diff options
author | hardythe1 | 2015-06-11 17:31:11 +0530 |
---|---|---|
committer | hardythe1 | 2015-06-11 17:31:11 +0530 |
commit | 79c59acc7af08ede23167b8455de4b716f77601f (patch) | |
tree | 2d6ff34b6f131d2671e4c6b798f210b3cb1d4ac7 /Electrical_Power_System_by_C.L._Wadhwa/Chapter09.ipynb | |
parent | df60071cf1d1c18822d34f943ab8f412a8946b69 (diff) | |
download | Python-Textbook-Companions-79c59acc7af08ede23167b8455de4b716f77601f.tar.gz Python-Textbook-Companions-79c59acc7af08ede23167b8455de4b716f77601f.tar.bz2 Python-Textbook-Companions-79c59acc7af08ede23167b8455de4b716f77601f.zip |
add books
Diffstat (limited to 'Electrical_Power_System_by_C.L._Wadhwa/Chapter09.ipynb')
-rwxr-xr-x | Electrical_Power_System_by_C.L._Wadhwa/Chapter09.ipynb | 358 |
1 files changed, 358 insertions, 0 deletions
diff --git a/Electrical_Power_System_by_C.L._Wadhwa/Chapter09.ipynb b/Electrical_Power_System_by_C.L._Wadhwa/Chapter09.ipynb new file mode 100755 index 00000000..c026f288 --- /dev/null +++ b/Electrical_Power_System_by_C.L._Wadhwa/Chapter09.ipynb @@ -0,0 +1,358 @@ +{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 09 : Insulated Cables"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.1, Page No 196"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#initialisation of variables\n",
+ "V=85.0 # working voltage (kV)\n",
+ "gmax=65.0 # dielectric strength of insulating material (kV/cm)\n",
+ "\n",
+ "#Calculations\n",
+ "r=V/gmax\n",
+ "d=2*r\n",
+ "D=2.6*math.e\n",
+ "\n",
+ "#Results\n",
+ "print(\"Diameter of the sheath =%.2f cm\\n\" %D)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Diameter of the sheath =7.07 cm\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.2, Page No 200"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#initialisation of variables\n",
+ "e1=4.0\n",
+ "e2=4.0\n",
+ "e3=2.5\n",
+ "g1max=50.0\n",
+ "g2max=40.0\n",
+ "g3max=30.0\n",
+ "r=0.5\t\t# radius (cm)\n",
+ "\n",
+ "#Calculations\n",
+ "r1=r*e1*g1max/(e2*g2max)\n",
+ "r2=r1*e2*g2max/(e3*g3max)\n",
+ "V=66.0\n",
+ "lnc=(V-((r*g1max*math.log(r1/r))+(r1*g2max*math.log(r2/r1))))\n",
+ "m=lnc/(r2*g3max)\n",
+ "R=r2*(math.e**m)\n",
+ "D=2*R\n",
+ "\n",
+ "#Results\n",
+ "print(\"minimum internal diameter of the lead sheath,D=%.2f cms \" %D)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "minimum internal diameter of the lead sheath,D=7.52 cms \n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.3, Page No 202"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#initialisation of variables\n",
+ "r=0.5 \t#radius of conductor(cm)\n",
+ "g1max=34.0\n",
+ "er=5.0\n",
+ "r1=1.0\n",
+ "R=7.0/2 #external dia(cm)\n",
+ "\n",
+ "#Calculations\n",
+ "g2max=(r*g1max)/(er*r1)\n",
+ "V=((r*g1max*math.log(r1/r))+(r1*g2max*math.log(R/r1)))\n",
+ "V=V/(math.sqrt(2.0))\n",
+ "\n",
+ "#Results\n",
+ "print(\"Maximum safe working volltage ,V =%.2f kV r.m.s\\n\" %V)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum safe working volltage ,V =11.34 kV r.m.s\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.4 Page No 202"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#initialisation of variables\n",
+ "r=0.9\n",
+ "r1=1.25\n",
+ "\n",
+ "#Calculations\n",
+ "r2=r1+.35\n",
+ "r3=r2+.35 # radius of outermost layer\n",
+ "Vd=20.0 # voltage difference (kV)\n",
+ "g1max=Vd/(r*math.log(r1/r))\n",
+ "g2max=Vd/(r1*math.log(r2/r1))\n",
+ "g3max=(66-40)/(r2*math.log(r3/r2))\n",
+ "\n",
+ "#Results\n",
+ "print(\"g1max =%.1f kV/cm\" %g1max)\n",
+ "print(\"g2max =%.2f kV/cm\" %g2max)\n",
+ "print(\"g3max =%.0f kV/cm\" %g3max)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "g1max =67.6 kV/cm\n",
+ "g2max =64.81 kV/cm\n",
+ "g3max =82 kV/cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.5, Page No 206"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#initialisation of variables\n",
+ "V=20.0 #voltage (kV)\n",
+ "w=314.0\n",
+ "\n",
+ "#Calculations\n",
+ "C=2*3.04*10**-6\t\t\t#capacitance per phase(micro-farad)\n",
+ "KVA=V*V*w*C*1000.0\n",
+ "\n",
+ "#Results\n",
+ "print(\"3-phase kVA required =%.0f kVA\" %KVA) \t#Answer don't match due to difference in rounding off of digits"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "3-phase kVA required =764 kVA\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.6, Page No 206"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#initialisation of variables\n",
+ "C1=0.208\n",
+ "C2=0.096\n",
+ "Cx=3.0*C1\n",
+ "w=314.0\n",
+ "V=10.0\n",
+ "\n",
+ "#Calculations\n",
+ "Cy=(C1+ 2*C2)\n",
+ "Co=((1.5*Cy)-(Cx/6))\n",
+ "C=Co/2.0\n",
+ "\n",
+ "#Results\n",
+ "print(\"(i)Capacitance between any two conductors=%.3f micro-Farad/km\" %C)\n",
+ "c=((2*C2 + ((2/3)*C1)))\n",
+ "print(\"(ii)Capacitance between any two bunched conductors and the third conductor=%.2f micro-Farad/km\" %c)\n",
+ "I=V*w*Co*1000*(10**-6)/math.sqrt(3)\n",
+ "print(\"(iii)the charging current per phase per km =%.3f A\" %I)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i)Capacitance between any two conductors=0.248 micro-Farad/km\n",
+ "(ii)Capacitance between any two bunched conductors and the third conductor=0.19 micro-Farad/km\n",
+ "(iii)the charging current per phase per km =0.899 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.7 Page No 213"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#initialisation of variables\n",
+ "rm=(2.28/2)-(.152/2)# mean radius of sheath (cm)\n",
+ "d=5.08\n",
+ "a=d/rm\n",
+ "w=314.0\n",
+ "\n",
+ "#Calculations\n",
+ "Xm=2*(10**-7)*math.log(a) # mutual inductance (H/m)\n",
+ "Xm2=2000*Xm\n",
+ "V=w*Xm2*400\n",
+ "\n",
+ "#Results\n",
+ "print(\"Voltage induced =%.2f volts \\n\" %V)#Answer don't match exactly due to difference in rounding off of digits i between calculations"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Voltage induced =78.54 volts \n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9.8, Page No 214"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#initialisation of variables\n",
+ "R=2*0.1625\n",
+ "Rs=2*2.14\n",
+ "M=314.0\n",
+ "\n",
+ "#Calculations\n",
+ "w=6.268*10**-4\n",
+ "r=Rs*M*M*w*w/(R*((Rs**2)+(M*M*w*w)))\n",
+ "\n",
+ "#Results\n",
+ "print(\"ratio=%.4f \" %r)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "ratio=0.0278 \n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |