diff options
author | Trupti Kini | 2016-06-19 23:30:31 +0600 |
---|---|---|
committer | Trupti Kini | 2016-06-19 23:30:31 +0600 |
commit | bcfdba28ef6597f80f5cac083492c27daac80b35 (patch) | |
tree | c90924d5f2850aac781d9034fa197f8276f0d35a /Electrical_Network_by_R._Singh/Chapter12_1_1.ipynb | |
parent | d8aa31632d10cab5a599115290a6c702512a3cd5 (diff) | |
download | Python-Textbook-Companions-bcfdba28ef6597f80f5cac083492c27daac80b35.tar.gz Python-Textbook-Companions-bcfdba28ef6597f80f5cac083492c27daac80b35.tar.bz2 Python-Textbook-Companions-bcfdba28ef6597f80f5cac083492c27daac80b35.zip |
Added(A)/Deleted(D) following books
A Electrical_Network_by_R._Singh/Chapter10_1_1.ipynb
A Electrical_Network_by_R._Singh/Chapter11_1_1.ipynb
A Electrical_Network_by_R._Singh/Chapter12_1_1.ipynb
A Electrical_Network_by_R._Singh/Chapter1_1_1.ipynb
A Electrical_Network_by_R._Singh/Chapter2_1_1.ipynb
A Electrical_Network_by_R._Singh/Chapter3_1_1.ipynb
A Electrical_Network_by_R._Singh/Chapter4_1_1.ipynb
A Electrical_Network_by_R._Singh/Chapter6_1_1.ipynb
A Electrical_Network_by_R._Singh/Chapter7_1_1.ipynb
A Electrical_Network_by_R._Singh/Chapter8_1_1.ipynb
A Electrical_Network_by_R._Singh/screenshots/Chapter4.png
A Electrical_Network_by_R._Singh/screenshots/Chapter6.png
A Electrical_Network_by_R._Singh/screenshots/Chapter7.png
A sample_notebooks/VinayBadhan/sample.ipynb
Diffstat (limited to 'Electrical_Network_by_R._Singh/Chapter12_1_1.ipynb')
-rw-r--r-- | Electrical_Network_by_R._Singh/Chapter12_1_1.ipynb | 516 |
1 files changed, 516 insertions, 0 deletions
diff --git a/Electrical_Network_by_R._Singh/Chapter12_1_1.ipynb b/Electrical_Network_by_R._Singh/Chapter12_1_1.ipynb new file mode 100644 index 00000000..83ceaa1b --- /dev/null +++ b/Electrical_Network_by_R._Singh/Chapter12_1_1.ipynb @@ -0,0 +1,516 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:22eee2ba9d1da7cc9449ec91cc33a421ca03a319ba4cd73132a5cc29034c4568"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter12-Network Synthesis"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2-pg12.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Network Synthesis : example 12.2 : (pg 12.2)\n",
+ "import numpy\n",
+ "p1 = numpy.array([1,0,5,0,4])\n",
+ "p2 = numpy.array([1,0,3,0])\n",
+ "[q,r]=numpy.polydiv(p1,p2);\n",
+ "[q1,r1]=numpy.polydiv(p2,r);\n",
+ "[q2,r2]=numpy.polydiv(r,r1);\n",
+ "[q3,r3]=numpy.polydiv(r1,r2);\n",
+ "print \"\\nEven part of P(s) = (s^4)+(5s^3)+4\"\n",
+ "print \"\\nOdd part of P(s) = (s^3)+(3s)\"\n",
+ "print \"\\nQ(s)= m(s)/n(s)\"\n",
+ "# values of quotients in continued fraction expansion\n",
+ "print (q);\n",
+ "print (q1);\n",
+ "print (q2);\n",
+ "print (q3);\n",
+ "print \"Since all the quotient terms are positive, P(s) is hurwitz\";\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "Even part of P(s) = (s^4)+(5s^3)+4\n",
+ "\n",
+ "Odd part of P(s) = (s^3)+(3s)\n",
+ "\n",
+ "Q(s)= m(s)/n(s)\n",
+ "[ 1. 0.]\n",
+ "[ 0.5 0. ]\n",
+ "[ 2. 0.]\n",
+ "[ 0.25 0. ]\n",
+ "Since all the quotient terms are positive, P(s) is hurwitz\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3-pg12.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Network Synthesis : example 12.3 : (pg 12.2 & 12.3)\n",
+ "import numpy\n",
+ "p1=numpy.array([1,0,5,0]) \n",
+ "p2=numpy.array([4,0,2])\n",
+ "[q,r]=numpy.polydiv(p1,p2);\n",
+ "[q1,r1]=numpy.polydiv(p2,r);\n",
+ "[q2,r2]=numpy.polydiv(r,r1);\n",
+ "print(\"\\nEven part of P(s) = ((4*s^2)+(2))\");\n",
+ "print(\"\\nOdd part of P(s) = ((s^3)+(5*(s)))\");\n",
+ "print(\"\\nQ(s)= n(s)/m(s)\");\n",
+ "# values of quotients in continued fraction expansion\n",
+ "print(q);\n",
+ "print(q1);\n",
+ "print(q2);\n",
+ "print(\"\\nSince all the quotient terms are positive, P(s) is hurwitz\");\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "Even part of P(s) = ((4*s^2)+(2))\n",
+ "\n",
+ "Odd part of P(s) = ((s^3)+(5*(s)))\n",
+ "\n",
+ "Q(s)= n(s)/m(s)\n",
+ "[ 0.25 0. ]\n",
+ "[ 0.88888889 0. ]\n",
+ "[ 2.25 0. ]\n",
+ "\n",
+ "Since all the quotient terms are positive, P(s) is hurwitz\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4-pg12.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "## Network Synthesis : example 12.4 : (pg 12.3)\n",
+ "import numpy\n",
+ "p1=numpy.array([1,0,3,0,12])\n",
+ "p2=numpy.array([1,0,2,0])\n",
+ "[q,r]=numpy.polydiv(p1,p2);\n",
+ "[q1,r1]=numpy.polydiv(p2,r);\n",
+ "[q2,r2]=numpy.polydiv(r,r1);\n",
+ "[q3,r3]=numpy.polydiv(r1,r2);\n",
+ "print(\"\\nEven part of P(s) = ((s^4)+(3*(s)^2)+12)\");\n",
+ "print(\"\\nOdd part of P(s) = ((s^3)+(2*s))\");\n",
+ "print(\"\\nQ(s)= m(s)/n(s)\");\n",
+ "## values of quotients in continued fraction expansion\n",
+ "print(q);\n",
+ "print(q1);\n",
+ "print(q2);\n",
+ "print(q3);\n",
+ "print(\"\\nSince two quotient terms are negative, P(s) is not hurwitz\");\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "Even part of P(s) = ((s^4)+(3*(s)^2)+12)\n",
+ "\n",
+ "Odd part of P(s) = ((s^3)+(2*s))\n",
+ "\n",
+ "Q(s)= m(s)/n(s)\n",
+ "[ 1. 0.]\n",
+ "[ 1. 0.]\n",
+ "[-0.1 -0. ]\n",
+ "[-0.83333333 0. ]\n",
+ "\n",
+ "Since two quotient terms are negative, P(s) is not hurwitz\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5-pg12.3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "## Network Synthesis : example 12.5 : (pg 12.3 & 12.4)\n",
+ "import numpy\n",
+ "p1=numpy.array([1,0,2,0,2])\n",
+ "p2=numpy.array([1,0,3,0])\n",
+ "[q,r]=numpy.polydiv(p1,p2);\n",
+ "[q1,r1]=numpy.polydiv(p2,r);\n",
+ "[q2,r2]=numpy.polydiv(r,r1);\n",
+ "[q3,r3]=numpy.polydiv(r1,r2);\n",
+ "print(\"\\nEven part of P(s) = ((s^4)+(2*(s)^2)+2)\");\n",
+ "print(\"\\nOdd part of P(s) = (s^3)+(3s)\");\n",
+ "print(\"\\nQ(s)= m(s)/n(s)\");\n",
+ "## values of quotients in continued fraction expansion\n",
+ "print(q);\n",
+ "print(q1);\n",
+ "print(q2);\n",
+ "print(q3);\n",
+ "print(\"\\nSince two terms are negative, P(s) is not hurwitz\");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "Even part of P(s) = ((s^4)+(2*(s)^2)+2)\n",
+ "\n",
+ "Odd part of P(s) = (s^3)+(3s)\n",
+ "\n",
+ "Q(s)= m(s)/n(s)\n",
+ "[ 1. 0.]\n",
+ "[-1. -0.]\n",
+ "[-0.2 0. ]\n",
+ "[ 2.5 0. ]\n",
+ "\n",
+ "Since two terms are negative, P(s) is not hurwitz\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6-pg12.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "## Network Synthesis : example 12.6 : (pg 12.4)\n",
+ "import numpy\n",
+ "p1=numpy.array([2,0,6,0,1])\n",
+ "p2=numpy.array([5,0,3,0])\n",
+ "[q,r]=numpy.polydiv(p1,p2);\n",
+ "[q1,r1]=numpy.polydiv(p2,r);\n",
+ "[q2,r2]=numpy.polydiv(r,r1);\n",
+ "[q3,r3]=numpy.polydiv(r1,r2);\n",
+ "print(\"\\nEven part of P(s) = ((2*s^4)+(6*(s)^2)+1)\");\n",
+ "print(\"\\nOdd part of P(s) = ((5*s^3)+(3*s))\");\n",
+ "print(\"\\nQ(s)= m(s)/n(s)\");\n",
+ "## values of quotients in continued fraction expansion\n",
+ "print(q);\n",
+ "print(q1);\n",
+ "print(q2);\n",
+ "print(q3);\n",
+ "print(\"\\nSince all the quotient terms are positive, P(s) is hurwitz\");\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "Even part of P(s) = ((2*s^4)+(6*(s)^2)+1)\n",
+ "\n",
+ "Odd part of P(s) = ((5*s^3)+(3*s))\n",
+ "\n",
+ "Q(s)= m(s)/n(s)\n",
+ "[ 0.4 0. ]\n",
+ "[ 1.04166667 0. ]\n",
+ "[ 2.45106383 0. ]\n",
+ "[ 1.95833333 0. ]\n",
+ "\n",
+ "Since all the quotient terms are positive, P(s) is hurwitz\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7-pg12.4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "## Network Synthesis : example 12.7 : (pg 12.4 & 12.5)\n",
+ "import numpy\n",
+ "p1=numpy.array([1,0,6,0,8])\n",
+ "\n",
+ "p2=numpy.array([7,0,21,0])\n",
+ "[q,r]=numpy.polydiv(p1,p2);\n",
+ "[q1,r1]=numpy.polydiv(p2,r);\n",
+ "[q2,r2]=numpy.polydiv(r,r1);\n",
+ "[q3,r3]=numpy.polydiv(r1,r2);\n",
+ "print(\"\\nEven part of P(s) = ((s^4)+(6*(s)^2)+8)\");\n",
+ "print(\"\\nOdd part of P(s) = (7*(s^3)+(21*s))\");\n",
+ "print(\"\\nQ(s)= m(s)/n(s)\");\n",
+ "## values of quotients in continued fraction expansion\n",
+ "print(q);\n",
+ "print(q1);\n",
+ "print(q2);\n",
+ "print(q3);\n",
+ "print(\"\\nSince all the quotient terms are positive, P(s) is hurwitz\");\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "Even part of P(s) = ((s^4)+(6*(s)^2)+8)\n",
+ "\n",
+ "Odd part of P(s) = (7*(s^3)+(21*s))\n",
+ "\n",
+ "Q(s)= m(s)/n(s)\n",
+ "[ 0.14285714 0. ]\n",
+ "[ 2.33333333 0. ]\n",
+ "[ 1.28571429 0. ]\n",
+ "[ 0.29166667 0. ]\n",
+ "\n",
+ "Since all the quotient terms are positive, P(s) is hurwitz\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8-pg12.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "## Network Synthesis : example 12.8 : (pg 12.5)\n",
+ "import numpy\n",
+ "p1=numpy.array([1,0,5,0,10])\n",
+ "\n",
+ "p2=numpy.array([5,0,4,0])\n",
+ "[q,r]=numpy.polydiv(p1,p2);\n",
+ "[q1,r1]=numpy.polydiv(p2,r);\n",
+ "[q2,r2]=numpy.polydiv(r,r1);\n",
+ "[q3,r3]=numpy.polydiv(r1,r2);\n",
+ "print(\"\\nEven part of P(s) = ((s^4)+(5*(s)^2)+10)\");\n",
+ "print(\"\\nOdd part of P(s) = (5*(s^3)+(4*s))\");\n",
+ "print(\"\\nQ(s)= m(s)/n(s)\");\n",
+ "## values of quotients in continued fraction expansion\n",
+ "print(q);\n",
+ "print(q1);\n",
+ "print(q2);\n",
+ "print(q3);\n",
+ "print(\"\\nSince two terms are negative, P(s) is not hurwitz\");\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ "Even part of P(s) = ((s^4)+(5*(s)^2)+10)\n",
+ "\n",
+ "Odd part of P(s) = (5*(s^3)+(4*s))\n",
+ "\n",
+ "Q(s)= m(s)/n(s)\n",
+ "[ 0.2 0. ]\n",
+ "[ 1.19047619 0. ]\n",
+ "[-0.5313253 -0. ]\n",
+ "[-0.79047619 0. ]\n",
+ "\n",
+ "Since two terms are negative, P(s) is not hurwitz\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9-pg12.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "## Network Synthesis : example 12.9 : (pg 12.6)\n",
+ "import numpy\n",
+ "p1=numpy.array([1,0,3,0,2,0])\n",
+ "p2=numpy.array([5,0,9,0,2])\n",
+ "[q,r]=numpy.polydiv(p1,p2);\n",
+ "[q1,r1]=numpy.polydiv(p2,r);\n",
+ "[q2,r2]=numpy.polydiv(r,r1);\n",
+ "[q3,r3]=numpy.polydiv(r1,r2);\n",
+ "[q4,r4]=numpy.polydiv(r2,r3);\n",
+ "print(\"\\n P(s) = ((s^5)+(3*(s^3))+(2*s))\");\n",
+ "print(\"\\n d/ds.P(s)= ((5*(s^4))+9*(s^2)+2)\");\n",
+ "print(\"\\nQ(s)=P(s)/d/ds.P(s)\");\n",
+ "## values of quotients in continued fraction expansion\n",
+ "print(q);\n",
+ "print(q1);\n",
+ "print(q2);\n",
+ "print(q3);\n",
+ "print(q4);\n",
+ "print(\"\\nSince all the quotient terms are positive, P(s) is hurwitz\");\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ " P(s) = ((s^5)+(3*(s^3))+(2*s))\n",
+ "\n",
+ " d/ds.P(s)= ((5*(s^4))+9*(s^2)+2)\n",
+ "\n",
+ "Q(s)=P(s)/d/ds.P(s)\n",
+ "[ 0.2 0. ]\n",
+ "[ 4.16666667 0. ]\n",
+ "[ 0.51428571 0. ]\n",
+ "[ 4.08333333 0. ]\n",
+ "[ 0.28571429 0. ]\n",
+ "\n",
+ "Since all the quotient terms are positive, P(s) is hurwitz\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10-pg12.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "## Network Synthesis : example 12.10 : (pg 12.6 & 12.7)\n",
+ "import numpy\n",
+ "p1=numpy.array([1,0,1,0,1,0])\n",
+ "p2=numpy.array([5,0,3,0,1])\n",
+ "[q,r]=numpy.polydiv(p1,p2);\n",
+ "[q1,r1]=numpy.polydiv(p2,r);\n",
+ "[q2,r2]=numpy.polydiv(r,r1);\n",
+ "[q3,r3]=numpy.polydiv(r1,r2);\n",
+ "[q4,r4]=numpy.polydiv(r2,r3);\n",
+ "print(\"\\n P(s) = ((s^5)+((s^3))+(s))\");\n",
+ "print(\"\\n d/ds.P(s)= ((5*(s^4))+3*(s^2)+1)\");\n",
+ "print(\"\\nQ(s)=P(s)/d/ds.P(s)\");\n",
+ "## values of quotients in continued fraction expansion\n",
+ "print(q);\n",
+ "print(q1);\n",
+ "print(q2);\n",
+ "print(q3);\n",
+ "print(q4);\n",
+ "print(\"\\nSince two quotient terms are negative, P(s) is not hurwitz\");\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n",
+ " P(s) = ((s^5)+((s^3))+(s))\n",
+ "\n",
+ " d/ds.P(s)= ((5*(s^4))+3*(s^2)+1)\n",
+ "\n",
+ "Q(s)=P(s)/d/ds.P(s)\n",
+ "[ 0.2 0. ]\n",
+ "[ 12.5 0. ]\n",
+ "[-0.05714286 -0. ]\n",
+ "[-8.16666667 0. ]\n",
+ "[ 0.85714286 0. ]\n",
+ "\n",
+ "Since two quotient terms are negative, P(s) is not hurwitz\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |