summaryrefslogtreecommitdiff
path: root/Electrical_Machines_II/chapter_2_1.ipynb
diff options
context:
space:
mode:
authorhardythe12015-05-05 14:21:39 +0530
committerhardythe12015-05-05 14:21:39 +0530
commit435840cef00c596d9e608f9eb2d96f522ea8505a (patch)
tree4c783890c984c67022977ca98432e5e4bab30678 /Electrical_Machines_II/chapter_2_1.ipynb
parentaa1863f344766ca7f7c20a395e58d0fb23c52130 (diff)
downloadPython-Textbook-Companions-435840cef00c596d9e608f9eb2d96f522ea8505a.tar.gz
Python-Textbook-Companions-435840cef00c596d9e608f9eb2d96f522ea8505a.tar.bz2
Python-Textbook-Companions-435840cef00c596d9e608f9eb2d96f522ea8505a.zip
add books
Diffstat (limited to 'Electrical_Machines_II/chapter_2_1.ipynb')
-rwxr-xr-xElectrical_Machines_II/chapter_2_1.ipynb2810
1 files changed, 0 insertions, 2810 deletions
diff --git a/Electrical_Machines_II/chapter_2_1.ipynb b/Electrical_Machines_II/chapter_2_1.ipynb
deleted file mode 100755
index c18790d9..00000000
--- a/Electrical_Machines_II/chapter_2_1.ipynb
+++ /dev/null
@@ -1,2810 +0,0 @@
-{
- "metadata": {
- "name": "",
- "signature": "sha256:e3e9de8b11024daf372011e6906cf967e4f06ac156a70592b24845e8bc2b4696"
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 2: Induction Motors"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.1, Page 130"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data : \n",
- "P=2;#no. of poles\n",
- "f=60;#in Hz\n",
- "N=3460.;#in rpm\n",
- "\n",
- "#Calculations\n",
- "Ns=120*f/P;#in rpm\n",
- "Slip=Ns-N;#in rpm\n",
- "PercentageSlip=((Ns-N)/Ns)*100;#in %\n",
- "\n",
- "#Results\n",
- "print \"Synchronous speed in rpm : \",Ns;\n",
- "print \"Percentage Slip : \",round(PercentageSlip,2);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Synchronous speed in rpm : 3600\n",
- "Percentage Slip : 3.89\n"
- ]
- }
- ],
- "prompt_number": 124
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.2, Page 131"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data : \n",
- "P=8.;#no. of poles\n",
- "f=50.;#in Hz\n",
- "N=700.;#in rpm\n",
- "\n",
- "#Calculations&Results\n",
- "#Part (a) :\n",
- "Ns=120*f/P;#in rpm\n",
- "print \"Synchronous speed in rpm : \",Ns;\n",
- "#Part (b) :\n",
- "S=(Ns-N)*100/Ns;#in %\n",
- "print \"Slip(in %) : \",round(S,2);\n",
- "#Part (c) :\n",
- "#At the time of stsrt S=1;\n",
- "fdash=f;#in Hz\n",
- "print \"Rotor frequeny at the time of starting(in Hz) : \",fdash;\n",
- "#Part (d) :\n",
- "fdash=(S/100)*f;#in Hz\n",
- "print \"Rotor frequeny at the given speed(in Hz) : \",round(fdash,1);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Synchronous speed in rpm : 750.0\n",
- "Slip(in %) : 6.67\n",
- "Rotor frequeny at the time of starting(in Hz) : 50.0\n",
- "Rotor frequeny at the given speed(in Hz) : 3.3\n"
- ]
- }
- ],
- "prompt_number": 125
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.3, Page 131"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data : \n",
- "P=10;#no. of poles\n",
- "f=50;#in Hz\n",
- "N=600;#in rpm\n",
- "Nr=1440;#in rpm\n",
- "\n",
- "#Calculations&Results\n",
- "f=P*N/120;#in Hz\n",
- "#When P=2\n",
- "P=2;#no. of poles\n",
- "Ns=120*f/P;#in rpm\n",
- "#When P=4\n",
- "P=4;#no. of poles\n",
- "Ns=120*f/P;#in rpm\n",
- "S=(Ns-Nr)*100/Ns;#Slip in %\n",
- "print \"Percentage Slip(in %) : \",(S);\n",
- "print \"No. of poles : \",(S);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Percentage Slip(in %) : 4\n",
- "No. of poles : 4\n"
- ]
- }
- ],
- "prompt_number": 126
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.4, Page 132"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data : \n",
- "P=8;#no. of poles\n",
- "f=50;#in Hz\n",
- "fr=1.5;#in Hz\n",
- "\n",
- "#Calculations\n",
- "#Formula : fr=S*f\n",
- "S=fr/f;#slip(unitless)\n",
- "Ns=120*f/P;#in rpm\n",
- "#Formula : S=(Ns-Nr)/Ns\n",
- "Nr=Ns-S*Ns;#in rpm\n",
- "\n",
- "#Results\n",
- "print \"Motor running speed in rpm : \",round(Nr);\n",
- "print \"Slip(in %):\",(S*100);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Motor running speed in rpm : 728.0\n",
- "Slip(in %): 3.0\n"
- ]
- }
- ],
- "prompt_number": 8
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.5, Page 133"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data : \n",
- "P=2;#no. of poles\n",
- "f=50;#in Hz\n",
- "S=4.;#in %\n",
- "\n",
- "#Calculations&Results\n",
- "#Part (i) : \n",
- "Ns=f/P;#in rps\n",
- "Ns=Ns*60;#in rpm\n",
- "print \"Synchronous speed in rpm : \",Ns;\n",
- "#Part (ii) :\n",
- "print \"Slip = \",(S),\"% or \",(S/100);\n",
- "#Part (iii) :\n",
- "N=Ns*(1-S/100);#in rpm\n",
- "print \"Actual speed in rpm :\",N;"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Synchronous speed in rpm : 1500\n",
- "Slip = 4.0 % or 0.04\n",
- "Actual speed in rpm : 1440.0\n"
- ]
- }
- ],
- "prompt_number": 10
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.6, Page 133"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data : \n",
- "P=4;#no. of poles\n",
- "f1=50;#in Hz\n",
- "fdash=1.5;#in Hz\n",
- "\n",
- "#Calculations\n",
- "S=fdash/f1;#unitless\n",
- "print \"Slip : \",S;\n",
- "Ns=120*f1/P;#in rpm\n",
- "N=Ns*(1-S);#in rpm\n",
- "\n",
- "#Result\n",
- "print \"Speed of motor in rpm :\",N;"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Slip : 0.03\n",
- "Speed of motor in rpm : 1455.0\n"
- ]
- }
- ],
- "prompt_number": 11
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.7, Page 138"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data : \n",
- "N=1440;#in rpm\n",
- "\n",
- "#Calculations&Results\n",
- "f=50;#in Hz\n",
- "print \"For this speed of 1440 rpm the synchronous speed may be either 1500 rpm or 3000 rpm.\";\n",
- "Ns=1500;#in rpm\n",
- "P=4;#no. of poles\n",
- "print \"No. of poles : \",P;\n",
- "Slip=(Ns-N)*100/Ns;#in %\n",
- "print Slip,\"Slip(in %) : \",Slip;\n",
- "speed1=Ns-N;#Speed of rotor flux with respect to rotor\n",
- "print \"Speed of rotor flux with respect to rotor in rpm : \",speed1;\n",
- "speed2=(speed1)+N;#Speed of rotor flux with respect to stator\n",
- "print \"Speed of rotor flux with respect to stator in rpm :\",speed2;"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "For this speed of 1440 rpm the synchronous speed may be either 1500 rpm or 3000 rpm.\n",
- "No. of poles : 4\n",
- "4 Slip(in %) : 4\n",
- "Speed of rotor flux with respect to rotor in rpm : 60\n",
- "Speed of rotor flux with respect to stator in rpm : 1500\n"
- ]
- }
- ],
- "prompt_number": 12
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.8, Page 140"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from math import * \n",
- "\n",
- "#Given data : \n",
- "E2=100;#in volt\n",
- "R2=0.05;#in ohm\n",
- "X2=0.1;#im ohm\n",
- "\n",
- "#Calculations&Results\n",
- "E2perphase=E2/sqrt(3);#in volt\n",
- "#part (a) : \n",
- "S=0.04;#slip\n",
- "I2=S*E2perphase/sqrt(R2**2+(S*X2)**2);#in Ampere\n",
- "print \"At 4% slip, Rotor current in Ampere : \",round(I2,2);\n",
- "fi2=degrees(acos(R2/sqrt(R2**2+(S*X2)**2)));#in degree\n",
- "print \"At 4% slip, Phase angle between rotor voltage and rotor current in degree :\",round(fi2,2);\n",
- "#part (b) : \n",
- "S=1;#slip\n",
- "I2=S*E2perphase/sqrt(R2**2+(S*X2)**2);#in Ampere\n",
- "print \"At 100% slip, Rotor current in Ampere : \",round(I2,2);\n",
- "fi2=degrees(acos(R2/sqrt(R2**2+(S*X2)**2)));#in degree\n",
- "print \"At 100% slip, Phase angle between rotor voltage and rotor current in degree :\",round(fi2,2);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "At 4% slip, Rotor current in Ampere : 46.04\n",
- "At 4% slip, Phase angle between rotor voltage and rotor current in degree : 4.57\n",
- "At 100% slip, Rotor current in Ampere : 516.4\n",
- "At 100% slip, Phase angle between rotor voltage and rotor current in degree : 63.43\n"
- ]
- }
- ],
- "prompt_number": 137
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.9, Page 141"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from math import * \n",
- "\n",
- "#Given data : \n",
- "E2=100.;#in volt\n",
- "R2=0.4;#in ohm\n",
- "X2=2.25;#im ohm\n",
- "\n",
- "#Calculations\n",
- "E2perphase=E2/sqrt(3);#in volt\n",
- "S=4.;#in %\n",
- "E=(S/100)*E2perphase;#rotor induced emf at a slip=4% in volt\n",
- "Z2=sqrt(R2**2+((S/100)*X2)**2);\n",
- "I2=E/Z2;#in Ampere\n",
- "\n",
- "#Result\n",
- "print \"Rotor current in Ampere : \",round(I2,2);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Rotor current in Ampere : 5.63\n"
- ]
- }
- ],
- "prompt_number": 138
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.10, Page 141"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from math import * \n",
- "\n",
- "#Given data : \n",
- "f=50;#in Hz\n",
- "R2=0.2;#in ohm\n",
- "X2=2;#im ohm\n",
- "E2=60;#in volt\n",
- "\n",
- "#Calculations&Results\n",
- "E2perphase=E2/sqrt(3);#in volt\n",
- "#case (i) : S=1 \n",
- "S=1;#unitless\n",
- "Z2=sqrt(R2**2+(S*X2)**2);\n",
- "I2=E2perphase*S/Z2;#in Ampere\n",
- "print \"At standstill : Rotor current in Ampere : \",round(I2,2);\n",
- "#case (ii) : S=0.1 \n",
- "S=0.1;#unitless\n",
- "Z2=sqrt(R2**2+(S*X2)**2);\n",
- "I2=E2perphase*S/Z2;#in Ampere\n",
- "print \"for 10% slip : Rotor current in Ampere : \",round(I2,2);\n",
- "#case (iii) : S=0.05 \n",
- "S=0.05;#unitless\n",
- "Z2=sqrt(R2**2+(S*X2)**2);\n",
- "I2=E2perphase*S/Z2;#in Ampere\n",
- "print \"for 5% slip : Rotor current in Ampere : \",round(I2,2);\n",
- "#case (iv) : S=0.01 \n",
- "S=0.01;#unitless\n",
- "Z2=sqrt(R2**2+(S*X2)**2);\n",
- "I2=E2perphase*S/Z2;#in Ampere\n",
- "print \"for 1% slip : Rotor current in Ampere : \",round(I2,2);\n",
- "#Note : Answer in the book is wrong for S=0.05 and S=0.01"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "At standstill : Rotor current in Ampere : 17.23\n",
- "for 10% slip : Rotor current in Ampere : 12.25\n",
- "for 5% slip : Rotor current in Ampere : 7.75\n",
- "for 1% slip : Rotor current in Ampere : 1.72\n"
- ]
- }
- ],
- "prompt_number": 139
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.11, Page 142"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from math import * \n",
- "\n",
- "#Given data : \n",
- "R2=0.5;#in ohm\n",
- "X=4.5;#im ohm\n",
- "E=50;#line voltage in volt\n",
- "\n",
- "#Calculations&Results\n",
- "Eperphase=E/sqrt(3);#in volt\n",
- "#part (a) : Sliprings are short circuited\n",
- "Z2=sqrt(R2**2+X**2);#in ohm\n",
- "I2=Eperphase/Z2;#in Ampere\n",
- "print \"Sliprings are short circuited, Rotor current in Ampere : \",round(I2,2);\n",
- "cosfi2=R2/Z2;#unitless\n",
- "print \"Power factor : \",round(cosfi2,2);\n",
- "#part (b) : Sliprings are connected \n",
- "R2=0.4;#in ohm\n",
- "Z2=sqrt(R2**2+X**2);#in ohm\n",
- "I2=Eperphase/Z2;#in Ampere\n",
- "print \"Sliprings are short circuited, Rotor current in Ampere : \",round(I2,2);\n",
- "cosfi2=R2/Z2;#unitless\n",
- "print \"Power factor : \",round(cosfi2,2);\n",
- "#Note : answer of part (a) I2 is not curate in the book."
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Sliprings are short circuited, Rotor current in Ampere : 6.38\n",
- "Power factor : 0.11\n",
- "Sliprings are short circuited, Rotor current in Ampere : 6.39\n",
- "Power factor : 0.09\n"
- ]
- }
- ],
- "prompt_number": 140
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.12, Page 146"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data : \n",
- "R2=0.02;#in ohm\n",
- "X2=0.1;#im ohm\n",
- "\n",
- "#Calculations&Results\n",
- "#let external resistance per phase = r then R2=R2+r ohm\n",
- "S=1;#slip at starting\n",
- "print \"Since at start speed is zero and slip is, therefore, unity or R2=X2\";\n",
- "r=X2-R2;#in ohm\n",
- "print \"External resistance per phase added to the rotor circuit in ohms : \",r;"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Since at start speed is zero and slip is, therefore, unity or R2=X2\n",
- "External resistance per phase added to the rotor circuit in ohms : 0.08\n"
- ]
- }
- ],
- "prompt_number": 22
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.13, Page 147"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from math import * \n",
- "\n",
- "#Given data : \n",
- "P=4;#no. of poles\n",
- "f=50;#in Hz\n",
- "R2=0.03;#in ohm\n",
- "X2=0.12;#im ohm\n",
- "\n",
- "#Calculations&Results\n",
- "Smax=R2/X2;#unitless\n",
- "Ns=120*f/P;#in rpm\n",
- "N=Ns*(1-Smax);#in rpm\n",
- "print \"Speed corresponding to maximum torque(in rpm) :\",N;\n",
- "#alfa=(R2+r)/X2\n",
- "#Ratio of starting torque to max torque=75/100=2*alfa/(alfa^2+1)\n",
- "#It gives : 3*alfa^2-8*alfa+3=0\n",
- "#coefficients :\n",
- "a=3;b=-8;c=3;\n",
- "alfa1=(-b+sqrt(b**2-4*a*c))/(2*a);alfa2=(-b-sqrt(b**2-4*a*c))/(2*a);\n",
- "print \"rejecting higher values, alfa = \",round(alfa2,4);\n",
- "fdash=1.5;#in Hz\n",
- "r=alfa2*X2-R2;#in ohm;\n",
- "print \"External rotor resistance per phase(in ohm) : \",round(r,4);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Speed corresponding to maximum torque(in rpm) : 1125.0\n",
- "rejecting higher values, alfa = 0.4514\n",
- "External rotor resistance per phase(in ohm) : 0.0242\n"
- ]
- }
- ],
- "prompt_number": 141
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.14, Page 147"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "P=4;#no. of poles\n",
- "f=50;#in Hz\n",
- "R2=0.024;#in ohm\n",
- "X2=0.6;#in ohm \n",
- "\n",
- "#Calculations&Results\n",
- "Sm=R2/X2;#slip corresponding to max torque\n",
- "Ns=120*f/P;#in rpm\n",
- "N=Ns*(1-Sm);#in rpm\n",
- "print \"Speed corresponding to maximum torque in rpm : \",N;"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Speed corresponding to maximum torque in rpm : 1440.0\n"
- ]
- }
- ],
- "prompt_number": 26
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.15, Page 148"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "P=6;#no. of poles\n",
- "f=50;#in Hz\n",
- "Sf=4.;#in %\n",
- "R2=0.01;#in ohm\n",
- "X2=0.05;#im \n",
- "\n",
- "#Calculations&Results\n",
- "Ratio=((R2/X2)**2+(Sf/100)**2)/(2*R2*(Sf/100)/X2);#ratio of max torque to full load torque\n",
- "print \"Maximum torque, Tmax=\",(Ratio),\"Tf\";\n",
- "Sm=R2/X2;#slip corresponding to max torque\n",
- "Ns=120*f/P;#in rpm\n",
- "N=Ns*(1-Sm);#in rpm\n",
- "print \"Speed corresponding to maximum torque in rpm : \",N;"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Maximum torque, Tmax= 2.6 Tf\n",
- "Speed corresponding to maximum torque in rpm : 800.0\n"
- ]
- }
- ],
- "prompt_number": 28
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.16, Page 149"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "P=12;#no. of poles\n",
- "f=50.;#in Hz\n",
- "R2=0.03;#in ohm\n",
- "X2=0.5;#im \n",
- "\n",
- "#Calculations&Results\n",
- "S=R2/X2;#unitless\n",
- "Ns=120*f/P;#in rpm\n",
- "N=Ns*(1-S);#in rpm\n",
- "print \"Speed at maximum torque in rpm : \",N;\n",
- "S=(Ns-495)/Ns;#slip at 495 rpm speed\n",
- "Ratio=(2*R2*S/X2)/((R2/X2)**2+S**2);#ratio of max torque to full load torque\n",
- "print \"Ratio of full load torque to max torque(in %) :\",round((Ratio*100),1);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Speed at maximum torque in rpm : 470.0\n",
- "Ratio of full load torque to max torque(in %) : 32.4\n"
- ]
- }
- ],
- "prompt_number": 142
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.17, Page 149"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from math import * \n",
- "\n",
- "#Given data :\n",
- "P=12;#no. of poles\n",
- "f=50;#in Hz\n",
- "R2=0.5;#in ohm\n",
- "N=475.;#in rpm\n",
- "\n",
- "#Calculations&Results\n",
- "Ns=120*f/P;#in rpm\n",
- "S=(Ns-N)/Ns;#unitless\n",
- "X2=R2/S;#in ohm\n",
- "#\"At maximum torque, Tmax is proportional to 1/2*X2 or 1/20\";\n",
- "# \"Ts is proportional to (R2+R)/((R2+R)^2+X2^2)\";\n",
- "# \"Also, Ts is proportional to 1(20*3)\";\n",
- "# \"Equating the two eqn we have : (0.5*R)/(R2+R)^2+X2^2\";\n",
- "#R^2-59R+70.25=0 : \n",
- "#coefficients :\n",
- "a=1;b=-59;c=70.25;\n",
- "R=(-b-sqrt(b**2-4*a*c))/(2*a);\n",
- "print \"Resistance R to be inserted in series (in ohm) :\",round(R,1);\n",
- "#Note : answer in the book is wrong."
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Resistance R to be inserted in series (in ohm) : 1.2\n"
- ]
- }
- ],
- "prompt_number": 143
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.18, Page 150"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "P=4;#no. of poles\n",
- "f=50;#in Hz\n",
- "R2=0.04;#in ohm\n",
- "N=1200.;#in rpm(speed at max torque)\n",
- "\n",
- "#Calculations\n",
- "Ns=120*f/P;#in rpm(synchronous speed)\n",
- "S=(Ns-N)/Ns;#unitless\n",
- "X2=R2/S;#in ohm\n",
- "#Starting torque is the torque devloped when S=1: Tst=K*R2/(R2^2+X2^2)\n",
- "#Let say, m=R2/(R2^2+X2^2) then Tst=K*m\n",
- "m=R2/(R2**2+X2**2);#assumed\n",
- "\n",
- "#Results\n",
- "print \"Starting torque, Tst=\",round(m,2),\"k\";\n",
- "print \"Maximum torque, Tm=K/\",(2*X2);\n",
- "print \"Thus, Tst in terms of Tm can be expressed as : \";\n",
- "print \"Tst/Tm=\",(0.96*0.4),\" or Tst=\",(0.96*0.4),\"Tm\";\n",
- "print \"Therefore, staring torque is \",(0.96*0.4*100),\"% of maximum torque.\";"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Starting torque, Tst= 0.96 k\n",
- "Maximum torque, Tm=K/ 0.4\n",
- "Thus, Tst in terms of Tm can be expressed as : \n",
- "Tst/Tm= 0.384 or Tst= 0.384 Tm\n",
- "Therefore, staring torque is 38.4 % of maximum torque.\n"
- ]
- }
- ],
- "prompt_number": 144
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.19, Page 155"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "P=6;#no. of poles\n",
- "f=50;#in Hz\n",
- "fr=3.;#in Hz\n",
- "R2=0.5;#in ohm\n",
- "N=475;#in rpm\n",
- "RotorInput=111.9;#in KW\n",
- "\n",
- "#Calculations&Results\n",
- "Ns=120*f/P;#in rpm\n",
- "S=fr*100/f;#unitless\n",
- "print \"% Slip : \",S;\n",
- "N=Ns*(1-S/100);#in rpm\n",
- "print \"Speed of motor in rpm : \",N;\n",
- "RotorCopperLoss=RotorInput*S/100;#in KW\n",
- "RotorCopperLoss=RotorCopperLoss/3;#in KW/Phase\n",
- "print \"Rotor Copper Loss per phase(in KW) : \",RotorCopperLoss;"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "% Slip : 6.0\n",
- "Speed of motor in rpm : 940.0\n",
- "Rotor Copper Loss per phase(in KW) : 2.238\n"
- ]
- }
- ],
- "prompt_number": 146
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.20, Page 156"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "phase=3.;#no. of phase\n",
- "Pin_stator=60.;#Power input of stator in KW\n",
- "TotalStatorLosses=1.;#in KW\n",
- "\n",
- "#Calculations&Results\n",
- "Pin_rotor=Pin_stator-TotalStatorLosses;#Power input of rotor in KW\n",
- "S=3.;#slip in %\n",
- "RotorCopperLosses=(S/100)*Pin_rotor;#in KW\n",
- "RotorCopperLosses=RotorCopperLosses/phase;#in KW per phase\n",
- "print \"Rotor Copper Losses per phase(in watts) : \",(RotorCopperLosses*10**3);\n",
- "TotalMechPowerDev=Pin_rotor*(1-S/100);#in KW\n",
- "print \"Total mechanial power developed(in KW) : \",TotalMechPowerDev;"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Rotor Copper Losses per phase(in watts) : 590.0\n",
- "Total mechanial power developed(in KW) : 57.23\n"
- ]
- }
- ],
- "prompt_number": 40
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.21, Page 156"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "P=6;#no. of poles\n",
- "S=4.;#slip in %\n",
- "Output=20;#in KW\n",
- "\n",
- "#Calculations&Results\n",
- "FrictionalLoss=250;#in watts\n",
- "f=50;#in Hz\n",
- "Ns=120*f/P;#in rpm\n",
- "N=Ns-Ns*(S/100);#in rpm\n",
- "print \"Speed of motor(in rpm) : \",N;\n",
- "MechPowerDeveloped=Output*10**3+FrictionalLoss;#in Watts\n",
- "S=S/100;#unitless\n",
- "RotorCopperLoss=(S/(1-S))*MechPowerDeveloped;#in watts\n",
- "print \"Rotor Copper Loss(in watts) : \",RotorCopperLoss;"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Speed of motor(in rpm) : 960.0\n",
- "Rotor Copper Loss(in watts) : 843.75\n"
- ]
- }
- ],
- "prompt_number": 147
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.22, Page 157"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "phase=3;#no. of phase\n",
- "P=6;#no. of poles\n",
- "Pin_rotor=80;#Power input of rotor in KW\n",
- "f=50;#in Hz\n",
- "fdash=100;#alternations per minute\n",
- "\n",
- "#Calculations&Results\n",
- "fdash=100./60;#in Hz\n",
- "S=fdash/f;#unitless\n",
- "print \"Slip : \",round(S,4);\n",
- "Ns=120*f/P;#synchronous speed in rpm\n",
- "N=Ns-Ns*S;#in rpm\n",
- "print \"Rotor Speed(in rpm) : \",round(N);\n",
- "MechPowerDev=Pin_rotor*(1-S)*10**3/735.5;#in H.P.\n",
- "print \"Total mechanial power developed(in KW) : \",round(MechPowerDev,2);\n",
- "RotorCopperLoss=S*Pin_rotor*10**3;#in watts\n",
- "print \"Rotor Copper Loss(in watts) : \",RotorCopperLoss;\n",
- "CopperLoss=RotorCopperLoss/phase;#in watts/phase\n",
- "print \"Copper Loss per phase(in watts) : \",round(CopperLoss);\n",
- "I2=60;#in Ampere\n",
- "R2=CopperLoss/I2**2;#in ohm\n",
- "print \"Rotor resistance per phase(in ohm) : \",round(R2,3);\n",
- "#Note : Some answers are not accurate in the book."
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Slip : 0.0333\n",
- "Rotor Speed(in rpm) : 967.0\n",
- "Total mechanial power developed(in KW) : 105.14\n",
- "Rotor Copper Loss(in watts) : 2666.66666667\n",
- "Copper Loss per phase(in watts) : 889.0\n",
- "Rotor resistance per phase(in ohm) : 0.247\n"
- ]
- }
- ],
- "prompt_number": 148
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.23, Page 158"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "UsefulOutput=55;#in H.P.\n",
- "MechLosses=2;#in H.P.\n",
- "Stator_Losses=13.5;#in KW\n",
- "\n",
- "#Calculations&Results\n",
- "MechPowerDev=UsefulOutput+MechLosses;#in H.P.\n",
- "MechPowerDev=MechPowerDev*735.5/1000;#in KW\n",
- "S=50.;#in %\n",
- "Pin_Rotor=MechPowerDev/(1-S/100);#in KW\n",
- "RotorCopperLoss=(S/100)*Pin_Rotor;#in KW\n",
- "print \"Rotor Copper Loss(in KW) : \",round(RotorCopperLoss,2);\n",
- "Pin_Motor=Pin_Rotor+Stator_Losses;#in KW\n",
- "Efficiency=UsefulOutput*0.7355/Pin_Motor;#/unitless\n",
- "print \"Effiiency(in %) :\",round((Efficiency*100),1);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Rotor Copper Loss(in KW) : 41.92\n",
- "Effiiency(in %) : 41.6\n"
- ]
- }
- ],
- "prompt_number": 149
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.24, Page 159"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "phase=3;#no. of phase\n",
- "P=6;#no. of poles\n",
- "Pin_rotor=80;#Power input of rotor in KW\n",
- "f=50;#in Hz\n",
- "fdash=100;#alternations per minute\n",
- "\n",
- "#Calculations&Results\n",
- "fdash=100./60;#in Hz\n",
- "S=fdash/f;#unitless\n",
- "print \"Slip : \",round(S,3);\n",
- "Ns=120*f/P;#synchronous speed in rpm\n",
- "N=Ns-Ns*S;#in rpm\n",
- "print \"Rotor Speed(in rpm) : \",round(N);\n",
- "RotorCopperLoss=S*Pin_rotor*10**3;#in watts\n",
- "#print \"Rotor Copper Loss(in watts) : \",RotorCopperLoss;\n",
- "CopperLoss=RotorCopperLoss/phase;#in watts/phase\n",
- "print \"Copper Loss per phase(in watts) : \",round(CopperLoss);\n",
- "I2=60;#in Ampere\n",
- "R2=CopperLoss/I2**2;#in ohm\n",
- "print \"Rotorresistance per phase(in ohm) : \",round(R2,3);\n",
- "MechPowerDev=Pin_rotor*(1-S)*10**3/735.5;#in H.P.\n",
- "print \"Total mechanial power developed(in H.P.) : \",round(MechPowerDev,1);\n",
- "#Note : Some answers are not accurate in the book."
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Slip : 0.033\n",
- "Rotor Speed(in rpm) : 967.0\n",
- "Copper Loss per phase(in watts) : 889.0\n",
- "Rotorresistance per phase(in ohm) : 0.247\n",
- "Total mechanial power developed(in H.P.) : 105.1\n"
- ]
- }
- ],
- "prompt_number": 150
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.25, Page 160"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "Efficiency=0.9;#unitless\n",
- "Output=50;#in H.P.\n",
- "\n",
- "#Calculations\n",
- "#formula : Efficiency=Output/(Output+Losses) \n",
- "Losses=((1-Efficiency)/Efficiency)*Output*735.5;#in watts\n",
- "Losses=round(Losses);#round\n",
- "#Let, Ststor Cu loss = Rotor Cu los = Iron loss=K\n",
- "#Mechanical Loss = Iron Loss/3 = K/3\n",
- "#TotalLosses=k+K+K+K/3\n",
- "K=Losses*3/10;#in watts\n",
- "Pin_rotor=Output*735.5+Losses;#in watts\n",
- "Slip=K/Pin_rotor;#unitless\n",
- "\n",
- "#Results\n",
- "print \"Slip :\",round(Slip,3);\n",
- "print \"or \",round((Slip*100)),\"%\"; #answer differes due to rouding"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Slip : 0.03\n",
- "or 3.0 %\n"
- ]
- }
- ],
- "prompt_number": 154
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.26, Page 160"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "Pin_rotor=20;#Power input of rotor in KW\n",
- "phase=3;#no. of phase\n",
- "P=6;#no. of poles\n",
- "f=50.;#in Hz\n",
- "N=960;#in rpm(Actual speed of motor)\n",
- "\n",
- "#Calculations\n",
- "Ns=120*f/P;#synchronous speed in rpm\n",
- "S=(Ns-N)/Ns;#unitless\n",
- "RotorCuLoss=S*Pin_rotor*10**3;#in watts\n",
- "RotorCuLoss=RotorCuLoss/phase;#in watts/phase\n",
- "R2=1./3;#in ohm(Rotor resistance per phase)\n",
- "I2=sqrt(RotorCuLoss/R2);#in Ampere\n",
- "\n",
- "#Result\n",
- "print \"Motor current per phase(in Ampere) :\",round(I2,1);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Motor current per phase(in Ampere) : 28.3\n"
- ]
- }
- ],
- "prompt_number": 155
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.27, Page 161"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "V=500;#in volt\n",
- "Pout_rotor=20;#Power output of rotor in H.P.\n",
- "phase=3;#no. of phase\n",
- "P=6;#no. of poles\n",
- "f=50;#in Hz\n",
- "N=995.;#in rpm(Actual speed of motor)\n",
- "cosfi=0.87;#powerfactor(unitless)\n",
- "\n",
- "#Calculations&Results\n",
- "Ns=120*f/P;#synchronous speed in rpm\n",
- "S=(Ns-N)/Ns;#unitless\n",
- "print \"Slip : \",S;\n",
- "RotorCuLoss=(S/(1-S))*Pout_rotor*735.5;#in watts\n",
- "print \"Rotor Cu Loss(in watts) : \",round(RotorCuLoss,2);\n",
- "Pin_rotor=RotorCuLoss/S;#in watts\n",
- "print \"Power input to rotor(in KW) :\",round((Pin_rotor/10**3),2);\n",
- "LineCurrent=Pin_rotor/(sqrt(3)*V*cosfi);#in Ampere\n",
- "print \"Line Current(in A) :\",round(LineCurrent,2);\n",
- "RotorFreq=S*f;#in Hz\n",
- "print \"Rotor Frequency(in Hz) :\",RotorFreq;"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Slip : 0.005\n",
- "Rotor Cu Loss(in watts) : 73.92\n",
- "Power input to rotor(in KW) : 14.78\n",
- "Line Current(in A) : 19.62\n",
- "Rotor Frequency(in Hz) : 0.25\n"
- ]
- }
- ],
- "prompt_number": 156
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.28, Page 162"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "phase=3;#no. of phase\n",
- "Efficiency=90;#in %\n",
- "Speed=480;#in rpm\n",
- "VL=400;#in volt\n",
- "IL=75;#in Ampere\n",
- "cosfi=0.77;#powerfactor(unitless)\n",
- "d=0.75;#diameter of pulley in meter\n",
- "\n",
- "#Calculations\n",
- "Pin_motor=sqrt(3)*VL*IL*cosfi;#Power input of motor in watts\n",
- "OutputPower=Pin_motor*Efficiency/100;#in watts\n",
- "Omega=Speed*2*pi/60;#angular speed in radians/sec\n",
- "Torque=OutputPower/Omega;#in N-meter\n",
- "Torque=Torque/9.81;#in Kg-meter\n",
- "PullOnBelt=Torque/(d/2);#in Kg\n",
- "\n",
- "#Result\n",
- "print \"Pull On Belt(in Kg.) : \",round(PullOnBelt,2);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Pull On Belt(in Kg.) : 194.74\n"
- ]
- }
- ],
- "prompt_number": 157
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.29, Page 162"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "#At 3% slip\n",
- "OutputPower=24;#in KW(At 3% slip)\n",
- "S=3.;#in %\n",
- "\n",
- "#Calculations\n",
- "Efficiency=(1-S/100);#unitless\n",
- "InputPower=OutputPower/Efficiency;#in KW\n",
- "#At 5% slip\n",
- "S=5;#in %\n",
- "Efficiency=(1-S/100);#unitless\n",
- "OutputPower=InputPower*Efficiency;#in KW\n",
- "\n",
- "#Result\n",
- "print \"Mechanical power output at a slip of 5%(in KW) : \",round(OutputPower,1);\n",
- "#answer differs due to rounding"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Mechanical power output at a slip of 5%(in KW) : 24.7\n"
- ]
- }
- ],
- "prompt_number": 158
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.30, Page 162"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "#At 50% speed of synchronous speed\n",
- "S=50.;#in %\n",
- "UsefulOutput=55;#in H.P.\n",
- "MechLoss=2;#in H.P.\n",
- "StatorLoss=13.5;#in KW\n",
- "\n",
- "#Calculations&Results\n",
- "Pout_rotor=UsefulOutput+MechLoss;#in H.P.\n",
- "Pout_rotor=Pout_rotor*0.7355;#in KW\n",
- "Efficiency=(1-S/100);#unitless\n",
- "RotorInputPower=Pout_rotor/Efficiency;#in KW\n",
- "RotorCuLoss=RotorInputPower-Pout_rotor;#in KW\n",
- "print \"Cu Loss in the rotor circuit(in KW) :\",round(RotorCuLoss,2);\n",
- "TotalLosses=StatorLoss+RotorCuLoss+MechLoss*0.7355;#in KW\n",
- "MotorEfficiency=UsefulOutput*0.7355/(UsefulOutput*0.7355+TotalLosses);\n",
- "print \"Motor Efficiency(in %) : \",round((MotorEfficiency*100),1);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Cu Loss in the rotor circuit(in KW) : 41.92\n",
- "Motor Efficiency(in %) : 41.6\n"
- ]
- }
- ],
- "prompt_number": 159
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.31, Page 163"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from math import * \n",
- "\n",
- "#Given data :\n",
- "P=4;#no. of poles\n",
- "phase=3;#no. of phase\n",
- "N=1440.;#in rpm(Actual speed of motor)\n",
- "Power_dev=10;#Power developed in H.P.\n",
- "VL=400;#in volt\n",
- "cosfi=0.8;#powerfactor(unitless)\n",
- "f=50;#in Hz\n",
- "\n",
- "#Calculations&Results\n",
- "Ns=120*f/P;#in rpm\n",
- "S=(Ns-N)/Ns;#fractional slip(unitless)\n",
- "print \"Slip :\",S;\n",
- "Omega=N*2*pi/60;#angular speed in radians/sec\n",
- "Torque=Power_dev*735.5/Omega;#in N-meter\n",
- "Torque=Torque/9.81;#in Kg-meter\n",
- "print \"Torque(in Kg-meter) :\",round(Torque,2);\n",
- "RotorCuLoss=(S/(1-S))*Power_dev*735.5;#in watts\n",
- "print \"Rotor Cu Loss per phase(in watts) : \",round((RotorCuLoss/3),1);\n",
- "Pin_rotor=RotorCuLoss/S;#in watts\n",
- "print \"Power input to rotor(in KW) :\",round((Pin_rotor/10**3),2);\n",
- "LineCurrent=Pin_rotor/(sqrt(3)*VL*cosfi);#in Ampere\n",
- "print \"Line Current(in A) :\",round(LineCurrent,2);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Slip : 0.04\n",
- "Torque(in Kg-meter) : 4.97\n",
- "Rotor Cu Loss per phase(in watts) : 102.2\n",
- "Power input to rotor(in KW) : 7.66\n",
- "Line Current(in A) : 13.82\n"
- ]
- }
- ],
- "prompt_number": 160
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.32, Page 164"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "VL=440;#in volt\n",
- "f=50;#in Hz\n",
- "P=6;#no. of poles\n",
- "phase=3;#no. of phase\n",
- "Pin_rotor=80;#in KW\n",
- "fr=100;#revolutions/min\n",
- "\n",
- "#Calculations&Results\n",
- "fr=100./60;#in Hz\n",
- "S=fr/f;#slip(unitless)\n",
- "print \"Slip : \",round(S,3);\n",
- "Ns=120*f/P;#in rpm\n",
- "N=Ns*(1-S);#in rpm(Speed of Rotor)\n",
- "print \"Rotor speed(in rpm) : \",round(N);\n",
- "RotorCuLoss=S*Pin_rotor*10**3;#in watts\n",
- "print \"Rotor Cu Loss per phase(in watts) : \",round(RotorCuLoss/phase);\n",
- "I2=65;#in Ampere\n",
- "R2=(RotorCuLoss/phase)/I2**2;#in ohm\n",
- "print \"Rotor resistance per phase(in ohm) : \",round(R2,2);\n",
- "Pout_rotor=Pin_rotor-RotorCuLoss/10**3;#in KW\n",
- "print \"Output power of rotor(in H.P.) : \",round((Pout_rotor/0.735),1);\n",
- "#Note : answers of few part are not accurate in the book."
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Slip : 0.033\n",
- "Rotor speed(in rpm) : 967.0\n",
- "Rotor Cu Loss per phase(in watts) : 889.0\n",
- "Rotor resistance per phase(in ohm) : 0.21\n",
- "Output power of rotor(in H.P.) : 105.2\n"
- ]
- }
- ],
- "prompt_number": 161
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.33, Page 165"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "VL=440;#in volt\n",
- "f=50.;#in Hz\n",
- "P=6;#no. of poles\n",
- "phase=3;#no. of phase\n",
- "Pin_rotor=20;#in KW\n",
- "N=960.;#in rpm(Speed of Motor)\n",
- "\n",
- "#Calculations\n",
- "Ns=120*f/P;#in rpm\n",
- "S=(Ns-N)/Ns;#slip(unitless)\n",
- "RotorCuLoss=S*Pin_rotor*10**3;#in watts\n",
- "RotorCuLoss=RotorCuLoss/phase;#in watts/phase\n",
- "R2=1./3;#Rotor Resistance in ohm per phase\n",
- "I2=sqrt(RotorCuLoss/R2)\n",
- "\n",
- "#Result\n",
- "print \"Motor current per phase(in Ampere) :\",round(I2,2);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Motor current per phase(in Ampere) : 28.28\n"
- ]
- }
- ],
- "prompt_number": 162
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.34, Page 166"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from math import * \n",
- "\n",
- "#Given data :\n",
- "VL=500;#in volt\n",
- "f=50;#in Hz\n",
- "P=6;#no. of poles\n",
- "phase=3;#no. of phase\n",
- "Pout_rotor=20;#in H.P.\n",
- "cosfi=0.87;#power factor\n",
- "N=995.;#in rpm(Speed of Motor)\n",
- "\n",
- "#Calculations&Results\n",
- "Ns=120*f/P;#in rpm\n",
- "S=(Ns-N)/Ns;#slip(unitless)\n",
- "print \"Slip : \",S;\n",
- "RotorCuLoss=(S/(1-S))*Pout_rotor*735.5;#in watts\n",
- "print \"Rotor Cu Loss(in watts) :\",round(RotorCuLoss,2);\n",
- "Pin_rotor=RotorCuLoss/S;#in watts\n",
- "print \"Power input to rotor(in KW) :\",round((Pin_rotor/10**3),3);\n",
- "IL=Pin_rotor/(sqrt(3)*VL*cosfi);#in Ampere\n",
- "print \"Line current (in Ampere) :\",round(IL,2);\n",
- "Rotorfreq=S*f;#in Hz\n",
- "print \"Rotor frequency(in Hz) :\",round(Rotorfreq,2);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Slip : 0.005\n",
- "Rotor Cu Loss(in watts) : 73.92\n",
- "Power input to rotor(in KW) : 14.784\n",
- "Line current (in Ampere) : 19.62\n",
- "Rotor frequency(in Hz) : 0.25\n"
- ]
- }
- ],
- "prompt_number": 163
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.35, Page 166"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "f=50;#in Hz\n",
- "P=4;#no. of poles\n",
- "phase=3;#no. of phase\n",
- "Efficiency=85.;#in %\n",
- "OutputPower=17.;#in KW\n",
- "OutputPower=17*10**3;#in watts\n",
- "StatorLosses=900.;#in watt\n",
- "MechLosses=1100;#in watt\n",
- "\n",
- "#Calculations&Results\n",
- "Pin=OutputPower/(Efficiency/100);#in watts\n",
- "#Stator input or rotor input :\n",
- "Pin_rotor=Pin-StatorLosses;#in watts\n",
- "P_MechDev=OutputPower+MechLosses;#in watts\n",
- "RotorCuLosses=Pin_rotor-P_MechDev;#in watts\n",
- "S=RotorCuLosses/Pin_rotor;#slip(unitless)\n",
- "print \"Slip :\",round(S,3);\n",
- "Ns=120*f/P\n",
- "N=Ns*(1-S);#in rpm(Speed of Motor)\n",
- "Omega=2*pi*N/60;#angular speed in rad/sec\n",
- "Torque=P_MechDev/Omega;#in Nm\n",
- "print \"Torque developed(in Nm) :\",round(Torque,1);\n",
- "Tm=OutputPower/Omega;#in Nm\n",
- "Tm=Tm/9.81;#in Kg-meter\n",
- "print \"Torque at the shaft(in Kg-meter) :\",round(Tm,2);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Slip : 0.052\n",
- "Torque developed(in Nm) : 121.6\n",
- "Torque at the shaft(in Kg-meter) : 11.64\n"
- ]
- }
- ],
- "prompt_number": 164
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.36, Page 168"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "VL=500;#in volt\n",
- "f=50;#in Hz\n",
- "P=6;#no. of poles\n",
- "phase=3;#no. of phase\n",
- "Pin_stator=50;#in KW\n",
- "Statorlosses=2;#in KW\n",
- "MechLosses=1;#in KW\n",
- "\n",
- "#Calculations&Results\n",
- "Pin_rotor=Pin_stator-Statorlosses;#in KW\n",
- "S=3.;#in %\n",
- "RotorI2RLoss=(S/100)*Pin_rotor;#in KW\n",
- "print \"Rotor I2R Loss(in KW) :\",RotorI2RLoss;\n",
- "print \"Rotor core loss at 3% slip is very less and can be neglected.\";\n",
- "Power_dev=Pin_rotor-RotorI2RLoss;#in KW\n",
- "print \"Power developed by the rotor(in H.P.) : \",round((Power_dev/0.7355),1);\n",
- "Outputpower=Power_dev-MechLosses;#in KW\n",
- "Efficiency=Outputpower/Pin_stator;#unitless\n",
- "print \"Efficiency of the motor(in %) :\",(Efficiency*100);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Rotor I2R Loss(in KW) : 1.44\n",
- "Rotor core loss at 3% slip is very less and can be neglected.\n",
- "Power developed by the rotor(in H.P.) : 63.3\n",
- "Efficiency of the motor(in %) : 91.12\n"
- ]
- }
- ],
- "prompt_number": 165
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.37, Page 168"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "f=50;#in Hz\n",
- "P=4;#no. of poles\n",
- "phase=3;#no. of phase\n",
- "MotorOutput=20;#in H.P.\n",
- "MotorOutput=20*735.5;#in watts\n",
- "S=4.;#full load slip in %\n",
- "MechLosses=500;#in watts\n",
- "\n",
- "#Calculations&Results\n",
- "Pdev_rotor=MotorOutput+MechLosses;#in watts\n",
- "S=S/100;#fractional slip\n",
- "RotorI2RLoss=(S/(1-S))*Pdev_rotor;#in watts\n",
- "print \"Rotor I2R Loss(in watts) :\",RotorI2RLoss;\n",
- "Ns=120*f/P;#in rpm\n",
- "Nr=Ns-Ns*S;#in rpm\n",
- "print \"Rotor speed(in rpm) :\",Nr;"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Rotor I2R Loss(in watts) : 633.75\n",
- "Rotor speed(in rpm) : 1440.0\n"
- ]
- }
- ],
- "prompt_number": 80
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.38, Page 169"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from math import * \n",
- "\n",
- "#Given data :\n",
- "f=50;#in Hz\n",
- "P=6;#no. of poles\n",
- "phase=3;#no. of phase\n",
- "R2=0.02;#in ohm\n",
- "X2=0.1;#in ohm\n",
- "\n",
- "#Calculations\n",
- "S=R2/X2;#slip(unitless)\n",
- "Ns=120*f/P;#in rpm\n",
- "Nr=Ns-Ns*S;#in rpm\n",
- "#At starting S=1\n",
- "S=1;#slip\n",
- "#Formula : T=K*S*R2/(R2^2+X2^2)\n",
- "#Starting torque, Tst=K*R2/(R2^2+S^2*X2^2)\n",
- "#Maximum torque, Tm=K/(2*X2)\n",
- "#Tst=(2/3)*Tm : gives a equation\n",
- "#100*R2^2-30*R2+1=0\n",
- "a=100;b=-30;c=1;\n",
- "R21=(-b+sqrt(b**2-4*a*c))/(2*a);#in ohm\n",
- "R22=(-b-sqrt(b**2-4*a*c))/(2*a);#in ohm\n",
- "#This R2 is the value of rotor circuit resistance.\n",
- "RotWinResistance=0.02;#in ohm per phase\n",
- "Extra_R1=R21-RotWinResistance;#in ohm\n",
- "Extra_R2=R22-RotWinResistance;#in ohm\n",
- "\n",
- "#Result\n",
- "print \"Extra Resistance(in ohm) : \",round(Extra_R1,3),\" ohm or \",round((Extra_R2),3),\" ohm.\";"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Extra Resistance(in ohm) : 0.242 ohm or 0.018 ohm.\n"
- ]
- }
- ],
- "prompt_number": 166
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.39, Page 170"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "f=50;#in Hz\n",
- "P=4;#no. of poles\n",
- "phase=3;#no. of phase\n",
- "MotorShaftOutput=20;#in H.P.\n",
- "\n",
- "#Calculations&Results\n",
- "MotorShaftOutput=20*735.5;#in watts\n",
- "MechLosses=MotorShaftOutput*2/100;#in watts(2% of the output)\n",
- "Pdev_rotor=MotorShaftOutput+MechLosses;#in watts\n",
- "S=3.;#slip in %\n",
- "S=S/100;#fractional slip\n",
- "RotorI2RLoss=(S/(1-S))*Pdev_rotor;#in watts\n",
- "print \"Rotor I2R Loss(in watts) :\",round(RotorI2RLoss);\n",
- "print \"Rotor iron loss at 3% slip is very small and can be neglected.\";\n",
- "RotorInput=Pdev_rotor+RotorI2RLoss;#in watts\n",
- "print \"Rotor Input(in Watts) :\",round(RotorInput,1);\n",
- "Ns=120*f/P;#in rpm\n",
- "Nr=Ns-Ns*S;#in rpm\n",
- "Nr=Nr/60;#in rps\n",
- "T=MotorShaftOutput/(2*pi*Nr);#in Nm\n",
- "print \"Output torque(in Nm) : \",round(T,2);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Rotor I2R Loss(in watts) : 464.0\n",
- "Rotor iron loss at 3% slip is very small and can be neglected.\n",
- "Rotor Input(in Watts) : 15468.2\n",
- "Output torque(in Nm) : 96.54\n"
- ]
- }
- ],
- "prompt_number": 167
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.40, Page 171"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "VL=500;#in volt\n",
- "f=50;#in Hz\n",
- "P=6;#no. of poles\n",
- "phase=3;#no. of phase\n",
- "Nr=975.;#in rpm\n",
- "\n",
- "#Calculations&Results\n",
- "Ns=120*f/P;#in rpm\n",
- "S=(Ns-Nr)/Ns;#slip\n",
- "print \"Slip :\",S;\n",
- "Pin_stator=40;#in KW\n",
- "StatorLosses=1;#in KW\n",
- "Pin_rotor=Pin_stator-StatorLosses;#in KW\n",
- "RotorCuLosses=S*Pin_rotor;#in KW\n",
- "print \"Rotor Cu Losses(in KW) :\",RotorCuLosses;\n",
- "RotorOutput=Pin_rotor-RotorCuLosses;#in KW\n",
- "OutputHP=RotorOutput/0.735;#in H.P.\n",
- "print \"Output Horse Power : \",round(OutputHP,2);\n",
- "Efficiency=RotorOutput/Pin_stator;#unitless\n",
- "print \"Efficiency(in %) :\",round(Efficiency*100);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Slip : 0.025\n",
- "Rotor Cu Losses(in KW) : 0.975\n",
- "Output Horse Power : 51.73\n",
- "Efficiency(in %) : 95.0\n"
- ]
- }
- ],
- "prompt_number": 168
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.41, Page 172"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "VL=440;#in volt\n",
- "f=50.;#in Hz\n",
- "P=6;#no. of poles\n",
- "phase=3.;#no. of phase\n",
- "\n",
- "#Calculations&Results\n",
- "Ns=120*f/P;#in rpm\n",
- "fr=120;#alternations per minute\n",
- "fr=fr/60;#in Hz\n",
- "S=fr/f;#slip\n",
- "print \"Slip : \",S;\n",
- "Nr=Ns-S*Ns;#in rpm\n",
- "print \"Rotor speed(in rpm) :\",Nr;\n",
- "Rotor_input=80;#in KW\n",
- "RotorCuLoss=S*Rotor_input;#in KW\n",
- "print \"Rotor Cu Loss per phase(in watts) :\",round((RotorCuLoss*10**3)/phase);\n",
- "P_Mechdev=Rotor_input*10**3-RotorCuLoss*10**3;#in watts\n",
- "P_Mechdev=P_Mechdev/735.5;#in H.P.\n",
- "print \"Mechanical power devloped(in H.P.) :\",round(P_Mechdev,1);\n",
- "Ir=60;#in Ampere\n",
- "R2=(RotorCuLoss*10**3/phase)/Ir**2;#in ohm\n",
- "print \"Rotor resistance per phase(in ohm) :\",round(R2,3);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Slip : 0.04\n",
- "Rotor speed(in rpm) : 960.0\n",
- "Rotor Cu Loss per phase(in watts) : 1067.0\n",
- "Mechanical power devloped(in H.P.) : 104.4\n",
- "Rotor resistance per phase(in ohm) : 0.296\n"
- ]
- }
- ],
- "prompt_number": 169
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.43, Page 175 "
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "f=50.;#in Hz\n",
- "P=6;#no. of poles\n",
- "R2=0.2;#rotor resistance per phase in ohm\n",
- "Nr=960;#in rpm\n",
- "Nr_dash=600;#in rpm\n",
- "\n",
- "#Calculations\n",
- "Ns=120*f/P;#in rpm\n",
- "S=(Ns-Nr)/Ns;#slip(unitless)\n",
- "Sdash=(Ns-Nr_dash)/Ns;#slip(unitless)\n",
- "#Let the new value of resistance is R2dash=(R+0.2)\n",
- "R=R2*(Sdash/S)-R2;#Resistance to be added in ohm\n",
- "\n",
- "#Result\n",
- "print \"Resistance to be added(in ohm) : \",R;"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Resistance to be added(in ohm) : 1.8\n"
- ]
- }
- ],
- "prompt_number": 91
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.44, Page 176"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "f=50;#in Hz\n",
- "P=6;#no. of poles\n",
- "phase=3;#no. of phase\n",
- "RotorIntResistance=0.1;#in ohm per phase\n",
- "X2=1;#in ohm/phase\n",
- "\n",
- "#Calculation\n",
- "Rext=X2-RotorIntResistance;#in ohm\n",
- "\n",
- "#Result\n",
- "print \"External resistance to be included(in ohm/phase) : \",Rext;"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "External resistance to be included(in ohm/phase) : 0.9\n"
- ]
- }
- ],
- "prompt_number": 92
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.45, Page 176"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "f=50.;#in Hz\n",
- "P=6.;#no. of poles\n",
- "phase=3.;#no. of phase\n",
- "R2=0.2;#rotor resistance per phase in ohm\n",
- "N1=960.;#Full load speed in rpm\n",
- "\n",
- "#Calculations\n",
- "Ns=120*f/P;#in rpm\n",
- "S1=(Ns-N1)/Ns;#Full load slip(unitless)\n",
- "N2=N1*(1-10./100);#New speed in rpm(reduced 10%)\n",
- "S2=(Ns-N2)/Ns;#New slip(unitless)\n",
- "#Formula : S=RotorCuLoss/Pin_rotor=3*I2^2*R2/Pin_rotor\n",
- "#Let the additional resistance is R\n",
- "R=R2*S2/S1-R2;#Resistance to be added in ohm\n",
- "\n",
- "#Result\n",
- "print \"Additional Rotor Resistance(in ohm) : \",R;"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Additional Rotor Resistance(in ohm) : 0.48\n"
- ]
- }
- ],
- "prompt_number": 97
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.46, Page 180"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "R2inner=0.4;#in ohm\n",
- "X2inner=2;#in ohm \n",
- "R2outer=2;#in ohm\n",
- "X2outer=0.4;#in ohm \n",
- "#At standstill :\n",
- "S=1;#unitless\n",
- "\n",
- "#Calculations&Results\n",
- "Ratio=(R2outer*S/(R2outer**2+S**2*X2outer**2))/(R2inner*S/(R2inner**2+S**2*X2inner**2));#unitless\n",
- "print \"Ratio of torque produced by two cages at standstill : \",Ratio;\n",
- "#At Full load :\n",
- "S=5;#in %\n",
- "S=5./100;#fractional\n",
- "Ratio=(R2outer*S/(R2outer**2+S**2*X2outer**2))/(R2inner*S/(R2inner**2+S**2*X2inner**2));#unitless\n",
- "print \"Ratio of torque produced by two cages at full load(slip=5%) : \",round(Ratio,2);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Ratio of torque produced by two cages at standstill : 5.0\n",
- "Ratio of torque produced by two cages at full load(slip=5%) : 0.21\n"
- ]
- }
- ],
- "prompt_number": 171
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.47, Page 187"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from math import * \n",
- "\n",
- "#Given data :\n",
- "Output=10;#in H.P.\n",
- "Output=Output*735.5;#in watts\n",
- "cosfi=0.8;#unitless\n",
- "ETA=0.83;#unitless\n",
- "ISCbyIFL=3.5;#ratio of SC current to full load current\n",
- "VL=500;#in volt\n",
- "\n",
- "#Calculations\n",
- "Input=Output/ETA;#in watts\n",
- "IFL=Input/(sqrt(3)*VL*cosfi);#in Ampere\n",
- "ISC=IFL*ISCbyIFL;#in Ampere\n",
- "Is=ISC/3;#in Ampere\n",
- "\n",
- "#Result\n",
- "print \"Strting current(in Ampere) :\",round(Is,2);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Strting current(in Ampere) : 14.92\n"
- ]
- }
- ],
- "prompt_number": 172
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.48, Page 187"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "ISCbyIFL=5;#ratio of SC current to full load current\n",
- "S=0.04;#Full load slip\n",
- "\n",
- "#Calculations&Results\n",
- "#(i) for star delta starter : \n",
- "print \"for star delta starter : \";\n",
- "Ratio=(1./3)*(ISCbyIFL)**2*S;#Ratio of starting torque to full load torque\n",
- "print \"Starting torque is \",round((Ratio*100),2),\"% of full load torque.\";\n",
- "#(i) for auto transformer starter :\n",
- "print \"for auto transformer starter : \";\n",
- "K=50./100;#tappings\n",
- "Ratio=K**2*(ISCbyIFL)**2*S;#Ratio of starting torque to full load torque\n",
- "print \"Starting torque is \",(Ratio*100),\"% of full load torque.\";"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "for star delta starter : \n",
- "Starting torque is 33.33 % of full load torque.\n",
- "for auto transformer starter : \n",
- "Starting torque is 25.0 % of full load torque.\n"
- ]
- }
- ],
- "prompt_number": 173
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.49, Page 188"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "ISCbyIFL=4;#ratio of SC current to full load current\n",
- "TsBYTf=1./4;#ratio of atarting torque to full load torque\n",
- "Slip=3;#in %\n",
- "Slip=3./100;#in fraction\n",
- "\n",
- "#Calculations\n",
- "#Formula : TsBYTf=Percent_Tapping^2*ISCbyIFL^2*Slip\n",
- "tapping=sqrt(TsBYTf/(Slip*ISCbyIFL**2));#in %\n",
- "\n",
- "#Result\n",
- "print \"Tapping(in %) :\",round((tapping*100),1);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Tapping(in %) : 72.2\n"
- ]
- }
- ],
- "prompt_number": 174
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.50, Page 189"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "ISCbyIFL=5.;#ratio of SC current to full load current\n",
- "Slip=5;#in %\n",
- "Slip=5./100;#in fraction\n",
- "\n",
- "#Calculations\n",
- "#Formula : 3*IFL=K^2*ISC\n",
- "K=sqrt(1./(ISCbyIFL/3));#unitless\n",
- "TsBYTfl=K**2*(ISCbyIFL)**2*Slip;#ratio of starting torque to full load torque\n",
- "\n",
- "#Result\n",
- "print \"Starting torque is \",(TsBYTfl*100),\"% of full load torque.\";"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Starting torque is 75.0 % of full load torque.\n"
- ]
- }
- ],
- "prompt_number": 175
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.51, Page 189"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "print \"Star delta starter :\";\n",
- "ISCbyIFL=6;#ratio of SC current to full load current\n",
- "Slip=4;#in %\n",
- "Slip=4./100;#in fraction\n",
- "\n",
- "#Calculations&Results\n",
- "TsBYTfl=(1./3)*(ISCbyIFL)**2*Slip;#ratio of starting torque to full load torque\n",
- "print \"Starting torque is \",(TsBYTfl*100),\"% of full load value.\";\n",
- "print \"For an auto transformer :\";\n",
- "K=70.70;#in %\n",
- "K=70.70/100;#in fraction\n",
- "TsBYTfl=K**2*(ISCbyIFL)**2*Slip;#ratio of starting torque to full load torque\n",
- "print \"Starting torque is \",round(TsBYTfl*100),\"% of full load torque.\";"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Star delta starter :\n",
- "Starting torque is 48.0 % of full load value.\n",
- "For an auto transformer :\n",
- "Starting torque is 72.0 % of full load torque.\n"
- ]
- }
- ],
- "prompt_number": 176
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.52, Page 190"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "V=400.;#in volt\n",
- "S=3.5;#in %\n",
- "S=3.5/100;#in fraction\n",
- "VL=92;#in volts\n",
- "\n",
- "#Calculations&Results\n",
- "#ISC=(V/VL)*IFL;#in Ampere\n",
- "ISCbyIFL=V/VL;#ratio of SC current to full load current\n",
- "#2*IFL=K^2*ISC imples that 2*IFL=K^2*(V/VL)*IFL\n",
- "K=sqrt(2./(V/VL));#in fraction\n",
- "print \"Necessary tapping(in %) :\",round((K*100),1);\n",
- "TsBYTfl=K**2*(ISCbyIFL)**2*S;#ratio of starting torque to full load torque\n",
- "print \"Starting torque is \",round((TsBYTfl*100),1),\"% of full load value.\";"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Necessary tapping(in %) : 67.8\n",
- "Starting torque is 30.4 % of full load value.\n"
- ]
- }
- ],
- "prompt_number": 179
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.53, Page 190"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "ISCbyIFL=4;#ratio of SC current to full load current\n",
- "ISbyIFL=2;#ratio of Supply current to full load current\n",
- "S=2.5;#in %\n",
- "S=2.5/100;#in fraction\n",
- "\n",
- "#Calculations\n",
- "#Formula : ISbyIFL=(1/K^2)*ISCbyIFL\n",
- "K=sqrt(ISCbyIFL/ISbyIFL);#in fraction\n",
- "print \"Auto Transormation ratio :\",round(K,2);\n",
- "TsBYTfl=(1./K**2)*(ISCbyIFL)**2*S;#ratio of starting torque to full load torque\n",
- "\n",
- "#Results\n",
- "print \"Ratio of starting torque to full load torque :\",TsBYTfl;\n",
- "print \"or Starting torque is \",(TsBYTfl*100),\"% of full load value.\";"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Auto Transormation ratio : 1.41\n",
- "Ratio of starting torque to full load torque : 0.2\n",
- "or Starting torque is 20.0 % of full load value.\n"
- ]
- }
- ],
- "prompt_number": 180
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.54, Page 191"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "ISCbyIFL=4;#ratio of SC current to full load current\n",
- "S=3;#in %\n",
- "S=3./100;#in fraction\n",
- "TsBYTfl=1./4;#ratio of starting torque to full load torque\n",
- "\n",
- "#Calculations\n",
- "#Formula : TsBYTfl=ISCbyIFL^2*K^2*S\n",
- "K=sqrt(TsBYTfl/(ISCbyIFL**2*S));#in fraction\n",
- "\n",
- "#Result\n",
- "print \"Auto Transormation ratio(in %) :\",round((K*100),2);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Auto Transormation ratio(in %) : 72.17\n"
- ]
- }
- ],
- "prompt_number": 181
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.55, Page 191"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from math import * \n",
- "\n",
- "#Given data :\n",
- "Output=3;#in H.P.\n",
- "Output=3*735.5;#in watts\n",
- "Efficiency=0.83;#unitless\n",
- "cosfi=0.8;#power factor\n",
- "\n",
- "#Calculations\n",
- "Vl=500;#in volt\n",
- "Input=Output/Efficiency;#in watts\n",
- "#Formula : Input=sqrt(3)*Vl*Il*cosfi\n",
- "Il=Input/(sqrt(3)*Vl*cosfi);#in Ampere\n",
- "ISCbyIFL=3.5;#ratio of SC current to full load current\n",
- "ISC=ISCbyIFL*Il;#in Ampere\n",
- "LineCurrent=ISC/3;#in Ampere(for star delta starter)\n",
- "\n",
- "#Result\n",
- "print \"Line Current(in Ampere) :\",round(LineCurrent,2);\n",
- "#Note : Ans in the book is not accurate."
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Line Current(in Ampere) : 4.48\n"
- ]
- }
- ],
- "prompt_number": 182
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.56, Page 192"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from math import * \n",
- "\n",
- "#Given data :\n",
- "Output=15;#in H.P.\n",
- "Output=15*735.5;#in watts\n",
- "Vl=400;#in volt\n",
- "ISCat200=40;#in Ampere(at 200 volt)\n",
- "Efficiency=0.88;#unitless\n",
- "cosfi=0.85;#power factor\n",
- "\n",
- "#Calculations\n",
- "ISCat400=ISCat200*(400./200);#in Ampere(at 400 volt)\n",
- "Input=Output/Efficiency;#in watts\n",
- "Ifl=Input/(sqrt(3)*Vl*cosfi);#in Ampere\n",
- "#starting line current with star delta starter\n",
- "Is=ISCat400/3;#in Ampere\n",
- "Ratio=Is/Ifl;#ratio of starting current to full load current\n",
- "\n",
- "#Result\n",
- "print \"Ratio of line current at starting to full load current :\",round(Ratio,2);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Ratio of line current at starting to full load current : 1.25\n"
- ]
- }
- ],
- "prompt_number": 183
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.57, Page 192"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "from math import * \n",
- "\n",
- "#Given data :\n",
- "#With star delta starter : \n",
- "TstBYTfl=0.35;#ratio of starting torque to full load torque\n",
- "IstBYIfl=1.75;#ratio of starting current to full load current\n",
- "\n",
- "#Calculations&Results\n",
- "ISCBYIs=sqrt(3);#ratio of SC current to starting current\n",
- "ISCBYIfl=sqrt(3)*IstBYIfl;#ratio of SC current to full load current\n",
- "#Formula : TstBYTfl=(ISCBYIfl)^2*S\n",
- "S=TstBYTfl/(ISCBYIfl)**2;#in fraction\n",
- "print \"Full load Slip : \",round(S,3);\n",
- "#With auto transformer with winding in delta : \n",
- "Ip=sqrt(3)*1.750*0.8;#full voltage phase current in Ampere\n",
- "IlBYIf=4.2;#ratio of Line current to full load current\n",
- "Ratio=IlBYIf**2*S;#ratio of starting current to full load current\n",
- "print \"Ratio of line current at starting to full load current :\",round(Ratio,2);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Full load Slip : 0.038\n",
- "Ratio of line current at starting to full load current : 0.67\n"
- ]
- }
- ],
- "prompt_number": 188
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.58, Page 196"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "f=50;#in Hz\n",
- "P=4;#no. of poles\n",
- "phase=3;#no. of phase\n",
- "R2=0.25;#in ohm per phase\n",
- "S=2;#in %\n",
- "S=2./100;#in fraction\n",
- "\n",
- "#Calculations\n",
- "Ns=120*f/P;#in rpm\n",
- "Nr=Ns-Ns*S;#in rpm\n",
- "#When speed reduced to 10%\n",
- "NewSpeed=Nr*90/100;#in rpm\n",
- "Sdash=(Ns-NewSpeed)/Ns;#in fraction\n",
- "R2dash=(Sdash/S)*R2;#in ohm per phase\n",
- "R=R2dash-R2;#in ohm\n",
- "\n",
- "#Result\n",
- "print \"Value of resistance to be added(in ohm) :\",R;"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Value of resistance to be added(in ohm) : 1.225\n"
- ]
- }
- ],
- "prompt_number": 114
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.59, Page 197"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "f=50;#in Hz\n",
- "P=4;#no. of poles\n",
- "R2=0.25;#in ohm per phase\n",
- "N=1440.;#in rpm at full load\n",
- "NewSpeed=1200;#in rpm\n",
- "\n",
- "#Calculations&Results\n",
- "Ns=120*f/P;#in rpm\n",
- "S=(Ns-N)/Ns;#in %\n",
- "NewS=(Ns-NewSpeed)/Ns;#in fraction\n",
- "S1=S;S2=NewS;#slip new and old\n",
- "#Torque remaining same : S1/R2=S2/(R2+R)\n",
- "R=S2*R2/S1-R2;#in ohm\n",
- "print \"External resistance per phase(in ohm) :\",R; #incorrect answer in textbook\n",
- "Nr=Ns-Ns*S;#in rpm\n",
- "#If S1 is taken as 0.03 and S2 as 0.127\n",
- "S1=0.03;#slip in fraction\n",
- "S2=0.127;#slip in fraction\n",
- "R=S2*R2/S1-R2;#in ohm\n",
- "print \"External resistance per phase(in ohm) :\",round(R,3);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "External resistance per phase(in ohm) : -0.25\n",
- "External resistance per phase(in ohm) : 0.808\n"
- ]
- }
- ],
- "prompt_number": 194
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.60, Page 198"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "f=50;#in Hz\n",
- "P=4;#no. of poles\n",
- "phase=3;#no. of phase\n",
- "S=4;#in %\n",
- "S=4./100;#in fraction\n",
- "\n",
- "#Calculations&Results\n",
- "Ns=120*f/P;#in rpm\n",
- "N1=Ns-Ns*S;#in rpm\n",
- "#When speed reduced to 10%\n",
- "N2=N1*85/100;#in rpm(NewSpeed)\n",
- "print \"New speed(in rpm) :\",N2;\n",
- "#New speed is reduced by 15 %\n",
- "Sdash=(Ns-N2)/Ns;#in fraction\n",
- "print \"New Slip : \",Sdash;"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "New speed(in rpm) : 1224.0\n",
- "New Slip : 0.184\n"
- ]
- }
- ],
- "prompt_number": 118
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example 2.61, Page 202"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "\n",
- "#Given data :\n",
- "f=50;#in Hz\n",
- "P=4;#no. of poles\n",
- "phase=3;#no. of phase\n",
- "Pin=60;#in KW\n",
- "StatorLoss=1.2;#in KW\n",
- "WindingLoss=1.8;#in KW\n",
- "S=4;#in %\n",
- "S=4./100;#in fraction\n",
- "\n",
- "#Calculations&Results\n",
- "Ns=120*f/P;#in rpm\n",
- "Nr=Ns-Ns*S;#in rpm\n",
- "print \"Rotor speed(in rpm) :\",Nr;\n",
- "Pin_rotor=Pin-StatorLoss;#in KW\n",
- "RotorCuLoss=S*Pin_rotor;#in KW\n",
- "print \"Rotor Cu Loss(in KW) : \",RotorCuLoss;\n",
- "Pout_rotor=Pin_rotor-WindingLoss-RotorCuLoss;#in KW\n",
- "Efficiency=(Pout_rotor/Pin)*100;#in %\n",
- "print \"Efficiency(in %) :\",round(Efficiency);\n",
- "HP=Pout_rotor*10**3/735.5;#in H.P.\n",
- "print \"Horse Power(inH.P.) :\",round(HP,2);"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "Rotor speed(in rpm) : 1440.0\n",
- "Rotor Cu Loss(in KW) : 2.352\n",
- "Efficiency(in %) : 91.0\n",
- "Horse Power(inH.P.) : 74.3\n"
- ]
- }
- ],
- "prompt_number": 195
- }
- ],
- "metadata": {}
- }
- ]
-} \ No newline at end of file