWdFFaStdCd+smfF9C4OcHlJWJU/1S7gNTLJtS9MQdueuKC4I6++zsbDg7OwvZheCE\nhioDkwva+Y3MTOH7kruuxIpY5a6n4GBarkTo8hLV1fSgcR8fYfuRGmUHbTv07EkHptDrfeU+MAFx\nIjG1mpa/lVPJ3pYokT037Ozo/o3cXGH7ycykgYqFmXtDM/96puPqSo2grEzYfuQ+MAFxnNjVq3Qp\nnhTnuPKF4uy5I4auzEFPXFCcPQfESOVcuAD06iVsH0IjRnrCHPTUowfdLCT0/IY56EqxKf5QnD0H\ntKkcIbl4Uf4GJ0YUZg56srSk+egrV4Tro7KSHnEp9+3/ik3xh+LsOSB0ZF9fT/OScn+U1EZhQs5v\nXLgA9O4tXPtiIXTEeukS7UOMjVtCIlZkbw421R6Ks2+CoW3JQkcXmZk0AuvcmbtMUmJIJldX6lyu\nXROub0MDU056AoS3qbYcmJx0JbSeNBravr7InkU9mYLi7JvQlsEJGV2Yy8AEhB2chBjOryp6ao65\n2JSvL01HVVUJ0+/Vq7TOkr7jLVnUkykozp4DQUF0N6JQ9drN6TFSyMfusjIaibm7C9O+mAidnjAX\nm7KwEHZ+w1z0xAXF2XPA1hbw8hLuPNqLF83H4Hr1ogNICLR6MoON2ejZk34foeY3zM2mLl4Upm1z\n0lN7qIihspRCdmoOo1VBQUFBAox12ZKU6pfg/qKgoKBwV6OkcRQUFBTuAhRnr6CgoHAXoDh7BQUF\nhbsAwZ19cnIyevXqhZCQECxfvlzvNf/4xz8QEhKCiIgIZGRkCC1SuzKlpqbC0dERkZGRiIyMxLvv\nviuoPE8++STc3d3Rt29fg9eIrSMucomtJwDIz89HbGwswsPD0adPH6xevVrvdWLqi4tMYuvq9u3b\niIqKQv/+/REWFoaFCxfqvU5MPXGRSQqbAgC1Wo3IyEhMnDhR7/tSjL+2ZDJKT0RAGhsbSVBQEMnJ\nySH19fUkIiKCnD9/vtk1e/bsIXFxcYQQQk6ePEmioqKEFImTTCkpKWTixImCytGUI0eOkNOnT5M+\nffrofV9sHXGVS2w9EUJIcXExycjIIIQQUllZSUJDQyW3KS4ySaGr6upqQgghDQ0NJCoqihw9erTZ\n+1LYVXsySaEnQghZtWoVmTFjht6+pRp/bclkjJ4EjezT09MRHBwMf39/WFtbIz4+Hjt37mx2za5d\nu/D4448DAKKiolBRUYHS0lJJZQLEXTEUHR0NJycng++LrSOucgHir6zy8PBA//79AQD29vbo3bs3\nioqKml0jtr64yASIrys7OzsAQH19PdRqdauDhKSwq/ZkAsTXU0FBAZKSkvDUU0/p7VsKPbUnE9Bx\nPQnq7AsLC9GjRw/d7z4+PigsLGz3moKCAkllUqlUSEtLQ0REBMaNG4fz588LJg8XxNYRV6TWU25u\nLjIyMhAVFdXsdSn1ZUgmKXSl0WjQv39/uLu7IzY2FmFhYc3el0JP7ckkhZ5eeeUVrFixAhYGTi+R\nQk/tyWSMnpg4g7blHUrITVdc2h4wYADy8/Nx5swZzJs3D5MmTRJMHq6IqSOuSKmnqqoqPPLII/j4\n449hb2/f6n0p9NWWTFLoysLCAr///jsKCgpw5MgRvbVexNZTezKJrafdu3fDzc0NkZGRbUbKYuqJ\ni0zG6ElQZ+/t7Y38/Hzd7/n5+fBpcdBjy2sKCgrg7e0tqUwODg66x824uDg0NDTgxo0bgsnUHmLr\niCtS6amhoQFTpkzBzJkz9Rq5FPpqTyYpbcrR0RHjx4/Hr7/+2ux1Ke3KkExi6yktLQ27du1CQEAA\npk+fjkOHDmH27NnNrhFbT1xkMkpPxk8ftE9DQwMJDAwkOTk5pK6urt0J2hMnTgg++cFFppKSEqLR\naAghhJw6dYr4+fkJKhMhhOTk5HCaoBVDR1zlkkJPGo2GzJo1i8yfP9/gNWLri4tMYuuqrKyMlJeX\nE0IIqampIdHR0eTAgQPNrhFbT1xkksKmtKSmppIJEya0el3K8WdIJmP0JGi5BCsrK6xZswZjxoyB\nWq3G3Llz0bt3b6xduxYA8Oyzz2LcuHFISkpCcHAwunTpgnXr1gkpEieZduzYgc8//xxWVlaws7PD\nli1bBJVp+vTpOHz4MK5fv44ePXpgyZIlaGho0Mkjto64yiW2ngDg+PHj2LhxI/r164fIyEgAwNKl\nS3H16lWdXGLri4tMYuuquLgYj/9/O3dsAkAMQgHU3ZwjZP8l5KqDlOGKs/C9CUSSXwi6d1RVVFWs\ntSIzW//eTU0db+r0jmc6+3RT05c+tRxCA+BfNmgBBhD2AAMIe4ABhD3AAMIeYABhDzDAAwJBIdo4\nx/PeAAAAAElFTkSuQmCC\n" + } + ], + "prompt_number": 13 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 2.12, Page Number: 76<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "#variable declaration\n", + "V_p_in=18.0; #peak input voltage is 18V\n", + "V_supply=12.0;\n", + "R2=100.0;\n", + "R3=220.0; #resistances in ohms\n", + "#calculation\n", + "V_bias=V_supply*(R3/(R2+R3));\n", + "\n", + "#result\n", + "print('diode limiting the voltage at this voltage =%fV'%V_bias)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "diode limiting the voltage at this voltage =8.250000V" + ] + } + ], + "prompt_number": 14 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h3>Example 2.13, Page Number: 78<h3>" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "V_p_in=24.0;\n", + "V_DC=-(V_p_in-0.7); #DC level added to output\n", + "print('V_DC = %.1fV'%V_DC)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "V_DC = -23.3V" + ] + } + ], + "prompt_number": 15 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |