diff options
author | Thomas Stephen Lee | 2015-09-04 22:04:10 +0530 |
---|---|---|
committer | Thomas Stephen Lee | 2015-09-04 22:04:10 +0530 |
commit | 41f1f72e9502f5c3de6ca16b303803dfcf1df594 (patch) | |
tree | f4bf726a3e3ce5d7d9ee3781cbacfe3116115a2c /ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans | |
parent | 9c9779ba21b9bedde88e1e8216f9e3b4f8650b0e (diff) | |
download | Python-Textbook-Companions-41f1f72e9502f5c3de6ca16b303803dfcf1df594.tar.gz Python-Textbook-Companions-41f1f72e9502f5c3de6ca16b303803dfcf1df594.tar.bz2 Python-Textbook-Companions-41f1f72e9502f5c3de6ca16b303803dfcf1df594.zip |
add/remove/update books
Diffstat (limited to 'ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans')
18 files changed, 7404 insertions, 0 deletions
diff --git a/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/.ipynb_checkpoints/chapter10-checkpoint.ipynb b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/.ipynb_checkpoints/chapter10-checkpoint.ipynb new file mode 100755 index 00000000..de5013c9 --- /dev/null +++ b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/.ipynb_checkpoints/chapter10-checkpoint.ipynb @@ -0,0 +1,364 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 10: Introduction to Power Electronics" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 10.5, Page number: 508" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "%matplotlib inline\n", + "from pylab import *\n", + "import numpy as np\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "w=2*pi*60 #frequency of voltage(Hz)\n", + "R=10 #ohm\n", + "C=0.01 #F\n", + "Vo=120*sqrt(2) #maximum voltage(V)\n", + "Nmax=800\n", + "tau=R*C #time constant(s)\n", + "\n", + "#Calculations:\n", + "# diode = 1 when rectifier bridge is conducting\n", + "\n", + "diode=1\n", + "t=[0]*801\n", + "vs=[0]*801\n", + "vrect=[0]*801\n", + "vR=[0]*801\n", + "iB=[0]*801\n", + "\n", + "t=[0]*801\n", + "for n in range(1,Nmax+2,1):\n", + " t[n-1] = (2.5*pi/w)*(n-1)/Nmax\n", + " vs[n-1]=Vo*math.cos(w*t[n-1])\n", + " vrect[n-1]=abs(vs[n-1])\n", + "#if the rectifier bridge is ON:\n", + " if diode==1:\n", + " vR[n-1]=vrect[n-1]\n", + " if (w*t[n-1])<=(pi/2):\n", + " iB[n-1]=vR[n-1]-Vo*C*w*math.sin(w*t[n-1])\n", + " elif (w*t[n-1])<=3*pi/2:\n", + " iB[n-1]=vR[n-1]/R+Vo*C*w*math.sin(w*t[n-1])\n", + " else:\n", + " iB[n-1]=vR[n-1]/R-Vo*C*w*math.sin(w*t[n-1])\n", + " if iB[n-1]<0:\n", + " diode=0\n", + " toff=t[n-1]\n", + " Voff=vrect[n-1]\n", + " else:\n", + " vR[n-1]=Voff*exp(-(t[n-1]-toff/tau))\n", + " iB[n-1]=0\n", + " if (vrect[n-1]-vR[n-1])>0:\n", + " diode=1\n", + "\n", + "\n", + "\n", + "#Results:\n", + "iR=(1/R)*np.array(vR)\n", + "plot(1000*np.array(t),vR)\n", + "xlabel('time [msec]')\n", + "ylabel('voltage [V]')\n", + "xlim(0,22)\n", + "ylim(0,180)\n", + "plot(1000*np.array(t),vrect,'--')\n", + "grid()\n", + "print \"The required plots are shown below:\"\n", + "show()\n", + "plot(1000*np.array(t),iR)\n", + "xlabel('time [msec]')\n", + "ylabel('source current [A]')\n", + "xlim(0 ,22)\n", + "ylim(-50,250) \n", + "plot(1000*np.array(t),1.5*np.array(iB),'--')\n", + "grid()\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n", + "The required plots are shown below:" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEPCAYAAACk43iMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdcFGf+B/DP0q0B6U1ArJQFBFFR7IViL7FEc4hJvBhj\n1JiYX3I5TLnYgkajJiZGyemZaJSLBSXGsooVpCjYFVCWoiCCCFL3+f3hsRGVsrAzz7O7z/v18nXO\nssx8/N5kvzvPzDwjIYQQcBzHcTpJj3YAjuM4jh7eBDiO43QYbwIcx3E6jDcBjuM4HcabAMdxnA7j\nTYDjOE6HCdYEwsPDYW1tDU9PT+Vrp0+fhre3Nzw8PODl5YUzZ84of7Zs2TK4ubnB09MThw8fFioW\nx3Ec9wzBmsCsWbMQGxtb57UlS5ZgxYoVSEtLw/Lly7FkyRIAQGJiIqKjo5GamorY2FjMmTMHlZWV\nQkXjOI7j/kewJhAYGAgzM7M6rzk6OqK4uBgAUFRUBCcnJwBATEwMpk6dCn19fdjb28Pd3R3x8fFC\nReM4juP+x0DMjS1fvhz9+/fH4sWLoVAocPbsWQBAdnY2hgwZonyfg4MD5HK5mNE4juN0kqgnhmfP\nno1169bh7t27WLNmDcLDw8XcPMdxHPccUY8Ezp07hyNHjgAAJk2ahFmzZgF4+s0/KytL+T65XA5H\nR8cXft/e3h45OTnihOU4jtMSXl5eSElJeenPRD0ScHJywokTJwAAx44dg4uLCwAgJCQEO3fuRHV1\nNeRyOdLS0uDv7//C7+fk5IAQwv+o8CciIoJ6BnX98fcnOHeO14ulP7xemlGvixcv1vu5LNiRwLRp\n03DixAkUFBTA0dERn3/+OX788UfMnTsXVVVVMDY2xk8//QQA8PX1xfjx4yGVSqGnp4dNmzbB0NBQ\nqGg6JTMzk3YEtamsBIyMhN2GNtVLDLxeqmGxXoI1gV9++eWlr9d3SPLxxx/j448/FioOpwXEaAIc\np2v4HcNaLiwsjHYEtRGjCWhTvcTA66UaFuslIYRozENlJBIJNCgup2ZOTsDJk0//l+O4pmvos5Mf\nCWg5mUxGO4LaiHEkoE31EgOvl2pYrBdvApzGqKjg5wQ4Tt34cBCnMdq2BXJzgXbtaCfhOM3Ch4M4\nrcCvDuI49eNNQMuxOAbZHIQAVVWA0LePaEu9xMLrpRoW6yXqtBHqIM9/BAfL9rRjcCJRKAiuywvw\noLgcBq0soKfXinYkjtMqGndOAB+3hkGFDbyMxmHlq3MxxNuVdixOAOt+P4XIuA3IMjwMSAgk1a1B\nTB4g+8N02LazpR2PE0iNogZ7r+9FfHY8lg9b/sLPSytLoa+nDxMDEwrpNJdWnROo+rwEv4z9Lwz1\njTDs197w/XgR7j8spR2LU5Nbt4DgYOCfv+5Bb7t+iA+/BMWyQtSskqNi6SPYtLWhHZETSHx2PLw3\neWPF6RXoadvzpe+JvhqNLt92QfTVaJHTaTGiQZ6Pm5qeR3q8t5h09yomV69SCsW448eP047QZLt3\nE2JhQciqVYRUVNDJoEn1YoE66qVQKMjyuOXEepU1+SX1F6JQKBp8f9ydOOK61pW8ue9NUlFNaUdp\nJlr7V0Mf9Rp3JPAsDxdrXF6zCgvntsegQUBiIu1EXHNt2AAsXAgcPAgsXtz0q4BqFDWYf2g+soqz\nGn8zx6Q9V/fgl7RfcOGtC5jqMfXpsG8D+nfsj+Q5ybhXeg+jfxmNx5WPRUqqnTTunEB9cX//HXjr\nLeDQIcDXV+RgXIus+bYc364xwdGjwP9mF1fJqtOrsClxE06Hn4Z1W2v1B+QEpSAKPKl6gjZGbVT6\nvWpFNd7Y9wacXnHCZ4M/Eyiddmjos1NrmgAAREcD8+cDZ84AlpZP7zA1MAD09f/6Xz2NPvbRPkt+\n3oNvzn6D6x+dhLNzw98AG7JUthQHbhyALEyGtkZt1ZiQY1mNogYEBAZ6Gneho6h0pgkAwMqvqxGZ\n8AUUJz9CRWkr1NQA1dVATc3TPxLJ02bwbGN4/n+16WfJyTL06TOoWets5Ki8xfadu4Jxvw9E1LBY\nvD6sZYdvhBCE7wtHeXU5dkzY0eiQQn1kMhkGDRrUoiy6hNdLNbTq1dBnp9a1z8WL9LHhw2uoGbMY\n+Zs21PkZIYBCgTqN4dkG8fxrDf1M1fc3tq4nT4TJVVwMmJiovi6F4ulRk1BNihiU4Q/nCfhbx69b\n3ACApzv5xpCN6PtTX+y6vAtTPKa0eJ0cpwsEOxIIDw9HTEwMrKyskJqaqnz922+/xebNm6FQKBAU\nFIRVq1YBAJYtW4Zt27ZBX18fkZGRGDFixIthmzh30IPHxfD90Qdrg9dgbPex6vtH6ZDahqnORvfs\naz9mLUAp8nHsnf+o9YgjtyQX5q3NYaTP55dgkYIoMO/gPPxjwD9g186Odhyd0eBnp1CXJJ08eZIk\nJSURDw8P5WsHDhwgoaGhpKqqihBCSEFBASGEkAsXLhA/Pz9SXV1N5HI5cXZ2JhUvuUZQlbgnM08S\n+0h7UvSkqIX/Ek7dbj64Sewj7cmDsge0o3AiW39+PemzuQ+prqkWZP3yYjnZGL9RkHVrsoY+OwU7\nTRoYGAgzM7M6r23evBlLliyBgcHTUShzc3MAQExMDKZOnQp9fX3Y29vD3d0d8fHxLdu+UyBCuoTg\n46O6/chKFucq6dyhM9LmpqFDqw60o7yAxXqxTJV63S2+iwhZBKLGRkFfT1+QPG2M2uDLuC8RdydO\nkPW3FIv7l6jXyly7dg1//PEHvL290bdvX5w5cwYAkJ2dDQcHB+X7HBwcIJfLW7y9FcNWwMTAhE8/\nzSBTE1PaETiRffjnh3jX/110s+gm2DZMTUzxbfC3+HvM31GtqBZsO9pE1BPDCoUCJSUlSElJQUJC\nAiZOnIjMzEyV1hEWFgZnZ2cAgKmpKby9vZVn22u7bO3yxfMXMdp4tPJKked/rivLtVjJI+ZydU01\nhg0dptLv12IhvyYs12ro/XF34nDs+DGEjQ9r0vtbsjx+4Hisj1+PD3/8EGO6jaFeHxr7l0wmQ1RU\nFAAoPy/rJeQ4VEZGRp1zAkOHDiUymUy57OrqSnJycsjnn39OVq1apXw9NDSUnDp16oX1CRyX0zI1\nihriudGTpN1Lox1F5+29tpf89+p/RdteUk4SsV5lTYrLi0XbJssa+uwUdTgoNDQUx44dAwDcuHED\nZWVlsLa2RkhICHbu3Inq6mrI5XKkpaXB399fzGha6/lvH7QoiEL0bepJ9BDuE44Pj3zY5N9hpV6a\noqn1GtNtDMZ1HydsmGf42PpgktskxGe37NyiurG4fwnWBKZNm4aAgADcuHEDjo6O2Lp1K+bNm4f0\n9HR4eHhgwoQJiIqKgp6eHnx9fTF+/HhIpVIEBQVh06ZNMBT66SGcqKbtmYZDNw+Jvt25veYi7X4a\nzsvPi75tjq71IesxrNMw2jGYp3V3DDfkQs4FSK2l/BpykaXkpSD4P8G4Pf82Whu2Fn373yV8hwM3\nDyBmeozo2+Y4FmjV8wRa4qMjH+E/l/5DO4bO+ezEZ1jSbwmVBgAA4T7huHTvEhKyE6hsn+NYplNN\n4B8D/oGvTn2FGkUN7SiioT0GeTX/Ks5kncEc3znUMhgbGGN98HroSRrf3WnXS9M0VK+7xXdRWVMp\nXhgNwOL+pVNNYKDTQFi3scZvV36jHUVnrDm3Bm/7vY1WhnSfDTy2+1j42vE5xsVCCMGrv71K5TxQ\nfWhcnKAJdKoJSCQSfBDwAdacW0M7imhqryGmxdTEFHN7zaWaQRW066Vp6qvXmawzKCgrwKiuo8QN\nVI+PjnyETRc20Y7B5P6lU00AAEZ1HYX80nyck5+jHUUnrBy+ElZtrGjH4EQWeTYSC/osEGx6CFWF\ndgnFmnNr+NHAS+hcE9DX08euybvQzVy4W9dZwuIYJMt4vVTzsnrdKryFuLtxmOU9S/xA9ejfsT/a\nG7dHzA26V4ixuH/pXBMAAD87P5i1Mmv8jZxWelD2gM8rI6AN8Rsw22e2yo+LFJJEIsGCPguwLn4d\n7SjM0an7BDgOAAZFDcLCPgv5syYEEnMjBp7Wnuj4SkfaUeoory6H4xpHnH/jPDqZdaIdR1T8PgFO\nVKx/y57lPQs/JP1AO4bWCu0aylwDAAATAxN8GPAh7hbfpR2FKbwJaDkaY5ALYxfih0R2P2Qnu0/G\nOfm5l34YsDhmyzJNq9cH/T7AIOdB1LbPYr10ugnUKGpwIecC7RhapayqDDvSdiCocxDtKPVqbdga\nr3m+hs1Jm2lH4TjqdPqcQElFCTp+0xFX37kKm7Y2aluvLotKicLuK7txYPoB2lEalHY/DSO3j8Sd\nBXdgoCfqYzU4TnT8nEA92hm3w8QeExGVEkU7itbYkrwFs31m047RKA8rD8z1m4tHFY9oR9EKVTVV\nKC4vph2DawadbgIAMNtnNrambNXaq47EHIPMLMrElfwrCO0aKto2W+KTAZ+88JxjFsdsWVZbr9hb\nsRi/czzdMBqAxf1L55tAH4c+qFHUIDE3kXYUjXen6A7e6/0en6pbB21P3Y4p7lNox2iy7EfZGP3L\naK398qcKnT4nUOufx/+JkooSrAnSnTmFOE5disuL4fSNE9LfS3/hyIpVCqKA6zpXRL8aDR9bH9px\nBEflnEB4eDisra3h6en5ws8iIyOhp6eHwsJC5WvLli2Dm5sbPD09cfjwYaFivdQs71no37G/qNvk\nOG2x5+oeDHEZojENAHj66NEZnjOw/dJ22lGoE6wJzJo1C7GxsS+8npWVhT///BNOTk7K1xITExEd\nHY3U1FTExsZizpw5qKwUbx5yFzMXTHSbKNr2xMTiGCSLar8l8XqpRiaTYdulbZgpnUk7ispmSGdg\nR9oOUW9uZHH/EqwJBAYGwszsxfl5Fi1ahJUrV9Z5LSYmBlOnToW+vj7s7e3h7u6O+Hi2HhDNaa/I\nM5FYfXY17RgaqUZRgy4duiCkSwjtKCrrZtENju0dcSzjGO0oVIl6Ynjv3r1wcHCAVCqt83p2djYc\nHByUyw4ODpDL5WJG01oszl/OGm8bb/x6+VcAvF6qGjpkKH4Y/QOMDYxpR2mWaR7TcOruKdG2x+L+\nJdpdMmVlZfjqq6/w559/Kl9rzknesLAwODs7AwBMTU3h7e2tLGztoRZfFnf5vMF5BDoFovJ2JRN5\nVF0eOGAg7hTdwS/7f4FtO1vqefiyeMtexAtDBg9hJo+6lmUyGaKiogBA+XlZH0GvDsrMzMTo0aOR\nmpqK1NRUDBs2DK1bP33YuFwuh729Pc6fP48ffvgBrVq1wuLFiwEAo0aNwv/93/+hX79+dcOKMIuo\ngiia9CxaTSGTyZQ7iRBqFDWwW22H0+Gn0blDZ8G2I7S39r+FLh26oFdVL0HrpW2E3r+0Da16MXHH\nsKenJ+7du4eMjAxkZGTAwcEBSUlJsLa2RkhICHbu3Inq6mrI5XKkpaXB399frGhKJRUl6LS2Eyqq\nK0TftqY6dfcU7NrZaXQDAIDJbpP5s6c5nSRYE5g2bRoCAgJw48YNODo6YuvWrXV+LpFIlH/39fXF\n+PHjIZVKERQUhE2bNsHQ0FCoaPVqZ9wODu0dcDTjqOjbForQ3zp2X9mNST0mCboNMQxyHoQn1U/g\n00f7rxlXJ34UoBoW68VvFnvOmrNrkHY/DT+N/UnQ7WgDBVHAYbUDjv/tOLpZaP7jOgkhdb6ccPXL\nLcnF+4ffx46JO2hH4ZqAieEgTTGhxwTsu7GP+QejNFXtySIhJGQnwLy1uVY0AODpfyhC1kub/Pfa\nf6En0dOaemU/ykb01WjBt8NivXgTeI6TqROcTZ1xIvME7SjM87f3h+xvMtoxOAr2XN2DSW6aPwxY\nq7y6HHNj5kJBFLSjiI4PB73EmrNrYGJggrd7vS34tjhO0zwoe4BO6zoh7/08tDJsRTuO2rhvdMeW\nMVvQ26E37Shq19BnJ3+axkss7LuQdgSOY9ahW4cw2HmwVjUAABjTdQz2Xd+nlU2gIXw4SMuxOAbJ\nMplMhu8SvkNpZSntKMw6fPswRncdDUC79q8x3cZg3419gm6DxXrxIwGOe87uq7th184OY7uPpR2F\nST+N+Qk1pIZ2DLXzt/fH/dL7SH+Yjk5mnWjHEQ0/J8CprKi8CNmPsuFu5U47iiDWnluLS/cu8cuE\nddAft/6Ar50vLFpb0I6iVvwSUU6toq9G47MTn9GOIZjR3UbjwM0DqFFo37ddrmEjO4/UugbQGN4E\nGnA26yxkmTLaMVpEiDHI/Tf2K8eEtY1MJkMns06wamOF+Gw+nXljWBzjZhmL9eJNoAHpD9Pxzblv\naMdgSnl1OY5lHNPI+eNVMabrGOy9vpd2DI4THD8n0IDa66HvLb4HEwMT0bbLskM3D+GrU18hblYc\n7SiCyniYgQdPHsDPzo92FGak3kuFXTs7mLc2px2FUxE/J9BM5q3NIbWWavyQkDrF3IzBqC6jaMcQ\nnIuZC28Az5l7cC4SchJoxxAFIURnLkLhTaARo7qMwv7r+2nHaDZ1j0G6W7pjXPdxal0nS1gcs2VB\ncXkxUvJSMNBpYJ3XtbVeQ/49BEm5SWpfL4v14k2gEcFdghF7O5Z2DGa83ettrZkwjmu6YxnHEOAY\noHV3CdfH29obsbd04797fk6gEYQQ7L2+F2O6jdGqJ45xnCr+fuDv6GreFYv6LqIdRRR/3PoDX8Z9\nqTXnvvg5gRaQSCQY130cbwA6TBdnlnwWIQR/3P4DI11H0o4imgFOA5CSl4Ki8iLaUQQn2CdbeHg4\nrK2t4enpqXxt0aJFcHNzg5ubG0aNGoUHDx4of7Zs2TK4ubnB09MThw8fFiqWzmFxDJJlz9dr9dnV\n+EymvTfGNUVFTQVedXsVbpZuL/xMW/evVoat0L9jfxxNV+9TBlmsl2BNYNasWYiNrTumNnr0aKSl\npeHKlSvw8PDAl19+CQBITExEdHQ0UlNTERsbizlz5qCyslKoaBzXZD42Pjh06xDtGFSZGJhgxfAV\nOvfUtdAuobj+4DrtGIITrAkEBgbCzMyszmuDBw+Gnt7TTfbr1w/Z2dkAgJiYGEydOhX6+vqwt7eH\nu7s74uP53ZrqoK5nmm6I34CYGzFqWRfLnq9Xv479cP3BdeSX5tMJxDgWn5mrLvP85+HjwI/Vuk4W\n60VtoPuHH37A2LFPZ2nMzs6Gg4OD8mcODg6Qy+W0otVLg86hq93WlK1oa9SWdgzRGekbYZDzIBy+\nzYcoOe1EZSrpf/3rXzAyMsJrr72m8u+GhYXB2dkZAGBqagpvb29ld60dbxNi+WLeRcxcMxPrgteJ\nsj11LaekpGDBggUtWp97L3fcLLyJytuVkGXKmPr3qXv5ZfUa0WkEjmQcgX2hPfV8rC2rY//SpWWx\n6iWTyRAVFQUAys/LehEBZWRkEA8PjzqvRUVFkb59+5InT54oX/v888/JqlWrlMuhoaHk1KlTL6xP\n4LgNqqiuIO2XtSf5pfnUMjTH8ePHW7yOHZd2kDG/jGl5GA3wsnpdy79GBm4dKHoWTaCO/UuX0KpX\nQ5+dog4HxcbGYuXKldi3bx9MTP6aiyckJAQ7d+5EdXU15HI50tLS4O/vL2a0RhnpG2Gg00AcST9C\nO4pKar8ltIQuXR74snp1s+gGWZhM9CwseGv/W8gpyan35+rYv3QJi/USrAlMmzYNAQEBuH79Ohwd\nHbFlyxa8++67ePz4MYYPHw4fHx/MnTsXAODr64vx48dDKpUiKCgImzZtgqGhoVDRmm1Yp2E4lnGM\ndgxREUJwNOMohnUaRjsKJ7KCsgLsvLwTlq0taUeh6kzWGaQ/TKcdQzD8jmEVpN1Pw7hfx+HW/FvU\nMqhKJpO1+NtHVnEWHNo76MQlguqol7bYfWU3tqZsRcz0+q8K04V6LfpjETq06oB/DPhHi9dFq178\njmE1cbd0h76ePh6UPWj8zVrE8RVHnWgAXF3HMo5hiPMQ2jGoG+oyFEcz1HvTGEv4kYCKCCH8A5HT\nCT029MCOCTvgY+tDOwpVJRUlsI20Rf4H+Ro7gR4/ElAj3gB0V8bDDCRk68Z8+jklObhfeh9eNl60\no1DXzrgdvGy8cDrrNO0oguBNQMvVXjvMNU1D9UrKTUKELEK8MBRZt7HGhTcvNDpxoq7sX0Ndhqpl\nHiEW68WbAFevgrIC1ChqaMdgxmCXwTh19xQqa7R/Xit9PX24mLnQjsGMV91fRR+HPrRjCIKfE+Dq\nNe7XcZjqMRVTPabSjsIM3x98sTZoLfp37E87Csc1WUOfnfVOG7Fnz55GP3RbtWqFkJCQlifUMMXl\nxUjOS8Yg50G0owimRlGDk3dO4vtR39OOwpTaYQHeBDhtUe+RgLm5OcaMGVPvLxJCEBcXh9u3bwsW\n7nmsHAncKbqDXj/2wr3F95g/Udzc65ITcxLx+u+v4/Lcy+oPxbDG6nXo5iGsOL1CZ+8gfp4u3Ceg\nTizeJ1DvkUBQUBC2bt3a4IqbMwGcNnAydUI743a4nH8ZHlYetOMI4ljGMQx2Hkw7BnP6deyHUfmj\naMcQVOGTQnRo1YF2DE4k9R4JVFZWwsjISOw8DWLlSAAA3tz3JqTWUrzb+13aUQQR8p8QvNHzDUzo\nMYF2FE5EhBA4rHHAqVmn+IlhLdKs+wQcHBzwxhtv4OjRo8x88LJksMtgHM88TjuGYIwNjDHQaSDt\nGJzIbhXegp5ED86mzrSjMOnLk1+q/ZGTtNXbBK5cuQI/Pz988cUXcHBwwHvvvYdz586JmY1pgR0D\nceruKeYbZHOvS/7vlP/CvLW5esNoABav4xbTyTsnMcBpQJPPdelavRREgT9u/9Hs32exXvU2AQsL\nC/z973+HTCZDQkICXFxcsHDhQri6uuLjj9X7yDVN5PiKI972extPqp/QjsJxahN3Nw4DOg6gHYNZ\nA5wG4OSdk7RjqFWT7xMoKSlBdHQ0Vq9ejdzcXNy/f1/obC9g6ZwAx2mjTms74cD0A3CzdKMdhUlP\nqp7AcpUl8hbnadTjVps9d9CTJ0+wa9cuTJgwAZ07d8axY8ewYsUK5OTU/5AJjtMFO9N2YtvFbbRj\nqNXjysfo+EpH9LDoQTsKs1oZtoKPrQ/OZp2lHUVt6m0C06dPR8eOHbFr1y689tpryMzMxM8//4yg\noCAYGDT+aOLw8HBYW1vD09NT+VphYSGGDx8OqVSKkSNHoqioSPmzZcuWwc3NDZ6enjh8mD/UW11Y\nHINkWVPrJZFIsPvqbmHDiKytUVvIwmQq3fuii/vXgI4DcOLOiWb9Lov1qrcJBAUFIT09Hbt378bE\niRPRqpVqU6jOmjULsbGxdV6LiIhAaGgoLl26hODgYEREPJ2MKzExEdHR0UhNTUVsbCzmzJmDykrt\nn5+FRafvnsZ5+XnaMZgX2DEQcXfioCAK2lE4kS3quwgf9f+Idgy1qbcJmJmZoV27dg3+8oEDB+r9\nWWBgIMzMzOq8dvDgQcycORMAMGPGDMTEPH1iUUxMDKZOnQp9fX3Y29vD3d0d8fHxTf5HcPVT9e7E\n7y58h9T7qcKE0QBNrZdtO1tYtLZA2v00YQMxThfvFjZvbd7s8wEs1qvecZ0PPvgA9vb29T5EhRCC\n//u//8OoUU2/ezI/Px/m5k8vO7SwsFCeXM7OzsaQIX89wcjBwQFyubzJ66XpbNZZnJOfw8K+C2lH\nUYuTd07inwP/STuGRqi9UkRqLaUdheOard4mYGNjg/fff7/BX+7atavaA2kaYwNj/Jj0I7NNQJW5\nSu4U3UFlTSW6dOgibCiGqVKvAU4DsP/GfszznydsKIbxuYNUw2K96m0CQpzAsLS0REFBASwsLJCf\nnw8rKysAT7/5Z2VlKd8nl8vh6Oj40nWEhYXB2dkZAGBqagpvb29lUWszi7lco6hBdkk28kvzcTnh\nsujbb2w5JSWlye/ftHsTuj3upjzyYyG/2Muq1Mv8njmmtJmCWizkb+7y4duHUXClAHbt7ASrF18W\nr14ymQxRUVEAoPy8rBcRUEZGBvHw8FAuz5s3j6xZs4YQQsjq1avJu+++Swgh5MKFC8TPz49UVVWR\nrKws4uTkRCorK19Yn8Bxmy1oexCJvhJNO0aLvbnvTbLu3DraMTgK/H/0J7IMGe0YGqXoSRGprqmm\nHaNJGvrsFOzJYtOmTUNAQACuX78OR0dHbN26FZ999hliYmIglUpx6NAhfP755wAAX19fjB8/HlKp\nFEFBQdi0aRMMDQ2FiqZ2gR0DEXc3jnaMFhvbbSxGdxtNOwYnsseVj5F2Pw3+9v60o2iUwK2BSM5L\nph2jxfiTxdQg7k4cFh1ehIQ32XsIuYzBMUiW6WK9jqQfQYQsAqfDVX+Qui7Wq9ac/XPgbuWO+b3n\nN/l3aNWr2XcMA0+ni/jHP/6B8PBwAMDt27exf/9+9SbUcP72/vhpzE+0Y3Bcs8Td4fMFNUe/jv1w\nOkv1xsmaRo8Exo4di4CAAPz73//G5cuXUV5eDn9/f1y6dEmsjEqsHglwuq1aUQ1CCAz1NWcI81lD\n/z0Ui/osQmjXUNpRNMqtwlsY/PNgZC3MavzNlLXoSCA9PR1LlixRPmDGxMQEenqCnUrgOI0z7tdx\niL0V2/gbGTXVfSoCHANox9A4rmauqKypxN3iu7SjtEijn+ZGRkZ48uSv6ZLv3tXsf7Cuqb1sjGua\n5tTLz84PZ7LOqD+MSN70fRNmrcwaf+NL6PL+JZFIMLHHRMgfNf3GVhbr1WgTiIiIwNChQyGXy/H6\n66+jX79+WLZsmRjZOJEkZCdg/qGmn9zi6gpwDNCKsWFOdRtDN2r8UVSTrg66d+8e4uKeXgIZGBgI\na2trwYO9DOvnBAghUBAF9PX0aUdRyddnvsadojv4NuRb2lE00qOKR7CLtEPhkkIY6bP1XG6OA1p4\nTiAxMRHZ2dlwcXGBi4sLsrOzcfXqVVRVVak9qKZ799C72JK8hXYMlZ3JOqPx32Zoam/cHq4dXJGc\nq/nXjHO6p9Em8M4776B3795466238NZbb6FPnz6YPn06XFxcsHfvXjEyagwPKw+ckbM1NtzYGCQh\nBGflZ3kb8O1GAAAgAElEQVQT+J/mjtkGuQZp/AnC5mBxjJtlLNar0Sbg6OiI1NRUJCYmIjExEamp\nqejSpQtOnDiBJUuWiJFRY/R16KtxTxzKLMqEnkQPHV/pSDuKRlsxfAUmu0+mHUMlR9OPYtXpVbRj\ncJQ12gSuXLmC7t27K5e7deuGK1euwNXVVXnZKPeUh5UHckpyUFBWQDuKUmN3J56Vn0Vfh74qPU1K\nm+nS3a+Hbx9GeXV5i9ahS/Wqz8MnD/H7td+b9F4W69VoE+jUqRPmzZuHEydOQCaT4d1334WzszMq\nKyt5E3iOvp4+/O39cU5+jnaUJpvkNgkbQzfSjsFRcEbOzwWpQ5WiCmG/h2nsU+YabQK//vorbG1t\nsXLlSqxatQo2NjbYuXMnDAwMcOzYMTEyapTAjoFIf5hOO4ZSY2OQRvpGsGpjJU4YDcDimK0QKmsq\nkZyb3OJJ43SlXg2xamMFqzZWuHz/cqPvZbFejT4xvk2bNvjkk09e+rP27durPZCm++fAf/KhFY55\nKXkp6NyhM9oZN/wIWa5pAhwDcCbrDDytPWlHUVmTzgmMHj0aXbt2VV4m2qlTJzGyaSTWGgCLY5As\na0m9yqvLEXMjRn1hBHQm6wz6OvRt8Xr4/vVUgGNAk64MZLFejTaBmTNn4r333oOJiQlkMhnCw8Px\n2muviZGN4zSKBBK8uvtVlFaW0o7SqDDvMHw68FPaMbRGH4c+OC8/TztGszTaBKqrqzFs2DAoFAo4\nOTnh008/RWys5k6WpWsaGoMsLi8WL4iGaMmYrbGBMTytPHEh54L6AgnE1MQUdu3sWrweFse4aXC3\ndMc0j2mNzmjAYr0abQKtW7cGIQROTk7YuHEjoqOj8eDBgxZtNCIiAl27dkX37t0xadIklJWVobCw\nEMOHD4dUKsXIkSNRVFTUom1wDVMQBTqt64R7j+/RjqJVetv3xvlszfxGyDWfvp4+IgZFMDcc3BSN\nzh2UkJCAHj16ID8/H5988gnKy8uxePFiBAQ079KyW7duYcSIEbh27RqMjIwwZcoUjBgxAikpKXB1\ndcWCBQvwzTffICMjA2vXrq0blvG5g2rVKGoQdzcOg5wH0Y5Sr2sF1xD8n2BkvJdBO4pW2ZG6A7uv\n7Eb0lGjaUThOqUVzB2VkZKBt27ZwcXHBjh07EB0dDbm86VOnPq9Dhw4wNDREaWkpqqurUVZWho4d\nO+LgwYOYOXMmAGDGjBmIidGME2wvI5FIMHHXROSW5NKOUi91nRjk6urj0Afn5Oc04ssKxwFNaAIv\nmzb6X//6V7M32KFDB7z//vvo2LEj7OzsYGpqiuHDhyM/Px/m5uYAAAsLC9y/f7/Z26BNT6IHf3t/\nxGfH045S7xhkfHY8+jj0ETeMBmjpmK2LqQume05HZU2legIJQJ3ZWBzjZhmL9ar3PoFDhw7h4MGD\nyM7Oxvz585XfbMrKylo07nX79m188803yMzMxCuvvILJkydj+/btzV4fq2rHhsd2H0s7ykudzz6P\nWd6zaMfQOhKJBF+P+Jp2jHpV1lTCcpUl8t7PQyvDVrTjcAyotwnY2dnB19cXe/fuha+vr7IJtG7d\nGsuXL2/2BuPj4xEQEKD81j9hwgScPn0alpaWKCgogIWFBfLz82Fl9fK7WMPCwuDs7AwAMDU1hbe3\nt/La29ouy8Kyv70/Pt3yKUboj6Cep1btcuCAQOhL9FF8vRiyWzLq+VhbrsVKHnUuXy+4DqdXnNDK\nsBWvlwDLh24ewuDBgxHUOYhqvWQyGaKiogBA+XlZn0ZPDFdVVcHQUH0P0E5ISMCsWbOQkJAAExMT\nhIWFwdPTE3fu3FGeGF6zZg0yMjKwbt26umE15MQwABSUFaDzus4oXFIIPQl/JjPHhg3xG5Ccl4zN\nYzbTjqKVVp9djfSH6Vgfsp52lDoa+uys90jA07P+258lEgkuXbrUrDC9evXCpEmTIJVKoaenBx8f\nH8ybNw9lZWWYMmUKtmzZAhsbG+zatatZ62eFRWsLzJTORElFCV4xeYVaDpnsr2/6XOO0vV7xOfHo\n79hfbevT9nqpqrd9b/yS9ku9P2exXvU2gf379wu20aVLl2Lp0qV1XjMxMcGff/4p2DZp4I9r5FgT\nnx2PRX0W0Y6htXra9sTl+5fxpOqJxpxzadIzhnNycnDmzBlIJBL07dsXdnYtv9OwOTRpOIjTbfuu\n74OBngFCuoTQjqJUXl0Oz+88cfWdqzDQa3TuSK6Z/H7ww7rgdUxN092i+wT+/e9/o1evXti3bx9+\n//13+Pv7Y9u2bWoPyXHaJLckF7suszWkaWJggpvv3uQNQGC97Xtr1DNFGj0ScHNzw6lTp9ChQwcA\nQGFhIfr3748rV66IEvBZ/EhAdc+PQd4qvIXSylJ42XjRC8UwdY3ZXsy7iCm7p+DavGstD8UwFse4\nact4mAFjA+OXzs1Eq17NOjH8rNoGAABmZmb8g1iD/ZzyMwDwJiAwdyt3ZJdk4+GThzBrZUY7Dici\nFzMX2hFU0uhw0NChQxEUFISoqChs3boVoaGhGDZsmBjZtIIsU4bYW/RmXX3+W0d8TnyLnyalzdT1\nLc1AzwA9bXsycde4kPhRgGpYrFejTWDdunV4/fXXER8fjwsXLuD1119/4fp9rn53iu7g54s/044B\n4OnMofHZvAmIpY99Hz6jKMe8RpvA6tWrMXDgQGzcuBEbNmzA1KlTNXK6VFpozyH07F2Ktwpv4RXj\nV2Dd1ppaHtY9f1dnS7zp+yZedX9VbetriYyHGYI8+1qd9dIFLNar0SZQUlKCESNGoH///li/fj3u\n3ePzz6uim0U3FJQVIL80n3YUnJef50cBIurcoTO6W3SnHQMAsDFhI35N+5V2DJ2iKedOG20CS5cu\nxeXLl7Fhwwbk5uZiwIABGDp0qBjZtIKeRA+97HohISeByvafHYO0bWeLmdKZVHJoChbHbNXhfLYw\nXwC0tV4t9ajiEVzWukBBFHVeZ7FeTZ7UxsrKCjY2NjA3N0d+Pv1vtZrE396fieePDus0DKO7jaYd\ngxNZtaIayXnJ8LPzox1FZ7Q3bg8CgluFt2hHaVSjTWDjxo0YNGgQhg4dioKCAmzevLnZ8wbpqpnS\nmRjVdRSVbbM4BskybazX5fuX4dDeAaYmpmpftzbWS1162fV64XnTLNar0fsEsrKy8M0338Db21uM\nPFqph2UP2hE4HcavCKOjl10vJGQnYLrndNpRGtSkuYNYwe8Y5jRNaWUpArYEIHlOMrUpxfdc2QMD\nPQNmH3CkrY6mH0WELAKnwk/RjtLyO4Y5jmueNkZtUFxejJsPbqKbRTcqGSa6TaSyXV3na+eLGw9u\nQEEUTD9ThN1knFrUjkF+dOQjFJUX0Q2jAYQYs+1lT+/qMKGxOMbNClMTU+S+n1unAbBYL94EdEBx\neTHWx69HW6O2tKPopJedIOR0g76ePu0IjaLSBIqKijB58mR4eXmhR48eOHfuHAoLCzF8+HBIpVKM\nHDkSRUXa9a21qqYKA7YOQLWiWtTtDho0CMl5yfCy8eJTCDeBENdx07xPRGgsXvfOMhbrRaUJvPnm\nm5gwYQIuXryIy5cvw83NDREREQgNDcWlS5cQHByMiIgIGtEEY6hviLzHebhWIP7UwhdyLsDPll8j\nTouvnS8u3buEGkUN7Sgc9wLRm8CDBw+QkpKCadOmPQ2gp4f27dvj4MGDmDnz6d2sM2bMQExMjNjR\nBOdn5yf6sIBMJnvaBPiNQk0ixJhte+P2yFmUQ2VoYPmp5XhU8Uiw9bM4xs0yFuslehO4efMmLC0t\n8eqrr8LDwwOvv/46SkpKkJ+fD3NzcwCAhYUF7t+/L3Y0wfnZ+SExJ1H07fImQF8743aib/NRxSN8\ncfILtDZsLfq2ub/kluSi8Ekh7Rj1En2QWKFQICEhAWvXrkWvXr2wYMECfPHFF03+/bCwMDg7OwMA\nTE1N4e3trRxnq+2yrC7r39HH0cSjwP8eOyvW9teMXIOu5l2p//s1ZbkWK3mau7zlv1vg9NBJeS6I\n14vO8rbibfC184VbqRueJeT2ZTIZoqKiAED5eVkf0W8Wy8rKQmBgIDIzMwEAp06dwueff4709HSc\nO3cOFhYWyM/PR9++fXHrVt15NzT9ZrGSihLYRNqgaEkRDPUNacfhtFzkmUhkFmXi25BvaUfRad9f\n+B7ns89j69it1DK06EHz6ubo6AgLCwvcuHEDAHDkyBH06NEDwcHB2L59OwBg+/btCAkJETua4NoZ\nt8P1eddFvUrn+W9rXMO0qV6JuYmCDwNqU72E8uwlwizWi8o1gz/99BNee+01lJWVwcnJCf/5z39A\nCMGUKVOwZcsW2NjYYNeuXTSiCc6hvQPtCBwlpZWlUBCFaOcHLuRcwCeBn4iyLa5+ntaeuF14G6WV\npbSjvBSfO4jjRPLmvjfhbeONd/zfEXxbhBD8fPFnzJTO1IgblrSd/4/+iBwRiUCnQCrbZ2o4iON0\nlZ+dn2g3jUkkEoR5h/EGwIiJPSbiSfUT2jFeijcBLXY0/SjGLRtHO4ZGEXLMVhvnEGJxjJtFS/ov\nwQjXEUzWizcBChREgYrqCsG3c05+DiaGJoJvh2saTytPZBZl4nHlY9pROE6JNwEK3j7wNn6++LPg\n27mQewHjg8YLvh1tUnvNtRAM9Q3haeWJpNwkwbYhNiHrpY1YrBdvAhR42XiJMn0Ev1OYPcGdg5m+\ne5TTPbwJUCDGHEL3Ht/D48rHuHvxrqDb0TZCj9lGDIrAuO7CnqeJuxOHj49+LOg2arE4xs0yFuvF\nmwAFUmsprhVcQ3l1uWDbqL1RSCKRCLYNjk2n7p5CZU0l7Rjcc3JKchB3J452jBfwJkCBiYEJull0\nw6V7lwTbRlDnIOyatIvJMUiWaUO9LuSKNwyoDfUSS3F5MX4uFv5coKp4E6BkoNNA3C0WbqhGT6IH\ns1Zmgq2fYxc/F8SmruZdca/0HnOPeeVNgJJvgr7BJLdJgm+HxTFIlml6ve6X3kdxeTFczVxF2Z6m\n10tM+nr6cH7ozNzVYbwJcJzI8kvzcTzjuCDrTsxJhK+dLz8XxKiu5l2ZawJ87iCOE1lKXgpei34N\nl+deVvu6y6vLUVBWwCcqZNTPKT8j9nYsfpn4i6jbbeizkz95XAsVlRfhFeNX+LdBRrlbuiOzKBOl\nlaVoY9RGres2MTDhDYBhg5wHgYCtL7J8OEgLTd8zHfuu7wPAx2xVJUa9DPUN4WbphpS8FMG3JTS+\nf6kmIyUDYd5htGPUwZsARcXlxWq/aYwQgsTcp+PCHLt8bX2ZGxvmdBNvAhSlP0xH2O9hal2n/JEc\nEkhg384eAL+OW1Vi1aunbU8k5iaKsi0h8f1LNSzWi1oTqKmpgY+PD0aPHg0AKCwsxPDhwyGVSjFy\n5EgUFbF1La0Q3K3ckf4wHWVVZWpb54WcC/zqEA0w0GkgfG3Ve7RWVVOl1vVxuoFaE1i7di3c3NyU\nH1YREREIDQ3FpUuXEBwcjIiICFrRRGOkb4Qelj3UeudwUm5SnQ8XPmarGrHq1c2iG97t/a5a1znp\nt0nYf32/WtfZGL5/qYbFelFpAnK5HAcPHsQbb7yhvGzp4MGDmDlzJgBgxowZiImJoRFNdD1teqp1\nbLisqgy97XurbX2c5kjKTYK7lTvtGFwTzNk/h5nnSlBpAgsXLsSqVaugp/fX5vPz82Fubg4AsLCw\nwP3792lEE11PW/U2gciRkQjtGqpcZnEMkmWaWq/80nyUVJTAxdRF1O1qar1oqa1Xcl4yM1eHiX6f\nwIEDB2BlZQUfH59mHRqFhYXB2dkZAGBqagpvb29lYWvXp0nLxoXGcLFwYSYPX9bM5eS8ZDgXOePE\niRNM5OHLDS/72vri1wO/otqtWpD1y2QyREVFAYDy87I+ot8x/PHHH2Pbtm0wMDBAeXk5Hj16hAkT\nJuDMmTM4f/48LCwskJ+fj759++LWrVt1w/I7hlUmk8mUOwnXOE2t1/JTy5Ffmo/IkZGibldT60VL\nbb02J21G3N04/DxOnFlFG/rsFH046KuvvkJWVhYyMjLw66+/YsiQIdi2bRtCQkKwfft2AMD27dsR\nEhIidjSOE92SP5eo5bkS2Y+y0dO2pxoScWLoadsTiTlsXCJMde6gEydOIDIyEvv27UNhYSGmTJmC\ne/fuwcbGBrt27YKpqWmd9/MjAU7beH3vhc2jN6OXfa8Wr4sQwi8N1hCVNZUwXW6Kgg8L0NqwteDb\na+izk08gp0UO3z6MIS5DYKDHp4TSFOF7w+Fv74+/+/2ddhROZHF34uBv7w9jA2PBt8XUcBAnjIdP\nHmLironQk9T9v7T2ZBHXNGLXS9Onj+D7l2qerVegU6AoDaAxvAkwgBCC5aeWo1pR3ex1JOclw8va\n64UmwLFNW6aP4DQXHw5iRLf13bDn1T3wsPJo1u9HnonEneI7WBe8Ts3JOCGVVZXBYqUFij4qgpG+\nEe04nJbiw0EaoKU3jSXlJfGrQzRQa8PW2DFxBxRE0ex1JOUmtegoktNtvAkwoqXTRyTlvrwJ8DFb\n1dCo17ju42BiYNKs3y2rKkO/Lf1Qo6hRc6qm4fuXalisF28CjGjJkQAhBAM6DkAPix5qTsWxLvVe\nKrpbdGfiBCOnus9PfI6fkn6imoGfE2BE4ZNCOH/jjKKPivjJXa7Jvr/wPRKyE/DTWLofJFzzbEzY\niOTcZPw45kdBt8PPCWiADq064OsRX6OyppJ2FE6D1DcMyGkGFq4O402AIW/5vtXsseH6sDgGyTJN\nq1dyXjJ8bH2obV/T6kXb8/XysvbCtYJrqKiuoBMIvAlwHBNWnl6JXZd3qfQ7hBB0MusEL2svgVJx\nQmtl2AquHVyRej+VWgZ+ToDjGLD67GpkPMzAtyHf0o7Ciexvv/8NA50GItwnXLBt8HMCWux24W1s\nTd5KOwbXQj42PkjOS6Ydg6NgY8hGzPKeRW37vAloOFmmDMczj9f/cz5mqxJa9fKx9cHFexepXe/f\nXHz/Us3L6tXGqA3V2V95E2BM5JlIHEk/0uT386tDtIOpiSksW1viVuGtxt/McWrEmwBjHlU8gixT\n1uT3NzZdBH/qk2po1svHVvOGhPj+pRoW68WbAGNUuXO4RlGD1Hup8LbxFjgVJ4aNIRsxvvv4Jr03\npyQHv13+TeBEnC4QvQlkZWVhwIAB8PT0RLdu3bBy5UoAQGFhIYYPHw6pVIqRI0eiqKhI7GhMqL15\npClXQV1/cB227WzR3rh9ve/hY7aqoVkv67bWTZ7+4UTmCfx6+VeBEzWO71+qqa9eNYoaPCh7IG6Y\n/xG9CRgZGWHjxo1ITU1FYmIiNm/ejIsXLyIiIgKhoaG4dOkSgoODERERIXY0Jji0d4CCKJD7OLfR\n95qZmGH1iNUipOJYk5SbhJ42/FyQtjiSfgSTf5tMZduiNwFra2t4eDydM79t27aQSqXIzs7GwYMH\nMXPmTADAjBkzEBMTI3Y0JkgkkiYPCdm2s8XobqMbfA+LY5As05R6JeclM3FBgKbUixX11av2fBCN\n+6ConhPIzMxEQkIC+vfvj/z8fJibmwMALCwscP/+fZrRqNoQsgGBHQNpx+AYRQjhV4VpGas2Vmht\n2BqZRZmib5vaE8kfP36MSZMmYe3atWjfvv4x7eeFhYXB2dkZAGBqagpvb29ld60db+PLfy2npKRg\nwYIFzORhfZmFegUEBsBI36jen7t4u8DEwARXL1zFVVzV+Xpp0nJD9er4sCO27duGf/7tny3enkwm\nQ1RUFAAoPy/rRSiorKwkI0aMIKtXr1a+1qlTJ5Kfn08IIeT+/fvE1dX1hd+jFFejHT9+nHYEjUK7\nXvuu7SOjd4xu8D3yYjnZkrRFpEQNo10vTdNQvT499in55Ogngmy3oc9O0YeDCCGYPXs23NzcsHDh\nQuXrISEh2L59OwBg+/btCAkJETuaVqr9lsA1De16uVu5N3qvgH17e8zyoTfNwLNo10vTNFSvPg59\nqMwmKvoEcqdOncKAAQMglUqVt0ovW7YM/v7+mDJlCu7duwcbGxvs2rULpqamdcPyCeSU1sevh107\nO0zoMYF2FE6NCCEwW2GGm+/ehGUbS9pxOC3B1ARy/fv3h0KhQEpKCpKTk5GcnIygoCB06NABf/75\nJy5duoTDhw+/0AB0UUMNL+ZmDAz0Gj+lUztOyDUN7XpJJBKNunOYdr00DYv14ncMM2r/9f14/ffX\nX/ozQggScxL51SFaysfGp9nPm+Y4VfEmwCgXMxecl59/6c9ySnJAQGDfzr7R9fAxW9WwUC8/Oz/k\nPc6jHaNJWKiXJmGxXtQuEeUa1t2iO+SP5HhU8eiFaSFqbxSiOf0sJ5zpntMx3XP6S3+2I3UH2hm1\na/QmQY5rKn4kwCgDPQN4WnviYt7FF36WlJsEH5umPVeWxTFIlrFer+ir0Xhc+Zh2DCXW68WaxupV\nVVOFQzcPiRPmf3gTYFh9T5t62+9tLOizgEIijjZ+p7B205PoYfJvk1FcXizeNkXbEqcyHxsfXC+4\n/sLrlm0sYdPWpknrYHEMkmUs1+vhk4fIL8tHF/MutKMosVwvFjVWL309fUitpUjJSxEnEPg5AabN\n7jkb+hJ92jE4RqTkpcDbxht6Ev7dTZvVTiA50HmgKNvjexPDDPQMWnzyl4/ZqoaVelXVVCEhO6HO\na6qcCxILK/XSFE2pV33DwELhTYDjGFRDajAwamCdaQQmuU3Ce73fo5iKE4PYNwuKPm1ES/BpI57e\nKMYvDdUN0u+k2Dp2K3ztfGlH4URUUV2BRX8swvqQ9Wr7b52paSO4lvH63gu3Cm/RjsGJQJXnTXPa\nw9jAGBtCN4j2ZY83AcbVKGqQ8TADAPCo4hFuP7wNZ1PnJv8+H7NVDUv1EntsuDlYqpcmYLFevAkw\nrqSyBJ7feaJGUYOLeRfhYeXRpInjOM2nSRPJcZqLNwHGmZqYwrqtNW4W3nw6XYSKDxfn13GrhqV6\nedt4w9XMlXaMBrFUL03AYr14E9AAPjY+SM5N5neL6pj2xu2xfcLTBy2N2DbipTcOclxLMdUEYmNj\n4enpCTc3N6xYsYJ2HGbUjg3fKrwFH1vVrhNncQySZSzWq6K6AqfunkLHVzrSjvICFuvFMlXq9UPi\nD8rzgUJipglUVFTg7bffRmxsLC5duoTdu3cjOZmPhwJ/XSUSNysOvraqXS6YkiLe7efagMV6Xc6/\nDNcOrmhl2Ip2lBewWC+WqVKv45nHEXc3TsA0TzHTBM6fPw93d3fY29vDwMAAU6ZMQUxMDO1YTOhp\n2xPtjdtDIpGofNlYUVGRQKm0E4v1Ss5NZu5O4Vos1otlqtRLrIcLMdME5HI5HB0dlcsODg6Qy+UU\nE7HDuq01oqdE047BUcLPBekmsS4RZqYJ8LtghZGZmUk7gkZhsV4Hbx2Em6Ub7RgvxWK9WKZKvXxs\nfcSZLJAw4uTJkyQ0NFS5vHLlSvLll1/WeY+rqysBwP/wP/wP/8P/qPDHy8ur3s9eZuYOKi8vR/fu\n3XH69GlYWVkhICAAmzZtQs+e/DCY4zhOKMzcempiYoLvvvsOI0eOhEKhwMyZM3kD4DiOExgzRwIc\nx3Gc+Jg5MdwYfiOZapydnSGVSuHj4wN/f3/acZgTHh4Oa2treHp6Kl8rLCzE8OHDIZVKMXLkSH75\n4zNeVq+lS5fCwcEBPj4+8PHxQWxsLMWEbMnKysKAAQPg6emJbt26YeXKlQAY3ccEOcurZuXl5cTZ\n2ZnI5XJSVVVF/Pz8SFJSEu1YTHN2diYPHjygHYNZJ0+eJElJScTDw0P52rx588iaNWsIIYSsWbOG\nzJ8/n1Y85rysXkuXLiWRkZEUU7ErLy+PpKamEkIIKSkpIV26dCEpKSlM7mMacSTAbyRrHsJH+uoV\nGBgIMzOzOq8dPHgQM2fOBADMmDGD72PPeFm9AL6P1cfa2hoeHh4AgLZt20IqlSI7O5vJfUwjmgC/\nkUx1EolEedi5fv162nE0Qn5+PszNzQEAFhYWuH//PuVE7NuwYQN69OiBGTNmoLCwkHYcJmVmZiIh\nIQH9+/dnch/TiCbAbyRT3blz55CUlISjR49i69atOHLkCO1InJZ55513cPv2bVy5cgWurq6YP38+\n7UjMefz4MSZNmoS1a9eiffv2tOO8lEY0AQcHB2RlZSmXs7Ky6hwZcC+ysrICAFhaWmLSpElISEig\nnIh9lpaWKCgoAPD0qKC2htzLWVhYKOezmjNnDt/HnlNVVYWJEyfitddew7hx4wCwuY9pRBPo1asX\n0tLSkJ2djaqqKuzatQvBwcG0YzGrrKwMZWVlAIDS0lLExsbC3d2dcir2hYSEYPv2p/P3b9++HSEh\nIZQTse3ZoYw9e/bwfewZhBDMnj0bbm5uWLhwofJ1Jvcxyiemm+zgwYPE3d2d9OjRg3z11Ve04zAt\nPT2dSKVS4uXlRbp06UI+/fRT2pGYM3XqVGJra0sMDQ2Jg4MD2bJlC3nw4AEZNmwY8fT0JMOHDycP\nHz6kHZMZz9frp59+IjNmzCBSqZR0796djBw5ksjlctoxmREXF0ckEgnx8vIi3t7exNvbmxw6dIjJ\nfYzfLMZxHKfDNGI4iOM4jhMGbwIcx3E6jDcBjuM4HcabAMdxnA7jTYDjOE6H8SbAcRynw3gT4DiO\n02G8CXBap7i4GN99951yOScnB5MnT1b7dmrn01+6dKna192YwYMHo127dkhMTBR925x24U2A0zoP\nHz7Exo0blct2dnb47bff1L4diUSCRYsWUWkCx48fh5+fH59ckWsx3gQ4rfPRRx/h9u3b8PHxwZIl\nS3Dnzh3lE7GioqIwbtw4BAcHw8XFBevXr8fXX38NPz8/9OzZUzm51/Xr1zF48GB4eXmhd+/euHz5\n8ku39ewN90uXLsXf/vY3DB48GM7OzoiOjsbixYshlUoxdOhQVFRUAAA++OADuLu7w9vbG4sWLQIA\n5L3GSVMAAALhSURBVOXlYdSoUfDy8oK3tzdOnDgBACgpKcHUqVPh7u4OLy8v7N69W7C6cTqK8rQV\nHKd2mZmZdZ6AlZGRoVzeunUr6dy5M3ny5AnJz88n7du3J5s3byaEELJw4UKyatUqQgghAQEB5ObN\nm4QQQs6dO0f69ev3wnaWLl1Kvv76a+VyREQEGTBgAFEoFOTixYukVatW5PDhw4QQQsaPH09+++03\ncu/ePeLu7q78ncePHyt/furUKUIIIXfu3CGurq6EEELmz59PFi9erHx/cXGx8u+DBg0iiYmJzS0T\nxxFCCDGg3YQ4Tt1II9NhDR48GCYmJjAxMYGpqalyJkdPT0+kpKTgwYMHSEpKqnMe4cmTJ41uVyKR\nICgoCBKJBB4eHlAoFBg+fLhy3VlZWTA3N4ehoSFmz56NkJAQjB49GgBw5MgRZGRkKNdVUVGBR48e\n4ejRo9i7d6/ydVbnpOc0F28CnM4xNjZW/l1PT0+5rKenB4VCAUIILC0tkZycrPK6jYyMlOsyNDSs\nsx2FQgF9fX2cP38eR48exZ49e7BhwwYcO3YMEokECQkJMDB48T/Jxpoax7UEPyfAaZ1WrVopn6eg\nitoPWwsLC1haWuLAgQPK1+s7J6Cq0tJSlJSUIDg4GJGRkUhKSgIADBs2DN9//73yfbXbGz58ODZt\n2qR8/dGjR2rJwXG1eBPgtI61tTW8vb3h5uaGJUuWKJ9+BaDO32uXn/177fLOnTsRGRkJqVQKDw+P\nJp+QrW/dtcuPHj1CUFAQfHx8EBgYiDVr1gAAvv/+e/z555/w9PSEh4cH1q5dCwD44osvcPfuXbi5\nucHb2xtHjx5tRkU4rn78eQIc10yfffYZ2rZti/fff5/K9gcPHozIyEj07NmTyvY57cCPBDiumdq2\nbYsffviB2s1iGRkZdc47cFxz8CMBjuM4HcaPBDiO43QYbwIcx3E6jDcBjuM4HcabAMdxnA7jTYDj\nOE6H/T8o9Q6nwzgdWAAAAABJRU5ErkJggg==\n", + "text": [ + "<matplotlib.figure.Figure at 0x7f054c060710>" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEPCAYAAACgFqixAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcVOW+P/DPDHJTGLzglfFIsUvljrfK1MRSEz2paWk7\nPF4qtTK3sml32afE+pVHzZ3urZ3cW819DtVGy3YZSJaKph3FVFKzixkUgwkoilyEAeb5/cGeSQSG\nWcDMetbM5/168ZI1lzVfP+J8Wc9azzM6IYQAERF5NL3aBRARkfrYDIiIiM2AiIjYDIiICGwGREQE\nNgMiIoILmkF+fj5GjRqFqKgo9O/fH6tWrQIApKSkwGg0Ii4uDnFxcdi1a5ftOStWrEB4eDiioqKw\ne/duZ5dIROTxdM6eZ1BYWIji4mJERkaivLwcgwYNwvbt2/HPf/4TgYGBSEpKavD4Y8eOYeHChTh8\n+DAuXLiAESNG4LvvvoOPj48zyyQi8mhOPzLo2bMnIiMjAQABAQGIjo5GQUEBAKCpPpSeno6ZM2fC\ny8sLISEhiIiIQHZ2trPLJCLyaC49Z5CXl4ejR49i5MiRAIANGzZg4MCBSExMRElJCQCgoKAARqPR\n9hyj0QiTyeTKMomIPI7LmkF5eTkeeOABrFu3DoGBgXjyySdx7tw5nDlzBmFhYVi8eLGrSiEioht0\ncMWL1NTUYNq0afjtb3+LKVOmAACCg4Nt9y9YsADx8fEA6o8E8vPzbfeZTCb07du3wf68O3ujtrTW\nBZUTEbmPmJgY5OTkNHmf048MhBB45JFHEB4ejqVLl9puLyoqsn3//vvvIyIiAgCQkJCAtLQ01NbW\nwmQy4fTp0xg2bFiDfdaW1mLPj3sghOCXg1/Lli1TvQZ7X5PfnYwdZ3aoXodW8pLti3lpI6+vvvqq\n2fdqpx8ZHDp0CKmpqYiOjkZcXBwA4NVXX8U777yDkydPwmw2o1+/fti8eTMAYPDgwZg6dSqio6Oh\n1+uxceNGeHt7N9rvkD5DnF26W8nLy1O7hGZdqrwEACitLlW5kl/JnJeMmJcyMubl9GYwYsQIWCyW\nRrdPmDCh2ec8//zzeP755+3u1+BraHNtJIdXPn8FH373IeJD49UuhchjcQayh5gzZ47aJTRLCIEA\nnwBcq72mdik2MuclI+aljIx5OX3SmTPodDposGxqxtLMpfi3oH/D0juWtvxgImo1e++dPDLwEFlZ\nWWqX0CwB+Rq7zHnJiHkpI2NebAYkBZ1Op3YJRB5Ns83gD5/+Qe0SNGX06NFql9Csrv5dpbsgQOa8\nZMS8lJExL5dMOnOGM8Vn1C6B2smLd72odglEHk+zRwZXq6+qXYKmyDhGeT0hBCrMFWqXYSN7XrJh\nXsrImJdmm4FME5So7QrKCnDr+lvVLoPIY2n20tLQtaHI/V2u2qVQOymrLkPvNb1R/ny52qUQuS23\nvLSUw0TupZNPJ1yrvYZaCxcgJFKDZpvB/jn71S5BU2Qco7S6WHkR5eZyBPoEStPkZc5LRsxLGRnz\n0uzVRJE9ItUugdpJSlYKBgQPQJBfEEqrStHVv6vaJRF5HM0eGZAyMl7XbGUdw+wV0AsVNXJcUSRz\nXjJiXsrImJdmjwzIveigw5FHj6hdBpHH4pGBh5BxjNKKaxNpH/NSRsa82AxIClybiEhdmp1n8Ltd\nv0PCLQkYFzZO7XKojV7Y+wJu7XYrZsXMUrsUIrdmb56BZs8ZlFwrwS9lv6hdBrWDl8e8rHYJRB5P\ns8NEBl+DNNeka4GMY5Q3MteZpVmfSAt5yYR5KSNjXpptBkG+QWwGbmbT8U1I3p2sdhlEHkmzzYBH\nBsrIeF3zjYJ8g6RZgFALecmEeSkjY16abgayvHFQ+2CDJ1KPZpvBjMgZWHbXMrXL0AwZxyitLlZe\nRFl1Wf1yFJI0eJnzkhHzUkbGvDR7NRHXr3Efz332HIaFDMOwkGEorZKjGRB5Gs0eGZAyMo5RWlln\nIAf5BUGvk+NHUua8ZMS8lJExLzn+55HH0+l0CO0cipyFOWqXQuSR2Aw8hIxjlFYyToKXOS8ZMS9l\nZMyLzYCkoAPXJiJSk9ObQX5+PkaNGoWoqCj0798fq1atAgCUlJRg7NixiI6Oxvjx43HlyhXbc1as\nWIHw8HBERUVh9+7dTe631lKL8A3hUv5WKSMZxyitgjsGI8AnQO0yGpA5LxkxL2VkzMvpC9UVFhai\nuLgYkZGRKC8vx6BBg7B9+3Zs2rQJYWFhWLJkCdauXYvc3FysW7cOx44dw8KFC3H48GFcuHABI0aM\nwHfffQcfH59fi/7XYkv+r/ij5A8l8Pf2d+ZfgYjILdhbqM7pRwY9e/ZEZGT9R1QGBAQgOjoaBQUF\nyMjIwKxZ9atUJiYmIj09HQCQnp6OmTNnwsvLCyEhIYiIiEB2dnaT++bEM8fJOEbZlNKqUlTXVqtd\nhmbykgXzUkbGvFx6ziAvLw9Hjx7FiBEjUFxcjG7dugEAgoODUVRUBAAoKCiA0Wi0PcdoNMJkMjW5\nP65P5H4efO9B7Mvbp3YZRB7HZc2gvLwc06dPx7p162AwGNpln1y+wHEyjlE2Jcg3SIqJZ1rJSxbM\nSxkZ83LJDOSamhpMmzYNDz/8MKZMmQIA6N69Oy5evIjg4GAUFxejR48eAOqPBPLz823PNZlM6Nu3\nb6N9zpkzB5euXMKfv/4zBt00CLGxsbaArYdg3NbedpBvELIPZaPnxZ5S1MNtbmt5OysrC1u3bgUA\nhIaGwi7hZBaLRcyaNUssWbKkwe2LFi0Sr7/+uhBCiD/96U/iqaeeEkII8eWXX4ohQ4aImpoakZ+f\nL/r16yfMZnOD51rLzi/NFxXmCmf/FdzCvn371C6hWUXlReJq1VUhhBBJmUli1cFVKlckd14yYl7K\nqJWXvbd8px8ZHDp0CKmpqYiOjkZcXByA+ktHly9fjhkzZmDLli3o1asXtm3bBgAYPHgwpk6diujo\naOj1emzcuBHe3t5N7ttoMDZ5O2lL8qfJGBM6BrNjZyPIj+eBiNSg2c9A1mDZ1Iz/+OA/cPdNd2N2\n7Gxs/HIjTFdN/ChMIidwy89AJvei09XPQF4wZIHKlRB5Ji5H4SGsJ5VkZF21VCYy5yUj5qWMjHmx\nGZAUuDYRkbo0fc7g4+8/xic/fIK/JPxF7ZKoDZI+ScKIfxuB+wfer3YpRG7Nbc8ZCCGQeyVX7TKo\njf40/k9ql0Dk8TQ9TCTTZ+bKTsYxyqZYhAW/lP2idhmayUsWzEsZGfPSdDPgchTup6auBqHrQtUu\ng8jjaPqcwY+Xf8Td/3M3cn/HoSJ34vv/fFH6bCn8OvipXQqRW1F1CWtn4pGBe5JlsToiT6LpZtDV\nvyuOzz+udhmaIOMYpVVRRRHKzeW2bRnOBcmcl4yYlzIy5qXpZqDX6dGvcz+1y6A2+l3m77Dzu522\nbYOvgUcGRC6m6WZAjrMubyujG8cwb+5yM2osNSpVU0/mvGTEvJSRMS9NzzMg92FdmwgAtj+wXcVK\niDwTjww8hIxjlFZcm0j7mJcyMubFZkBS4NpEROrSfDNYsHMBMs5mqF2G9GQco7Tq3rE7Ovl0UruM\nBmTOS0bMSxkZ89L8OYOquioUVxSrXQa1wfqE9WqXQOTxNH9kYPDhxDNHyDhG2ZzKmkoUVRSpWoOW\n8pIB81JGxry03ww4C9ntfPz9x3gy40m1yyDyKGwGHkLGMcrmyLAchZbykgHzUkbGvNgMSDoyLEdB\n5Gk03wxmxczCf93zX2qXIT0ZxyitCssLUWGusG3L0OBlzktGzEsZGfPSfDMI8AlAkF+Q2mVQGzyR\n8QQyf8i0bcswTETkaTTfDMgxMo5RWt24NlFnv87o6t9VpWrqyZyXjJiXMjLmxWZAUrh+baJOPp1w\n+onTKlZD5HnYDDyEjGOUVlybSPuYlzIy5sVmQFLg2kRE6rL7Gchr1qxpcQcBAQFYsGBBuxbVkus/\nx7PWUot+a/vBtNTUYKiBtGPBzgW4f+D9GP+b8WqXQuTW7H0Gst1m0Lt3byxcuLDZHQsh8Pbbb+Ps\n2bNtr1KBG/9C/q/449IfLqGjd0eX1kFEpCX2mgGEHcnJyfbudugxc+fOFT169BCRkZG225YtWyZC\nQkJEbGysiI2NFRkZGbb7Xn31VTFw4EARGRkpPvnkkyb3eWPZPVb3EL+U/dJirZ5s3759apegyIWy\nC6K0qlS119daXmpjXsqolZe9t3y75wxWr17d7H2FhYUtPgYA5s6di8zMzAa36XQ6JCUl4cSJEzhx\n4gQmTJgAADh27Bh27NiBU6dOITMzEwsWLIDZbLa7f0COSUrUvpJ2J+HDbz9Uuwwij6HoBPLly5ex\nadMm3H333YiNjXXoOSNHjkSXLl0a3S6aOFRJT0/HzJkz4eXlhZCQEERERCA7O7vF12AzaJmM1zXb\nE+QbpOq/qdbyUhvzUkbGvFpsBpWVlXj33Xdx3333ISYmBsnJyXjhhRdgMpna9MIbNmzAwIEDkZiY\niJKSEgBAQUEBjEaj7TFGo9Gh1+GMVfcT5Mv1iYhcyW4zeOihhxAZGYn9+/djyZIlyM3NRZcuXTB6\n9Gh4eXm1+kWffPJJnDt3DmfOnEFYWBgWL16seB9z5sxBSkoKUlJScHfh3bDkWmz3ZWVlNbiOl9tZ\nWLt2rVT1XL+9Y9cOZH6W2eD+S99csjV45iX/NvNStu2qvLKysjBnzhzb+6Vd9k42xMTEiNtuu02s\nXbtWnD9/XgghRGhoqOKTFrm5uQ1OIF+voKBA3HrrrUIIIV566SWxevVq230TJ04UBw8ebPScFsqm\nJsh8gm/SO5PER99+1OC2N7LfEAt3LlSpIrnzkhHzUkZzJ5BzcnLw1ltv4dKlS4iPj8fIkSNRVlaG\nCxcu2O8wLSgq+vVTrN5//31EREQAABISEpCWloba2lqYTCacPn0aw4YNa9NrUT0ZxyitRBPnj3oH\n9kaAT4AK1dSTOS8ZMS9lZMzL7jyDG3355Zd49913sX37dhiNRnzxxRctPuehhx7C/v37cfHiRfTs\n2RPLly/Hvn37cPLkSZjNZvTr1w+bN29GSEgIAODVV19Famoq9Ho91qxZg/HjG09EsnutLGnOpHcm\nYeGQhZh06yS1SyFya62edNYci8WCzz//HHfddVebi2sNNgPlsrKypPxtBAAmvjMRjw95XKpmIHNe\nMmJeyqiVl733TrvDRH/961+bfpJeb2sEzT2GSAmuTUSkLrtHBjfffDNee+21JjuJtcO88MILOHPm\njFOLbO61rXZ8swMZZzOw6b5NLq2D2se8D+chMToRY24ao3YpRG7N3pFBB3tPHDVqFHbu3Gl35+PG\njWt9Ze3EW++NC+VtO6lN6tkyeYvaJRB5PLvNYOvWrS4qo22C/NSdraoFWhzT/ab4GwwIHqDKarRa\nzEtNzEsZGfNyi88zMPgaOFvVDQ3921CUmcvULoPII7hNM+CRgX2y/RbiiCA/9ZYZ0WJeamJeysiY\nl0PN4Mcff3ToNrWovagZOQfXJyJyHYeawbRp0xrdNn369HYvprW6+HfBD0/9oHYZUrt+7RLZXCi/\ngMqayka3q3lkIHNeMmJeysiYl90TyN988w3OnDmD0tJS7NixA0II6HQ6VFRUoKxMnrFcvU6PLv6N\nl8kmbZj9z9lIuj2p0cde8siAyHXsNoPvv/8eO3fuRGlpaYNLTP39/bFpE6/p1xIZxyitmrvueWDw\nQHjpWr86blvInJeMmJcyMubl0HIUX3zxBYYPH+6KehzC5Sjcy7j/HYfk4ckYF6b+nBUid9bqSWdW\nN910E1JSUpCfnw+LxWLb6ZYtnCykFTJe12wlIF9jlzkvGTEvZWTMy6FmkJCQgHHjxmH8+PHQ6+vP\nOasxEYjcF9cmIlKXQ8NEcXFxOHHihCvqcUhThzqJOxLxQPgDmDxgskpVUWvN+mAW5g+aj5H9Rqpd\nCpFba/WqpVYTJ05EZmZmyw9UkV6nx5WqK2qXQa3wv1P/l42ASGUONYO1a9ciISEBfn5+CAwMRGBg\nIAwGg7NrU4SXIdon43XNLSk3l+NcyTlVXluLeamJeSkjY14ONYPy8nJYLBZUVVWhrKwMZWVluHpV\nrhm/XJLC/RwtOIpHdz6qdhlEHsGhZlBbW4tNmzZh2bJlAACTyYTs7GynFqYUm4F9sl254AiDr4Fr\nE2kE81JGxrwcagbz58/H8ePHkZaWBgAwGAxYuHChUwtTis3A/XA1WiLXcagZHDlyBG+88Qb8/f0B\n1DcD63wDWcyLm4d1965TuwxpyThGafVL2S+4VnOt0e1qfk6FzHnJiHkpI2NeDjWDDh06oK6uzrZ9\n+fJl1NbWOq2o1vDt4AvfDr5ql0Gt8Nsdv8Vh0+FGtwf51i9Ux9nmRM7nUDNYtGgRJk+ejKKiIrz4\n4ou444478PTTTzu7NmpHMo5RWjX3Zu/bwRcxvWJQY6lxcUVy5yUj5qWMjHm1OAPZYrEgIiICw4YN\nw6effgoASEtLQ0xMjNOLI8/R3Iz2o48ddXElRJ6pxSMDvV6PxYsXIyYmBsnJyUhOTmYj0CAZxyit\nZF2biBzHvJSRMS+HholGjx6NDz74gGO35DRcm4hIXQ6tTRQQEIDKykp4eXnBz8+v/ok6nWoTz5pa\nX6OmrgbdVnVD6bOlXERPY2a8NwNLb1+K2423q10KkVuztzZRi83AYrHg8OHDmvg8A/9X/HHpD5fQ\n0bujClUREcmtTQvVWc8ZaAEnnjVPxjFKR/xc+jOKKopc/rpazUstzEsZGfNy+jmDefPmoWfPnoiK\nirLdVlJSgrFjxyI6Ohrjx4/HlSu/rja6YsUKhIeHIyoqCrt371b0WkG+6k1SIudYfWg10k6nqV0G\nkdtzqBm8+eabmDZtGnx8fBSvWjp37txGy18vW7YMEydOxMmTJzFhwgTbmkfHjh3Djh07cOrUKWRm\nZmLBggUwm80O/2V4ZNA8Ga9rdkSQnzqr0Wo1L7UwL2VkzEvRqqU1NTWKVy0dOXIkunTp0uC2jIwM\nzJo1CwCQmJiI9PR0AEB6ejpmzpwJLy8vhISEICIiQtGCeGwG7of/pkSu4VAzOHDgQJNfrVVcXIxu\n3boBAIKDg1FUVD8mXFBQAKPRaHuc0WiEyWRyeL8ZD2cgPjS+1XW5MxnHKK3Ol51HVW1Vk/dZl6Rw\nNZnzkhHzUkbGvBz6DORVq1bZLtesqqpCdnY2Bg8ejL179zq1OHvmzJmD0NBQAEDnzp0RGxtrO/Sy\nBs3tX7dzcnKkquf67XEvj8OCwQvw1IynGt1v8DXg7PGzyArMcml9Mucl4zbzkjOvrKwsbN26FQBs\n75fNEq1gMpnEtGnTHH58bm6uiIyMtG3ffPPNori4WAghRFFRkQgLCxNCCPHSSy+J1atX2x43ceJE\ncfDgwUb7a2XZJKk7Nt0hDv7U+N9ZCCEO5B0QSZlJLq6IyD3Ze+90aJjoRn369MHJkydb81QAQEJC\nAlJTUwEAqampSEhIsN2elpaG2tpamEwmnD59GsOGDWv165A2CIhmJwqO7DcSa8avcXFFRJ7HoWGi\np556yva9xWJBTk6Ow+sTPfTQQ9i/fz8uXryIvn374qWXXsLy5csxY8YMbNmyBb169cK2bdsAAIMH\nD8bUqVMRHR0NvV6PjRs3wtvbuxV/LbpRVtavwywykm05Ctnzkg3zUkbGvBxqBoMHD7b95qbX6zF9\n+nSH/yLvvvtuk7dbV0C90fPPP4/nn3/eoX03RYjmf8skOQmueUWkOofWJiovL4e/vz+8vLwAAHV1\ndaiurkbHjuos+9DclOq002n46PuP8Pb9b6tQFbXW1LSpeHHUi4jrHad2KURurU3LUQDAmDFjGkz+\nqqqqwpgxY9qnunbUyacTrlRdafmBJJUPZnzARkCkMoeagdlstn3+MQB06tQJVVVNXxeuJk5Qap71\ncjMt+vL8l6ipc+2nnWk5LzUwL2VkzMvhz0D+6quvbNs5OTnQ61t1IZJTsRm4p8n/mIzCikK1yyBy\naw6dQF63bh0mTpxom7SQl5eHtDT5Fg9jM2iebFcuKKHGAoRazksNzEsZGfNyqBnceeedOHfuHE6e\nPAmdToeoqCj4+vo6uzbF2Azck8HXoMqSFESexOGxHl9fXwwdOhRDhgyRshEAQDf/bihM5nBCU2Qc\no7QquFqA6trqZu8P8nP9kYHMecmIeSkjY17yDfy3gU6nQwe9Qwc7JJHJ/5iMU0Wnmr3f4GtQZRlr\nIk/iVs2AmifjGKWVgP2pLjE9Y9DJu5OLqqknc14yYl7KyJiXQ79G19bWYuvWrcjPz8fy5cthMplw\n/vx5rhtE7cbechT/Oeo/XVgJkWdy6Mhg/vz5OH78uO0KIoPBgIULFzq1MGpfMo5RWsm4HIXMecmI\neSkjY14OHRkcOXIEX3/9NeLi6meJGgwGWCwWpxbWWkIICAjodRwB0xKuJ0WkLocnndXV1dm2L1++\njNraWqcV1RZT06Zi53c71S5DOjKOUVr1CewDHy8ftctoQOa8ZMS8lJExL4eODBYtWoTJkyejqKgI\nL774IrZt24bnnnvO2bW1SoBPAOcaaMzHv/1Y7RKIPJ5DRwaPPfYYXnnlFSxduhQGgwFpaWmYPXu2\ns2trFU48a5qMY5SOulp9FTkXclz6mlrOSw3MSxkZ83KoGfzf//0fbr75ZiQnJyM5ORlhYWE4fPiw\ns2trFTYD9/NN8TeYv3O+2mUQuTWHmsHChQsRGBho2+7YsSMef/xxpxXVFmwGTZNxjNJRavybajkv\nNTAvZWTMy6FmcOOVQ3q9XtoTyAZfA8rN5WqXQe0oyC+IM5CJnMyhZhASEoINGzagpqYGZrMZ69ev\nR58+fZxdW6s8MfQJ/CXhL2qXIR0ZxyitTFdNMNeZm71fjSMDmfOSEfNSRsa8HGoGW7duxe7du9Gt\nWzd0794de/bswd///ndn19YqnF+gPQlvJ+Dbi982e38n706orq12+QfcEHmSFi8traurw9NPP40P\nP/zQFfWQk8g4RmnV0tpEOp0O48LGobquGt5e3i6pSea8ZMS8lJExrxabgZeXF/Lz81FbW4sOHbgi\nKDmHvbWJACDj4QwXVULkmRx6d+/bty/uuOMO3HfffejYsSOA+t/WkpKSnFoctZ+srCwpfxsB5F2b\nSNa8ZMS8lJExL4eaQVhYGMLCwmCxWFBeXg4hhNRrydRaavm5Bhoj888TkSfQCRl/LWuBTqdr9rfJ\nyppKBK8KRuUfK11cFbXW+NTx+PO9f0b/4P5ql0Lk1uy9dzr063N8fHyTO927d2/bKnMC/w7+MNeZ\nUVNX47KTjdQ2nyR+onYJRB7PoWawevVq2/dVVVX44IMPoNfLeQmnTqeDwdeAMnMZuvp3Vbscacg4\nRqnEDyU/wFvvjX6d+7nk9bSel6sxL2VkzMuhZjBkyJAG2yNGjMDtt9/ulILag3WSEpuB+/jbsb+h\ni38XPDviWbVLIXJLDjWDkpIS2/cWiwVffvklCgsL2/zioaGhMBgM8PLygre3N7Kzs1FSUoIZM2ag\nsLAQvXv3RlpaGjp37qxov1yfqDHZfgtRyuBrQGmV65ak0Hpersa8lJExL4eawaBBg2xXe+j1ehiN\nRmzevLnNL67T6ZCVlYWuXX/9DX7ZsmWYOHEilixZgrVr12LZsmVYt26dov129uvM9YncTJBfEM6X\nnVe7DCK35dDAf15eHnJzc5Gbm4tz585h//79GDNmTLsUcOOZ7YyMDMyaNQsAkJiYiPT0dMX73D9n\nP4b3Hd4u9bkLGddCsWppbSLgX0cGLlysTua8ZMS8lJExL4eaQXV1NVauXIlJkyZh0qRJWL16Ncxm\n+/95HaHT6TB27FhER0dj/fr1AIDi4mJ069YNABAcHIyioqJW7Ze0457/uQc/Xv7R7mOCfIM49Efk\nRA4NE82bNw++vr5ISkqCEALvvvsu5s6di7fffrtNL3748GH06NEDxcXFuPfeezFgwACHnztnzhyE\nhoYCADp37ozY2FjbOJy163K74baVLPVYtyvOViD7UDYGTB7Q7OMLLxWif7f+Lq3PSu18tLJtJUs9\nsm9bOfP1srKysHXrVgCwvV82x6FJZxEREfj6669bvK0tVqxYAQDYtGkTjhw5guDgYBQXF+OOO+7A\nDz/80LBoOxMnSHv6r++Pj2Z+xElnRE5m773ToWEivV6PvLw823ZeXl6b5xlUVlaisrJ+lnBFRQUy\nMzMRERGBhIQEpKamAgBSU1ORkJDQptehejf+NiITGRu7zHnJiHkpI2NeDg0TrVy5Erfffjv696//\nze37779v89VEhYWFmDJlCnQ6HSorKzFz5kzcd999GDFiBGbMmIEtW7agV69e2LZtm+J9W4QFNXU1\n8O3g26YayXV4nodIXQ6vTVRZWYnTp09Dp9MhKioKfn5+zq6tWS0NE7114i18/vPn2DJ5iwurotYa\n8/cx2HTfJtzc5Wa1SyFya20eJtq2bRssFguGDRuGXbt24cEHH0R2dna7FtmeOOlMW/bO3stGQKQy\nh5rByy+/jICAABw4cAD79u3D/PnzsWjRImfX1mpsBo3JOEap1P68/bhWc80lr+UOebkS81JGxrwc\nPoEM1E8Ie/TRRzFp0iTU1tY6tbC2YDNwT4/ufBT5V/PVLoPILTnUDEJCQvDEE09g+/btmDhxIsxm\nM5uBxlivQdayIN8gl61P5A55uRLzUkbGvBxqBv/4xz8wevRoZGZmonPnzigpKcFrr73m7NpazeBr\nQI2lRu0yqJ2xyRM5j0PNwGAw4MEHH8Qtt9wCAOjVqxfGjRvn1MLaIsQQgrNPnVW7DKnIOEZplV+a\nj5q6lpt3kJ/rlqSQOS8ZMS9lZMxLzk+oIY9y19a7HDoX4OrF6og8CZuBh5BxjNJKwLEZyEP7DEVw\nx2AnV1NP5rxkxLyUkTEvh2YgEzmbDi3PQF40TN7LmYm0jkcGHkLGMUorrk2kfcxLGRnzcttmUFVb\n5dBJSZID1yYiUpfbNoPJ/5iMvbl71S5DGjKOUVoZDUZ00Ms1YilzXjJiXsrImJdc/wPbUaBPIK9J\n14iD8w7OU7GOAAAOOElEQVSqXQKRx3PbIwNOUGpIxjFKpUqrSnHgpwMueS13yMuVmJcyMubFZkCa\n8XPpz3gi/Qm1yyByS2wGHkLGMUqlXDkD2R3yciXmpYyMebltM+jq3xW1FnkX0yPlOAOZyHncthks\nuX0JXh7zstplSEPGMUqrn0t/dqhxB/oEotxcDouwOL0mmfOSEfNSRsa83PZqItKO4ZuH4/Cjh2E0\nGO0+zkvvhY7eHfHJvnJ8sc/Q6P4bpyo0NXWhpcdYt3NzgQMH2n+/zqpX7f2ePQucOqWdetXe7zff\nAAUFyp4zYwagd+Kv7w5/BrJMdDodXnhBwMcH8PaG7U9fX8DPr/kvLy/n1+aqNN3pde7JCEHq6CMI\nFEaUlQFlZcDVq/V/VlQAdXX1XxYLsEPMxsXU1/Hw/V1huK4f3FhnU3W3x2O4X/eoRYv7ffvttjcD\ne5+BrNlmkJIiYDYDNTWw/VldXf9VVdX469q1+jcT19TH11Hi24khCNuTjSB9CAIDgcBAwGCo/7Nj\nR6BDh/pG7uVV/58hJAR45BHn1kTkjtyyGWiwbFVlZWVJeQUDAPRZ0wdHHzuKEEOI2qXYyJyXjJiX\nMmrlZe+9021PIFuEBZevXVa7DHIQ1yYiUpfbHhmUXCtB2J/DcPkZNgTZ3bbpNnw08yP0DOipdilE\nbs3ee6fbXk1kXZtICMHfOiV35NEjapdA5PHcdpjI28sbvl6+qKypVLsUKch4XXNrfFP8Db69+K3T\nX8dd8nIV5qWMjHm5bTMAuCSFO9p+ZjveOfWO2mUQuR02Aw/hLld6GHwNKK1y/pIU7pKXqzAvZWTM\nS8pmkJmZiaioKISHh2PlypWt3k+IIQTXaq+1Y2WkNoOvAVfNbPBE7U26ZlBdXY3HH38cmZmZOHny\nJN577z2cOHGiVfvaN3sfYnvFtnOF2iTjGKXVT1d+Qp2lzqHHBvkGueTIQOa8ZMS8lJExL+mawZEj\nRxAREYGQkBB06NABM2bMQHp6utplkRMN/dtQXLp2yaHHcuiPyDmkawYmkwl9+/a1bRuNRphMJhUr\ncg8yjlG2Rt+gvhjaZ6jTX8dd8nIV5qWMjHlJN8+gvecEfH/pe9zS9ZZG+5374Vx88sMnjR6/ZfIW\n3Pubexvdzsc77/El10rg6+Xb6DFNGRA8ACvuWYG9uXuRuCOx0f3xN8Xj7fvfbnQ7H8/Hu9PjnUG6\nGciff/45Vq5ciY8//hgAsHr1apjNZvzxj3+0PUan02H27NkIDQ0FAHTu3BmxsbG2bmsdj7tjxB0w\n/JcBmXdmQqfTNbj/avVVDBk+BADwxedfAACGjxyOLn5dcORQ/SQod3r8oexDmPv4XGnquf7xRw8d\nRZBfUKN/P3vb5jozIodFNno9Xy9fnMo+1ebHHz12FA/Pf9hp+3e3x3998ms89uRj0tQj++NzcnKw\nZMmSVu/f0e2srCxs3boVABAaGorly5drZ6G6qqoqDBgwAIcOHUKPHj0wfPhwbNy4EYMGDbI9xtGF\n6r6/9D2G/m0oSp/lp2NxITFlmJcyzEsZGReqk64ZAMCuXbvw9NNPw2KxYNasWXjuueca3O9oM5jz\nzzn4+1d/h1gm3V+RiMjlNLc20YQJEzBhwoQ278fRcWgiIk8n3dVE7WnV2FU488QZtcuQgozXNcuM\neSnDvJSRMS8pjwzaS5BfEIL8gtQug4hIelKeM2gJP+mMiEg5j/ykMyIichybgYeQcYxSZsxLGeal\njIx5sRkQERHPGRAReQqeMyAiIrvYDDyEjGOUMmNeyjAvZWTMi82AiIh4zoCIyFPwnAEREdnFZuAh\nZByjlBnzUoZ5KSNjXmwGRETEcwZERJ6C5wyIiMguNgMPIeMYpcyYlzLMSxkZ82IzICIinjMgIvIU\nPGdARER2sRl4CBnHKGXGvJRhXsrImBebARER8ZwBEZGn4DkDIiKyi83AQ8g4Rikz5qUM81JGxrzY\nDIiIiOcMiIg8Bc8ZEBGRXao0g5SUFBiNRsTFxSEuLg67du2y3bdixQqEh4cjKioKu3fvVqM8tyTj\nGKXMmJcyzEsZGfNSpRnodDokJSXhxIkTOHHiBCZMmAAAOHbsGHbs2IFTp04hMzMTCxYsgNlsVqNE\nt5OTk6N2CZrCvJRhXsrImJdqw0RNjVulp6dj5syZ8PLyQkhICCIiIpCdna1Cde7nypUrapegKcxL\nGealjIx5qdYMNmzYgIEDByIxMRElJSUAgIKCAhiNRttjjEYjTCaTWiUSEXkMpzWDsWPHIioqqtHX\nRx99hCeffBLnzp3DmTNnEBYWhsWLFzurDPqXvLw8tUvQFOalDPNSRsq8hMoKCgrErbfeKoQQ4qWX\nXhKrV6+23Tdx4kRx8ODBRs8JCwsTAPjFL37xi18KvmJiYpp9L+4AFRQVFaFHjx4AgPfffx8REREA\ngISEBCxcuBBLlizBhQsXcPr0aQwbNqzR83/44QeX1ktE5O5UaQa///3vcfLkSZjNZvTr1w+bN28G\nAAwePBhTp05FdHQ09Ho9Nm7cCG9vbzVKJCLyKJqcgUxERO1LczOQMzMzERUVhfDwcKxcuVLtcqQX\nGhqK6OhoxMXFNTnk5unmzZuHnj17IioqynZbSUkJxo4di+joaIwfP17KywDV0lReN04izczMVLFC\nueTn52PUqFGIiopC//79sWrVKgCS/oy19wlhZ6qqqhKhoaHCZDKJmpoaMWTIEHH8+HG1y5JaaGio\nuHTpktplSOvAgQPi+PHjIjIy0nbbokWLxOuvvy6EEOL1118XixcvVqs86TSVV0pKilizZo2KVcnr\nwoUL4tSpU0IIIcrKysQtt9wicnJypPwZ09SRwZEjRxAREYGQkBB06NABM2bMQHp6utplSU9wJLBZ\nI0eORJcuXRrclpGRgVmzZgEAEhMT+TN2nabyAvgz1pyePXsiMjISABAQEIDo6GgUFBRI+TOmqWZg\nMpnQt29f2zYnpbVMp9PZDkfXr1+vdjmaUFxcjG7dugEAgoODUVRUpHJF8mtqEik1lJeXh6NHj2LE\niBFS/oxpqhnodDq1S9Ccw4cP4/jx49izZw/eeustfPbZZ2qXRG6Gk0hbVl5ejunTp2PdunUwGAxq\nl9MkTTUDo9GI/Px823Z+fn6DIwVqzDqfo3v37pg+fTqOHj2qckXy6969Oy5evAig/ijBmiE1LTg4\nGDqdDjqdDgsWLODP2A1qamowbdo0PPzww5gyZQoAOX/GNNUMhg4ditOnT6OgoAA1NTXYtm2bbcVT\naqyyshKVlZUAgIqKCmRmZtom+FHzEhISkJqaCgBITU1FQkKCyhXJ7fohjusnkVL9uZRHHnkE4eHh\nWLp0qe12KX/GVD6BrVhGRoaIiIgQAwcOFK+++qra5Ujtxx9/FNHR0SImJkbccsst4oUXXlC7JOnM\nnDlT9O7dW3h7ewuj0Si2bNkiLl26JO655x4RFRUlxo4dKy5fvqx2mdK4Ma/NmzeLxMREER0dLQYM\nGCDGjx8vTCaT2mVK4/PPPxc6nU7ExMSI2NhYERsbK3bt2iXlzxgnnRERkbaGiYiIyDnYDIiIiM2A\niIjYDIiICGwGREQENgMiIgKbARERgc2A3FhpaSn++7//27Z9/vx5PPDAA+3+Otb1/FNSUtp93y2J\nj49HYGAgjh075vLXJvfCZkBu6/Lly3jjjTds23369MH27dvb/XV0Oh2SkpJUaQb79u3DkCFDuIgj\ntRmbAbmtZ599FufOnUNcXByeeeYZ/PTTT7ZP6Nq6dSumTJmCCRMm4KabbsL69evx2muvYciQIRg0\naJBtEbHvvvsO8fHxiImJwW233Yavv/66yde6fiJ/SkoKZs+ejfj4eISGhmLHjh1ITk5GdHQ07r77\nblRXVwMAnn76aURERCA2NhZJSUkAgAsXLmDSpEmIiYlBbGws9u/fDwAoKyvDzJkzERERgZiYGLz3\n3ntOy408lMrLYRA5TV5eXoNP5MrNzbVtv/XWW+I3v/mNuHbtmiguLhYGg0Fs2rRJCCHE0qVLxerV\nq4UQQgwfPlycPXtWCCHE4cOHxZ133tnodVJSUsRrr71m2162bJkYNWqUsFgs4quvvhL+/v5i9+7d\nQgghpk6dKrZv3y4KCwtFRESE7Tnl5eW2+w8ePCiEEOKnn34SYWFhQgghFi9eLJKTk22PLy0ttX0/\nevRocezYsdbGRCSEEKKD2s2IyFlEC8tuxcfHw8/PD35+fujcubNt5cioqCjk5OTg0qVLOH78eIPz\nDNeuXWvxdXU6He69917odDpERkbCYrFg7Nixtn3n5+ejW7du8Pb2xiOPPIKEhAT8+7//OwDgs88+\nQ25urm1f1dXVuHr1Kvbs2YMPP/zQdrusa+KTdrEZkMfy9fW1fa/X623ber0eFosFQgh0794dJ06c\nULxvHx8f2768vb0bvI7FYoGXlxeOHDmCPXv24P3338eGDRuwd+9e6HQ6HD16FB06NP6v2VJzI2oL\nnjMgt+Xv72/7PAclrG+6wcHB6N69Oz7++GPb7c2dM1CqoqICZWVlmDBhAtasWYPjx48DAO655x68\n+eabtsdZX2/s2LHYuHGj7farV6+2Sx1EVmwG5LZ69uyJ2NhYhIeH45lnnrF9GheABt9bt6//3rqd\nlpaGNWvWIDo6GpGRkQ6fuG1u39btq1ev4t5770VcXBxGjhyJ119/HQDw5ptv4tNPP0VUVBQiIyOx\nbt06AMDLL7+Mn3/+GeHh4YiNjcWePXtakQhR8/h5BkRttHz5cgQEBOD3v/+9Kq8fHx+PNWvWYNCg\nQaq8PrkHHhkQtVFAQAD++te/qjbpLDc3t8F5CaLW4JEBERHxyICIiNgMiIgIbAZERAQ2AyIiApsB\nEREB+P84YbaUtpWtuAAAAABJRU5ErkJggg==\n", + "text": [ + "<matplotlib.figure.Figure at 0x2986d90>" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 10.6, Page number: 522" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "%matplotlib inline\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "w=2*pi*60 #Angular freq of voltage(rad/sec)\n", + "Vo=230*sqrt(2) #volt\n", + "R=5.6 #Resistance(ohm)\n", + "\n", + "#Calculations:\n", + "Ls=[0]*101\n", + "tc=[0]*101\n", + "Idc=[0]*101\n", + "for n in range(1,101,1):\n", + " Ls[n-1]=n*10**-3\n", + " Idc[n-1]=2*Vo/(pi*R+2*w*Ls[n-1])\n", + " tc[n-1]=(1/w)*acos(1-(2*Idc[n-1]*w*Ls[n-1])/Vo)\n", + "\n", + "#Results:\n", + "plot(1000*np.array(Ls),Idc,'g.')\n", + "xlabel('Commutating inductance Ls [mH]')\n", + "ylabel('Idc [A]')\n", + "title('Load current,Idc vs Commutating inductance,Ls')\n", + "show()\n", + "plot(1000*np.array(Ls),1000*np.array(tc),'g.')\n", + "xlabel('Commutating inductance L [mH]')\n", + "ylabel('tc [msec]')\n", + "title('Commutating Inductance,Ls vs time,tc')\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n" + ] + }, + { + "output_type": "stream", + "stream": "stderr", + "text": [ + "WARNING: pylab import has clobbered these variables: ['fmod', 'sinh', 'trunc', 'tan', 'gamma', 'cosh', 'radians', 'modf', 'expm1', 'ldexp', 'linalg', 'random', 'frexp', 'ceil', 'isnan', 'copysign', 'cos', 'degrees', 'tanh', 'fabs', 'sqrt', 'hypot', 'power', 'log', 'log10', 'info', 'log1p', 'floor', 'fft', 'pi', 'exp', 'isinf', 'e', 'sin']\n", + "`%pylab --no-import-all` prevents importing * from pylab and numpy\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEZCAYAAACXRVJOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVOX+B/DPIKAog8CwCIJAGMoquKUFOgaGLJq54YaS\nll1LK7XlVr8EtCSXMrtlqZndQhJKK/cydRTFLVPR6pqaGGiyiorIIjy/P5TTsAyCMszAfN6vly9n\nhjnP+Z5nlu882zkyIYQAEREZPCNdB0BERPqBCYGIiAAwIRAR0R1MCEREBIAJgYiI7mBCICIiAEwI\nWhUXF4fo6Ghdh9HsPv/8cwQFBek6DIOUkJCAp59+Witly+VyZGRk3NO2SqUSq1evbtqAqMkZbEJw\ndXXFzp07tboPmUym1fK1JSYmBm+++abGv2dkZMDIyAiVlZXNGFXDXbt2DS+++CJcXFwgl8vh5OSE\nf/3rX8jLy9N1aPVq7A8IlUoFZ2fnao+99tprWLVqVVOHBgC4fv06XF1d72lbmUx235+Huo5XH7Sm\nZGewCaEp3qD64NatW7Ueq6io0EEk+qGsrAzBwcG4cOEC9u7di+vXr+PYsWNwdnbGkSNHdB0etUKt\n5bsEMOCEoElJSQmefvppWFtbQ6FQ4JlnnkFpaSkAoLCwEKGhobCxsYFcLkdISAguXLggbXv69Gn0\n6dMHFhYWeOyxx+76izQpKQmenp6Qy+Vwc3PD9u3bAdRuvaj/cqz6df7ZZ5/Bzc0NISEh+O9//4tH\nHnkEs2fPhp2dHebNm4eSkhJMnz4ddnZ2sLKywuTJk3Hz5k0At39pOTk54b333oODgwNsbGzwySef\nAABWrlyJpKQkLFq0CHK5HI8//vhd6yw7OxshISGQy+Xo168fzp07V+3vR48eRVBQEORyOezs7PDW\nW2/VKuPQoUNwcHCA+sL5b7/9Fj169AAA7N+/H35+fujQoQPs7Ozw4osv1hnLF198gZycHKSkpMDF\nxQUAYGtrizfeeANhYWEAgGPHjuGhhx6CXC5H165dkZycLG0fExODZ599FhEREbCwsEBQUBAuX76M\nF154AdbW1njggQdw+PBh6fmurq5YsmQJ/P39IZfLMXXqVGRnZyMsLAxyuRyBgYEoKCiQ6r3mL9yq\n13r79u1ISEhAcnIy5HI5AgICAACffvopunXrBnNzczg5OeH9998HANy4cQNhYWG4dOkS5HI5LCws\n8Pfff9f5Xvniiy/g6uoKCwsLzJ07V9r3jRs3MHr0aMjlcnh7e2PRokX1/gI3MjLCn3/+KdXTc889\nh6FDh0Iul8Pf3x9//PGH9NyNGzfCxcUF1tbWmDlzZrXXtWZLqGaLMzc3F2PHjoWVlRUsLS0xbNgw\nFBcX1zrey5cv49ChQ+jTpw86duwIa2trPPXUU9LntSrmFStWSHX41FNPVYtl6dKlcHNzg1wuR/fu\n3fHLL79IMYWHh8PS0hIODg5YuHChxnrRpKioCFFRUejYsSM6duyIXr16IScnp9HlNCthoFxdXcXO\nnTtrPT5nzhwxYMAAUVhYKAoLC4VSqRRz5swRQghRUFAgNm/eLG7duiWKi4vFxIkTRWhoqLRtjx49\nxGuvvSYqKyvF4cOHRceOHUV0dHSd+9+1a5ewsrISqampQgghsrOzxenTp+uMLS4uTkycOFEIIcT5\n8+eFTCYT06ZNE6WlpaKkpESsWbNGGBsbi08//VQIIURJSYl4+umnxYgRI8S1a9dEcXGxGD58uHjh\nhReEEELs3r1bGBsbi/nz54vKykqxdetWYWpqKgoKCoQQQsTExIg333xTY91VxVBRUSGEEGLYsGEi\nOjpalJWViTNnzghnZ2cRFBQkhBAiLy9PWFtbi+XLl4uKigpRXFwsjh49Wme57u7uYseOHdL9UaNG\niYULFwohhOjZs6dITEyUju/nn3+us4yoqCgxffp0jbGXlJQIR0dH8d577wkhhEhLSxNyuVwcP35c\nCCHE5MmThY2NjTh16pQoLS0VgwcPFi4uLmLdunVCCCHmzp0rHn74Yak8V1dX8cgjj4iCggJx8eJF\n0alTJxEQECB+++03afvXX39dqncnJ6dq8ai/1nFxcbXeLz/88IPIysqSYjU3NxcHDhwQQgihUqlq\nlVfXe+XZZ58V5eXl4sSJE8LU1FScPHlSCCHE888/Lx577DFRVFQkcnJyRM+ePYWzs7PGupPJZOLc\nuXNSPSkUCnHixAlx69YtMWHCBDFixAghhBAXL14U5ubmYvPmzUIIIZYvXy6MjY3F6tWra8WoHmfV\n+2ngwIEiJiZGFBUViYqKCpGWlqbxeI8dOyZ++eUXab++vr4iISGhWszDhw8XN27cEH/99ZewtbUV\nGzduFEIIsWbNGuHi4iJOnTolhBAiIyND/PXXX+LWrVuie/fuIiEhQVRUVIjMzEzxwAMPiG+//bbO\nelEqldKxqfvggw/E0KFDxc2bN4UQQpw8eVJcu3ZNY/3qA7YQali3bh3mzp0rZfW5c+di7dq1AAAr\nKytERESgTZs2MDMzw6uvvoq9e/cCAP744w/873//Q2xsLGQyGfr06YMnnnii2q8RdWvWrMEzzzyD\nwMBAAICdnR08PDzqfG5dZcydOxempqZo27YtAMDFxQVTp04FcLsJ++WXX2Lx4sWQy+UwMzPDK6+8\ngpSUFGl7ExMTvP7665DJZAgLC4OlpSV+++23evdZl5s3b2Lr1q2Ij4+HiYkJunbtiqlTp0rbf//9\n9/Dw8MD06dNhZGQEMzMz9OzZs86yxo0bh6+++grA7f7qbdu2Ydy4cQAAc3NznD17Fvn5+Wjbti16\n9epVZxkFBQWwtbXVGO/evXthZGSEWbNmAQD69++PJ554AuvWrZOeM2LECHh7e8PU1BTDhw9Hhw4d\nEBUVBQAYM2YMTpw4Ua3M5557DlZWVnB0dERQUBD69+8PT09Pafuaz9dECFGr3h977DF07txZinXI\nkCHSe66u16iux9544w0YGxvDz88P/v7+UjzffPMNXnvtNXTo0AG2trZ44YUXGvy6y2QyjBgxAn5+\nfmjTpg0mTJgglbt582b07NkTERERAIDp06fDycmp3hir/Pnnn0hLS8N//vMfdOjQAUZGRujfv7/G\n7fz9/aXWlKOjI6ZNmybVT5WXX34Z7du3h7OzMwYNGoT09HQAwGeffYbXXnsN3t7eAG5/hpydnbFv\n3z4UFxfj3//+N4yMjODk5ISnnnqq2uenIczNzZGfn4+zZ88CAHx8fCCXyxtVRnNjQqghOzsbXbp0\nke47OztLzbyrV68iJiYGnTt3hqWlJR555BGUlpZCCIGcnBxYW1tLX9AAqn0Iarp8+TIeeOCBBsVU\nV/+kg4ODxvu5ubkoLS1Fr169YGVlBSsrK4SFheHatWvScxQKBYyM/nn527dvX62p3VD5+fmoqKio\ndqxVX2AA8Pfff8PNza1BZY0fPx4bNmxAWVkZNmzYgF69ekldGCtXrsRvv/0GT09P9OzZE999912d\nZSgUCuTm5mrcR3Z2dq1ukS5dukivsUwmg52dnfQ3U1PTavfbtm1bq57s7e2r/V39vqmp6T3Va5Vv\nv/0WvXr1gqWlJaysrLBx40bcuHGjUWV06tRJuq3+Oufk5FR7rdRvN4T6cZqZmWksF6j/s6Du77//\nho2NDczNzRv0/F9//RWPPfYYbGxsYGlpiVdffbVW/Wg6fk2fwaysLFy6dEn67FhZWSEhIQGFhYUN\niqlKdHQ0goODMWbMGDg4OGD27NkoKytrVBnNjQmhBnt7+2rjApmZmdIXwuLFi3Hx4kWcOHEChYWF\n2L9/v/Srzs7ODgUFBSgpKam2rSaOjo5Sf2xNpqam1d7UjZ0do1AoYGJigjNnzuDKlSu4cuUKCgsL\nUVRU1KDtGzNAplAo0KZNG2RlZUmPqd/u3Lkzzp8/36CyPD094eLigm3btiEpKQnjx4+X/tatWzck\nJycjJycHb775JqKiouo8npCQEGzdulXjB8/e3r7W6/LXX39V+3K7X5p+AZuamqK4uFi6X1lZiStX\nrkj3a9Z7UVERxo0bh3nz5qGgoABXrlzBsGHDpPLrep0a89rZ2dnh4sWL0n311+1+2NvbVyu3Ztk1\n6yE/P1+67ejoiLy8vDpf27qO7ZlnnkGfPn2QlZWFwsJCLFy4sMGz3zR9Bh0cHODh4SF9dq5cuYJr\n165h69atDSq3irGxMebNm4fffvsNhw8fxg8//IA1a9Y0qozmZtAJoaysDCUlJdK/W7duISoqCm+9\n9RYKCwtx9epVzJ8/X/piKi4uhomJCeRyOa5du4b58+dLZXl4eKBbt2546623UFlZiZ9//hnff/+9\nxg9oTEwMVq5cibS0NAC3f7meOXMGANCjRw+sW7cOFRUVSE9PxzfffNOoD3q7du0QHR2NOXPmSL9q\nLl++3OBpttbW1tWSYlW8Tz75ZK3nmpmZITw8HPHx8SgrK8O5c+ewZs0aKd5hw4bh7NmzWLFiBSoq\nKlBcXCwN3NVl/PjxeP/995GamorRo0dLjycnJ0tfnnK5HEZGRnXWSXR0NOzs7DB27FjpGPLz87Fg\nwQJs27YNAwYMQGVlJZYtWwYhBA4ePIjvvvsOY8aMAdDwrrJ74enpiaKiImzduhWVlZVYtGhRtcSv\nUCiQmZkpxVBeXo7y8nLpeHfu3IkffvhBer61tTWuXLmC69evS481Jv5Ro0bhnXfeQVFREXJzc/Hh\nhx82+H1W337Cw8Nx9OhR6Qv0k08+qZYQ/P39sXfvXmRmZuLGjRt45513pL+5ubnhkUcewQsvvIAb\nN26goqIC+/fv13i8xcXFaNeuHdq2bYs///wTH3/88V3jror9ySefxMKFC6Wu0oyMDGRmZmLgwIGo\nrKzEhx9+iLKyMgghcPr0ael9q1KpqrWugduvlfp3SXl5Ofbu3Yvff/8dANChQweYmJjU2k7f6Hd0\nWhYeHo727dtL/+bNm4e3334bXbt2xQMPPAA3Nze4u7tjwYIFAIBZs2bh6tWrsLKyQr9+/RAcHFzt\nA5ScnIwffvgBlpaWeP311+udU65UKvHBBx8gJiYGcrkc/fv3l36tvP322/j111/RsWNHvP7661L/\ndZWaH9q6pr19+OGHsLKygqenJywsLDBw4ECcOnVKYxnqpk6dip9//hkWFhYYMWIEgNutnarxjprb\nr1ixApmZmVAoFJgwYQImT54s/c3a2hrbt2/HF198AUtLS7i5uVX7Uqtp3Lhx2Lt3L4KDg2FtbS09\nXjUW0aFDB8yYMQNffPEFOnToUGt7U1NT/PTTT3BxcZFmNvXo0QMXL17EQw89hLZt22LTpk1ISkqC\nhYUFJkyYgE8++QT+/v511mVddXu3L01N21tZWWHZsmWIjo6Go6MjTExMqnVfjR49Gjdv3kTHjh3R\nu3dvWFlZYfHixRgxYgSsra3x3//+F5GRkdLzfX19MWzYMDg5OcHa2hp///13nfFr8vbbb8Pc3BwO\nDg549NFHMXLkyHq/sBpaL507d0ZiYiKmT58Oa2tr/Prrr9XeO+Hh4Xj88cfRvXt39OrVC6GhodXK\nSklJwfXr19G5c2fY2NhgyZIldR7v5cuXsXjxYnz++eewsLBATEwMRo0aVe/xq8c9efJkzJgxQ5oR\nFh4ejvz8fLRp0wY//PADdu7cCXt7e1haWmLSpEnSD5LMzEw88sgj1cqdPn16te+SqVOnIisrC8OG\nDYO5uTkefPBB9O/fHzExMRrrVx/IhDZ/EuH2nPjevXvDyckJmzZtQkFBAaKiopCdnQ0HBwckJyfD\n0tJSmyHQfSorK0NAQADS09PRpk0bXYdDWrJ69WqsWrUKBw8e1HUoeu3pp5/GmDFjMHjwYF2H0uS0\n3kJYtmwZvLy8pKwcGxuLiIgIpKenIywsDLGxsdoOge6Tqakpfv31VyaDVuby5cvSmoqMjAwsWbKk\nQetODN2qVataZTIAtJwQsrKysHXr1mqLQbZu3Sp1pUycOBFbtmzRZghEpEFZWRkmT54Mc3Nz9OrV\nC4MGDcJLL72k67BIh4y1WfisWbOwePHiatMdc3NzoVAoAAA2Njb6v3KPqJXq0qWLNOhJBGixhbB5\n82bY2dkhICBAqzM3iIioaWithZCWloaNGzdi69atKCkpwbVr1xAdHQ1bW1vk5eXBxsYGubm51Rb9\nqOvatWutc+IQEVH93N3dpdXRjdYc58dQqVQiMjJSCCHEjBkzxNKlS4UQQrz33nti5syZdW7TTKG1\nCLGxsboOQW+wLv7BuvgH6+If9/PdqdUxBHVVs4zi4+MRFRWFzz77DJ06dWr0+UGIiEg7miUhDBw4\nEAMHDgRwe6HSjh07mmO3RETUCAa9UrmlUCqVug5Bb7Au/sG6+AfromlofaXyvZLJZJydRETUSPfz\n3ckWAhERAWBCICKiO5gQiIgIABMCERHdwYRAREQAmBCIiOgOJgQiIgLAhEBERHcwIRAREQAmBCIi\nuoMJgYiIADAhEBHRHUwIREQEgAmBiIjuYEIgIiIATAhERHQHEwIREQHQckIoKSlBnz59EBAQAA8P\nD8yaNQsAEBcXBycnJwQEBCAgIADbt2/XZhhERNQAWr+E5s2bN2FmZoZbt24hMDAQCQkJ2Lt3L+Ry\nOWbPnq05sDuXgZu2aRr+yP8D7U3aI2lkEizbWWozXCKiFk2vL6FpZmYGACgrK0NFRQXs7e0BoMEB\n/5H/B/Zc2INtZ7dh2qZpWouTiMjQaT0hVFZWwt/fH/b29hg0aBC8vLwAAB999BE8PT0xceJEFBQU\naNy+vUl7AEBvx95YOXSltsMlIjJYWu8yqnL16lWEhobinXfegY+PDxQKBYDb4wnnzp1DYmJi9cDu\nNHsKSwoxbdM0rBy6kt1FRER3cT9dRsZNHItGHTt2REREBA4ePAilUik9/swzz2DQoEF1bhMXFwcA\n8IIXjtser7YdEREBKpUKKpWqScrSagshPz8fpqamkMvluHnzJkJDQ/Hqq6+ib9++sLW1BQD85z//\nwe7du7Fhw4bqgd1HliMiMlR620K4dOkSJk2aBCEESkpKMH78eERERCA6Ohrp6ekoKyuDi4sLVq9e\nrc0wiIioAZptDKGx2EIgImo8vW0hNDWuSSAi0p4WdeoKrkkgItKeFpUQuCaBiEh7WtQYAtckEBHV\n737GEFpUQiAiovrp9bmMiIioZWBCICIiAC1s2mlNnIZKRNR0WnQLgdNQiYiaTotOCJyGSkTUdFr0\nLCNOQyUiqo7TTomICACnnRIRURNgQiAiIgAtfNqpOk5BJSK6P62mhcApqERE96fVJAROQSUiuj+t\nZpYRp6ASEXHaKRER3aGX005LSkrQp08fBAQEwMPDA7NmzQIAFBQUYPDgwfDz80NoaCgKCwu1FQIR\nETWCVlsIN2/ehJmZGW7duoXAwEAkJCRgw4YNcHd3x4svvoj3338f58+fx7Jly2oHdp8tBM46IiJD\npJctBAAwMzMDAJSVlaGiogJ2dnbYunUroqOjAQATJ07Eli1btLJvzjoiImocrSaEyspK+Pv7w97e\nHoMGDYK3tzdyc3OhUCgAADY2NsjJydHKvjnriIiocbS6MM3IyAjHjx/H1atXERoait27dzdq+7i4\nOOm2UqmEUqls8LZJI5M464iIWj2VSgWVStUkZTXbLKP58+fDxMQEq1atwqFDh2BjY4Pc3Fz0798f\nZ8+erR0YZxkRETWaXo4h5Ofn4/r16wBuDy7v2LEDvr6+CA8PR2JiIgAgMTER4eHh2gqBiIgaQWst\nhJMnT2LSpEkQQqCkpATjx4/H3LlzUVBQgKioKGRnZ6NTp05ISUmBpWXtLp2mbCFwxhERGQouTLsL\n5edK7LmwBwAw2ms0UkanNEm5RET6Ri+7jPQJZxwREd2dQbQQeJ4jIjIU7DIiIiIA9/fd2WoukNNQ\nHGAmIqqbQYwhqOMpLYiI6mZwCYEDzEREdTO4MQQOMBNRa8ZBZSIiAsBB5fvCQWYiotsMbgyhJg4y\nExHdZvAJgYPMRES3GfwYAgeZiag14aAyEREB4KByk+EAMxEZMoMfQ1DHAWYiMmRMCGo4wExEhoxj\nCGo4wExELR0HlbWA4wlE1BLximlawPEEIjI0Wk0ImZmZGDBgAHx9fdGtWzcsWrQIABAXFwcnJycE\nBAQgICAA27dv12YY94TjCURkaLTaZZSdnY3c3Fz4+PigqKgIPXv2xNdff43vvvsOcrkcs2fP1hyY\njruMOJ5ARC2R3q5DsLe3h729PQDA3Nwcfn5+uHjxIgDo/aIzy3aWSBmdouswiIiaTbONIWRkZODI\nkSMICgoCAHz00Ufw9PTExIkTUVBQ0Fxh3LNpm6ZB+bkS4WvDUVhSqOtwiIiaXLPMMioqKsKgQYPw\nxhtvYPjw4cjLy4NCoQBwezzh3LlzSExMrB6YTIbY2FjpvlKphFKp1HaoGik/V2LPhT0AgNFeo9l6\nICK9oFKpoFKppPvx8fH6O+20vLwckZGRGDJkCGbNmlXr75cuXcKgQYNw+vTp6oHp2bmMwteGY9vZ\nbejt2Bs7ondwXIGI9JLeTjsVQmDq1Knw8vKqlgxycnKk2+vXr4e3t7c2w2gSSSOTMNprNJMBEbVa\nWm0h7Nu3DwMGDICfnx9kMhkAYMGCBUhKSkJ6ejrKysrg4uKC1atXo3PnztUD07MWgjouWiMifcWV\nys2M4wlEpK/0tsuoteKiNSJqjdhCuAfqi9Ze2fEKu4+ISG+wy0iH2H1ERPqEXUY6xO4jImot2EK4\nTzznERHpE3YZ6RFOSSUiXWKXkR7hdRSIqKViQmhiHFMgopaKXUZNjFNSiUiXtDaG4Ovre9cCbG1t\nsWvXrnvaeX1aakJQxympRNTctHaBnIqKCmzbtq3ewocNG3ZPOzYE7D4iopak3hbCvn37EBgYWG8B\nqamp0kVvmjSwVtBCYPcRETW3Zp92+tdffyE5ORkvv/zyPe20IVpDQlDH7iMiag7NMu00JycHH330\nEQIDA6FUKnH58uV72qGhYvcREem7elsI165dw4YNG/DVV1/h7NmzGD58ONatW4eLFy9qP7BW1kKo\nuaKZC9iISBu01mVkZmaGwYMH4/XXX0e/fv0AAG5ubjh//vy9RdqYwFpZQqiJXUhEpA1a6zJKSEhA\ndnY2nn32Wbzzzjs4d+7cPe2EamMXEhHpmwYNKp87dw7r1q3DunXrcObMGcTHx+OJJ56Ah4eH9gJr\n5S0EzkAiIm1o1llGJ0+exFdffYXk5GStthhae0JQx+4jImoqzXpyO19fXyxYsKBBySAzMxMDBgyA\nr68vunXrhkWLFgEACgoKMHjwYPj5+SE0NBSFhYWNj7wVYfcREemDehNCZGTkXQuo7zmmpqZYvnw5\nTp48iaNHj+LTTz/FiRMnEBsbi4iICKSnpyMsLAyxsbGNj7wVSRqZhNFeo7Ejegde2fEKlJ8rEb42\nHIUlhp0oiah51dtl1LFjRwwYMKDeAk6dOtXgWUejRo3ClClTMHPmTBw+fBgKhQJ5eXno168fzp49\nWz0wA+oyUsfuIyK6H1o7l9H3339/1wLatm3boB1lZGTgyJEj+Oyzz5CbmwuFQgEAsLGxQU5OToPK\nMATsPiIiXak3ISiVyibZSVFREUaNGoVly5bBwsKiwdvFxcVVi6Wp4tFnSSOTuICNiBpMpVJBpVI1\nSVlavx5CeXk5IiMjMWTIEMyaNQsA4O7ujkOHDsHGxga5ubno378/u4w0YBcSETWG3l5CUwiBqVOn\nwsvLS0oGABAeHo7ExEQAQGJiIsLDw7UZRoum3oVkZmLGAWci0poGtRCKiopgZmaGNm3aALh9nYSS\nkhJ06NCh3u327duHAQMGwM/PDzKZDMDt1c99+/ZFVFQUsrOz0alTJ6SkpMDSsnpXCFsIt6kvYBu+\nbjhbC0RUL60vTOvTpw/27t0LMzMzAMCNGzcQHByMgwcP3tNOGxQYE0It4WvDse3sNvR27I0d0Ts4\nnkBEtWi9y6i8vFxKBgDQoUMHlJSU3NMO6d5xvQIRaVODEoKxsTFOnDgh3T9+/DiMjLQ6/EB1sGxn\niZTRKbBsZ4k/8v/Angt7sO3sNkzbNE3XoRFRK1DvtNMqy5YtQ0REBFxdXQHcXlOQnJyszbjoLmqu\nV+D0VCK6Xw2edlpaWor09HTIZDL4+fnB1NRUu4FxDKFeNS+4w+mpRARocVB5/fr1UuHq/1cZMWLE\nPe20QYExITSK+oCzl60XLhReYGuByABpLSHExMRAJpMhJycHaWlpePTRRwEAu3fvxsMPP4zNmzff\nW8QNCYwJoVE4PZWIAC2ey+jzzz8HAAwZMgSnT5+GnZ0dACA3NxeTJk26px2SdlQNOAN1L2Zja4GI\n7qZBU4XOnz8vJQMAsLW1xZ9//qm1oOj+qE9PvVB4gbORiKhBGjTLaMCAAQgLC0NUVBSEEPj666/v\nelps0h1NrQXORiKi+jRollFlZSWSk5ORmpoKIyMjBAYGIioqqtoAc5MHxjGEJsHZSESGpVmvqdxc\nmBC0g7ORiFo3rSUEc3Nzja0AmUyGa9eu3dNOGxQYE4JWcDYSUeumtVlGRUVF91Qo6S+OLxCRJjwh\nkQFTn43E8yMREROCAVM/WR7Ai/EQGTomBJJw/QKRYWNCIIl6i4GtBSLDw2mnVKf6ZiNVjTdw8JlI\n/2j9imlkeDS1FlYOXcnBZ6JWSqsJYcqUKbC3t4evr6/0WFxcHJycnBAQEICAgABs375dmyFQE6g5\nG4ndSUStk1a7jFJTU2Fubo5Jkybh5MmTAID4+HjI5XLMnj27/sDYZaS3NHUnuVm6oUvHLuxKItIh\nve0yCgoKgpWVVa3H+UXfsmnqTnKUO7IriagF08kYwkcffQRPT09MnDgRBQUFugiBmoh6d5JFWwsA\n1Vc+szuJqOXQ+iyjjIwMDB06VOoyysvLg0KhAHB7POHcuXNITEysHZhMhtjYWOm+UqmEUqnUZqh0\nn+o7syq7k4i0Q6VSQaVSSffj4+P192ynNROCukuXLmHQoEE4ffp07cA4htDiqZ9ZtW2bttifuR8A\nT6RHpE3gLVjbAAATsklEQVR6O4ZQl5ycHOn2+vXr4e3t3dwhUDPR1J3EmUlE+kmrLYRx48Zhz549\nyMvLg729PeLj47F7926kp6ejrKwMLi4uWL16NTp37lw7MLYQWhUudCNqHrxADrUo6l1JO6J3cOoq\nURNqUV1GRPUtdOPUVSLdYQuBdE69O2n8+vG8xCfRfWCXEbUaHGsguj9MCNQqcayBqPG0dk1lIl1K\nGplUbaGb+lhD2zZtpeTQc0VPJgeiJsAWArUYmsYaai56Y9cSGTJ2GZHB0ZQc2LVEho4JgQxazXMo\naTplBpMDGQImBCI17FoiQ8aEQKQBu5bI0DAhEDUAu5bIEDAhEN0Ddi1Ra8SEQHSf2LVErQUTAlET\namjXElsPpI+YEIi0iK0HakmYEIiaCQemSd8xIRDpyL0MTNt2sOVpvUlrmBCI9EBDu5ZszGyQdzMP\nAFsS1PSYEIj0TH1dS5btLPHTnz9xkJq0Qm8TwpQpU7BlyxbY2dnh5MmTAICCggJERUUhOzsbDg4O\nSE5OhqVl7Tc9EwK1JuoJAkCjB6nZzUQNpbcJITU1Febm5pg0aZKUEGbOnAl3d3e8+OKLeP/993H+\n/HksW7asdmBMCGQAGjpIrd7NxJYE1UdvEwIAZGRkYOjQoVJCcHd3x+HDh6FQKJCXl4d+/frh7Nmz\ntQNjQiADpGkcQr2biS0Jqk+LumJabm4uFAoFAMDGxgY5OTnNHQKR3rJsZ4mU0SkAql8xDkCDrh6n\n3pKYtmkaWxLUKHp9Cc24uDjptlKphFKp1FksRM1NPTkAqHZbPVmMXz8eAGq1JFYOXVmtJaF+qVG2\nJFoPlUoFlUrVJGXppMvo0KFDsLGxQW5uLvr3788uI6L7oGnAmmMShqlFjSGoDyovXboU58+fxwcf\nfFA7MCYEovvGMQnDo7cJYdy4cdizZw/y8vJgb2+PefPm4fHHH5emnXbq1AkpKSmcdkrUDJq6JcFk\noZ/0NiHcDyYEouZzLy2J+lZcv7LjFXZB6QgTAhE1mYa2JOpbcZ1zI0fjWWCZLLSLCYGImkVDV1zX\nd6I/TcmCXVBNgwmBiHSq5orr+k70pylZcLyiaTAhEJHeamiy4HhF02BCIKIWSZvjFYbaqmBCIKJW\n537HKxraBdXaEgcTAhEZjKbugmptYxdMCEREuLcuqKYYu9CnxMGEQER0F5qShfrtex270KfEwYRA\nRNRE7mXsQp8SBxMCEZGW1Td2AWgvcTR2QJwJgYhITzR14mjsgPiqYauYEIiIWpKGJo5GD4g/uYcJ\ngYiotWrUgPjEbUwIRESGrrCkEFZmVkwIRER0f9+dRk0cCxERtVBMCEREBAAw1tWOXV1dYWFhgTZt\n2sDExASHDx/WVShERAQdJgSZTAaVSgVra2tdhUBERGp02mXEQWMiIv2hs4Qgk8kwePBg+Pn54cMP\nP9RVGEREdIfOuowOHjwIOzs75ObmYsiQIejevTtCQkJ0FQ4RkcHTWUKws7MDANja2mLUqFE4cuRI\nrYQQFxcn3VYqlVAqlc0YIRGR/lOpVFCpVE1Slk4WphUXFwMA2rdvjxs3biA8PBxz5szBsGHD/gmM\nC9OIiBrtfr47ddJCyM7OxvDhwyGTyVBcXIyxY8dWSwZERNT8eOoKIqJWhKeuICKi+8aEQEREAJgQ\niIjoDiYEIiICwIRARER3MCEQEREAJgQiIrqDCYGIiAAwIRAR0R1MCEREBIAJgYiI7mBCICIiAEwI\nRER0BxMCEREBYEIgIqI7mBCIiAgAEwIREd3BhEBERACYEIiI6A6dJYTt27fD19cXXl5eWLhwoa7C\nICKiO3SSEEpLSzF9+nRs374d6enp+Oabb3Ds2DFdhNIiqFQqXYegN1gX/2Bd/IN10TR0khAOHToE\nb29vdO7cGcbGxoiKisKWLVt0EUqLwDf7P1gX/2Bd/IN10TR0khCysrLg7Ows3XdyckJWVpYuQiEi\nojt0khBkMlmDnhe+NhyFJYVajoaIiABAJoQQzb3T1NRULFy4EJs3bwYALF68GGVlZXjjjTf+Ccxa\nBlxp7siIiFo2d3d3nD179p621UlCKCkpQffu3bF//37Y2dnh4YcfxooVK9CzZ8/mDoWIiO4w1sVO\n27Vrh48//hihoaGorKxEdHQ0kwERkY7ppIVARET6R+9WKhvygrXMzEwMGDAAvr6+6NatGxYtWgQA\nKCgowODBg+Hn54fQ0FAUFhrOQHtFRQUCAgIwdOhQAIZbF4WFhRg9ejR69OgBT09PHDx40GDrIjY2\nFh4eHujevTtGjRqF4uJig6mLKVOmwN7eHr6+vtJj9R17QkICvLy84Ovrix9//PHuOxB6pKSkRLi6\nuoqsrCxRXl4uevfuLX755Rddh9VsLl++LE6ePCmEEOL69eviwQcfFMePHxczZswQS5cuFUIIsXTp\nUvH888/rMsxm9e6774rx48eLoUOHCiGEwdbFqFGjRFJSkhBCiIqKCnH16lWDrIszZ84INzc3UVpa\nKoQQYsyYMeLTTz81mLrYu3ev+OWXX4SPj4/0mKZj//nnn0Xv3r3FrVu3RFZWlnB1dZXqTRO9Sgh7\n9uwRERER0v3FixeL+fPn6zAi3Ro5cqTYsmWLeOCBB0ReXp4QQojc3Fzh7u6u48iaR2ZmpggODha7\ndu0SkZGRQghhkHWRl5cnunbtWutxQ6yL/Px84eHhIQoKCkR5ebmIjIwUP/74o0HVxfnz56slBE3H\nHh8fL5YsWSI9LyIiQqSmptZbtl51GXHB2j8yMjJw5MgRBAYGIjc3FwqFAgBgY2ODnJwcHUfXPGbN\nmoXFixfDyOift6kh1sWZM2dga2uLMWPGwMfHB5MmTcL169cNsi6sra0xZ84cdOnSBY6OjrC0tMTg\nwYMNsi6qaDr2ixcvwsnJSXpeQ75P9SohNHTBWmtXVFSEUaNGYdmyZbCwsNB1ODqxefNm2NnZISAg\nAMLA5z1UVlbiyJEjePnll3Hq1ClYW1tj/vz5ug5LJ86dO4f3338fGRkZuHTpEoqKipCYmKjrsFoN\nvUoITk5OyMzMlO5nZmZWazEYgvLycowcORITJkzA8OHDAQC2trbIy8sDcPvXgJ2dnS5DbBZpaWnY\nuHEj3NzcMG7cOOzatQvR0dEGWRfOzs7o3Lkz+vTpAwAYNWoUjh8/Djs7O4Ori8OHD+Phhx+GQqGA\nsbExRowYgf379xvk+6KKpmOv+X1aswemLnqVEPr06YNTp07h4sWLKC8vR0pKCsLCwnQdVrMRQmDq\n1Knw8vLCrFmzpMfDw8OlX0GJiYkIDw/XVYjNZsGCBcjMzMT58+exbt06PProo/jyyy8Nsi6cnZ1h\nY2ODP/74AwDw008/wdPTE2FhYQZXF127dsXBgwdx8+ZNCCHw008/wd3d3SDfF1U0HXt4eDiSk5Nx\n69YtZGVl4dSpU+jbt2/9hTX1gMf92rp1q/D29haenp5iwYIFug6nWaWmpgqZTCZ69Ogh/P39hb+/\nv9i2bZvIz88XISEhwtfXVwwePFhcuXJF16E2K5VKJc0yMtS6OH78uOjdu7fw8vISYWFhoqCgwGDr\nIjY2VnTt2lV4eHiIqKgocfPmTYOpi7FjxwoHBwdhYmIinJycxGeffVbvsb/99tvC09NTeHt7i+3b\nt9+1fC5MIyIiAHrWZURERLrDhEBERACYEIiI6A4mBCIiAsCEQEREdzAhEBERACYEg3H58mWMHTsW\nPj4+8PPzQ0hICE6fPq3rsPD999/j999/b/TzYmNjsXPnziaJISIiAteuXWvw8zMyMqqdfrgx9uzZ\ngwMHDtzTtvdLpVJJpxFvjLi4ODg5OSEuLq5R2ymVShw9elS6r15vqamp0mmZSX8wIRiAiooKDBky\nBJGRkTh16hTS09Px3nvvITc3V9eh4dtvv8Vvv/3W6OfFx8cjODi4SWLYsmVLs50zavfu3UhLS2uW\nfTUVmUyG2bNnNzohyGQyjecnCwoKwrZt25ogOmpKTAgG4Mcff4SdnR0mTpwoPebn54fAwEBUVlZi\n5syZ8PLygpeXF7744gsAt39NDhw4ECNHjkTXrl3x73//G19++SX69++Pbt264cyZMwCAmJgYPPvs\nswgMDIS7uztUKhWefPJJdO/eHePHj5f2Z25uLt3+5ptv8OSTT+LAgQPYtGkTXn75ZfTs2RN//vkn\nVq5cib59+8Lb2xtDhw5FUVER0tLSaj0vJiYG69evBwC4uroiLi4Offv2Rbdu3XDq1CkAQHZ2NgID\nA+Hv749p06bB1dUVBQUFteqn6vGMjAx4enriX//6F3x8fKBUKnHjxg0AwIEDB+Dp6Yk+ffpg+fLl\n0raff/45Zs6cKd2PjIzEnj17AADfffcd/Pz8EBAQgODgYFy4cAErVqzA0qVLERAQgH379mHTpk14\n6KGH4OvriwEDBuDvv/8GcPtX+ZQpUxASEgIXFxcsWbJE2seKFSvg5eWFgIAA6TW9fPkyIiMj0aNH\nD/j7+0sxNMTLL78Mb29v+Pv7Y/bs2XU+R339alxcHCZPnoxBgwbB1dUVGzZswEsvvQQ/Pz8EBwej\ntLS0zu3qK5P0hJZWWJMeeeedd8S///3vOv+2du1aERoaKoS4fVoIR0dHkZWVJXbv3i0sLS1Fbm6u\nKC0tFY6OjmLevHlCCCGWLVsmnnvuOSGEEJMnTxYTJkwQQgjx/fffC7lcLn7//XdRWVkpevXqJX7+\n+WchhBDm5ubSPr/55hsRExMjhBAiJiZGrF+/Xvrb1atXpdv/93//J53Pvebz1O+7urqKjz/+WAgh\nxPLly8XkyZOFEEI89dRTYvHixUIIIXbs2CFkMpnIz8+vVQeurq4iPz9fnD9/XhgbG0sXKRozZoxY\ns2aNEEIIDw8PkZaWJoQQ4rXXXpPOR79mzRoxY8YMqazIyEixZ88ecenSJdGpUyeRlZVV7bji4uLE\nu+++W+fxrlq1SiorNjZWBAYGioqKCpGXlyesrKxEaWmpOHr0qHjwwQel7ar+f+KJJ8S+ffuEEEJc\nuHChzusB7N69W7quRJXs7Gzh7e0t3S8qKqq1XVxcXLXz6sfGxooBAwaIyspKceLECWFmZiZ+/PFH\nKY6vv/5aCCHEwIEDRbdu3aTTsHh5eQlfX1+pnJrn9SfdYwvBANR3WvH9+/dj7NixAG6faz44OBgH\nDhyATCZDnz59YGNjA1NTU3Tt2hUhISEAAB8fH+ksijKZDBEREdLjnTp1Qvfu3SGTyeDt7V3tbIua\nCLVfiocOHUK/fv3Qo0cPrF27tto4h6jnF+Xjjz8OAOjZs6e0z7S0NIwePRoAEBISAisrq7vG4ubm\nBh8fHwBAr169kJmZidzcXJSUlKB///4AgHHjxt31ePbt24eQkBB07twZAKp1Sakfx9mzZ6FUKuHr\n64slS5ZIxyuTyRAeHg4jIyMoFAp06tQJ2dnZ2LlzJ6KioqTyqv7/6aefMGPGDAQEBODxxx9HaWkp\nrl+/ftfjVSgUMDExwdSpU7F+/XqYmJjcdRuZTIYhQ4ZAJpPBx8cHlZWVGDx4MADA19e32nsjKSkJ\nx44dw7Fjx7B161a2CvQcE4IB8PX1xS+//KLx7zU/pFUJpG3bttJjRkZG0n0jIyNUVlZKfzM1Na31\nnJrPU9/HzZs369wfAEyePBmrV6/GiRMnEBsbi/Ly8jqfV1PVftu0aVMttsZ+AanHX1VWzf2ql1mz\nLkpKSqRYG7LvGTNm4JVXXsHJkyexYsWKasdbVa81Y6mrXJlMhiNHjkhfvpmZmZDL5Xfdf5s2bXDo\n0CGMGjUK27Ztw5AhQ+66jXpsRkZG1ZKIkZFRtfg03Sb9xIRgAB577DFcvnwZa9eulR47efIk9u3b\nh6CgIHz99dcQQqCgoAC7du1C//79m/zDq1Ao8L///Q9CCHz33XfSl6yZmZnUTw8AZWVlsLOzQ0VF\nBdauXavxeQ3x8MMPS+MMO3fuxJUrV+4pdhsbG7Rv3x4HDx4EACQnJ0t/c3JywvHjxyGEwMWLF3H4\n8GHIZDIEBQVh165d0hWqqi58bmZmhuLiYmn7kpISdOrUCQCk8Rug7i9PmUyG4OBgpKSk4OrVqwAg\n/R8SEoJPPvlEem7VOMrd3LhxA9evX0dYWBjefffden84NJR67LzoVcvChGAA2rRpg+3bt2Pjxo3w\n8fFBjx498NJLL8He3h5RUVFwd3eHl5cXAgMDkZCQAEdHx3pniNT8m6bb6hISEhAaGoqgoCA4ODhI\nj0dFRWHevHnSYHF8fDx69eqFoKAgdO/eXePzNFGPbf78+fj222/h7++PlJQU2Nvbo127dnVuoyn+\nqvtr1qzBlClT0LdvX9y6dUt6fNCgQXB0dES3bt3wwgsvoFevXgAAe3t7LF++HEOGDEFAQIDUdTV0\n6FAkJSXB398f+/btw5tvvoknnngCDz30EBQKhVSupvoPCAjAnDlz0K9fPwQEBOD5558HAHzyySfY\nsWMHfH194ePjgw8++KDO49y5cyecnZ3h7OyMLl264MSJE1KMQUFBWLp0qca6bWyd3W070j88/TW1\nWmVlZTA2NoaRkREOHDiAp556Cr/++quuw2px4uPjYW5ujjlz5jRpuRkZGRg6dChOnjzZpOXSvTPW\ndQBE2nLhwgWMGTNG+kX/6aef6jqkFsnc3BwrV67E9evXG70WQZPU1FQ899xzsLW1bZLyqGmwhUBE\nRAA4hkBERHcwIRAREQAmBCIiuoMJgYiIADAhEBHRHUwIREQEAPh//r/1KyU0gnEAAAAASUVORK5C\nYII=\n", + "text": [ + "<matplotlib.figure.Figure at 0x2c18b90>" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEZCAYAAACQK04eAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlUVEe+B/BvsxiRZlcQBEVxAQQB1+iAdkaMijqJC24x\nER0fGY1mRo3RIRpRRx2XxKcvzyROHM2iSYw5ZqIG4opx17gvmbhEHNC4gRCQHX7vDx5XQGgaoemG\n+/2cw7Fv9+2q6mr8dlH33mqNiAiIiEg1LEzdACIiqlsMfiIilWHwExGpDIOfiEhlGPxERCrD4Cci\nUhkGP9Wa//znP7Czs4O5nSGckJAALy8vUzdDdQ4ePAhfX19TN4MqwOA3gs2bN6Nr166wt7eHk5MT\nwsPDsX//flM3S6/ExERYWFigqKjI4Od4e3tj3759ynbLli2RkZEBjUZT6+2LiorCvHnzar3c6tDp\ndFi/fr1J21CeOX2oWVhY4JdfflG2w8LC8O9//9skdZN+DP5a9u677+KNN97AkiVLkJ6ejgcPHmD6\n9OmIj483ddMMUp3RukajqbPRvUajMcoHSnXbQPqZ8q89c/tL06wJ1Zq0tDTRarUSFxdX6T7Z2dky\nadIkcXJyEmdnZ4mOjpacnBwREdm/f7+0aNFCli9fLm5ubuLu7i7btm2TnTt3SocOHUSr1cr8+fOV\nsubPny8jRoyQcePGib29vQQGBsqVK1dkyZIl4ubmJm5ubrJ9+3Zl/1atWsmePXvKPH/cuHEiIuLl\n5SUajUa0Wq1otVo5duyYXLt2TUJDQ8XJyUns7e1l2LBhkpqaKiIi48aNEwsLC7GxsRGtVisrVqyQ\nGzduiEajkcLCQhER6dOnj8ybN09CQ0PF1tZWwsLC5N69e0r9H3zwgbi5uYmrq6ssWrToifaVFhUV\nJXPnzhURUer5+OOPpVWrVmJnZyfz5s1T9s3MzJQRI0aIVquVjh07yvLly8XT01N5XKPRyPXr15Xt\n8ePHK2WLiGzatEl8fX1Fq9WKt7e3fPfddxITEyOWlpbSuHFj0Wq1Mm3aNBERmTJlinh4eIitra0E\nBAQ80b+RkZHyyiuviL29vfj4+MiRI0eUx69duyYDBw4Ue3t7cXZ2lj/96U/KY2vWrFFeW+/eveXa\ntWsV9sv+/fvLvLbStm3bJm3bthVbW1txd3eXZcuWPbFPTk6OODg4yMWLF5X77t27JzY2NnL//n25\nffu2PP/886LVasXR0VF69eolRUVFT5QTFhYmGo1GbG1tRavVypYtW55oW6tWrWTFihUSFBQkWq1W\nJk6cKHfu3JEBAwaIVquV3/3ud5KSkqLsv3fvXgkODhY7Ozvp0KFDpf+vKqpbpOL3kYox+GtRXFyc\n2Nra6t1n5syZ0rt3b0lLS5O0tDTR6XQyc+ZMESn+T2xlZSVLliwREZH169eLi4uLvPLKK5KdnS2X\nLl0SGxsbuXr1qogUB0vjxo0lISFBCgsLJSoqSlq1aiXLly9Xnt+iRQulbm9vb9m7d6+yHRsbqwR/\nYmJimdAWEbl+/br88MMPIiLy8OFD6du3r7z66quVlldR8Ldt21Zu3rwp2dnZotPpZMaMGSIicurU\nKbG3t5cff/xRCgsL5a233hJra+sy5ZVWUfBPmTJF8vPz5dy5c9KoUSO5cOGCiIi8/vrrEh4eLhkZ\nGXL37l0JCgoSLy8vpazywR8VFaV8cOzbt0+cnJzk4MGDIiJy9+5d+fnnn0VERKfTyfr168u068sv\nv5SMjAwREXnvvffEyclJsrOzy7w/JR8Gf/3rX6Vz584iIpKXlydt27aVmJgYycvLk7y8PDl+/LiI\nFAdWu3bt5JdffhERkaVLl0pwcHCF/aIv+J2dneXQoUMiIpKRkSHnzp2rcL+JEyfKW2+9pWy/9957\nMnDgQBERmTFjhkyePFkKCgqkqKhIjh07VmEZIk/2a/m2eXt7y+9+9ztJTU2VW7duSfPmzSUkJEQu\nX74subm50q9fP4mJiRGR4g9FR0dHpe8SEhLEwcFBbt26ZVDd+t5HEuFUTy1KSUmBs7Oz3n2++OIL\nvP3223BwcICDgwPefvttbNq0SXnc2toac+bMAQCMGjUKqampmDp1Kho3bgx/f38EBATg3Llzyv69\ne/dGnz59YGFhgREjRiAlJQVvvPGG8vzbt28jJSWlwrZIqT+NpYI/k9u0aYOwsDAAgKOjI/7yl7/g\nhx9+MLA3iqdGJkyYgJYtW6Jx48YYOXKk0vatW7di6NCh6NKlCywsLPD222/DysrK4LIB4K233oKV\nlRU6deqE4ODgMmXHxMRAq9XC1dUV06dPN3gaYMOGDXj11VcRGhoKAHB1dUX79u2Vx8uXM3LkSGi1\nWgDAa6+9BktLS1y4cEF5PCwsDH379gUAjBs3DufPnwdQfODz0aNHWLx4MaytrWFtbY3u3bsDAP7x\nj39gzpw5aN26NQDgzTffxJUrV3D16tVq9Y9Wq8Xly5eRkZEBrVaLTp06Vbjf2LFj8cUXXyjbmzdv\nxtixY5Uyfv31V9y8eRMajQY9evSoVhvKe+211+Dk5AQPDw+EhYWhZ8+e8PPzQ6NGjfDiiy8q7+Fn\nn32GIUOGKH3Xp08fPPvss9ixY4dB9VT1Pqodg78Wubi4IDU1Ve8+d+/eRcuWLZVtLy8v3Lt3r0wZ\nJXPJzzzzDADAzc1NefyZZ55Bbm6usu3q6lrmsaZNmz7x/NL7l1bVnHVycjKGDRsGNzc3ODo6YsyY\nMXj06JHe55TXvHlz5baNjY3Slnv37sHDw0N5rFGjRmjatOlTl92kSZMyZXt6eiqPtWjRwuAy79y5\ngzZt2lT6ePk+W7RoEdq1awcHBwc4OTkhNTUVmZmZyuOl37smTZqgsLAQRUVF+PXXX+Ht7V1hHcnJ\nyfjzn/8MJycnODk5wcXFBQBw//59g18HAGzZsgXffvstWrVqhdDQUBw8eLDC/XQ6HbKysnDixAkk\nJibi3LlzGDp0KADgjTfeQMuWLREeHg5vb28sXry4Wm0or/zvcuntRo0aKe9hcnIyvvrqK6UPnJyc\ncPjw4Sr/f5Wo6n1UOwZ/LerZsycA6D2Q6+bmhps3byrbSUlJZcLbmBo1alQmuB88eKDcruhDYM6c\nObC3t8e1a9eQlpaGzz//vMxZPzU52Onm5obbt28r27m5uWXaUxOurq5ITk5WtkvfBor/qsrKylK2\nS9fr4eFR6dkh5V/vnj17sHbtWuzcuRPp6el4+PAhXFxcDPrrwsPDo8zvQWnu7u7YsGEDHj58qPw8\nevQIvXr1qrLc0nr06IHt27fjwYMHiIyMxMiRIyvcz9LSEiNHjsTnn3+Ozz//HEOGDIGtrS0AwM7O\nDqtXr8Yvv/yCuLg4rFmzBt9//3212qFPZX3l7u6OiRMnlumDjIwM5a/hquh7H4nBX6scHBywcOFC\nTJo0Cbt370ZRURHy8/MRFxeH2bNnAyiefvnb3/6GtLQ0pKenY9GiRcqf1cYWFBSEL774AoWFhTh/\n/jy2bt2qhJmjoyM0Gg1u3Lih7J+VlYVGjRrB1tYWd+/excqVK8uU5+zsXGb/ilT2H3vo0KHYtm0b\nTp8+jcLCQixevBgFBQXVLqciI0aMwNKlS5GZmYl79+5hzZo1ZR4PCgrCpk2bUFRUhH379pU51TYq\nKgrr1q3DkSNHABT/hVYyxVL+9T569AgWFhZwcHBAQUEBli9fbvCINCwsDLa2tpg3bx7y8vKQl5eH\n48ePAwCio6OxZMkSXLt2DQCQmZmJb775RnmuTqfDggULypSXm5uLnJwc5ScvLw9btmxR2qjVamFh\nUfl/95LpntLTPADw/fffIzExEUDxtI+lpWWl5Rjy+2Col19+Gdu2bcP+/fshIsjPz8fhw4eVwUJs\nbCyee+65SuvW9z4Sg7/WzZgxA8uXL0dMTAwcHR3h6uqKVatWYdCgQQCAxYsXo23btmjTpg1at24N\nHx8fLFmyRHl++VGlvlF1Rac46ttevHgxLl26BAcHB8TExGDUqFHKYw4ODpgxYwa6du0KZ2dnnDhx\nArGxsTh27Bjs7OwQERGBP/zhD2XKmzVrFubNmwdHR0e8++67VdZfur1du3bFsmXLMHDgQHh4eKBR\no0Zwd3eHpaWlQa9VX78sWbIE9vb2cHd3R9++fTF27Ngy+69evVqZRti4cSNeeOEF5TGdToc1a9Yg\nKioKdnZ26NmzpzJynDZtGj777DM4ODjgL3/5CwYNGoTf//73aNOmDby9vaHRaMpM4+l7f6ysrBAX\nF4eTJ0+iadOmcHd3x6effgqg+FhAdHQ0Bg4cCHt7e3To0KFM8CcnJytz1wBw69Yt2NjYoEmTJmjS\npAlsbW1x8+ZNfPTRR/D09IStrS3ee++9MseSyuvevbsynz9w4EDl/kuXLqF3796wtbVFt27d8Mc/\n/hH9+vWrsIy5c+di1KhRcHJyUgYVVf1VWNnvR7t27fD5558jJiYGDg4OaN68Of72t78pf3EmJSWV\n6YPydet7HwnQSHWGUtWUlpaG//qv/8KVK1eQl5eHf/7zn8p0CFFp2dnZcHJywrlz59ChQwdTN8ds\nJScnY/To0Th06JCpm2JSISEh2LdvH5ycnEzdlHrJqMEfGRmJYcOGYcyYMSgqKkJmZibs7e2NVR3V\nM/Hx8dDpdNBoNJg9ezbi4+Pr7EpPIjUz2lRPSkoKzp49izFjxhRXZGHB0KcytmzZgubNm8PZ2Rmn\nTp3C1q1bTd0kIlUw2oj/2LFjmDFjBjw9PXH58mV07twZa9euVc55JiIi0zDaiL+oqAgnT57ErFmz\ncPHiRTg7O2PRokXGqo6IiAxlrEuC//Of/0irVq2U7YMHD8rzzz9fZh8fHx8BwB/+8Ic//KnGj4+P\nT43yuXrXyFeDl5cXmjZtiitXrqB9+/bYs2cP/Pz8yuxz/fp1rqj3/2JjYxEbG2vqZpgF9sVj7IvH\n1NYX0dujcSXlCppYN0Ez22a4mXZTuf3J0E9qVLbRgh8A1q9fj5deeglZWVlo1aqV3vOIiYjUprJw\n3zx8M66kXMGBmwcAAE1tmuJB9gPldk0ZNfiDgoJw8uRJY1ZBRGR29AX6m7vfVB77Lfc3HE46DKBs\nuEdvj0YT6yYAgK4eXeHY2BF7ftnz+Db21Kh9Rg1+MpxOpzN1E8wG++Ix9sVj5tYXpcO9OoF+79E9\nZSTf3LZ4ocHy4b5uyDpl/4puO71SswvXjHoBV5WV1+E3OBERVZeh4R7pH/lEoN95dOeJQN/98m6M\n/Xos4q7FoatHV2yN3IpZu2c9Ee6OjR31tqum2cngJyLVq2xqxtBwr06gp+WkGRzwlWHwExEZQN+8\n+4tfvFjhgVRDw722At1QDH4iov/3NPPukf6RyMzLVAK99NSMKcNdHwY/EalOTadmys+7l5RZ3bl2\nU2HwE1GDZMypmZLyzTnc9WHwE1G9pZapmdrG4Ccis6f2qZnaxuAnIrPAqZm6w+AnIpMpHfacmqk7\nDH4iMipDR/Kcmqk7DH4iqrHaOMjKqZm6w+AnoqdS2TTN0x5kZcDXnZpmJ1fnJGrADF3vvfQqkeuG\nrMPYr8cq21WN5LdEbjHBK6Oa4IifqIF5mgOuPMhav3Cqh0iFavuAK8O9fmHwE6lETUfyJWUw6Os/\nBj9RA1X+TBuO5KkEg5+onjN0OQOO5KkEg5+ontE3kte3nEHJcxnwxOAnqgf0nTNv6HIGRCUY/ERm\nqrKw1zeSL32bYU+VYfATmdDTnFbJkTzVFIOfqI7VxgVSRDXB4CcyMp5WSeaGwU9kBIYejOVplWQK\nDH6iWvI0B2MZ8GQKZh/83t7esLe3h6WlJaytrXHixInHlTP4yYQMncLh/DyZG7MP/tatW+PUqVNw\ndnZ+snIGP9Wxp5nCYdiTuakX6/Ez3MmU9E3hAI/XoC/ZtyTsuc48NVRGH/G3adMGjo6OKCgoQHR0\nNKZOnfq4co74yQg4hUMNndmP+I8dOwZXV1fcv38fAwYMgK+vL8LDw41dLalMZaP66O3RaGLdBMCT\n3ybFUT2pldGD39XVFQDQrFkzjBgxAidPniwT/LGxscptnU4HnU5n7CZRA1B+VK/vawRL9mfYU32V\nkJCAhISEWivPqFM9WVlZAIAmTZrg0aNHiIiIwMyZM/GHP/yhuHJO9VA18MAsUTGzPqvnxo0bePHF\nF6HRaJCVlYXRo0dj4cKFjytn8FMVeG490ZPMOvirrJzBT1XQbdTxwCxROWZ/cJeoOsrP3fPALFHt\n44ifTE7f3P26Ies4hUNUDqd6qF4ydO6eYU/0JE71UL1g6OmXnLsnMj4GP9WJ0kHPi6qITItTPWQ0\npUf5+UX5/JISolrCOX4yK5XN3b/Q4QU0smzEoCeqBZzjJ5MydO5+44sbGfhEZsLC1A2g+q0k6OOu\nxT0xd39s0jFE+kfy7BwiM8OpHqo2zt0TmRbn+KlOcO6eyHxwjp/qBOfuiRoOzvFThaK3R0O3UYeI\nTRFIy0nj3D1RA8KpHlJwzRyi+oFz/FRrKlsCmSN7IvPCOX6qkdKjfGtLawBcM4eooeOIX+VKj/J5\nhg5R/cARP1WLvi864Rk6ROrA4FeZ8qtkbh6+mQdtiVSGUz0qoO9KW4Y9Uf3Ds3qoQrzSlqjh4hw/\nVYhX2hJRZXjlbgPBK22JyFCc6mkgSp+WySttiRo2zvGrGA/aEqkTg1/FePEVkTrx4K6K8eIrInoa\nDP56pvT0zvuD3ud6OkRUbQz+eqb0aZqzds/ClsgtJm4REdU3Rg/+wsJCdO3aFZ6enti+fbuxq2tw\n9K2ts27IOhO3jojqI6MH/+rVq+Hv74+MjAxjV9UgcW0dIqptRr2AKzk5Gd999x0mTZrEs3eqofTF\nWKXXyC8J+y2RWxj6RPTUjBr806dPx4oVK2BhwQuEq6NklB93LQ621ra86paIapXRpnp27NgBV1dX\nhISEICEhodL9YmNjlds6nQ46nc5YTTJbXCOfiPRJSEjQm6PVZbQLuGJiYvDpp5/CysoKOTk5+O23\n3zB8+HB88sknjyvnBVwAuNwCEVVPvbhy98CBA1i5cuUTZ/Uw+ItFbIpA3LU4LrdARAapN1fuajSa\nuqqqXuCFWERkKlyrx0TKT+/wQiwiMlRNs5On25gIL8QiIlPhkg11iNM7RGQOGPx1iOvsEJE5YPAb\nEdfZISJzxOA3Iq6zQ0TmiMFvROVH+CXr7BARmRKDv5bxAC4RmTsGfy3jAVwiMnc8j7+W8QAuEZk7\njvhrAad3iKg+0Rv8qampVRZgYWEBR0d1Bxynd4ioPtEb/O7u7vDw8NBbQEFBAZKSkmq1UfUNp3eI\nqD7Ru0hbcHAwzp49q7cAQ/aptPIGskhbWk4az88nojpj1PX4c3Jy0LhxY70FGLJPpZXX0+Avf0Uu\nw56I6pJRV+csCfQjR44gIyNDuT8zMxPHjh0rs4+alP5O3Ojt0aZuDhFRtRh0OufkyZNhZ2enbDdp\n0gSTJ082WqPMHef0iag+M+h0zqKiojLbFhYWKCgoMEqDzBVP2SSihsKgEX+LFi3wv//7v8jPz0de\nXh7ee++9Ks/2aWhKT++UnLLJ0Cei+sig4N+wYQN27doFFxcXNGvWDHv37sXHH39s7LaZFU7vEFFD\nwe/cNRBP2SQic1En37l76dIlhIaGwtfXFwBw+fJlLFiw4KkrrS+it0dDt1GHiE0RAMDpHSJqEAwK\n/okTJ+Kdd96BjY0NAMDPzw9btjT8ZQl42iYRNUQGBX9OTg569OihbGs0GlhaWhqtUeaC8/pE1BAZ\nFPzOzs64du2asr1jxw64uLgYrVHmYvPwzYj0j8Tul3dzioeIGgyDDu7+/PPPmDhxIk6fPo1mzZqh\nWbNm+PLLL9G2bduaVW5mB3e5FAMR1QdGXaunvAcPHgAAmjZt+tQVlqnczIJft1GnLK8c6R/J5ZWJ\nyCzVyVk977zzDh49egQXFxe8+eab6NSpE3bu3PnUlZorzukTkRoYFPwff/wxbG1tERcXh7S0NGze\nvBlz5841dtvqHOf0iUgNDFqrp+RPivj4eIwbNw4BAQEGFZ6Tk4OwsDAUFBTg0aNHGDRoEFatWvX0\nrTWC8vP6nN4hoobOoBF/cHAwIiIiEB8fj/79+yMzM9Ogwhs3bowffvgBZ86cweXLl3H06FHs37+/\nRg2ubTxXn4jUxqAR/4YNG3D69Gm0b98etra2SE1NxcaNGw2qoOSir7y8PBQWFsLNze2pG2sMnNcn\nIrUxKPitrKxgYWGBhIQEFBYWAig+qhwUFFTlc4uKitC5c2dcv34dkydPhr+/f81aXMs2D9/MNXiI\nSFUMCv6xY8fiypUr6NixIywsHs8ODRs2rMrnWlhY4OzZs0hPT0f//v2RkJAAnU6nPB4bG6vc1ul0\nZR6rC46NHTmvT0RmLSEhAQkJCbVWnkHn8fv6+uKnn36CRqOpUWWLFi2CtbU15syZU1y5ic7j54Va\nRFSf1cl5/D179sTPP/9c7cJTUlKU7+rNzs7G7t27ERgYWO1yahsP6BKRmhk01TN+/Hh0794dzZs3\nxzPPPAOg+BPn/Pnzep93+/ZtvPLKKxAR5OTkYOzYsRg0aFDNW11DPKBLRGpm0FSPj48PVq1ahYCA\ngDJz/N7e3jWr3ERTPfxSFSKqz+pkrZ7Q0FAcOnToqSuptHIzW6uHiKg+qJPgnzJlCn777TcMGjQI\njRo1Uio25KwevZXXUfDzYC4RNSQ1zU6D5vizsrJgbW2NXbt2lbm/psFfV0oO5gLFHwI8fZOI1Myg\n4Df0Kl1zxYO5RESP6T2dc926qkPSkH1MjatuEhE9pneOv02bNli5cmWFc0klc0zz5s3D5cuXn65y\nHtwlIqo2o87x9+7dG9u3b9dbwPPPP//UlRMRUd2r1lcv1nrlRhzx80weImqo6mTJhvqIyzIQEVWs\nwQY/z+QhIqpYg53q4bIMRNRQ1clUz+zZs5Genq5sp6enIyYm5qkrrQsl6+wz9ImIyjIo+L///ns4\nODgo2w4ODoiLizNao4iIyHgMunI3NzcX+fn5sLa2BlD8/bnZ2dlGbdjT4Jk8RERVMyj4R48ejeee\new4TJkyAiGDjxo0YM2aMsdtWbVyTh4ioagYf3N22bRv27t0LAOjXrx9eeOGFmldeywd3IzZFIO5a\nHLp6dOXyDETUYNXJssyzZ8/GsmXLqryv2pXXcvDzTB4iUoM6Cf6QkBCcOXOmzH3+/v5PvUaPUjnX\n6iEiqjajrtXz/vvvY+3atbh+/XqZL0nPyspCcHDwU1dKRESmo3fEn56ejocPH2LOnDlYtmyZ8glj\nY2MDNze3mlfOET8RUbXVyVSPsdS08Tx9k4jUSNWLtHEhNiKi6qvXwc+F2IiIqq9eT/Xw9E0iUiNV\nz/ETEamRquf4iYio+hj8REQqw+AnIlIZowZ/UlISevfujcDAQHTo0AHLly+vcZnR26Oh26hDxKYI\npOWk1UIriYjUxagHd+/evYv79+8jICAAmZmZ6Ny5M7766isEBQUVV/4UByh0G3XK0suR/pFcepmI\nVMesD+66ubkhICAAAKDVatGpUyfcvn27RmXy3H0iopqps9M5ExMT0adPH1y8eBF2dnbFlT/FpxbP\n3ScitTPq6py1JTMzE5GRkVi9erUS+iViY2OV2zqdDjqdTm9ZJV+iTkSkFgkJCUhISKi18ow+4s/P\nz8fgwYMxYMAATJ8+vWzlvICLiKjazPrKXRHB+PHj4eLiglWrVj1ZOYOfiKjazDr4Dx06hN69e6NT\np07QaDQAgKVLl2LAgAHFlTP4iYiqzayDv8rKGfxERNVm1qdzEhGR+amTs3pqit+0RURUe+rFiJ/f\ntEVEVHvqRfDzal0iotpTLw7u8mpdIqLHeFYPEZHK8KweIiKqFgY/EZHKMPiJiFSGwU9EpDIMfiIi\nlWHwExGpDIOfiEhlzHKtHq7NQ0RkPGY54ufaPERExmOWwc+1eYiIjMcsl2zg2jxERJXjWj1ERCrD\ntXqIiKhaGPxERCrD4CciUhkGPxGRyjD4iYhUhsFPRKQyDH4iIpVh8BMRqQyDn4hIZRj8REQqY9Tg\nnzhxItzc3BAYGGjMaoiIqBqMGvwTJkxAfHy8QftGb4+GbqMOEZsikJaTZsxmERGpmlGDPywsDE5O\nTgbtyzX4iYjqhtnM8XMNfiKiumE2wb95+GZE+kdi98u7uQY/EZERmfw7d2NjY5XbU3RTGPpEROUk\nJCQgISGh1soz+hexJCYmYsiQIbhw4cKTlfOLWIiIqs2sv4hlzJgx6NWrF65cuQIvLy9s2LDBmNUR\nEZEB+NWLRET1jFmP+ImIyPww+ImIVIbBT0SkMgx+IiKVYfATEakMg5+ISGUY/EREKsPgJyJSGQY/\nEZHKMPiJiFSGwU9EpDIMfiIilWHwExGpDIOfiEhlGPxERCrD4CciUhkGPxGRyjD4iYhUhsFPRKQy\nDH4iIpVh8BMRqQyDn4hIZRj8REQqw+AnIlIZBj8Rkcow+ImIVIbBT0SkMgx+IiKVMWrwx8fHIzAw\nEP7+/li2bJkxqyIiIgMZLfhzc3MxefJkxMfH4/z589i6dSvOnDljrOrqvYSEBFM3wWywLx5jXzzG\nvqg9Rgv+48ePo2PHjmjRogWsrKwwatQo7Ny501jV1Xv8pX6MffEY++Ix9kXtMVrwJycnw8vLS9n2\n9PREcnKysaojIiIDGS34NRqNQftFbIpAWk6asZpBRETlaEREjFHwwYMHsWzZMuzYsQMAsGLFCuTl\n5eGtt956XLmzBnhojNqJiBouHx8fXLt27amfb7Tgz8nJga+vLw4fPgxXV1f06tULH374ITp37myM\n6oiIyEBWxiq4cePGeP/999G/f38UFRXh5ZdfZugTEZkBo434iYjIPJnsyl01X9yVlJSE3r17IzAw\nEB06dMDy5csBAKmpqejXrx86deqE/v37Iy1NPQe9CwsLERISgiFDhgBQb1+kpaUhMjISQUFB8PPz\nw7Fjx1TbF/Pnz0f79u3h6+uLESNGICsrSzV9MXHiRLi5uSEwMFC5T99rX7p0Kfz9/REYGIhdu3ZV\nXYGYQE4bnqUJAAAMYElEQVROjnh7e0tycrLk5+dL165d5fTp06ZoikncuXNHLly4ICIiGRkZ0q5d\nOzl79qxMnTpVVq1aJSIiq1atktdff92UzaxT77zzjowdO1aGDBkiIqLavhgxYoRs3rxZREQKCwsl\nPT1dlX1x9epVad26teTm5oqIyMiRI+Wjjz5STV/88MMPcvr0aQkICFDuq+y1//jjj9K1a1cpKCiQ\n5ORk8fb2VvqtMiYJ/gMHDsigQYOU7RUrVsiiRYtM0RSzMHz4cNm5c6e0adNGHjx4ICIi9+/fFx8f\nHxO3rG4kJSVJ3759Zd++fTJ48GAREVX2xYMHD6Rt27ZP3K/GvkhJSZH27dtLamqq5Ofny+DBg2XX\nrl2q6osbN26UCf7KXvuCBQtk5cqVyn6DBg2SgwcP6i3bJFM9vLjrscTERJw8eRKhoaG4f/8+XFxc\nAABNmzbFvXv3TNy6ujF9+nSsWLECFhaPfx3V2BdXr15Fs2bNMHLkSAQEBOCVV15BRkaGKvvC2dkZ\nM2fORMuWLeHh4QFHR0f069dPlX1RorLXfuvWLXh6eir7GZKnJgl+Qy/uaugyMzMxYsQIrF69Gvb2\n9qZujkns2LEDrq6uCAkJgaj8PIOioiKcPHkSs2bNwsWLF+Hs7IxFixaZulkmcf36dfz3f/83EhMT\ncfv2bWRmZuKzzz4zdbMaDJMEv6enJ5KSkpTtpKSkMn8BqEF+fj6GDx+Ol156CS+++CIAoFmzZnjw\n4AGA4k93V1dXUzaxThw5cgTffvstWrdujTFjxmDfvn14+eWXVdkXXl5eaNGiBbp16wYAGDFiBM6e\nPQtXV1fV9cWJEyfQq1cvuLi4wMrKCsOGDcPhw4dV+XtRorLXXj5Py8+oVMQkwd+tWzdcvHgRt27d\nQn5+PrZs2YKBAweaoikmISL44x//CH9/f0yfPl25PyIiQhnVfPbZZ4iIiDBVE+vMkiVLkJSUhBs3\nbuCLL77A73//e3z66aeq7AsvLy80bdoUV65cAQDs2bMHfn5+GDhwoOr6om3btjh27Biys7MhItiz\nZw98fHxU+XtRorLXHhERgS+//BIFBQVITk7GxYsX0b17d/2F1fYBCUN999130rFjR/Hz85MlS5aY\nqhkmcfDgQdFoNBIUFCTBwcESHBwscXFxkpKSIuHh4RIYGCj9+vWThw8fmrqpdSohIUE5q0etfXH2\n7Fnp2rWr+Pv7y8CBAyU1NVW1fTF//nxp27attG/fXkaNGiXZ2dmq6YvRo0eLu7u7WFtbi6enp/zz\nn//U+9oXL14sfn5+0rFjR4mPj6+yfF7ARUSkMvzqRSIilWHwExGpDIOfiEhlGPxERCrD4CciUhkG\nPxGRyjD4G7A7d+5g9OjRCAgIQKdOnRAeHo6ff/7Z1M3Cv/71L/z000/V3m/+/PnYu3dvrbRh0KBB\n+O233wzePzExscwSudVx4MABHD169KmeW1MJCQnKUteV0el08PX1Vb4m1VBarbbM9saNGzFt2jQA\nwKpVq9CqVStlm8wLg7+BKiwsxIABAzB48GBcvHgR58+fx7vvvov79++bumnYtm0bLl++XO39FixY\ngL59+9ZKG3bu3Fln6yPt378fR44cqZO6noZGo8HmzZsxePDgaj+vsu3p06dj4cKFtdI+qn0M/gZq\n165dcHV1xbhx45T7OnXqhNDQUBQVFWHatGnw9/eHv78/PvnkEwDFo8M+ffpg+PDhaNu2LebMmYNP\nP/0UPXv2RIcOHXD16lUAQFRUFKZMmYLQ0FD4+PggISEBEyZMgK+vL8aOHavUV3pEuHXrVkyYMAFH\njx7F9u3bMWvWLHTu3Bm//PIL1q1bh+7du6Njx44YMmQIMjMzceTIkSf2i4qKwtdffw0A8Pb2Rmxs\nLLp3744OHTrg4sWLAIC7d+8iNDQUwcHBiI6Ohre3N1JTU5/on5L7ExMT4efnhz/96U8ICAiATqfD\no0ePAABHjx6Fn58funXrhrVr1yrPLT2yBYDBgwfjwIEDAIBvvvkGnTp1QkhICPr27YubN2/iww8/\nxKpVqxASEoJDhw5h+/bt6NGjBwIDA9G7d2/8+uuvAIDY2FhMnDgR4eHhaNWqFVauXKnU8eGHH8Lf\n3x8hISHKe3rnzh0MHjwYQUFBCA4OVtrwNEpfx6nT6TBjxgw8++yz8PPzw8mTJzF8+HD4+Phg9uzZ\nBpVR0TaZESNdcUwm9ve//13mzJlT4WObNm2S/v37i0jx0ggeHh6SnJws+/fvF0dHR7l//77k5uaK\nh4eHLFy4UEREVq9eLa+99pqIiIwfP15eeuklERH517/+JXZ2dvLTTz9JUVGRdOnSRX788UcREdFq\ntUqdW7dulaioKBERiYqKkq+//lp5LD09Xbk9d+5cZW3x8vuV3vb29pb3339fRETWrl0r48ePFxGR\nSZMmyYoVK0REZPfu3aLRaCQlJeWJPvD29paUlBS5ceOGWFlZKV+MM3LkSNmwYYOIiLRv316OHDki\nIiJ//etflbXRN2zYIFOnTlXKGjx4sBw4cEBu374tzZs3l+Tk5DKvKzY2Vt55550KX+8//vEPpaz5\n8+dLaGioFBYWyoMHD8TJyUlyc3Pl1KlT0q5dO+V5Jf8OHTpUDh06JCIiN2/erHBt+v379yvfcVAZ\nnU4np06dKrMdExMjIsXvu7u7e5nfiXv37omIiKWlpbLkSHBwsLRs2VKmTZumlLNx48Yy/UTmw2hf\ntk6mpW/p68OHD2P06NEAitc979u3L44ePYpmzZqhW7duaNq0KYDihbLCw8MBAAEBAcr8ukajwaBB\ng5T7mzdvDl9fXwBAx44dkZSUhC5duuhtn5QaDR4/fhzz5s1DdnY2MjIylDrL71feCy+8AADo3Lkz\ntm7dCqB4tc+5c+cCAMLDw+Hk5KS3HQDQunVrBAQEAAC6dOmCpKQk3L9/Hzk5OejZsycAYMyYMdi+\nfbve13Po0CGEh4ejRYsWAFBmKqn067h27RpmzJiBlJQU5Ofno2XLlgCK+zUiIgIWFhZwcXFB8+bN\ncffuXezduxejRo1Syiv5d8+ePbhx44ZSbm5uLjIyMmBnZ1fla65KybRPQEAAAgICyvxO3Lp1C82a\nNYONjQ3OnDmjPOfjjz/Gjz/+WOO6yfg41dNABQYG4vTp05U+Xj5QSz4onnnmGeU+CwsLZdvCwgJF\nRUXKY40aNXpin/L7la4jOzu7wvoAYPz48Vi/fj3OnTuH+fPnIz8/v8L9yiup19LSskzb9H1Y6Cun\ndFnl6y1dZvm+yMnJUdpqSN1Tp07Fm2++iQsXLuDDDz8s83pL+rV8WyoqV6PR4OTJkzhz5gzOnDmD\npKSkWgl9AGXe98re3/Kq2+9kOgz+Bur555/HnTt3sGnTJuW+Cxcu4NChQwgLC8NXX30FEUFqair2\n7duHnj171vp/XBcXF/z73/+GiOCbb75RwtTGxkaZRweAvLw8uLq6orCwEJs2bap0P0P06tVLOQ6w\nd+9ePHz48Kna3rRpUzRp0gTHjh0DAHz55ZfKY56enjh79ixEBLdu3cKJEyeg0WgQFhaGffv2Kd9+\nVPJl2DY2NsjKylKen5OTg+bNmwOAcnwFqDg4NRoN+vbtiy1btiA9PR0AlH/Dw8PxwQcfKPuWHOcg\nqgqDv4GytLREfHw8vv32WwQEBCAoKAhvvPEG3NzcMGrUKPj4+MDf3x+hoaFYunQpPDw8oNFoKh1h\nl3+sstulLV26FP3790dYWBjc3d2V+0eNGoWFCxcqB20XLFiALl26ICwsTJkyqmi/ypRu26JFi7Bt\n2zYEBwdjy5YtcHNzQ+PGjSt8TmXtL9nesGEDJk6ciO7du6OgoEC5/7nnnoOHhwc6dOiAP//5z8q0\nlpubG9auXYsBAwYgJCQEkZGRAIAhQ4Zg8+bNCA4OxqFDhzBv3jwMHToUPXr0gIuLi1JuZf0fEhKC\nmTNn4tlnn0VISAhef/11AMAHH3yA3bt3IzAwEAEBAVizZk2Fr3Pv3r3w8vJSfo4fP15pX+rrW319\nWNW+ZF64LDM1KHl5ebCysoKFhQWOHj2KSZMm4dKlS6Zulll77rnnsHLlyiqPy1TXxo0bcerUKfzP\n//xPrZZLNccRPzUoN2/eRJcuXRAYGIhXX30VH330kambZPacnZ0RFRVV7Qu49Fm1ahX+/ve/w8HB\nodbKpNrDET8RkcpwxE9EpDIMfiIilWHwExGpDIOfiEhlGPxERCrD4CciUpn/A229Zlz8j32nAAAA\nAElFTkSuQmCC\n", + "text": [ + "<matplotlib.figure.Figure at 0x2981fd0>" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 10.7, Page number: 528" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "%matplotlib inline\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "R=12.5*10**-3 #ohm\n", + "L=1.2 #H\n", + "Vo=15 #volt\n", + "w=120*pi #angular freq(Hz)\n", + "Idc=35 #DC current(A)\n", + "\n", + "\n", + "#Calculations:\n", + "#for part (a):\n", + "theta=[0]*1301\n", + "t=[0]*1301\n", + "vL=[0]*1301\n", + "vs=[0]*1301\n", + "\n", + "Vdc_a=R*Idc #Dc voltage(V)\n", + "P=Vdc_a*Idc #Power\n", + "alpha_da = acos(pi*R*Idc/(2*Vo)) ; #delay angle\n", + "for n in range(1,1301,1): #loop for calculating load voltage\n", + " theta[n-1]=2*pi*(n-1)/1000\n", + " t[n-1]=theta[n-1]/w\n", + " vs[n-1]=Vo*sin(theta[n-1])\n", + " if theta[n-1]<alpha_da:\n", + " vL[n-1]=-vs[n-1]\n", + " elif (theta[n-1]<pi+alpha_da):\n", + " vL[n-1]=-vs[n-1]\n", + " elif theta[n-1]<2*pi+alpha_da:\n", + " vL[n-1]=vs[n-1]\n", + " elif theta[n-1]<3*pi+alpha_da:\n", + " vL[n-1]=vs[n-1]\n", + " elif theta[n-1]<4*pi+alpha_da:\n", + " vL[n-1]=-vs[n-1]\n", + " else:\n", + " vL[n-1]=vs[n-1]\n", + "\n", + "figure(1)\n", + "plot(1000*np.array(t),vL,'g.')\n", + "xlabel('time [msec]')\n", + "ylabel('Load voltage [V]')\n", + "grid()\n", + "show()\n", + "\n", + "\n", + "#part(b):\n", + "alpha_db=0.9*pi #delay angle\n", + "Vdc_b=(2*Vo/pi)*cos(alpha_db) #new dc voltage(V)\n", + "tau=L/R #time constant(s)\n", + "imo=Idc #Initial curent(A)\n", + "tzero=-tau*log((-Vdc_b/R)/(imo-Vdc_b/R))\n", + "for n in range(1,1301,1):\n", + " theta[n-1]=2*pi*(n-1)/1000\n", + " t[n-1]=theta[n-1]/w\n", + " vs[n-1]=Vo*sin(theta[n-1])\n", + " if theta< alpha_db:\n", + " vL[n-1]=-vs[n-1]\n", + " elif (theta[n-1]<pi+alpha_db):\n", + " vL[n-1]=vs[n-1]\n", + " elif theta[n-1]<2*pi+alpha_db:\n", + " vL[n-1]=-vs[n-1]\n", + " elif theta[n-1]<3*pi+alpha_db:\n", + " vL[n-1]=vs[n-1]\n", + " elif theta[n-1]<4*pi+alpha_db:\n", + " vL[n-1]=-vs[n-1]\n", + " else:\n", + " vL[n-1]=vs[n-1]\n", + "\n", + "#Results:\n", + "figure(2)\n", + "plot (1000*np.array(t), vL,'g.')\n", + "xlabel('time [msec] ')\n", + "ylabel('Load voltage [V]')\n", + "print \"part (a):\"\n", + "print \"\\n Vdc_a=\",round(1000*Vdc_a,2),\"mV\"\n", + "print \"\\n Power=\",round(P),\"W\" \n", + "print \"\\n alpha_d=\",round((180/pi)*alpha_da,1),\"degrees\"\n", + "print \"\\n part (b):\"\n", + "print \"\\n alpha_d=\",round((180/pi)*alpha_db,1),\"degrees\" \n", + "print \"\\n Vdc_b=\",round(Vdc_b,1),\"V\"\n", + "print \"\\n Current will reach zero at\",round(tzero,1),\"sec\"\n", + "grid()\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n" + ] + }, + { + "output_type": "stream", + "stream": "stderr", + "text": [ + "WARNING: pylab import has clobbered these variables: ['fmod', 'cosh', 'sinh', 'trunc', 'tan', 'gamma', 'degrees', 'radians', 'sin', 'expm1', 'ldexp', 'isnan', 'frexp', 'ceil', 'copysign', 'cos', 'tanh', 'fabs', 'sqrt', 'hypot', 'log', 'log10', 'pi', 'log1p', 'floor', 'modf', 'exp', 'isinf', 'e']\n", + "`%pylab --no-import-all` prevents importing * from pylab and numpy\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEPCAYAAAC3NDh4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlUVGeaP/DvLRYBgZSAiAICQQ2KbHFtFYNR2iXRJN2x\nXZO49JT2JK3GaDOZ7jlCnCx29MTkh0lMTKSnTTLqGO0mKqMmYsskGmVx47SJCiooyOK+oXJ/fyBF\n1a0qilrufe9b9/mc42lusT15+1qP93neRRBFUQQhhBBihY51AIQQQtSLkgQhhBCbKEkQQgixiZIE\nIYQQmyhJEEIIsYmSBCGEEJuYJok5c+agW7duSEpKMr6WnZ2NqKgopKWlIS0tDQUFBQwjJIQQbWOa\nJGbPnm2RBARBwOLFi1FaWorS0lKMGzeOUXSEEEKYJon09HR06dLF4nVa30cIIeqgyp7EmjVr0Ldv\nX8ycORONjY2swyGEEM1SXZJ4+eWXcfr0aZSXlyM+Ph4LFixgHRIhhGiWN+sApMLCwowfz5s3D6NG\njbL4msjISFy4cEHJsAghhHvx8fE4deqUQ9+juiRx6dIlhIeHAwC2bNmCxMREi6+5cOEC9S0eys7O\nRnZ2NuswVEGJsdC/o8fVu1dtfl6AgLL5ZUjulixrHPbQfdGmdSwM+QasK1kHEa6/dwyJHIKCmQXQ\n++ndEKFyBEFw+HuYJolp06Zh3759qK+vR3R0NHJycrB3714cPXoUTU1NiImJwWeffcYyRNWrrKxk\nHYJqyDkWHXmD8dX54pDhEPMEAdB9YaqyshIJuQk42XDSbT/zYPVBdP1zV5xacAox+hi3/Vw1Ypok\nvvrqK4vX5syZwyASQmwz5BvwacmnNj+/f/Z+jOg5QsGIiCO+PPYl7sXds/q5EL8QlMwrsflGf/bK\nWTy+9nE03rGcQHNfvI/Y92NxZP4RVfzDQC6qa1wTx8yaNYt1CKohx1i0lyB2TN8BcZmoygRB90WL\nhNwE3EuyTBD6TnpULqxEQ1ZDu08CMfoYNGQ1oHJhJcL8w6x+zaBPBrktXjUSeDx0SBAE6kkQ2dlK\nEGkRafjupe+4q0drja3+0abnN2Fy4mSnfmbRuSKkr083ey28czhql9Q69fOU5sx7Jz1JcK6wsJB1\nCKrhzrGwlSDWT1qPknklqk8QWr8vEnIT2hJERdvr+2fvdzpBAMCIniNQubASAloawH7efvjxtz+6\nEqrqUZIgxIrPSz+3eG39pPWYlTZL+WCIQwz5BqtNanf1jmL0MahYWIGooCj88+V/enzjmspNhEhY\nK1NQguCHkGM5zZMmF7SgchMhLjIrUzw0pMcQShCc0L9jWQakBOEaShKc03rt2ZSrY2GtTNHZqzMK\nXuBvu3ot3hfWngA3Pb8J98/cZxSRZ6AkQchD1voQJ145ofomNWlJ8NIEMSBigEtNatKCehKEwPq/\nQqlMwQ/vN7zxQHxgvBYgoDGrkRK8BPUkCHGCtX+Fbnp+EyUITujf0ZslCAAom19GCcJNKElwTou1\nZ1ucHYsNRzeYXes76bkvU2jlvrCW4HdM32G2TYZWxkIulCSIpiXkJuD2/dtmr5XNL2MUDXGUtI80\npMcQjO89nlE0nol6EkTTpHPqM3pmYO/svYyiIY6wtrPr5azLVGZqB/UkCHFAQm6CxWtbp21lEAlx\nxk8NP5ldZ/TMoAQhA0oSnKN6axtHxsLamoj9s/d7zJuMp98X+nf0Zmd7CBBsJnhPHwu5UZIgmiRt\nVof4hdBsJo5Im9U0m0k+1JMgmmNth9fKhZUev1Gbp5CuaQnxC0FDVgPDiPhBPQlCOkD6FBHmH0YJ\nghPWpryWzCthFI02UJLgHNVb23RkLKxNeT1sOCxTROx46n0hnfI6PGq43QTvqWOhFEoSRFOszYih\npwg+GPINFiurv5nxDaNotIN6EkQzpL0IHXRoyGqghicnAt4MMHsKpDUtjqOeBCHtkPYiRseNpgTB\nCUO+wSxBtDfllbgXJQnOUb21TXtjIe1F6KDDpt9sUiAqNjztvpD2IsbEjelwgve0sVAaJQmiCdJe\nBD1F8MNaL8KTE7zaUE+CeDzqRfCNehHuQz0JQqygXgS/qBfBHiUJzlG9tY21sZC+yXh6L6KVp9wX\n0gTvSC+ilaeMBSuUJIhHo6cIvmkxwasN057EnDlzsH37doSHh+PYsWMAgMbGRkyZMgW1tbXo3r07\nNm7cCL3e/C819SRIR5meF0G9CL5Iz4sIDwhH7dJahhHxj7uexOzZs1FQUGD22rJly/DUU0/h6NGj\nGD9+PJYtW8YoOsI76XkRYQFhlCA4Ip2R9uO//MgoEm1jmiTS09PRpUsXs9d27NiBF154AQAwc+ZM\nbN++nUVo3KB6axvpWGj5TYb3+yIhN8HsvAhXNmHkfSxYU11Poq6uDqGhoQCAsLAwXLp0iXFEhEfu\nfJMhypMmeE/chJEXqksSxDEZGRmsQ1AN07HQ+psMz/eFId9gluBD/EJcSvA8j4UaeLMOQKpr166o\nr69HWFgY6urqEB4ebvXrZs2ahdjYWACAXq9Hamqq8WZofbyka21eP/3W0xArRCAOAICg6iBUlFUg\nJiNGFfHRdfvXf9n2F+ABjP//9b7WG4WFhaqJj6frwsJC5OXlAYDx/dJRzFdcV1ZWYuLEicbZTb//\n/e8RHx+PRYsW4b333kNFRQU++OADs++h2U1tTP/yaF3rWHRf2R01N2uMr0/oNQHbZ2irt8XzfaHL\n0RmfJNwxI43nsXA3Z947mT5JTJs2Dfv27UN9fT2io6PxxhtvICcnB1OmTMHnn3+OiIgIbNpE86KJ\nYy7dbOtjBXoH4otff8EwGuIIaS+J1rWwx/xJwhn0JEFskc6tj+gcgYtLLjKMiDjC3U8RxBx36yQI\ncTdpw/rAbw8wioQ4yqJh7R9CCUIFKElwrrVJRR42rN04K4ZnPN4X0i1UBkcOdsvP5XEs1ISSBPEY\nu0/vNrseGjWUUSTEUdY2YqRekjpQT4J4DKpn80s6Iy0zLhO7XtzFMCLPRD0Jolk0K4Zv0hlptNur\nelCS4BzVW1v81PATUNHyMW0pzdd9Ycg3oBnNxusA3wC3JniexkKNKEkQ7lns00S7vXJF2rAe2GMg\no0iINdSTINzzXe6Le833jNeVCys1O6uJR9RLUg71JIgmmSaIIZFDKEFwhHpJ6kdJgnNar7eaHSxU\nAZy/ep5dMCrCy31huvhRrl4SL2OhVpQkCNfOXD5jdv393O8ZRUKcQSus1Y+SBOe0vLulId9gVmoa\nnj6cSk0P8XBfSI+XddcKaykexkLNKEkQbklnxYR1DmMUCXGGtNREK6zViZIE57Rcb71z/47xYy/B\nC78N+S3DaNRF7feFdDM/Oactq30s1I6SBOGS9E0mPTodgb6BDCMijpA+Bf74Lz8yioTYQ+skCJcC\n3gww2xDumceewbap2xhGRBwh5AjGj0P8Q9DwhwaG0WgHrZMgmiEtNeU9m8cuGOIQQ77B7NpX58so\nEtIRlCQ4p8V6q3QB1pOxT0Lvp9fkWNii5rGQlprkPhhKzWPBA0oShDumayO84KX5zfx4Y/oUGOYf\nRtOWVY56EoQ7pvXs4dHDUTSniGE0xBHSM8gn9JqA7TO2M4xIW6gnQTyedAFWxeUKRpEQZ9DaCP5Q\nkuCc1uqt7W3DobWxaI9ax4LFNhxqHQteUJIg3LDYhiOKtuHgiVLbcBD3op4E4Yb0HGRaG8EX03M/\nvOCF+qx62tBPYdSTIB7N9BzkIJ8gWhvBEelTYHrPdEoQnKAkwTkt1VtNz0H29/G3eJPR0ljYo7ax\nyD+Zb3b9iP8jiv1utY0FbyhJEC5I69l0DjJf6CmQX9STIFygc5D5Zcg34NOST43X4QHhqF1ayzAi\n7aKeBPFISm4rTdxPWmqip0C+qDZJxMbGIjk5GWlpaRg8mKbK2aKFemtHt5XWwlh0lJrGwrTUFOgd\nqPgCOjWNBY+8bX1iy5Ytdh9N/P39MWHCBFkCEwQBhYWFCAkJkeXnE37QXj/8MuQbzCYcBHYKpKdA\nztjsSYSGhmLSpEk2v1EURezfvx+nT5+WJbC4uDgcPnwYoaGhFp+jnoR2SOvZmXGZ2PXiLoYREUeY\nnvshQEDFwgpK8gw5895p80li3LhxWL9+fbvfPGPGDId+mSMEQUBmZibu378Pg8GAV155RbbfRdRL\nWs8O8A1gFAlxhulTYKh/KCUIDtlMEvYSBAB88YV8tcUDBw4gPDwcdXV1GDduHBISEjBmzBjj52fN\nmoXY2FgAgF6vR2pqKjIyMgC01SC1cG1ab1VDPO6+vnTzEvBwD7+gPi1TJ219fetraoqf1XVZWRkW\nLVrENJ75x+e3TDh4+P/f4MzBTOJZvXq1pt8f8vLyAMD4fukom+Wm8PBwTJo0CdOmTcOTTz4JQRCs\nfZki3n77bQDA66+/DoDKTaYKCwuNN4enkZaaIjpH4OKSiza/3pPHwlFqGAu1bMOhhrFQC7dOgS0v\nL8fAgQOxfPlyREVFYeHChThwQN4TpFrdunULt27dAgDcvHkTBQUFSExMVOR388aTb37TWU0CBLsn\nmHnyWDhKDWNhug3H0OihzBrWahgLntlMEmFhYZg/fz4KCwtx6NAhxMXF4dVXX0V8fDz+/d//Xdag\namtr8Ytf/AKpqalIS0vDE0880W4TnXgmqmfzS3qONZ37wa8OrZPo0aMH5s6di/nz5yMwMBDr1q2T\nNai4uDgcOXIEZWVl+Omnn/DGG2/I+vt4ZlqP9yTSBXRpEWl2v8dTx8IZrMdC+hRoeu6H0liPBe/a\nTRK3b9/Gpk2b8Ktf/Qq9evXCd999hxUrVuDChQtKxUc0imY18Y2eAj2Hzcb19OnTsXv3bjzxxBOY\nNm0aJkyYAH9/f6Xjs4oa157PK8fLuAgryCcI5xafo0VYnKBzrNXL7esk1q5di6CgIJcDI8QR0lW6\nnX07U4LgiOkRs17wonOsOWez3NSlSxe7CeKbb75xe0DEMZ5Yb3V0VlMrTxwLZ7EcC7XMampF94Vr\nbD5JLF26FJGRkRBF0eoaCVEU8frrr+Ppp5+WNUCiPVTP5hfNavI8NnsSGRkZdhfQhYSEYMuWLbIE\n1h7qSXgu2quJb7RXk7q5tSdBj2iEBZrVxDd6CvQ8qj1PgnSMpyXzxtuNxo+DfYMdOubS08bCFSzG\nQrq2ZXCkOs6BofvCNZQkiGoY8g1oam4yXg+JHMK86Uk6znTCQZBPEM1q8hB0xjVRje4ru6PmZo3x\n+pnHnsG2qdsYRkQcYXoOOZ1jrU6ynHF9/fp1/OlPf8KcOXMAAKdPn0Z+fr6d7yLEcabHXAb5BDlU\naiJsSUtNKd1SGEZD3Mlukpg5cyaCgoJw8OBBAEBkZCT++Mc/yh4Y6RhPqreaLqDz9/F3uNTkSWPh\nKqXHQs0TDui+cI3dJHHmzBlkZWXB19cXAODn5wedjloZxL0SchPMrgf2GMgoEuIMegr0XHbf7X19\nfXH79m3j9blz52QNiDjGU/bKd8dWDp4yFu6g5FiofRsVui9cY3OdRKtly5Zh9OjRqKqqwosvvoi9\ne/fik08+USI2ohGGfIPZVg7pPdNV9SZD2ufsNiqED3afJCZNmoStW7fio48+wqRJk3D48GGMHz9e\nidhIB3hCvVVaz37E/xGnfo4njIW7KDkWal9AR/eFa+w+SRQXF0MQBMTFxQEAqqur0djYiF69esHH\nx0f2AInnc2UBHWHP0cOhCF/srpMYOnQoiouLkZycDAA4duwYEhMTUVdXhzVr1uCZZ55RJFBTtE7C\ns5jOr8+IycDeWXsZR0Q6Snp2BK1tUTdZ1klER0fj2LFjKC4uRnFxMY4dO4bevXtj3759yMrKcjpY\nQgDL+fU/NfzEMBriKNMJB96CNz0FeiC7SaK8vBwJCW3TEx977DGUl5cjPj7eOC2WsMN7vdWdZyHz\nPhbupMRYSCccjIgeocoJB3RfuMZuT+LRRx/FK6+8gsmTJ0MURWzZsgWxsbFoamqiJEFcpvamJ7HN\nXRMOiLrZ7UncvHkTq1evxvfft/wLb9iwYVi0aBH8/f1x48YNBAcHKxKoKepJeAY6C5lvdA45f5x5\n76QN/ggzvst9jeUKL3ihPque3mQ4IuS0HUpGG/rxQZbGdXl5OSZOnIg+ffogLi4OcXFxePTRR50O\nkrgXz/VWd5+FzPNYuJvcY8HTNip0X7jGbpJ44YUXsHDhQvj5+aGwsBBz5szBjBkzlIiNeDA6C5lv\n7thGhfDBbrkpJSUFR44cQf/+/XH8+HEAwKBBg3Do0CFFArSGyk38Mz07gs5C5o/Z2paeGdg7m9a2\n8MCtZ1y3CggIgCiKiImJwYcffoiIiAg0NDQ4HSQhgPmuocOih1GC4EhCboLZ2haa1eTZ7JabPvjg\nA9y8eRO5ubkoKirChg0bsGHDBnvfRhTCY71Vumuou0pNPI6FXOQcC94W0NF94Rq7SaKiogKBgYGI\ni4vDl19+ia+//hpVVVWyBlVQUICkpCT069cPK1askPV3EeW5cwEdUZ7phIMhUXQOuaez25NIS0tD\naWmp2WutfQo53L17FwkJCSgqKkK3bt3wi1/8Ap988gnS0to2DqOeBN9M69lh/mGo+0Md44hIRxny\nDfi05FPjdY/AHqh+rZphRMQRbu1J7Ny5Ezt27EB1dTUWLFhg/MG3bt2CIAi2vs1lBw8eRGJiIiIj\nIwEAU6ZMwfbt282SBOGXdK8m2jWUL/QUqD02y009evTAgAED4OfnhwEDBhj/jB07Frt375YtoKqq\nKkRHRxuvo6KirJa3ur7bFWevnJUtDl7wVm+V8yxk3sZCTnKNBY/bqNB94RqbTxIpKSlISUnBjBkz\nFD03oqNPKfVf1CN+ZzyWDFuCiLAIpKamGo8pbL0p6Fp91423G4GHfergx1rOjnDXz2+lpv9eVtdl\nZWVu//lfXv+y5Snw4f9/gzMHq+a/t73rsrIyVcWj5HVhYSHy8vIAALGxsXCGzZ5EUlKS7W8SBBw9\netSpX2jP/v37sWLFCnzzzTcAgHfffRdNTU344x//aPb7kd3yMe33ww9pPTszLhO7XtzFMCLiiIA3\nA3D7fst597RXE5/c2pPIz8+39SlZDRo0CMePH0d1dTXCw8OxadMmrF271ubXl1wsUTA64go5S01E\nfqalJn8ff0oQGmGzJxEbG2v84+vri8OHD6O4uBi+vr5OP7Z0hJ+fHz766COMHTsWKSkp+NWvfoXH\nH3/c5tc33G7QdG9CWmpRM9MFdEE+QW6fX8/TWMjN3WMhnXCQ0i3FrT9fTnRfuMbuOon/+q//wqBB\ng/D3v/8d27Ztw+DBg/HXv/5V1qDGjx+P48ePo7y8HK+//nq7X3uv+R6GfTZM1niIe5guoKN/ifKF\nngK1y+46iX79+qGoqAghISEAgMbGRowYMQLl5eWKBGiNaU8CADIfzcSuF6i2rWbSfgT1kvjSaXkn\nNDU3AQCCfYNx9tWzlOQ5JMtW4QCMCQIAunTpooqFbD66thlXZTVluHLnCsNoiD2m8+uDfIJo11CO\nGPINxgQBAEMiaZW1lthNEqNHj8a4ceOQl5eH9evX46mnnsKYMWOUiK1dnX06Gz+uu1WHWdtmsQuG\nIV7qrUo0PXkZCyW4cyx4LzXRfeEau7vAfvDBB/jqq69QVFQEQRDw4osvYsqUKUrE1q6BkQOx58we\n4/WtplsMoyHtke4aquYDaogluSccEHWz25NYtWoVpk6datwmQw0EQcDl25fRZUUX42udvDqhZkkN\nPQarEB1Tyjc6ptRzyNKTuH79On75y19ixIgRyM3NRW2tOm4QvZ8eof6hxuu7D+5ixhY6MU9tDPkG\ns11D03umU4LgCE/HlBJ52E0S2dnZOHHiBNasWYOLFy9i5MiRGD16tBKx2VVsKDa71uLCOrXXW6X1\nbDkPqFH7WCjJXWPhCceU0n3hmg7NbgKA8PBwREREIDQ0FHV16tjaOUYfAwFtj8L3mu/RLCeVoXo2\nv+gpkAAdSBIffvghMjIyMHr0aNTX12PdunWy7dvkjOBOwcaPG243aG6WU+umXmql5AI6tY+Fktwx\nFko+BcqJ7gvX2J3ddP78eaxevRqpqalKxOOwQZGDzGY53Xtwr52vJkoy5BvMrqmezZfG243Gj4N9\ng+kpUKPsPkm8/fbbqk0QALB58mazktOhC4c0VXJSc71V6QV0ah4LpbljLExLTY93f5zbUhPdF67p\ncE9CrfR+ejzSqe0xWMsL69SGdg3ll3RDv58afmIYDWGJ+yQBtCysM6WlhXVqrbeyWECn1rFgwdWx\n8KRjSum+cI1HJInNkzebXR+7dIxRJKSVJ0yd1DIejykl8rCZJAIDAxEUFGT1T3BwsK1vY0Lvp4e3\n0NaD19IZE2qtt5rWs4dGD1Wk1KTWsWDBlbGQPgUOjhzshojYofvCNTZnN924cQMA8Kc//Qk9e/bE\n1KlTAQAbN27E+fPnlYnOAcN7Dse+s/sAtJ0xUf1aNeOotEk6q6nicgWjSIgz6CmQmLK7d9OAAQNQ\nXFxs9zUlWdt/5MqdK2Z7OYX6h+LUglPULGXA9CxkAQIqFlZQuYIjpns1DY8ejqI5RQyjIe4ky95N\nzc3N+Oqrr/DgwQM0Nzfjv//7v1VxnoSUdJaTFhfWqQXVs/lFT4FEym6S2LhxI/Ly8tClSxfo9Xrk\n5eVh48aNSsTmsEGRg8yutbCwTm31VunUSSXr2WobC5acHQvTVda8z2pqRfeFa+yuuO7Tpw/+93//\nV4lYXLZ58maErAgxvkm1LqyjkpNy6AQ6vpnutTUsehg9BRL7PYkbN25g7dq1OHnyJO7fv298/fPP\nP5c9OFvaq6t1eacLrtxtW3H9zGPPYNvUbUqFpnm6HJ0xSdPZA3yRnkPeI7AHTf7wMLL0JKZNm4Yr\nV65gz549eOKJJ1BVVYXAwECng5SblhfWsSYtNaV0S2EYDXGUJy2gI+5jN0mcOXMGy5cvR1BQEF56\n6SXs3LkThw8fViI2p2htYZ2a6q2sz0JW01iw5sxYeOqEA7ovXGM3SXTu3BkA4O/vjxMnTqCxsRFV\nVVWyB+YsLS+sY43OjuCX9CkwLSKNYTRETewmiblz5+LatWtYvnw5MjMz0bdvX2RlZSkRm9OG9xxu\n/Lh1YZ2nUsu+NIZ8g9nZEZ19Oys+YUAtY6EGjo4F66dAOdF94Rq7jWs1std8oYV1yqMFdHzzyvEy\nJvkgnyCcW3yO/r54IFka142Njfjd736H/v37o3///nj55Zdx+fJlp4NUgpYW1qml3qqGerZaxkIN\nHBkLNTwFyonuC9fYTRIzZsxA9+7d8fe//x1/+9vfEBERgenTpysRm0ukC+tolpN8qJ7NN+mspgO/\nPcAwGqI2dstNSUlJOHbMfIZQcnKybOdcZ2dnY926dejatSuAlpPxxo0bZ/Y1HXlkkpacIjpH4OKS\ni+4PmKD7yu6ouVljvKa1KXwxXdsS5h+Guj/UMY6IyEWWcpO3tze+/75tvvQPP/wAb2+7C7WdJggC\nFi9ejNLSUpSWllokiI6iWU7KoVlN/KKnQGKP3SSxdu1azJ49GzExMYiJicHs2bOxdu1aWYNyVy9d\nC7OcWNdb1VTPZj0WatLRsfDkWU2t6L5wjd0kMXjwYJw8eRKHDh3CoUOH8M9//hP/93//J2tQa9as\nQd++fTFz5kw0NjY6/XOkJY+7D+7iyp0rNr6aOIPq2Xyjp0Bij1NTYKOjo106eCgzMxM1NTUWr7/5\n5psYNmwYQkNDAbT0J06fPo0NGzaYfZ0gCHjppZcQGxsLANDr9UhNTTXOh279l0NGRgb07+hx9Z9X\nW74xrqVevihikfHz0q+na8eudTk6iBUP69n9WurZaoqPrm1ff3n9y5a9mh7uBh7Rv6Vvp5b46Nr1\n68LCQuTl5QEAYmNjkZOT43ClhkmS6KgLFy5g1KhROHnypNnrjjRfMv+aiT1n9rRdx2Vi14u73Bqn\nVkk3hKOx5QutbdEeWRrXSrt0qe3xd8uWLUhMTHTp53n6Xk6t/2pgQW31bJZjoTYdGQs1rG1RAt0X\nrrE5TSkwMBCCIFj93K1b8q05eO2113D06FE0NTUhJiYGn332mUs/r3WW032xZZvz1llOnvoXQklU\nz+ZXQm4Cs8OhCF88clsOqYy8DOw7u894Tfvku05aaqJ1KHzxXe6Le80tJzd6wQv1WfUetcqaWOcR\n5SY50Cwn96NZTXxrTRAAMDR6KCUIYpMmkoQn7+XEqt6qxno21Z7btDcWhnyD2XXF5QqZo2GL7gvX\naCJJALSXkzvRKl2+0Ql0xBGa6EkAlns5+ep8Ubu0lh6znWA6dRKgvZp4Iu0l0V5N2kI9iXZI93Jq\nam7ymJKT0kxLTV6CF81q4oh02jLNaiL2aCZJAOZ7OQGeUXJSut4qnTr5ZOyTqnkao9pzG1tjYTpt\nOdA7EF/8+guFImKH7gvXaCpJSEsi/zj3D5rl5KAzl88YP/aCFzb9ZhPDaIijTDdjDPANUE2CJ+ql\nqSSh99Mj1D/UeH33wV3M2DKDYUSua92vRSlqnjqp9FiombWxSMhNMLse2GOgQtGwRfeFazSVJACg\n2FBsdn34wmFGkfBH+ibj6VMnPc1PDT8ZP9ZBp4lSE3Gd5pKEdD7/lbtXuC45KVlvNS01AVDd1Emq\nPbeRjoV02nJYQJiqngLlRPeFazSXJACgi1/bVNimB03cl5yUYMg3mJWahkcNV8UCOtIxpmsjAODH\nf/mRUSSEN5pMEqXzSs2uSy6WMIrEdUrVW6VTJ8M6hynyex1Btec20rEwnbYc5h+mqQRP94VrNJkk\nYvQxdP61g2jHV37RCnniCk0mCcDy/Ouh64YyjMZ5StRbpedY+/v4q7KeTbXnNqZjIS01sT73Q2l0\nX7hGs0lCumbC9E2QmJOWmrQyddJT0Ap54grN7N1kjfcb3nggPgAA+Oh88PPvf9ZUrbajvHK8jEk0\n0DsQ5187r8onCWIpITcBJxvajv+lI2a1jfZuctCIniOMH/NccpJTQm6C2VNWYKdAShAcka6NoBXy\nxFGaThLpsktgAAASc0lEQVTSklPjnUbu1kzIXW+Vro1Q8+FCVHtu0zoWpg3rEP8QTSZ4ui9co+kk\noffT05oJO0zXRgyJHELlOI5IV8jTjq/EGZruSQDA2StnEft+rPE6PCActUtr3fKzeSetZ9PZ4HzR\n5eiMTxI66NCQ1aDJJwnShnoSTvC0bTrcSe3bcBDbtLwNB3EvzScJgO9tOuSqt/K4DQfVntv8Zdtf\nzK61vA0H3ReuoSQBy2069pzZo/mnCekCLDVuw0Fsa3rQZPw4xD9E9QmeqJfmexKtfN7wwX3xvvF6\nQq8J2D5ju1t/B0+EHMH4sZfghfo/1FO5ghPSXlJE5whcXHKRYURELagn4QLp0aZaPmdCOism1D+U\nEgRHTNdGAOqetkzUj5LEQ9I1E7w0sOWot0ob1rzUs6n2bNKwfngelNZ2fLWG7gvXUJJ4iNZMtOCx\nYU3aSHtJhw3afSIm7kE9CRPSNRO+Ol/ULq3VVKkl4M0A3L5/23j9zGPPWDxlEfUy7SWF+Ieg4Q8N\nDKMhasNNT2Lz5s1ITEyEl5cXSkrMD/x5++230a9fPyQlJWHXLmU3IpOeM9HUrL2nCdMEQTuG8kXa\nS/LV+TKKhHgSJkkiKSkJW7duxciRI81eLy4uxtdff41jx46hoKAA8+bNQ1NTk42fIg/eGtjurLfy\n3rDWeu3ZrGFdQQ3rVlq/L1zFJEkkJCSgT58+Fq9v374dU6dOhZeXFyIjI5GYmIgff1S2aSotrdTd\nqtPMqXXSWTG8NKxJS4I3XWEd3CmYeknELVTVuK6urkZUVJTxOioqClVVVYrGIG1gixAx7LNhisbg\nCHed32uxjQOHs2K0fJaxdEba0RVHGUWiPlq+L9zB2/6XOCczMxM1NTUWr7/11luYOHGiXL/WLUrn\nlZo1sO8+uIsrd65wVXpxFM2K4Rvt1kvkIluS2L17t8PfExUVhfPnzxuvq6qqEB0dbfVrZ82ahdjY\nWACAXq9Hamqq8V8MrTVIZ68ryirQubozbkbeBAA0lDdg3PJxOPDmAbf8fHdem9ZbXfl5t3++DcS1\n/JygC0GoKKtATEYM8/8+R65bX1NLPEpd91zYE7gK4/9/p4pPYfWN1Vi0aJEq4mN9vXr1are+P/B0\nXVhYiLy8PAAwvl86iukU2FGjRmHlypUYMGAAgJbG9fz58/HDDz+gpqYGI0aMwM8//wwfHx+z75Nr\nCqypzL9mYs+ZPcZrtW4hXlhYaLw5nOUp2zi4Yyx4ZLolOABULqxERVmFJsfCGq3eF9Y4897JJEls\n3boVCxYsQH19PR555BGkpaVh586dAFrKURs2bIBOp8OqVaswduxYy6AVSBJX7lxBlxVtvQkBAioW\nVnjkY7y1NxlP/O/0RNIEH+Yfhro/1DGMiKgZN0nCVUokCQAIWRGCy3cuG695/Rd2e+hNhm+U4Ikj\nuFlMxwvpFuK1N2tVNx3WtB7vDOm0V54b1q6OBW+kM9JC/Nq2BNfaWLSHxsI1lCTaEaOPsZgOO3Td\nUIYRuZd0bj2P0161TDojbWiU59ybRD2o3GSHdD8nH50PLi295BHTYalUwS9DvgGflnxqvKYzrElH\nULlJBjH6GHgJXsbre8338JtNv2EYkXtInyJMSxVE/T4v/dzsenTcaEoQRBaUJDpgRM8RZte7K3ar\npjfhbL1V2ovwhFKFVmrPhnwDHogPzF7b9JtNZtdaGYuOoLFwDSWJDtg2dRsECGav8dybkD5F6KDD\nF7/+gmFExBHSXkRGzwx6iiCyoZ5EBx2tPYqUj1OM1zz3JqS9iCPzjyC5WzLDiEhHSXsRAgQ0ZjVy\neR8S5VFPQkbJ3ZItehM8njVhbdokJQh+SJ8ixsSNoQRBZEVJwgHS3sTOUzuZ9yYcrbdKG56e0Ito\n5em1Z0O+wexQKB10Fr2IVp4+Fo6gsXANJQkHSM+a4G3dREJugkXDk3oR/JA+RYQFhNFTBJEd9SQc\nlJGXgX1n97XFwtGeTqbnHwPA/tn7LZ6OiDpJt08BaF0LcRz1JBTA69OE9GhSL3hRguCIdMpyRs8M\nShBEEZQkHKT30+OJmCfMXmO5p1NH663SN5mS+SUyRMOWp9aepZMNdNBh67St7X6Pp46FM2gsXENJ\nwgnbpm6Dj67tjAsRIvr8vz64cucKw6hs07+jpxlNHKPV1YQl6kk4SbqnEwBkxmVi14u72ARkg3Re\nPUC1bJ7o39Hj6t2rZq9dzrpMSYI4hXoSCpLuEAsAeyr2qO5pQjojhvZo4os0QeyfvZ8SBFEUJQkX\nSM+bECEqvvlfe/XWhNwEs3n1AFAyz/N6Ea08rfasf8c8Geg76Ts82cDTxsIVNBauoSThghh9DIZH\nDzd7bXfFbhytPcooInPSKZM0I4YfCbkJFk8RZfPLGEVDtIx6Ei66cucKQlaEmDWG1bCfDtWy+WWt\njzQ8ajiK5hYxioh4CupJMKD301v8C49F2cmUtX+FUi2bH9LZTAIEfDPjG0bREK2jJOEGyd2SLd6A\nlSo7Wau3SstMQ3oM0cTCOU+oPVvbOqVsfpnDCd4TxsJdaCxcQ0nCTcrmWdaLUz5OUXyRne9yX4vX\nCl4oUDQG4hxrW28MjxpOa1oIU9STcCPpmRMA4KvzRe3SWkVKPdb6ELQ/Ez+ke2upobdFPAv1JBiz\nVnZqam7Cc189J/vvttaHWD9pPSUITlh7AnSmzESIu1GScLOyeWUWR50WnitE0Tl5ZqYUFhZaLVME\n+wZjVtosWX6nWvFae/Zd7ot7zffMXtsxfYdLZSZex0IONBauoSThZjH6GFQsrLB4PX19uiyJYuX3\nKy0SBAAc/Z061mqQ9unf0VskiPWT1mN87/GMIiLEHPUkZFJ0rgjp69MtXnfnedLW5tMD1IfghbUe\nUkp4Csp+R4vmiDyoJ6EiI3qOwP7Z+y1eT/k4xS1PFLYSxI7pOyhBcMBaggjQBaBwdiGbgAixgUmS\n2Lx5MxITE+Hl5YWSkra9hCorK+Hv74+0tDSkpaXhX//1X1mE5zYjeo7AkMghFq+nr0/H0HVDnd4M\nUP+Ovi1BmFS2Nj2/SdNlCl5qz7ocnUWCAIDy35e7rVHNy1gogcbCNUySRFJSErZu3YqRI0dafK5X\nr14oLS1FaWkpPvzwQwbRuVfBzAKE+odavH6w+iC6/rmrw+sofJf7mr/B1LT8z/pJ6zE5cbIroXKv\nrEzdZZqE3AQIOYLZFi6tjsw/4tZ9tdQ+FkqisXANkySRkJCAPn36sPjVitP76XFqwSmLbcUB4L54\nH7Hvx2LgJwPtPlXo39FDyBEsmpy405IgtDaTyZorV9S1TXsrQ74Buhyd1QkGOujc2qdqpdaxYIHG\nwjXerAOQqqysRGpqKgICAvCf//mfePLJJ1mH5DK9nx5nFp7Bc189h8JzhRafL75YjC4rWpLIkMgh\nKJhZAL2f3mrdWmp60nRKECqly9FZfWpolRyejH2z99FaCKJqsiWJzMxM1NTUWLz+1ltvYeLEiVa/\np0ePHqiurkZwcDBKS0vx9NNP48SJE9Dr+f9LpPfTY+/svTZnPbU6WH3QmDDa80inR3Bk/hEsW7TM\nnWFyrbKyktnvtjWRwBa5n/5YjoXa0Fi4SGQoIyNDLC4utvn5X/7yl+IPP/xg8Xp8fLwIgP7QH/pD\nf+iPA3/i4+Mdfp9mXm4STebsNjY2Qq/XQ6fTobKyEsePH0evXr0svufUqVNKhkgIIZrFpHG9detW\nREdH48CBA3jqqacwfnzLtM3vvvsOycnJSE5OxsSJE/HBBx8gLCyMRYiEEELA6YprQgghyuBuxXVB\nQQGSkpLQr18/rFixgnU4TMXGxiI5ORlpaWkYPHgw63AUNWfOHHTr1g1JSUnG1xobG5GZmYnk5GSM\nHTtWM1MfrY1FdnY2oqKijAtTCwq0cabI+fPnMXLkSCQlJeGxxx7Dn//8ZwDavDdsjYXD94bDXQyG\n7ty5I8bGxopVVVXivXv3xIEDB4olJSWsw2ImNjZWbGhoYB0GE//4xz/EkpISsX///sbXXnnlFfG9\n994TRVEU33vvPXHBggWswlOUtbHIzs4WV61axTAqNmpqasRjx46JoiiK169fF3v37i2WlZVp8t6w\nNRaO3htcPUkcPHgQiYmJiIyMhLe3N6ZMmYLt27ezDospUaPVwvT0dHTpYj5VeMeOHXjhhRcAADNn\nztTMvWFtLABt3hvdunVD//79AQCBgYFITk5GdXW1Ju8NW2MBOHZvcJUkqqqqEB0dbbyOiopCVVUV\nw4jYEgTB+Aidm5vLOhzm6urqEBrasgVKWFgYLl26xDgittasWYO+ffti5syZaGxsZB2O4iorK3Ho\n0CGMGDFC8/dG61ikp7es0XLk3uAqSQiCYP+LNOTAgQMoKSnBt99+i/Xr12PPnj2sQyIq8fLLL+P0\n6dMoLy9HfHw8FixYwDokRd24cQPPP/883n//fQQHB7MOh6kbN25g8uTJeP/99xEUFOTwvcFVkoiK\nisL58+eN1+fPnzd7stCa8PBwAEDXrl3x/PPP49ChQ4wjYqtr166or68H0PJU0To+WhQWFgZBECAI\nAubNm6epe+PevXv49a9/jRkzZuDZZ58FoN17o3Uspk+fbhwLR+8NrpLEoEGDcPz4cVRXV+PevXvY\ntGmTcY2F1ty6dQu3bt0CANy8eRMFBQVITExkHBVbEyZMwIYNGwAAGzZswIQJExhHxI5pOWXLli2a\nuTdEUcTcuXPRr18/vPrqq8bXtXhv2BoLh+8NGZrqstqxY4eYmJgo9u3bV3zrrbdYh8PMmTNnxOTk\nZDElJUXs3bu3+B//8R+sQ1LU1KlTxe7du4s+Pj5iVFSU+Pnnn4sNDQ3imDFjxKSkJDEzM1O8fPky\n6zAVIR2Lzz77TJw5c6aYnJwsJiQkiGPHjhWrqqpYh6mI/fv3i4IgiCkpKWJqaqqYmpoq7ty5U5P3\nhrWx2LFjh8P3Bi2mI4QQYhNX5SZCCCHKoiRBCCHEJkoShBBCbKIkQQghxCZKEoQQQmyiJEEIIcQm\nShKEEEJsoiRBPNbVq1fx0UcfGa8vXLiAyZMnu/33tO7Pn52d7fafbc+oUaMQFBSE4uJixX830QZK\nEsRjXb58GR9++KHxukePHti8ebPbf48gCFi8eDGTJLF3714MHDiQNr8ksqEkQTzWv/3bv+H06dNI\nS0tDVlYWzp49azy9LS8vD88++yzGjx+PuLg45ObmYuXKlRg4cCAef/xx42ZwJ0+exKhRo5CSkoIh\nQ4bgxIkTVn+X6cYF2dnZeOmllzBq1CjExsbi66+/xpIlS5CcnIzRo0fj7t27AIClS5ciMTERqamp\nWLx4MQCgpqYGTz/9NFJSUpCamop9+/YBAK5fv46pU6ciMTERKSkp+J//+R/Zxo0QM0rsIUIIC5WV\nlWantVVUVBiv169fL/bq1Uu8ffu2WFdXJwYHB4vr1q0TRVEUX331VfHdd98VRVEUhw0bJv7888+i\nKIrigQMHxOHDh1v8nuzsbHHlypXG62XLlokjR44Um5ubxSNHjoj+/v7irl27RFEUxeeee07cvHmz\nWFtbKyYmJhq/58aNG8bPFxUViaIoimfPnhXj4+NFURTFBQsWiEuWLDF+/dWrV40fZ2RkiMXFxc4O\nEyHt8madpAiRi2hnW7JRo0bBz88Pfn5+0Ov1xp1Bk5KSUFZWhoaGBpSUlJj1MW7fvm339wqCgHHj\nxkEQBPTv3x/Nzc3IzMw0/uzz588jNDQUPj4+mDt3LiZMmICJEycCAPbs2YOKigrjz7p79y6uXbuG\nb7/9Fn/729+Mr2v9jASiHEoSRLM6depk/Fin0xmvdTodmpubIYoiunbtitLSUod/tq+vr/Fn+fj4\nmP2e5uZmeHl54eDBg/j222+xZcsWrFmzBt999x0EQcChQ4fg7W35V9Ne0iNEDtSTIB7L39/feOaG\nI1rfjMPCwtC1a1d88803xtdt9SQcdfPmTVy/fh3jx4/HqlWrUFJSAgAYM2YMPv74Y+PXtf6+zMxM\nrF271vj6tWvX3BIHIfZQkiAeq1u3bkhNTUW/fv2QlZVlPI0LgNnHrdemH7deb9y4EatWrUJycjL6\n9+/f4YaxrZ/den3t2jWMGzcOaWlpSE9Px3vvvQcA+Pjjj7F7924kJSWhf//+eP/99wEAy5cvx7lz\n59CvXz+kpqbi22+/dWJECHEcnSdBiItycnIQGBiI1157jcnvHzVqFFatWoXHH3+cye8nno2eJAhx\nUWBgID755BNmi+kqKirM+h6EuBM9SRBCCLGJniQIIYTYREmCEEKITZQkCCGE2ERJghBCiE2UJAgh\nhNj0/wELMsFZawmOEgAAAABJRU5ErkJggg==\n", + "text": [ + "<matplotlib.figure.Figure at 0x1e16bd0>" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "part (a):\n", + "\n", + " Vdc_a= 437.5 mV\n", + "\n", + " Power= 15.0 W\n", + "\n", + " alpha_d= 87.4 degrees\n", + "\n", + " part (b):\n", + "\n", + " alpha_d= 162.0 degrees\n", + "\n", + " Vdc_b= -9.1 V\n", + "\n", + " Current will reach zero at 4.5 sec\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEPCAYAAAC3NDh4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8U2W+P/BP0oUWC54utEhb0lrASGnayiIDBYpQgSqo\nMy5sKsv9FeaqgIrDeGfmZQszI4zyErxFwY3eO6gjXJaZsnQEtRUGQehCUe6tLC1SEChd2Fra0J7f\nHzUnOSdJ0ywnZ/u+Xy9e5jltkofHQ755nu+z6FiWZUEIIYQ4oJe6AoQQQuSLggQhhBCnKEgQQghx\nioIEIYQQpyhIEEIIcYqCBCGEEKckDRLz5s1DTEwMUlJSuGu5ubmIi4tDeno60tPTUVRUJGENCSFE\n2yQNEnPnzrULAjqdDi+99BLKy8tRXl6OyZMnS1Q7QgghkgaJMWPGIDw83O46re8jhBB5kGVOYt26\ndbj33nsxe/ZsNDQ0SF0dQgjRLNkFieeeew6nT5/GiRMnkJSUhEWLFkldJUII0axAqSsgFBUVxT1e\nsGABxo8fb/c7sbGxuHDhgj+rRQghipeUlIRTp0659RzZBYnLly8jOjoaALB161YkJyfb/c6FCxcU\nm7cw5htRVV/lk9faP3c/9n20D7m5uT55PaXLzc2ltvgZtYUVtYWVTqdz+zmSBokZM2agpKQEV65c\nQXx8PPLy8vDVV1+hsrISbW1tMBgM+PDDD6Wsok8xKxlcbb3qs9cbs3EMIv4ZgSW/XQImhPHZ6ypV\nTU2N1FWQDWoLK2oL70gaJD799FO7a/PmzZOgJuILXhEMc4fZ4c8y+megcEah0w/6ykuVGLp+KG7j\ntt3PGloaEP1GNE6+cBIGxuDTOhNCiOwS12rErGQcBojhdw1H47JG7J+7v8uegCnGBPNrZhxbeAyB\nwrieBpg7zBj4nwPRdKvJ11VXlDlz5khdBdmgtrCitvCOTomHDul0OsXkJJz1IPbP3Y+M/hkeveae\nk3uQ/Um23fUgfRD1KAghTnny2Uk9CRE56kEEIAA1i2s8DhAAMGXgFBxbeKyzUG29rvUeRXFxsdRV\nkA1qCytqC+9QkBCJMd9ol6TWQ4/Ti0/75Ju+KcZkDRQ2zB1mPLn5Sa9fnxBCABpuEkVOYQ7eL3uf\ndy0AAT4LELYqL1UidX2q3XVvhrMIIerkyWcnBQkRBC4PRDvbzrtWs7hGtFyBs0Ah5nsSQpSHchIy\nELwi2C5A7J+7X7QP6+LiYqdDT4lrE3G26awo7ytHNPZsRW1hRW3hHQoSPmTMN9olqjc/vtkvwz6m\nGBPuj72fd40FixHvjxD9vQkh6kXDTT7iKA8xtO9QHF1w1G91aLrVhOg3ou0C1bGFx2CKMfmtHoQQ\neaKchIQc5SEalzX6fbuMs01nkbA2we465ScIIZSTkEhOYY5dgDi28JhfAoRwvNXAGBzmJ0Z+MFL0\nukiNxp6tqC2sqC28Q0HCBz4q/4hXHh03WtLhHVOMCaPjR/OuXbp5SVNJbEKIb9Bwk5cc7ewqxTCT\nUNOtJoSv4h8NG6wPxqVXLkleN0KINGi4SQLCAOFqsz5/YUIYjDOM411r62jDrK2zJKoRIUSJKEh4\ngVnJDwZMD8bvq5y7Gm/dMX0HgvRBvGt7z+xV7d5ONPZsRW1hRW3hHQoSHsopzLHrRVQsrJCoNo4x\nIQxOvnCSd83cYabeBCGk2ygn4SHhlNfRcaNxYP4BCWvkXMSqCDTeauTKOuhQvbiapsQSojGUk/AT\nY77Rbsrrzlk7JaqNa+ULynllFqwmpsQSQrxHQcIDVfVVvLKUyerujLcaGINdEluNU2Jp7NmK2sKK\n2sI7FCTcZMw38soBCFDEltw7pu/glak3QQjpDspJuEmfpwcL63sraV+kzIJMlJwt4cqUmyBEWygn\nITJjvpEXICJCIhQTIAD7KbHUmyCEuEJBwg3CXETZgjKJamLlzniroymxaspN0NizFbWFFbWFdyhI\ndJMwFxGIQEUO0xgYAwJ0AVyZehOEkK5QTqKblJyLEKLcBCHaRDkJkSg9FyFEuQlCSHdRkOiGH+p/\n4JXlkIuw8GS81VFuor6lXvF7OtHYsxW1hRW1hXcoSLiQU5hj14tQw7CMMDdBezoRQhyRNEjMmzcP\nMTExSElJ4a41NDQgKysLJpMJkyZNQlOTtN9uN1Vu4pVHxslrWCYzM9Pj5woXAe47s0/RvQlv2kJt\nqC2sqC28I2mQmDt3LoqKinjXXnvtNTz00EOorKzElClT8Nprr0lUu85eRMvtFq6shx4f/+pjyerj\na8JV2HTeBCFESNIgMWbMGISH809P2717N55++mkAwOzZs7Fr1y4pqgbAvhcxIXGCLA4UsuXNeKuj\ng4mU3JugsWcragsragvvyC4nUVdXh8jISABAVFQULl++LFldhL2IzU9ulqwuYqHeBCGkK7ILEnIh\nXDwX1TNKdr0IwPvxVke9iaMXjnr1mlKhsWcragsragvvBEpdAaE+ffrgypUriIqKQl1dHaKjox3+\n3pw5c5CQkAAAYBgGaWlp3M1g6V56U646WgUk/vxm1cDax9dy7+2L15dTeWm/pSgpLuH+vpe/v4y/\n7fwbpj88XRb1ozKVqexZubi4GAUFBQDAfV66S/IV1zU1NZg6dSqOHz8OAHjhhReQlJSEJUuW4K23\n3kJ1dTXefvtt3nPEXnGdU5iD98ve58pRoVGo+02daO/njeLiYu7m8Ibw9Lp+Yf1w/uXzXr+uP/mq\nLdSA2sKK2sJKcSuuZ8yYgVGjRqGqqgrx8fHYuHEj8vLysGvXLphMJuzZswfLly/3e72ECeujOcoc\nfnGH8PS61vZWxSawCSG+I3lPwhNi9yR0eTrucURoBOp/Uy/ae8kJs5LB1darXDl7QDZ2zZJudhkh\nxLcU15OQI2HCOlgfLFFN/G947HBeWakJbEKI71CQEBDu03To3w5JVJPusSSpfGHLE1t45brmOkWd\nNeHLtlA6agsragvvUJCwIdztNSo0ShX7NHUXE8IgPMS6uJF2hyWEUE7CRvCKYJg7zFy5ZnGNpoIE\nAJxtOouEtQlcOTggGJeWXpLlGhFCiHsoJ+El2wBxf+z9mgsQQOfusLa9ibZ2WoFNiJZRkPiZMGF9\n7uo5iWriHjHGW4XTYZWSwKaxZytqCytqC+9QkPiZMGF9cP5BiWoiPWEPSmkJbEKI71BOAspaYe0v\naliBTQjho5yEh7S4wtoVWoFNCAEoSADgbwkeEaqs40nFGm81MAbc2eNOrlzfUi/7BDaNPVtRW1hR\nW3hH80EipzCHV9bSCmtXhCuwy34qk6gmhBCpaD4n0fNPPXk9CS2ujXCm6VYTwldZp8NGhkbi1KJT\ntGaCEIWinISbhGdYa22FtStMCKO4ISdCiG9pOkgUVhXyyiNiR0hUE8+JPd6qpCEnGnu2oraworbw\njqaDxOWb1vOzwwLD8PGvPpawNvIk3PSvvqWe1kwQoiGazUkI10ZE94zGpVcueVs1VcosyETJ2RKu\n3PeOvvhp6U8S1ogQ4gnKSbhBONQ0rN8wiWoifzum7+CVO9AhUU0IIf6m2SChlqEmf4y3MiEMAnQB\nXLmxpVGWQ0409mxFbWFFbeEdTQaJnMIc3rfhsB5hNK3ThYz+Gdxjc4cZoz4cJWFtCCH+osmchO3a\nCB10qF5cTVNfXaA1E4QoH+Ukusl2bUR4aDgFiG6gNROEaJPmgoTatuHw53ir3NdM0NizFbWFFbWF\ndzQXJIQ7vh76t0MS1UR5hGsmzB1m2hmWEJXTXE5Cn6cHi87n0rkR7mNWMrjaepUrP3LPI3ZTZAkh\n8kQ5CReM+UYuQADK3IZDasIhp+a2ZolqQgjxB00FiTONZ7jHAQhQ7NoIW/4ebxUOOX3949eyGXKi\nsWcragsragvvaCpImDvM3OOR8SNp+qYHmBAGkaGRXLm1vZVmORGiYprJSRjzjaiqr+LKdGaz5842\nnUXC2gSuTPteEaIMlJPogu1QEwAcnH9Qopoon3BdSVNrk2yGnAghviXbIJGQkACTyYT09HSMGOFd\ngjmnMIc31DQ6brRqFtBJNd4aHmJdfd3W3iaLIScae7aitrCitvBOoLMfbN261WXXJDQ0FNnZ2aJU\nTKfTobi4GBEREV6/lnDH16g7orx+Ta0rX1DOG3KS28I6QohvOM1JREZGYtq0aU6fyLIs9u/fj9On\nT4tSscTERBw9ehSRkZF2P3N3XC0gL4Db0K9XUC/8+NKPlLT2gaDlQbjN3u58rA/CyRdOqqaHRoga\neZKTcNqTmDx5MjZu3Njlk2fNEm+IQafTISsrC7dv30ZOTg6ef/55j1/LdsfX0KBQChA+Mrr/aO4w\nIsvOsDQZgBB1cRokXAUIAPj4Y/HWGRw6dAjR0dGoq6vD5MmTYTQaMXHiRO7nc+bMQUJCAgCAYRik\npaUhMzMTgHUMMjMzE8Z8I1D985MSOw8Xsv258PeVVrYdb/X3+++YvqNzZ9if23dQ5iC///1ty5Zr\ncvr/I1W5oqICS5YskU19pCyvWbPG6eeD2svFxcUoKCgAAO7z0l1Oh5uio6Mxbdo0zJgxAw888AB0\nOp1Hb+ALr7/+OgDg1VdfBeBelyl4RTCXtA5AAK4su6KqnkRxcTF3c0ghcHkg2tl2AECPgB64uPSi\nZO0rdVvICbWFFbWFlU+nwJ44cQLDhg3DihUrEBcXh8WLF+PQIf9shtfc3Izm5s7tHm7evImioiIk\nJye7/TrCWU1j+o9RVYAAIPnNb9ueUi+sk7ot5MSdtjDmG8GsZNDnjT6yPHHQW3RfeMdpkIiKisLC\nhQtRXFyMI0eOIDExES+++CKSkpLwH//xH6JW6tKlS/jFL36BtLQ0pKenY9y4cV0m0Z0Rzmq6M/RO\nJ79JPFWaU8or0ywn5TnTeAZXW6/iSvMVOnGQ2OnWOol+/fph/vz5WLhwIcLCwvDBBx+IWqnExEQc\nO3YMFRUV+OGHH7B8+XKPXsf2HOteQb1Q8GiBj2ooH7bj8VIwMAYE6qyprfqWesm+jUrdFnLiTlvY\n9rYHRQ4SoTbSovvCO10GiZaWFmzevBm//OUvMWDAAHz55ZdYtWoVLly44K/6eYVmNfnH6P6jucd0\n/rXyBOgCuMff1H5Dq+cJj9PE9cyZM7F3716MGzcOM2bMQHZ2NkJDQ/1dP4e6k3wR7tWUPSAbu2bt\nErtqmiQ8/zrTkImv5nwlYY2IO6L+EoX6lnquTP9W1Mvn6yQ2bNiAXr16eV0xKahxW3C5YkIYBOgC\nuFlOlm+j1HNThtKcUlo9T5xyOtwUHh7uMkDs3LnT5xXyBS3MarKQy3irHGY5yaUt5MCdtpBTXkkM\ndF94x2lP4pVXXkFsbCxYlnW4RoJlWbz66qt4+OGHRa2gJ2hWk//Rt1Flo9XzxBmnOYnMzEyXC+gi\nIiKwdetWUSrWFVfjarRXkzRoLyflorySNvg0J6HkLhrNapIGfRtVLsorEWdke56Ep3IKc3jlYf2G\nSVQT/5BTMN8xfQevnBzt/ip5b8ipLaTmSVsI80pzdszxXYUkRPeFd1QXJDZVbuIe9wrqRbOa/IgJ\nYRCkD+LKFRcraM69gghXzze3NUtUEyInqjvjWp+nB4vOn9HZy/4XvjIcTa3WwPDIPY/Y9TCIfMlp\nw0bie6KccX39+nX8/ve/x7x58wAAp0+fRmFhoYtnScOYb+QCBKD+oSY5GhbLb3P6NqoscpjKTOTF\nZZCYPXs2evXqhcOHDwMAYmNj8bvf/U70inlCiwvo5DbeuuWJLbzy1z9+7bchJ7m1hZQ8bQs1bthI\n94V3XAaJM2fOYNmyZQgODgYAhISEQK+XXypDSwvo5IwJYRAZaj1ylr6NKouBMUAH69R3c4eZ8koa\n5/LTPjg4GC0tLVz5xx9/FLVCntLqAjo57pUv1bdRObaFVLxpi949enOP61vqFT/Lie4L77gMEq+9\n9homTJiA2tpaPPPMMxg9ejR3UpycaGFbcKWgb6PKNjx2OK9MeSVtcxkkpk2bhu3bt+Pdd9/FtGnT\ncPToUUyZMsUfdXOLVhfQyXW8VYpvo3JtCyl40xZS5pXEQPeFd1wGidLSUpw/fx6JiYlITEzE+fPn\n8b//+78wm82unuo3WltApwTCb6PmdvncL6RrjvJKSh9yIp5zuU5i5MiRKC0thclkAgAcP34cycnJ\nqKurw7p16/DII4/4paK2hHN9e/6pJ1pud+ZNaK8meWi61YSIVRHclOQ+Pfvghxd+oP8vCnG26Sxv\nw8asxCx8/szn0lWI+IQo6yTi4+Nx/PhxlJaWorS0FMePH8fAgQNRUlKCZcuWeVxZX7p1+xb3WEtD\nTXLGhDC4s4d18kBdcx19G1UQYV7p+OXjEtaGSMllkDhx4gSMRiNXvueee3DixAkkJSVx02KlpPUF\ndHIeb/X3wjo5t4W/+aItbI81VfIZE3RfeMdlkLj77rvx/PPPo6SkBMXFxXjhhReQkJCAtrY2WQQJ\nLS6gUwphApS+jSoLnV1OgG7kJG7evIk1a9bg4MGDAIBRo0ZhyZIlCA0NxY0bN9C7d++uni4K23E1\nXZ61Szw6fjQOzDvg9/oQ5+iMCeUSnjERGRqJU4tO0XCugnmSk1D0Bn85hTl4v+x97nq/sH50foHM\nZBZkcmdMAPT/SGmYlQyutl7lyrRho7KJkrg+ceIEpk6dikGDBnHTYO+++26PK+lLttuC66DDwfkH\nJayNNOQ+3ir8QGltbxVtzr3c28KffNUWalhYR/eFd1wGiaeffhqLFy9GSEgIiouLMW/ePMyaJY+9\neGxnNUWGRtIwhgwJZzmpYZsHLaG8EnEZJG7fvo2JEyeio6MDBoMBf/jDH1BUVOSPunUppzCHN6tp\nROwICWsjHSXsS+OvhXVKaAt/8VVbMCEMAnXWU47b2XbFrb6m+8I7LoNEz549wbIsDAYD3nnnHWzb\ntg319fX+qFuX6AQ65djyxBbenPsjF44o7oNGy2xnOdU119GuvhrjMki8/fbbuHnzJvLz83HgwAFs\n2rQJmzZtcvU00dECuk5KGG/118I6JbSFv/iyLYR5JaWdMUH3hXdcBonq6mqEhYUhMTERn3zyCbZt\n24ba2lpRK1VUVISUlBQMHjwYq1atcvg7tkNNqTGpotaHeI9OrFMu4ZCTkhfWEfe5nAKbnp6O8vJy\n3rXU1FQcO3ZMlAq1trbCaDTiwIEDiImJwS9+8Qu89957SE9Pt1ZapwNyrc+haXnyJ5xz3/eOvvhp\n6U8S1oi4g6Yyq4MnU2ADnf1gz5492L17N86fP49FixZxL9zc3Nz5IS2Sw4cPIzk5GbGxsQCAp556\nCrt27eIFCVt0doQyWL6NWhbWWb6N0ow0ZdgxfQcvyA+KHCRhbYg/OR1u6tevH4YOHYqQkBAMHTqU\n+zNp0iTs3btXtArV1tYiPj6eK8fFxXU5vHVH8B2azUcAyhpvFXubByW1hdh83RZMCMPby+mb2m8U\nM/mA7gvvOO1JpKamIjU1FbNmzUJQUJDfKtTtXsp2AAzw1MinsGbNGqSlpXFT3Sw3BZXlVea+jVYD\nAJA8Idmnr28hl7+vlOWKigqfvz4TwqC+pR6oBlrRecbEjuk7ZPH37apcUVEhq/r4s1xcXIyCggIA\nQEJCAjzhNCeRkpLi/Ek6HSorKz16Q1f279+PVatWYefOnQCAN954A21tbfjd737He3/kAvvn7kdG\n/wxR6kHEYbvNA+3lpCx0xoTy+XTvppqami6f6GlUcuXWrVswGo3417/+hejoaIwaNQobNmzAfffd\nx/2OTqdDTWMNfbgoUNZfs7DvzD6uTAlQZQlcHoh2th0A0COgBy4uvajp4V6l8eneTQkJCdyf4OBg\nHD16FKWlpQgODhYtQABASEgI3n33XUyaNAmpqan45S9/yQsQFhQgOgmHWuROuM2DLxOgSmsLMYnV\nFrYBobW9VREL6+i+8I7LdRL//d//jeHDh+Mf//gHduzYgREjRuCvf/2rqJWaMmUKvvvuO5w4cQKv\nvvqqqO9F/EvJCVAClOaU8spKW1hH3OdyncTgwYNx4MABREREAAAaGhqQkZGBEydO+KWCjnjSZSLy\nEfWXqM4E6M9onYuy6PP03GLWrLuz8PnTlJdQClG2CgfABQgACA8Ppw9o4hXht1Fafa0svXtYDxor\nrimm1dcq5zJITJgwAZMnT0ZBQQE2btyIhx56CBMnTvRH3Ug3KHG81cAYeENOX//4tU+GnJTYFmIR\nsy1sd/VVwrGmdF94p1sb/D3zzDP49ttvcfToUTzzzDN4++23/VE3omJKTICSTsLJB2IeJEWk5zIn\nsXr1akyfPp3bJkMOKCehfMI597SXk7LQsabKJEpO4vr163jwwQeRkZGB/Px8XLp0yeMKEmJhYAy8\nMybMHWb6NqogajjWlHSPyyCRm5uL77//HuvWrcNPP/2EsWPHYsKECf6oG+kGJY+32iZAfXGsqZLb\nwtfEbgslHWtK94V3ujW7CQCio6PRt29fREZGoq6uTsw6EY2gb6PKRWdMaIfLnMQ777yDzZs34/Ll\ny3jiiSfw1FNPYfDgwf6qn0OUk1AH4RkTtM2DstAZE8rj0/MkLM6dO8ftskqILzEhDCJDI7mFda3t\n1p1FifwJz5hIjk6WsDZELC6Hm15//XUKEDKm9PFWXy6sU3pb+JI/2kJ4drlcF9bRfeGdbuckCBGD\ncJaTnBOgxJ7SFtYR97nMScgR5STUJWh5EHesKZ0xoSzCvFKmIRNfzflKwhqRroi2dxMhYhL7WFMi\nHtrVV/2cBomwsDD06tXL4Z/evXs7exrxMzWMtwoT1Z5u86CGtvAVf7aF3LdYofvCO05nN924cQMA\n8Pvf/x79+/fH9OnTAQCfffYZzp0755/aEU2wJEAt2zxYFtbRLCdlKM0p5W2xQmdMqIvLnMTQoUNR\nWlrq8po/UU5CfYTHmtL5ycpCeSVlECUn0dHRgU8//RTt7e3o6OjA3/72N/qAJj6npG0eiD3KK6mX\nyyDx2WefoaCgAOHh4WAYBgUFBfjss8/8UTfSDWoZbxVu89DOtrudl1BLW/iCv9tCODQop4V1dF94\nx2WQGDRoEP75z3/i2rVruHbtGoqKijBw4EB/1I1ojO230brmOtklQIlzTAiDIH0QV664WEGznFTC\nZU7ixo0b2LBhA6qqqnD79m3u+kcffSR65ZyhnIQ6Cefc0xkTyhK+MhxNrdbAQGdMyI8oOYkZM2ag\nqakJ+/btw7hx41BbW4uwsDCPK0mIM7SzqLINix3GK9OuvurgMkicOXMGK1asQK9evfDss89iz549\nOHr0qD/qRrpBbeOt3iRA1dYW3pCiLYSTD3x1drm36L7wjssgcccddwAAQkND8f3336OhoQG1tbWi\nV4xok3B4YlDkIIlqQtxl2dXXQo4L64j7XOYkNmzYgBkzZuDw4cN49tln0dbWhry8PDz33HP+qqMd\nykmoW+DyQLSz7QDojAmlobPL5c2Tz07a4I/ITtRforgzJgAge0A2ds3aJWGNiDv0eXqw6Pz3GRka\niVOLTlGQlwlREtcNDQ349a9/jSFDhmDIkCF47rnn0NjY6HEliW+pcbxVeMZEd7d5UGNbeErKtvD1\n2eXeovvCOy6DxKxZs3DXXXfhH//4B/7+97+jb9++mDlzpj/qRjTKwBholpOC0dnl6uJyuCklJQXH\nj/O3SDCZTKisrBSlQrm5ufjggw/Qp08fAJ0n402ePJn3OzTcpH50frJy0dnl8iXKcFNgYCAOHjzI\nlb/55hsEBro8GttjOp0OL730EsrLy1FeXm4XIIg20Cwn/8gpzEFmQSayP8722XRVmuWkLi6DxIYN\nGzB37lwYDAYYDAbMnTsXGzZsELVS1EvoPrWOt3pymI1a28IT3W2LwqpClJwtwZ5TezB3x1yfvb+n\neSUx0H3hHZdBYsSIEaiqqsKRI0dw5MgR/N///R/+9a9/iVqpdevW4d5778Xs2bPR0NAg6nsR+ZL7\nYTZqcPnmZe7xTfNNn72u8Oxyc4dZFgvriPs8mgIbHx/v1cFDWVlZuHjxot31P/3pTxg1ahQiIzu7\nqrm5uTh9+jQ2bdrE+z2dTodnn30WCQkJAACGYZCWlobMzEwA1m8OVFZ2OTEtsXPOfTUAAH2HdM65\nl0v9lF7+5PoneL/sfa59+6V05n189fqPHnq08yCpn1//kcmdeznJ5e+vhXJxcTEKCgoAAAkJCcjL\ny/PPOglvg0R3XbhwAePHj0dVVRXvOiWutYMOsxFPzz/1RMvtFgCADjpUL672advSQVLyI0ri2t8u\nX7Z2f7du3YrkZPnsSy9Hlm8NauXOXk5qbwt3dKctbt2+xT2ODI30efCVy15OdF94x+k0pbCwMOh0\nOoc/a24Wb97zyy+/jMrKSrS1tcFgMODDDz8U7b2I/O2YvoM3nZJmOfmGMd/IrYoGgBGxI3z+HpZZ\nTpbV85a8Eq2eVxbaloPIHu3l5HvBK4Jh7jADAAIQgCvLrojSprSXk7yoYriJECGa5eR7lgABACPj\nR4oWdGn1vPJRkFA4LYy3dnfOvRbaoru6aoucwhxeubqxWtS6eHNGiC/QfeEdChJE9ujbqG9tqrRO\nKddBh4PzD3bx296j1fPKRjkJogjCvZxobNszOYU5nWsjfhYVGoW639SJ/r62eSUxptuS7qGcBFEt\n4bfRDnRIVBNlK6wq5JXFmNXkiG3OgwXr9yEn4jkKEgqnlfFW4V5OjS2NdkNOWmmL7nDWFrbbcIQF\nhuHjX33sl/oI80qt7a1+WzNB94V3KEgQxcjon8E9liIBqga2PbCewT39NpXYwBhwZ487ubIcDiMi\n3UNBQuEs+7VogXDISfhtVEtt4YqjtjDmG3nlYf2G+ak2naQ6jIjuC+9QkCCKwYQwdt9Gac1E9/1Q\n/wP3WA+934aaLITbdJScLaGdYRWAgoTCaW28Vfht1HbNhNbaoivCtsgpzOFtwxHVM8rvq9aZEIY3\nlbmto80vQ050X3iHggRRFOG3UTqnoHts10YAwLf/71tJ6mG7sA6g86+VgNZJEMVhVjKd5xT87JF7\nHrHLVxCnRcWkAAATWElEQVQ+fZ6e60n4a22EI3T+tbRonQTRBKkSoEolHGpK75suWV3o/GvloSCh\ncFocbxUOOe2r3oezTWc12RbO2LaFcKipZ3BPP9eGT7hm4uiFo6K+H90X3qEgQRRH+G2UVvB2zfZw\noQBdAAoeLZCuMoDddhxNrU2UV5IxChIKp9U54MJvo4MiB2m2LRyxtIXwcKEHEh6Qxfh/eIg1L9HW\n3ibqkBPdF96hIEEUycAYeNt0lJwtoZ1hHRCujdj85GYJa2NVvqCcV953Zh/1JmSKgoTCaXm8Vbhp\n3NBXh0pYG3mx3Be2vYiI0AhZ9CIA++3fxVwzoeV/I75AQYIolnDIidZM8Am34fDXjq/dRWsmlIHW\nSRBFE66ZyB6QjV2zdklYI/mwXRuhhx71y+pl05MA7NdMBOuDcemVS7Kqo9rQOgmiOV1t06FlctiG\nwxWptukg7qEgoXBaH2/lrZmopiEni//a8V+8slTbcLjijyEnrf8b8RYFCaJotDOsY23tbdzjiNAI\n
\ No newline at end of file diff --git a/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/.ipynb_checkpoints/chapter3-checkpoint.ipynb b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/.ipynb_checkpoints/chapter3-checkpoint.ipynb new file mode 100755 index 00000000..22fca9a1 --- /dev/null +++ b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/.ipynb_checkpoints/chapter3-checkpoint.ipynb @@ -0,0 +1,460 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 3: Electromechanical-Energy-Conversion-Principles " + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 3.1, Page number: 114" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import math\n", + "from sympy import *\n", + "\n", + "#Variable declaration:\n", + "I=10 #current in the coil(A)\n", + "Bo=0.02 #magnetic field (T)\n", + "R=0.05 #radius of the rotor(m)\n", + "l=0.3 #rotor length(m)\n", + "\n", + "\n", + "#Calculations:\n", + "q=symbols('q') #Direction of torque\n", + "F1=-2*I*l*Bo*sin(q) #Force on the coil(N)\n", + "T=F1*R #Torque scting in theta direction(Nm)\n", + "\n", + "\n", + "#Results:\n", + "print \"Force per unit length:\",T,\"Nm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Force per unit length: -0.006*sin(q) Nm\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 3.2, Page number: 121" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from sympy import *\n", + "\n", + "\n", + "#Variable declaration\n", + "N=1000 #No of winding turns\n", + "g=2 #Air gap width(mm)\n", + "d=0.15 #Magnetic core width,d (m)\n", + "l=0.1 #thickness of core(0.1)\n", + "x,d=symbols('x d') #where h is height of plunger(m) \n", + " #Lx is inductance as a function of x(H)\n", + "i=10 #Current in the winding(A)\n", + "uo=4*3.14*10**-7 #permeability of free space(H/m)\n", + "\n", + "#Calculations:\n", + "Lx=(uo*N**2*l*d)/(2*g*10**-3)*(1-x/d)\n", + "Wfld=(1./2)*Lx*i**2\n", + "\n", + "\n", + "#Results:\n", + "print \"The magnetic energy stored, Wfld:\",\"236*(1-x/d) J\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The magnetic energy stored, Wfld: 236*(1-x/d) J\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 3.3, Page number: 124" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "%matplotlib inline\n", + "import numpy as np\n", + "\n", + "#Variable declaration:\n", + "xdata=[0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0] #(cm)\n", + "Ldata=[2.8, 2.26, 1.78, 1.52, 1.34, 1.26, 1.20, 1.16, 1.13, 1.11, 1.10] #(mH)\n", + "I = 0.75 #(A)\n", + "\n", + "\n", + "#Calculations:\n", + "x=0.01*np.array(xdata)\n", + "L=0.001*np.array(Ldata)\n", + "length=len(x)\n", + "xmax=x[length-1]\n", + "a=polyfit(x,L,4)\n", + "xfit=[0]*102\n", + "Lfit=[0]*102\n", + "for n in range(1,102,1):\n", + " xfit[n-1]=xmax*(n-1)/100\n", + " Lfit[n-1]=a[0]*xfit[n-1]**4+a[1]*xfit[n-1]**3+a[2]*xfit[n-1]**2+a[3]*xfit[n-1]+a[4]\n", + "\n", + "#Plot the data and then the fit to compare (convert xfit to cm and Lfit to mH)\n", + "plot(xdata,Ldata,'o')\n", + "plot(100*np.array(xfit),1000*np.array(Lfit),'g.')\n", + "xlabel('x [cm] ')\n", + "ylabel('L [mH] ')\n", + "title('Inductance,L vs length,l')\n", + "grid()\n", + "print \"The required plots are shown below:\"\n", + "show()\n", + "\n", + "#set current to 0.75 A\n", + "I=0.75\n", + "F=[0]*102\n", + "for n in range(1,102,1):\n", + " xfit[n-1]=0.002+0.016*(n-1)/100\n", + " F[n-1]=4*a[0]*xfit[n-1]**3+3*a[1]*xfit[n-1]**2+2*a[2]*xfit[n-1]**1+a[3]\n", + " F[n-1]=(I**2/2)*F[n-1]\n", + "plot(100*np.array(xfit),F,'b.')\n", + "xlabel('x [cm]')\n", + "ylabel('Force [N]')\n", + "title('Force, F vs length,l')\n", + "grid()\n", + "\n", + "#Results:\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n", + "The required plots are shown below:" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "stream": "stderr", + "text": [ + "WARNING: pylab import has clobbered these variables: ['Polygon', 'poly', 'sign', 'flatten', 'conjugate', 'diff', 'tan', 'Circle', 'roots', 'plot', 'eye', 'trace', 'floor', 'diag', 'invert', 'nan', 'sqrt', 'source', 'add', 'zeros', 'take', 'var', 'pi', 'plotting', 'product', 'seterr', 'power', 'multinomial', 'transpose', 'test', 'beta', 'ones', 'sinh', 'vectorize', 'cosh', 'trunc', 'cos', 'prod', 'tanh', 'mod', 'det', 'sin', 'binomial', 'solve', 'log', 'exp', 'reshape', 'gamma', 'interactive']\n", + "`%pylab --no-import-all` prevents importing * from pylab and numpy\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1YVHX+N/D3gA5ggIMPYAKFmWk8KSP+6jZEvNhEIYMW\nWRNDIV1Y+612WZvdJT50ZbXZuura1i23pq2Bm+G1rYYPkDFoZqmAqHlvFokw+jPFQB5iEGLuP4hp\nhuFhGL7DnJl5v67LaznMmcOXz57mw/fz+Z5zZFqtVgsiIqJfOFl7AEREJC1MDEREZICJgYiIDDAx\nEBGRASYGIiIywMRAREQGmBjI4tatW4eUlBRrD8MupKamYvXq1Vb52QEBATh69KhJ+/L/c9vGxEAm\n6cuHQmcymUzIGJycnPD9998LOZYoA/0BKJPJhMWzJ10loL787IEYI1kOEwOZZKA+kHojtesxrRET\nqcWgK7YwRuoeEwP12a5duxAREYEXXngBw4cPh6+vL/7973/rXv/mm28wZcoUeHp6YubMmaiurta9\nplKp4O/vb3A8/dlIa2srVq1aBV9fX3h4eECpVEKtViMyMhIAMHHiRHh4eOCjjz5CbW0tYmJiMGLE\nCHh4eOA3v/kNrly5ojtuVFQU1qxZg2nTpsHd3R2RkZG4efOm7vX8/HwolUp4eHjA19cX7733HgCg\nqakJS5cuhbe3N7y8vLBo0SI0NTV1GQtTPwCXLl2KF154weB78fHx2Lx5M4D2mYePjw88PDwwbtw4\nk2dnH374ISZMmABPT08olUqcPn1a91pAQAA2btyIsLAw3HXXXUhISDD4PdatW4dhw4bhnnvuwfbt\n2+Hk5ITy8nJkZWUhJycHGzZsgIeHB+Lj43XvKS0t7fZ4ZD+YGMgsp06dQnBwMG7duoXVq1fj97//\nve61efPm4dFHH8Xt27fx2muvYffu3T3+Za0/G1m/fj0OHTqEL7/8EvX19cjJycGQIUNw7NgxAMC5\nc+dQX1+PpKQkaLVaLF++HD/88ANu3LiBu+++GxkZGQbH3rNnD7Kzs1FdXQ1nZ2f8+c9/BtCevBIT\nE7FmzRrU19fj4sWLmDJlCgDg2WefxY0bN1BeXo5r166hrq4OL730Ur/ilZycjA8//FC3XVNTg4KC\nAjz55JM4f/483nvvPZSVlaG+vh5FRUUYO3Zsr8f8/PPPsWzZMuzduxd1dXX405/+hPj4eDQ3N+vi\nmpubi08//RRqtRqXLl3C9u3bAQD/+te/sH37dhQXF+O7777DyZMnde9JT0/HggUL8OKLL6K+vl6X\n9LVabbfHI/vCxEBmuffee7Fo0SIAwMKFC1FdXY2rV6/i0qVL+M9//oO1a9dCJpNhypQpeOKJJ0w+\n7s6dO/HGG2/oZhUTJkzAsGHDutzXy8sLcXFxcHZ2hpubG1588UVdAgHaP+TS0tJwzz33wNXVFb/7\n3e9QVlYGAMjOzsZjjz2GhIQEAMDQoUMREhKCO3fuYPfu3Xjrrbfg4eEBNzc3rFy5Env37jUrTh0i\nIiIgk8lw/PhxAEBubi6mTp2KUaNGwc3NDc3Nzbh48SJaWlowevRoBAQEdHusjiS6Y8cO/OEPf0Bo\naCiA9uTj6elpEINly5Zh+PDh8PLywpw5c3S//0cffYQlS5ZgzJgxkMvlWLt2rdHP6Twbkslk3R6P\n7AsTA5ll1KhRuq+HDBkCAGhubsaNGzcwbNgwuLi46F738/MzueTyP//zP7jvvvtM2vf27dtITU2F\nr68vFAoFHnnkETQ3Nxv8LP1xdnwAd/ycMWPGGB3z5s2baG5uxuTJk+Hl5QUvLy/Mnj0bdXV1Jo2p\nOzKZDE8++ST27NkDAMjJycGCBQsAAPfffz82btyI1atXw8fHB3PnzoVare71mGq1Ghs3btSN08vL\nC2q12qB01/n3v3Pnju739PX11b2m/3VPuosn2RcmBhLK29sbP/74IzQaje57VVVVur9y5XI5fvrp\nJ91rbW1tqKmp0W2PHj3a5JVHb731Fq5evYqysjLU1tbixIkT0Gq1JiUhX19fXL582ej7w4cPx+DB\ng/Htt9+ipqYGNTU1qK2tRUNDQ5fH6Uvzef78+cjNzcWVK1dw6tQpJCYm6l576qmncOLECVRWVsLF\nxcWoH9GVu+++G+vWrdONs6amBg0NDZg/f36v7/X29sbVq1d1250TkSm/V2/lQbJdTAwk1AMPPIDx\n48dj/fr1aGtrw5kzZwwa0w8++CAaGhpw8OBBtLW1YcOGDWhsbNS9npaWhlWrVqGqqgoAcPHiRfz4\n448AgGHDhhl8mP/0008YPHgwPDw8UFdXh1dffdVoPN0lifnz5yMvLw/79++HVqtFbW0tzp8/D1dX\nV6SkpOD5559HbW0tAOD69esGzWAnJydduUar1aKtrQ3Nzc3QaDTQaDTd/hU9adIkjBgxAkuWLMGs\nWbPg6ekJAPj2229x/PhxtLa2Qi6Xw8XFBU5OXf+nqZ/4lixZgnfffRelpaUAAI1Gg/z8/G6TmH48\n5s6dix07duDy5cu4c+cOXnvtNYP9hg0bZtDI7+lY3cWFbBcTA/VZV0tX9bc//PBDHDlyBAqFAi+/\n/LLBOn8vLy9s2bIFKSkpGD16NAYPHmywSikzMxOPPvqoblVTSkqKbvaRmZmJefPmwcvLC7m5uVix\nYgVu374NLy8vPPzww4iOju5xXPrjHj9+PHJzc7FmzRp4eHggODgYJSUlAIC3334bXl5eePDBB+Hp\n6Ynp06fjwoULANpnPx4eHggJCdEdc8+ePXBzc8OQIUMwZMgQjBs3rtvYJScn47PPPkNycrLuexqN\nBitWrICXlxdGjBiBa9eu4c033+w19pGRkXjrrbewaNEieHh44N5778W2bdu6/Wtd/71PPPEE0tLS\noFQqcf/99+sa787OzgCAxYsX48yZM/D09MRvf/vbXo/XVVw4a7BdMks9qEej0WDatGlobW1FY2Mj\n4uLisGnTJqP9li9fjqNHj8LFxQU7duxAWFiYJYZDJER2djYuXrxo9Be2rSsvL8cDDzyAhoYGuLm5\n9fn99hoXR2WxxAC0rwd3c3NDa2srIiIi8MYbb2DGjBm61/ft24fdu3fj448/RmlpKdLS0nD27FlL\nDYeI9HzyySeYNWsWmpqasHjxYty+fRtHjhyx9rBIAixaSur4y+POnTv4+eef4ePjY/D6wYMHdWWG\nsLAwtLa2mrQag4j6b8uWLRg2bBhGjx6NhoYG3QV+RIMsefC2tjYolUqUl5dj6dKlCAwMNHhdrVYb\n1Jf9/PygVqvh5+dnyWEREYCCggJrD4EkyqIzBicnJ5w9exZqtRrHjh2DSqUy2qeri2iIiMh6LDpj\n6DB06FDExcXhyy+/RFRUlO77fn5+qKqqwkMPPQQA3c4WfH19ce3atYEYKhGR3Rg7diy+++67Pr/P\nYjOGW7duob6+HkB7E7qgoEC3lK1DbGwssrOzAQAlJSVwdnbu8grMa9eu6dZv81///61du9bqY7CX\nf4wl4ynlf+Xl5WZ9fltsxnDt2jUsXLgQWq0WGo0GycnJiIuLw7Zt2wAAGRkZSExMRGFhIYKCguDi\n4oKdO3daajikp6KiwtpDsBuMpViMpzRYLDGEhITorsjU1/nul2+//balhkBERGbglc8OKDU11dpD\nsBuMpViMpzRY9AI3UWQyGWxgmEREkmLuZydnDA6oq2XDZB7GUizGUxqYGIiIyABLSUREdoqlJCIi\nEoKJwQGxjisOYykW4ykNNpMYYmIykZd3rPcdiYioX2ymx4AFsxFQ/CDe/ks84uIirT0kIiLJs/8e\nw7hDqAiuwtatvFUwEZEl2U5iuBoOfJIFjcbZ2iOxeazjisNYisV4SoPtJIbdBYBGAVfXn609EiIi\nu2Y7PQZoMXbsy9iyZRZ7DEREJjC3xzAgD+oRISZmNZYtY1IgIrI0myklHT78Kv7d9gGidkUhNjsW\ntZpaaw/JZrGOKw5jKRbjKQ02kxgA4NKtSyi6UoRD3x1C+oF0aw+HiMgu2UyPQavVIjY7Foe+O4Tw\n0eEoSCmAwlVh7aEREUmWuT0Gm0oMtZpapB9IR9acLCYFIqJe2P8FbgAUrgrsTdqrSwrpB9LZczAD\n67jiMJZiMZ7SYFOJoTP2HIiIxLOpUlJn7DkQEXXPIXoMnbHnQETUPYfoMXTWuedApmEdVxzGUizG\nUxps5srn3qQfSMelW5cwZPAQ5CTmMFkQEZnJpktJ+qJ2RaHoShEAICkwCXuT9g7E0IiIJMshS0n6\nhgweAgAIHx2OrDlZVh4NEZHtspvEkJOYg6TAJK5OMgHruOIwlmIxntJgNz2GjkY0ERH1j8V6DFVV\nVViwYAFqampw584dLF68GCtXrjTYR6VSIT4+Hvfddx8AIDExEZmZmcaD7GOdjI1oIiIJPo9BLpfj\nnXfeQXBwMBoaGqBUKhETE4OJEyca7Dd9+nTs379f6M/uuCIaaE8SnEkQEZnOYj0GHx8fBAcHAwDc\n3d0RGhqKa9euGe1niQkLG9E9Yx1XHMZSLMZTGgak+VxRUYHTp08jIiLC4PsymQwnT55ESEgIoqOj\nUVZWJuTnsRFNRGQ+i1/H0NDQgBkzZmDVqlVISEgwem3QoEFwdXVFfn4+MjIycPnyZeNBmlkn68Ce\nAxE5Isn1GACgpaUFiYmJSE5ONkoKQHuJqcPMmTMhl8tx/fp1jBo1ymjf1NRUBAQEAAAUCgUmTZqE\nqKgoAL9OP7vbPnXiFMqulwFj2pPEMyOf6XF/bnOb29y2xW2VSoVdu3YBgO7z0hwWmzFotVosWrQI\nw4cPx6ZNm7rcp7q6GiNGjAAAFBcXIz4+HpWVlXByMqxw9XfGwLuwGlKpVLqTivqHsRSL8RRLcjOG\nEydO4IMPPkBoaCjCwsIAAK+//joqKysBABkZGdizZw+ystqbw3K5HDk5OUZJQYScxBzehZWIyER2\nc68kIiIyJLkZg1SxEU1E1DO7uVeSqfg4UK4VF4mxFIvxlAaHSwy8+I2IqGcO12Pg40CJyFE45DOf\n+4v9BiKyZw7/oB5zOGq/gXVccRhLsRhPaXDoxMB+AxGRMYcuJbHfQET2jD0GAdhzICJ7wh6DAI7S\nc2AdVxzGUizGUxqYGPSw50BExFKSga56Dnl5x/C3v+WjuXkQXFxasXz5TMTFRVp8LERE/cV7JQmg\ncFXong+dfiAdJy+dQvl/6tF0rBjQtCeK8vJVAMDkQER2i6Wkbly6dQkXGsrQ5Pc98Niv/Yby8tew\ndWuBFUfWf6zjisNYisV4SgMTQzc6+g24Gg58Ythv0GicrTAiIqKBwR5DN2o1tZjwwlT8sP0LXRmp\nQ0zMahw+/OqAjoeIqK/YYxBM4arAjln/B88eegvlgTeB4ZeAliEIKJ6AZcuMn19NRGQvWErqQVxc\nJLZsiYHX/UeAgCJg3CH4LS21+cYz67jiMJZiMZ7SwMTQi7i4SDw8OQhA+/UNB9L/ZeURERFZFnsM\nJuh8fQNvnUFEtoD3ShpAUbuiUHSlCACQFJiku/aBiEhKeK+kAWTrt85gHVccxlIsxlMamBjMkJOY\ng6TAJBSkFLCMRER2h6WkfmK/gYikiqUkK3GUW3UTkeNgYugnW+w3sI4rDmMpFuMpDUwM/aTfb1hZ\nsBJRu6IQmx2LWk2ttYdGRGQW9hgE4jJWIpIS9hgkwBbLSkREnVksMVRVVSEyMhIhISEYP348NmzY\n0OV+y5cvR1BQEJRKJUpLSy01nAHReRlr+oF0SZaWWMcVh7EUi/GUBovdXVUul+Odd95BcHAwGhoa\noFQqERMTg4kTJ+r22bdvHyorK/H111+jtLQUaWlpOHv2rKWGZHH6T4ADfl2xBLQva2VpiYhsgcVm\nDD4+PggODgYAuLu7IzQ0FNeuXTPY5+DBg0hJSQEAhIWFobW1FWq12lJDGnBSLS1FRUVZewh2g7EU\ni/GUhgHpMVRUVOD06dOIiIgw+L5arYa/v79u28/Pz64SA6+QJiJbZPEH9TQ0NCApKQlbtmyBh4eH\n0eudO+YymazL46SmpiIgIAAAoFAoMGnSJN1fFx11SSlu703aC5VKhb988Rc0jG7AkMFD8MzIZ+Au\nd7fa+DZv3mwz8ZP6tn5NXArjsfVtxrP/8du1axcA6D4vzWHR5aotLS147LHHMGvWLKxYscLo9cWL\nF2P27NmYO3cuACA4OBhHjhyBr6+v4SBtZLlqT6S0lFWlUulOKuofxlIsxlMsyS1X1Wq1WLx4MQID\nA7tMCgAQGxuL7OxsAEBJSQmcnZ2NkoK9kFK/gf/hicNYisV4SoPFZgyff/45IiMjERoaqisPvf76\n66isrAQAZGRkAAD++Mc/orCwEC4uLti+fTuUSqXxIO1gxqD/sJ+VBSt54z0isjg+qMeGWLusxOm6\nOIylWIynWJIrJVH3pFRWIiLqjDMGK+AzpIloILCUZMOsXVoiIvvEUpIN0y8tuQ12s/j9lfTXilP/\nMJZiMZ7SwMQgAfpXSF+pvcInwhGRVbGUJDGx2bE49N0hhI8O5600iKhf2GOwE7zegYhEYY/BTnTc\nulvhqtDdtlt0WYl1XHEYS7EYT2mw+E30yHz6TelE+SLExGSiuXkQXFxasXz5TMTFRVp5hERkj1hK\nkrCOslKifBFWPf8FygNvAsMvAS1DEFD8IN7+SzyTAxF1iz0GOxYTk4n8/PVAahQQ0H69Ay4kIaZ+\nPA4fftWqYyMi6WKPwY41N/9S8WtpLy3hajjQ6oYvJ+w263oH1nHFYSzFYjylgYnBBri4tLZ/sS8H\nuJAE7C4AFFdw2+sKr3cgIuFYSrIBeXnH8OyzR1Be/prue25LxqLJ73uEjw5H4MhAXKm9wmWtRGSA\nPQY7l5d3DFu3FkCjcYar689IW/ow9t15H1lzspDwzwTea4mIjDAxOLC+Xi3Ne96Lw1iKxXiKxeaz\nA9O/11LHbbwtfSM+IrJfPc4YQkJCej3AyJEj8dlnnwkdVGecMfQNb+NNRID5n509Xvn8888/49Ch\nQz0e+PHHH+/zDyXL6uo23mxME5Gpeiwlbdu2Dffeey8CAgK6/ff3v/99oMZKJurtNt5cKy4OYykW\n4ykNPc4Ypk2b1usBTNmHBlbHjfgA4+dLpx9Ix6kTpzD66mjOIIioSyb3GDrXqmQyGc6dO2fZ0XXz\ns8l0nZ8vzf4DkeOwSI/hwIEDuq/j4uJw8OBBfkDbGP3ZA8D+AxH1rsceg34vQS6XG/UbyPbkJOZg\nunY6HyMqCGviYjGe0sDrGByMwlWBdVHroHBVdDl74LUPRNRjj6G4uFhXo1qwYAFycnKg1Wohk8kA\nAEqlcmAGyR6DRej3H3hbDSL7Y5FbYkRFRemSgH5C6FBYWNjnH2gOJgbL63xbDT5vmsj28V5JZLKu\n7kfD1Uvm4b19xGI8xbLIqqQOzc3NOHDgAKqqqqDVanWzh+eee67H9z399NPIy8uDt7c3zp8/b/S6\nSqVCfHw87rvvPgBAYmIiMjMz+/xLUP+ZsnqpoUYDz4IItP3kzudOE9kxk2YM0dHRGDp0KEJCQuDk\n9Gu/eu3atT2+7/jx43B3d8fChQu7TQx//etfsX///p4HyRnDgOuu/4AfxwB19/C500Q2wKIzhps3\nb+Lo0aN9Pvi0adNQUVHR4z78wJemrq6extVw4GcX3XOnK5rdsXVrARMDkZ0xabnqzJkzUVBQIPyH\ny2QynDx5EiEhIYiOjkZZWZnwn0HG+rpWPCcxByNvBLY/UrTZs/2bV8OBT7JQdu9Bh17mynX3YjGe\n0mDSjGHq1KmIj49HW1sbBg8eDKD9Q72urq5fP3zy5MlQq9VwdXVFfn4+EhIScPny5S73TU1N1V1U\np1AoMGnSJF2TquNk4rZp22fPnu3b/l+exb2nlLipUbQ/d/q/EoCTfwJaFGi+qxpFqhIAgLJaiXuG\n3oOmb5uwevpqPDbzMUn8vtzmtqNsq1Qq7Nq1CwD6dRGyST2GgIAA7N+/H8HBwQY9BlNUVFRgzpw5\nXfYYOhs/fjyKioowatQow0Gyx2B1XT13euzYl6H4789QXPcVwkeHw8XZBSeqTgDgSiYiKbBoj2HM\nmDEICQkxuo6hv6qrqzFixAgA7RfTNTY2wtvbW+jPIDE6+ghbt67WPXd62bJZeCR6pa5JnbwvGQDv\nw0Rk60yaMSxatAgVFRWYNWsW5HJ5+xtNWK46f/58FBUVobq6Gj4+PnjllVfQ0tICAMjIyMDWrVuR\nlZUFAJDL5di0aRMiI40bmZwxiKWy0Frxnq6kVrgq7PKCOUvF0lExnmJZfMYwZswY3LlzB3fu3DH5\n4Hv27Onx9WXLlmHZsmUmH4+krafnQOgnivQD6SwzEUkYr3wmi+h8JbX+LTcCRwbiSu0Vu5s9EEmN\nuZ+dPXaS161b1+sBTNmHHE/H7KHjQ7+7x40qtykderkrkRT1OGPw8/PDc88912PGycrKwjfffGOR\nwXXgjEEsa9dx9WcPnVcy2VovwtqxtDeMp1gW6TEsWbIE9fX1PR4gPZ0PeKG+yUnM6XIlU+dehHJb\n+3URtpIkiOwFewxkVT31IvRnE2MUY3RJYpH7f+O9d06iuXkQb+ZH1APedpvsgn6iSN6X3GWSuKti\nAhpvTQOGX+LN/Ih6YJHmM9mnjkvopUi/aa3fsPZ0ab9Hk2f93Wj858n2pBBQBIw7hIqZ/0LK0RSr\nNLClHEtbxHhKg9mJYfPmzSLHQWSkqyQRcnYhoFEALXp3fG0YjZqhlVzlRCSI2aUkf39/VFVViR5P\nl1hKog4xMZnIz18PuNYCj6UDn2QBicnAOPtY5UQkEktJ5BCWL5+JsWNXtc8acvcCGgUCiicgwivK\noOTUscrp0q1LvGaCqI9MuiUG2RdbXive9c38EhAX91cAhkthFa4Kg1tzuDi7dLsUdmXByj7NLPLy\njuFvf8vHDz+o4ePjx5VRgtjyuWlPekwM7u7u3d5R9aeffrLIgIh6ExcX2e2HcOdnV3d3zYR+kkg/\nkI4bjTdMvn7C8BbkKgBRKC9fpRsbka3jclVyGN0thS1IKeh2aWznPsXIu0Zi/zEVam8EtT+0SPNr\n0oiJWY3Dh1+11q9HZITXMRD1QecL63pKGvpXY49wG4Hqpur2g/w4Bqi7p32F1L4cTH9oM1Sqddb7\npYg6YWIgk7GO27OersZWuCrw6fefti+T/dkF+PkEMAbAhST4jfwWY/9rqG5mwTvI9h3PTbEs+jwG\nIkfSU58CAOZkPQH1P5WomPz/2v8LuhqOgAt+cF9yqcuZRU+N7v4mkI4mOG8PQiJxxkBkhry8Y/jr\nOwdwPuAgQipi8dwzc/D32j8bzSy66lnoN7r1E4j+/aBMWSnV9XO4V2HLlhgmBwLAUhKR1emXoACY\n1Og2NYHoJ42OWcaF0ircyioGHl2pu28U9uUgZvrGAW2Cc9YiXUwMZDLWccUxJZY9NboB0xKIftIw\naIBfSALcb7TfNwoAfhyDobI2TJ0SaFSmElnC6iB61sJzUywmBjIZ/+MTR2QsTV0p1THL8Ky/G3V/\nv6i7JYiuIX6PcQIxt4Sln0C6SjQfFR4RunSX56ZYTAxEdqyrWUaifBFWPf8Fyq++oLtvlNtTk9Hk\n971RmcrcEpZ+Aukp0XReujtqYTTG/y8Pk5ILG/GWw8RA5IDy8o5h69YC3e1B0pY+jH133jcqU5lb\nwtJPIN0lms4zFVxIgpf/V6gZWgnA9OTSn1lMQ40Gt7IeQcW4el2/xd1JjYCJTvAfNXrAlgxLLTkx\nMZDJOF0Xxx5iaWoPRP/rjv3mZD0B9bu/LN39pZwVcHwahqd/geK6r0xOLrrXjn6K8EfMm8UY9Vsa\nRwB39b9cZsp+CleFpFaJdSSo/PzXmBjINPbwYSYVjGXXS3cfiQ41Obnov5bw5wR8/L8/7vMsxr1u\nNBre+dqw36JRAGPFlct62k/hqvi139I4ElBcaS+rNY6E1xgVHp4c1GvpTFRZzTBBccZARHair7OY\n6p33oPDQXwyf0wHAZ8lU/OetL/pdLuttP/3bpujPVPS/7inRiCyrGSxjPvB/mRiIyDF1XcZ5GVu2\nzEJcXGS/ymWm7Ndx2xT9mUrnWUtPiUb04gBdWW1XkXmfnVobYCPDtBmFhYXWHoLdYCzF6k88P/mk\nSBsTk6mdPn2tNiYmU/vJJ0XiBtaLmqYabcSWKG3AhOe0cK3RYm6SFq412oAJK7QRW6K0NU01uv2S\n9iZpa5pqDL7u6bXZH8zWYh204VnhRtu/+cdvjL72fP7u9jEsmG32ZydnDA6IdXFxGEuxbD2enVeJ\nLVv2aL8bz32d7RgsY9Z4Sa+U9PTTTyMvLw/e3t44f/58l/ssX74cR48ehYuLC3bs2IGwsDDjQTIx\nEBGZrCNBHTmyXnqJ4fjx43B3d8fChQu7TAz79u3D7t278fHHH6O0tBRpaWk4e/as8SCZGIiI+szc\nz04nC4xFZ9q0afDy8ur29YMHDyIlJQUAEBYWhtbWVqjVaksOidA+XScxGEuxGE9psGhi6I1arYa/\nv79u28/Pj4mBiMjKrP6gns7THJlM1uV+qampCAgIAAAoFApMmjRJ16Tq+CuD26Ztd3xPKuOx5e2o\nqChJjcfWtxnP/m2rVCrs2rULAHSfl+aw+KqkiooKzJkzp8sew+LFizF79mzMnTsXABAcHIwjR47A\n19fXcJDsMRAR9Zkkewy9iY2NRXZ2NgCgpKQEzs7ORkmBxOv4C4P6j7EUi/GUBouWkubPn4+ioiJU\nV1fD398fr7zyClpaWgAAGRkZSExMRGFhIYKCguDi4oKdO3dacjhERGQCXuBGRGSnbLKURERE0sPE\n4IBYxxWHsRSL8ZQGJgYiIjLAHgMRkZ1ij4GIiIRgYnBArOOKw1iKxXhKAxMDEREZYI+BiMhOscdA\nRERCMDE4INZxxWEsxWI8pYGJgYiIDLDHQERkp9hjICIiIZgYHBDruOIwlmIxntLAxEBERAbYYyAi\nslPsMRARkRBMDA6IdVxxGEuxGE9pYGIgIiID7DEQEdkp9hiIiEgIJgYHxDquOIylWIynNDAxEBGR\nAfYYiIg+uZ3lAAAJAklEQVTsFHsMREQkBBODA2IdVxzGUizGUxqYGIiIyAB7DEREdkqSPYbDhw8j\nJCQEgYGBePPNN41eV6lUGDp0KMLCwhAWFob169dbcjhERGQCiyWG5uZmLF26FIcPH8a5c+eQm5uL\n0tJSo/2mT5+O0tJSlJaWIjMz01LDIT2s44rDWIrFeEqDxRLDV199haCgIPj6+mLQoEGYN28e8vLy\njPZjiYiISFoslhjUajX8/f11235+flCr1Qb7yGQynDx5EiEhIYiOjkZZWZmlhkN6oqKirD0Eu8FY\nisV4SsMgSx1YJpP1us/kyZOhVqvh6uqK/Px8JCQk4PLly5YaEhERmcBiicHPzw9VVVW67aqqKoMZ\nBAC4u7vrvp45cybkcjmuX7+OUaNGGR0vNTUVAQEBAACFQoFJkybp/rroqEty27TtzZs3M36CtvVr\n4lIYj61vM579j9+uXbsAQPd5aQ6LLVfVaDSYMGECTpw4AW9vb0ydOhXbtm2DUqnU7VNdXY0RI0YA\nAIqLixEfH4/Kyko4ORlWuLhcVSyVSqU7qah/GEuxGE+xzP3stOh1DIcOHcILL7yAtrY2pKSk4KWX\nXsK2bdsAABkZGdi6dSuysrIAAHK5HJs2bUJkZKTxIJkYiIj6TJKJQRQmBiKivpPkBW4kTfp1XOof\nxlIsxlMamBiIiMgAS0lERHaKpSQiIhKCicEBsY4rDmMpFuMpDUwMRERkgD0GIiI7xR4DEREJwcTg\ngFjHFYexFIvxlAYmBiIiMsAeAxGRnWKPgYiIhGBicECs44rDWIrFeEoDEwMRERlgj4GIyE6xx0BE\nREIwMTgg1nHFYSzFYjylgYmBiIgMsMdARGSn2GMgIiIhmBgcEOu44jCWYjGe0sDEQEREBthjICKy\nU+wxEBGREEwMDoh1XHEYS7EYT2lgYiAiIgPsMRAR2Sn2GIiISAiLJobDhw8jJCQEgYGBePPNN7vc\nZ/ny5QgKCoJSqURpaaklh0O/YB1XHMZSLMZTGiyWGJqbm7F06VIcPnwY586dQ25urtEH/759+1BZ\nWYmvv/4aO3bsQFpamqWGQ3rOnj1r7SHYDcZSLMZTGiyWGL766isEBQXB19cXgwYNwrx585CXl2ew\nz8GDB5GSkgIACAsLQ2trK9RqtaWGRL+ora219hDsBmMpFuMpDRZLDGq1Gv7+/rptPz8/ow99U/Yh\nIqKBZbHEIJPJTNqvc8e8u/fFZseiVsO/JkSoqKiw9hDsBmMpFuMpDYMsdWA/Pz9UVVXptquqqgxm\nB/r7PPTQQwDaZxB+fn7GB/MCDj11CF5PeVlquA7n/ffft/YQ7AZjKRbjKc7YsWPNep/FEsOUKVNw\n4cIFXL16Fd7e3ti7dy+2bdtmsE9sbCw++OADzJ07FyUlJXB2doavr6/RsbQ/8hoGIqKBYrHE4Orq\ninfffRcxMTFoa2tDSkoKlEqlLjlkZGQgMTERhYWFCAoKgouLC3bu3Gmp4RARkYls4spnIiIaOJK6\n8pkXxInTWyxVKhWGDh2KsLAwhIWFYf369VYYpW14+umn4ePjg5CQkG734Xlput7iyXPTdFVVVYiM\njERISAjGjx+PDRs2dLlfn89PrURoNBptQECAVq1Wa1taWrTh4eHakpISg31yc3O18fHxWq1Wqy0p\nKdFOnDjRGkOVPFNiWVhYqJ0zZ46VRmhbjh07pi0pKdEGBwd3+TrPy77pLZ48N013/fp17fnz57Va\nrVZbX1+vHTdunPbs2bMG+5hzfkpmxsAL4sQxJZaA8VJh6tq0adPg5dX9ijiel33TWzwBnpum8vHx\nQXBwMADA3d0doaGhuHbtmsE+5pyfkkkMvCBOHFPiJJPJcPLkSYSEhCA6OhplZWUDPUy7wfNSLJ6b\n5qmoqMDp06cRERFh8H1zzk+LrUrqK9EXxDkyU2IyefJkqNVquLq6Ij8/HwkJCbh8+fIAjM4+8bwU\nh+dm3zU0NCApKQlbtmyBh4eH0et9PT8lM2PoywVxHbq9IM7BmRJLd3d3uLq6AgBmzpwJuVyO69ev\nD+g47QXPS7F4bvZNS0sLEhMTkZycjISEBKPXzTk/JZMY9C+Ia2lpwd69ezF79myDfWJjY5GdnQ0A\nPV4Q5+hMiWV1dbXu6+LiYjQ2NsLb23ugh2oXeF6KxXPTdFqtFosXL0ZgYCBWrFjR5T7mnJ+SKSXx\ngjhxTInlnj17kJWVBQCQy+XIycmBk5Nk/k6QlPnz56OoqAjV1dXw9/fHK6+8gpaWFgA8L83RWzx5\nbpruxIkT+OCDDxAaGoqwsDAAwOuvv47KykoA5p+fvMCNiIgMMA0TEZEBJgYiIjLAxEBERAaYGIiI\nyAATAxERGWBiICIiA0wMRERkgImByAQVFRVwc3ODUqkUcrwZM2bAw8MDxcXFQo5HJBITA5GJ7r//\nfpSUlAg5VmFhIcLDw3mzPZIkJgZyeKdPn8bEiRPR3NyMxsZGBAcH4+LFi72+b9u2bQgMDERYWJju\nfvepqal45plnEBERgbFjx0KlUiEtLQ0TJkxAcnKypX8VIiEkc68kImuZMmUKHn/8cWRmZqKpqQkp\nKSkIDAzs8T0lJSXYuHEjzpw5A09PT9TV1QFov51xXV0dPv/8c+zfvx+PP/44Tp06hfHjx2PKlCk4\nc+YMwsPDB+LXIjIbEwMRgDVr1iA8PBxubm7YunVrr/sfPXoU8+bNg6enJwDo/hcA4uLiAADBwcEY\nNWoUJkyYAAAICgpCVVUVEwNJHktJRGi/1XNjYyMaGhrQ1NTU6/4ymazbx0/K5XIAgJOTE1xcXHTf\nd3JyQltbm5gBE1kQEwMR2m9PvH79eiQnJ+PFF1/sdf/o6Gjs3bsXt2/fBgDd/xLZA5aSyOH94x//\ngIuLC5588km0tbVh6tSpUKlUiIqK6vY9YWFheP755/Hwww/D1dUVoaGheP/99wEYPjax86ojrkIi\nW8DnMRCZoKKiAnPmzMH58+eFHXPGjBnYuHGjsGsjiERhKYnIBIMGDcLt27eFXuB2+fJlDB48WMjx\niETijIGIiAxwxkBERAaYGIiIyAATAxERGWBiICIiA0wMRERk4P8Dh4QQJ+0nzZ8AAAAASUVORK5C\nYII=\n", + "text": [ + "<matplotlib.figure.Figure at 0x3dc9590>" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEZCAYAAACw69OmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9YVHW+B/D3CCoa2iiEGEOi3J6b/BJIumqa7BrRDNtq\nsS7pyoZ50Ut7+x2P6yMbuQutkJtpezO9t5UnUbsT3d1KZFrdmLAs7QpKVFfXX8WACIioFeAo3/sH\nOyPjDDIMZ+acGd6v5+GR75nvzHzn43nmw/l+zvcclRBCgIiIaJCGyT0AIiLyDUwoREQkCSYUIiKS\nBBMKERFJggmFiIgkwYRCRESSYEIh8hLDhg3DyZMnPf6+RqMR4eHhTvePiIjA3/72NzeOiJSKCYUU\nKyIiAqNHj8aYMWMwZswYjB07Fk1NTXIPy2rYsGEIDAy0jm/8+PFyD0kSg01cKpUKKpVKwhGRt/CX\newBEfVGpVNi1axd+/OMfu/waV65cgb+/+3bz2tpaTJkyxW2vLxeudyZX8AiFvE5nZyeys7Mxfvx4\nBAUFYcWKFejq6gLQMz2j0WhQXFyMsLAwLFu2DFevXsXq1asRFhaGMWPGICEhASaTCQBw+PBhzJkz\nB2PHjsWkSZPw5ptvSjrWrq4uqNVqfPnll9ZtLS0tGD16NFpbW3HmzBmkpqZizJgxGDduHO6++26n\nvsw7OjqQk5ODkJAQjBs3Do888gg6OjpsYvDyyy9j4sSJCA4Oxuuvv2597tmzZzFv3jyMGTMGd911\nF/Ly8jBnzhwAwD333AMAmDZtGsaMGYO3337b+ry+Xo/IggmFFM3Rl2teXh6OHTuGU6dO4eTJkzh2\n7BhWr15tffzs2bP44YcfUF9fjy1btuB3v/sdKioq8Nlnn+HSpUvYuXMnRo8ejfb2dqSmpuLf/u3f\ncPHiRVRUVOCZZ55BdXX1oMbX28iRI5Geno6dO3dat+n1eiQnJyM4OBjr1q1DZGQk2tvb0dbWhpdf\nftmp6aInn3wSzc3NOHHiBBobG3Hx4kWsWrXKLgaNjY3Ytm0bnnzySZw/fx4AsHz5ctx2221oa2vD\nW2+9he3bt1vfs6qqCkDPkdelS5ewcOFCAEBTU1Ofr0dkJYgUatKkSSIwMFCo1WqhVqvFgw8+KIQQ\nIiwsTOzdu9fa78MPPxShoaFCCCEqKyvFqFGjhNlstj5+2223CYPBYPf6JSUlYs6cOTbbli9fLlat\nWuXU+FQqlRg7dqx1fE8++aTDfnv37hWRkZHW9qxZs8S2bduEEEI8//zzYsGCBeLEiRNOvd+JEydE\nV1eXCAgIsHnO/v37xcSJE4UQ12Jw9epV6+MhISHi448/Fj/88IPw9/cXp06dsj62Zs0aMXv2bLv3\nsbjR6zkSEREh/va3v/X7ecj3sIZCiqVSqfDuu+/a1VDOnj2L2267zdoODw9Hc3OztR0UFGRTNzlz\n5ozDOofJZMKBAwcwbtw467YrV65gyZIlTo+xpqam3xpKcnIyfvjhBxw8eBAhISE4cuQIHnzwQQDA\nc889h7y8PNx7773o7u5Gdna2zdGWIy0tLejq6sKdd95p3SaEwJUrV6ztoKAgDBt2bQJi9OjR6Orq\nwrlz53D16lWEhYVZH+v9e1/6ej2i3phQyOtMmDAB33zzDW6//XYAQH19PUJCQvrsf+utt+LkyZPW\n/hYTJ07Evffei/LycreO18/PDz//+c+xc+dOhISE4IEHHsBNN90EABgzZgw2bNiADRs24Ouvv0Zy\ncjKmT5+O1NTUPl8vKCgIw4cPx9///ncEBwcPaCxBQUHw8/NDQ0MDIiIiAMBaTyIaLNZQyOtkZGSg\noKAA7e3tuHDhAn73u99h8eLFffZfunQpVq9ejfr6egDAV199hba2Njz44IM4fPgwysrKcPXqVXR3\nd6OmpgZHjx4FAJSUlGDy5MmSjHnx4sV46623sGPHDpuxfvDBBzh9+jQAIDAwEH5+fjZHAo4EBAQg\nMzMTzz77LNrb2wH01DicWfsxatQo6HQ6/Pa3v4XZbMbJkydRUlJiU7cZP348Tp065fRnkzJO5N2Y\nUMjrFBYW4p/+6Z8wZcoUTJ48GZGRkXjxxRetj19f1M7Ly0NKSgqSkpIwduxYZGZmorOzE+PGjYPB\nYMDrr79uPWPs6aefRmdnJ4CeI5/Zs2f3OY6BrLW46667EBgYiDNnzkCr1Vq3f/nll7jnnntw0003\nISkpCcuWLUNKSkq/7/fHP/4R48aNw9SpUzF27FjMnTsXdXV1To1t8+bN+OabbzB+/HgsWrQIixYt\nsklieXl5yMjIwLhx41BWVtbvupL+4kRDiJwFnIqKChETEyOmTp0q1q5d67DP448/LqKiokRCQoKo\nrq62bl+6dKkICQkRMTExnhouDTH33Xef+L//+z+5h+F2eXl54uGHH3b5+UMlTtQ/2RJKZ2eniIiI\nECaTSZjNZjF9+nSbhCGEEGVlZWL+/PlCCCGqq6vFtGnTrI9VVVWJ6upqJhSiATp69Kj4+uuvhRBC\nHD58WEyYMEHs2LFD5lGRL5BtyuvAgQOIjo5GWFgY/P39kZGRYVcc3b17NzIzMwEACQkJuHLlirWA\nOGfOHJuzc4jIORcuXIBOp0NgYCBSU1OxYsUKLFq0SO5hkQ+Q7Swvk8lkc8E5jUYDo9HYbx+TyQSN\nRuOpYRL5nKSkJFkuMkm+T7YjFGcLmuK6lci86BwRkTLJdoSi0Wisp3ECPWeKXH+JbEuff/mXfwGA\nAR+dhIWFobGxUZoBExENEZGRkTh+/PiAnyfbEUpSUhLq6urQ0NAAs9kMvV5vczolAOh0Omzfvh0A\nUF1dDT8/P6dW9Vo0NjZC9Jx4wB8JfvLz82Ufgy/9MJ6MpVJ/Tpw44dL3umwJJSAgAJs2bUJqaiqm\nTZuGhx56CImJidi8eTM2b94MAEhPT0dYWBiio6Pxr//6r9i6dav1+YsWLcKsWbNw7NgxhIeH2zxG\n7mFZgEfSYDylw1gqg6yXXtFqtXZHJStWrLBp//GPf3T43N5XbyUiIvlxpTw5LSsrS+4h+BTGUzqM\npTKohBA+e2s2lUoFH/54RERu4ep3J49QyGnXrxOiwWE8pcNYKgMTChERSYJTXkREZINTXkREJCsm\nFHIa56mlxXhKh7FUBiYUIiKSBGsoRERkgzUUIiKSFRMKOY3z1NJiPKXDWCoDEwoREUmCNRQiIrLB\nGgoREcmKCYWcxnlqaTGe0mEslYEJhYiIJCFrQjEYDIiNjUVUVBSKiooc9nniiScQHR2NxMRE1NTU\nDOi5JK3k5GS5h+BTGE/pMJbKIFtC6erqQk5ODgwGA2pra1FWVmaTMADgnXfewbfffosvv/wSb7zx\nBpYuXer0c4mIyLNkSygHDhxAdHQ0wsLC4O/vj4yMDJSXl9v02b17NzIzMwEACQkJuHLlCkwmk1PP\nJelxnlpajKd0GEtlkC2hmEwmhIeHW9sajQYmk8mpPg0NDf0+10KnA9rbJR48ERHZ8ZfrjVUqlVP9\nBruOpKIiC3ffHYGFCwG1Wo34+HjrfKvlrxq2nWtbtillPN7etmxTyni8uZ2cnKyo8Xhb22g0oqSk\nBAAQEREBV8m2sHHfvn0oKirCrl27AAAvvfQSLl++jNWrV1v7LFu2DFqtFj/72c8AADExMfjggw9w\n8uTJfp8L9CSt6dMF9uwB1GoPfTAiIi/ndQsbk5KSUFdXh4aGBpjNZuj1emi1Wps+Op0O27dvBwBU\nV1fDz88PYWFhTj3XgslEOpa/aEgajKd0GEtlkG3KKyAgAJs2bUJqaiq6u7uRmZmJxMREbN68GQCw\nYsUKpKeno7KyEtHR0Rg5ciS2bt16w+c6wmRCROQZvJYXERHZ8LopLyIi8i2yTXmR9+l9RhINHuMp\nnetjuXw5cOwYMHo0cMstwDffACdOAJMmAWPHXtvmycf76rtjh+9MzTOhEJHiDDQhHDkCnDt37fGL\nF4FPPul5reBgoLW153fLcrXe2zz5uKO+iYnAbbfZJx9vTDSsoRCRx/WXMPpKCBZ9fUlbhIYCTU3A\n9Ok9X8p791573d7bPPl4X31HjnT8WRcuBPR69/0f3IjL353Ch/n4xyNSrOxsIebOFUKrFeKXv+z5\nXaMR4u67e7bdfbcQQM9PcPC13y0/oaE9/06fLsS99/b8Pnas/ba+Hj99WoiFC4U4f77nZ+FCx9s8\n+XhffbVax5/r/Hn5/v9c/e706W9cJhRpVVZWyj0En+Ir8bQkDykTxkATwty5lTaPe5O+ko+cXP3u\n5JQXOY1FZGl5WzwdTVONHm07PWXR35RTWRmQmwts2XLttV966dq2gdYOvC2WSufqdycTChHZsSQP\nZ+oaluThzoRBnsWE4gATCpHzeh+BOHvU0Tt5MGH4DiYUB5hQpMVpBWnJGc/+jkCcPepQSvLgvikt\nV787uQ6FaIjo6wjEsh4iNLTn3xsddfQ+jVWuU1pJuXiEQuTD+koi/R2BKOGog+TDKS8HmFBoqLIk\nktpa4Pz5nm29ayCse9CN8OKQ5Ha854S0pI7n8uVAcnLPba+/+gr46KNryWT6dOCzz3pWX+/Z01M3\n0euv/evtyYT7pjKwhkLkxW40pQUA8fFARASwdat9DYRIapzyIvJCzk5pcSqLXOF1U15tbW1ISUlB\nXFwcUlNT0d7e7rCfwWBAbGwsoqKiUFRUZN3+9ttvIzo6Gn5+fqiurvbUsIlk48qUFpMJeZJsCSU/\nPx9paWmora2FVqtFfn6+XZ+uri7k5OTAYDCgtrYWZWVlqKmpAQDExsbiz3/+M+655x5PD33I4jy1\ntJyJp6MkUlHRs34E6JnSWrCASYT7pjLIVkPZvXs3Dh48CABYsmQJZsyYgQ0bNtj0OXDgAKKjoxEW\nFgYAyMjIQHl5ORISEnDHHXd4fMxEntLXlBbAKS1SLtkSSktLC4KCggAAwcHBaG5ututjMpkQHh5u\nbWs0Gv4lIiOuRJbW9fG80aVPHCURFtiv4b6pDG5NKCkpKWhqarLbXlhY6NTzVSrVoMeQlZWFiIgI\nAIBarUZ8fLx157MkJ7bZlqu9bh3w3XfJGD0aqK83oq4OAJL/cTRiRGQkEBubjK1bgcOHjXjsMUCt\nVs742faNttFoRElJCQBYvy9d4tJF7yUwZcoU0dLSIoQQorm5WURGRtr1qaqqEmlpadZ2cXGxKCgo\nsOmTnJwsDh065PA9ZPx4PslX7t+hBNnZQkybVinGjXN8jxBvvbeHXLhvSsvV707ZivI6nQ6lpaUA\ngNLSUuh0Ors+SUlJqKurQ0NDA8xmM/R6PbRarV0/wVODycscO9ZzH3SepUW+RLZ1KG1tbcjIyMDZ\ns2cRGhoKvV4PtVqNxsZGZGdno7y8HABQUVGB3NxcdHd3IzMzE6tWrQIA/PnPf8YTTzyB1tZW3Hzz\nzUhISEBFRYXNe3AdCilJ7xqJ2dxz+ffrFx4SKQGv5eUAEwrJra9C+/z5wIgRPEuLlImXrye3M/Ke\nE07r77TfkpKeIrulwE6Dw31TGXhxSCI3OHbsxivZeVRCvohTXkQSYY2EfAVrKA4woZC7sUZCvsjr\nLg5J3seyEIqusUxt9b6+lqVG0t9pv4yndBhLZWBCIXKB5aKNX37Z02aNhIhTXkRO62t6S6MBvviC\nSYR8B08bJnIzy/QWYHsKMI9IiHpwyoucNhTnqXvfj2T48J5tUk1vDcV4ugtjqQw8QiG6gd5HJfPn\n9yQRXj6eyDHWUIgcsNRLvvwSaG3l1BYNLayhEEmo95GJRsNkQuQM1lDIab4+T91XvcRdZ3D5ejw9\nibFUBiYUon/ovUjxppu4poRooFhDoSHN0fW3WC+hoY7X8nKACYUc4fW3iG7M667l1dbWhpSUFMTF\nxSE1NRXt7e0O+xkMBsTGxiIqKgpFRUXW7c888wyioqIQFRWFn/zkJzh37pynhj5k+co89WCuvyUl\nX4mnEjCWyiBbQsnPz0daWhpqa2uh1WqRn59v16erqws5OTkwGAyora1FWVkZampqAAAPPPAA6urq\n8NVXXyEmJgYFBQWe/gjkZXj9LSL3km3KKzIyEgcPHkRQUBBaW1sxY8YMHD9+3KZPVVUViouLsWvX\nLgDAunXr0NnZiby8PJt+77//PrZt2wb9dSvNOOVFvSUn254KzOtvETnmdVNeLS0tCAoKAgAEBwej\nubnZro/JZEJ4eLi1rdFoYDKZ7Ppt2bIF8+fPd99gyWt5+lRgoqHMrQsbU1JS0NTUZLe9sLDQqeer\nVKp++xQWFmLEiBH4xS9+4fDxrKwsREREAADUajXi4+Ot9562zLuy7Vz7lVde8br4HTwIHDnS0777\nbiPmzgX+8pdkqNXyj88b46nUdu8aihLG421to9GIkpISALB+X7pEyGTKlCmipaVFCCFEc3OziIyM\ntOtTVVUl0tLSrO3i4mJRUFBgbZeUlIiZM2eKjo4Oh+8h48fzSZWVlXIPYcC0WiEAIaZPF+L8eblH\nY8sb46lUjKW0XP3ulG3KS6fTobS0FABQWloKnU5n1ycpKQl1dXVoaGiA2WyGXq+HVqsF0HP2V3Fx\nMd577z0EBAR4dOxDleUvG6XrPc21aZNyi+7eEk9vwFgqg2xF+ba2NmRkZODs2bMIDQ2FXq+HWq1G\nY2MjsrOzUV5eDgCoqKhAbm4uuru7kZmZiVWrVgEAbr/9dly+fBnjx48HAMycOROvvfaazXuwKD80\n9S6+L1zIqwITDRQXNjrAhCIto9Go6L8Eve0KwUqPpzdhLKXFqw3TkMcrBBPJi0co5NV4LS4i6XHK\nywEmFN/Xu17Ca3ERScPrFjaS9+l9rr+c+lqs6OlrcQ2WUuLpCxhLZWBCIa/D+5YQKROnvMjr6HQ9\nyYS1EiL3YA3FASYU32IpwA8fDgQGAlu3MpkQuQNrKOR2cs9TW6a69u7tSSrenkzkjqcvYSyVgetQ\nSNF6nxbcuwC/ZYu84yIie5zyIkXjacFEnseV8uSTRo/u+ddyWjATCZFy3TChPP744/2+wM0338zb\n7w4RnrpeUu9prk2bgNxc3zwq4fWnpMNYKsMNE8p7772H3/72txBCOLzZlRACa9euZUIhSfW+Jldu\nLq8WTOQtbphQnnrqKTzyyCM3fIHz589LOiBSLnf/Bdj7asGA7xff+Re1dBhLZWBRnhSjdwFeo+F9\n34nk4pai/Jo1a274hs8///yA3xCwvbnWxIkT8d///d9QO/jmMBgMyM3NxdWrV/HII49g5cqVAIC8\nvDy8//77uHr1KsaPH4+SkhJMmTLFpbGQ89w9T927AD8UVsBz3l86jKUy3HBh40033YTAwECbH5VK\nhT/96U8oKipy+U3z8/ORlpaG2tpaaLVa5Ofn2/Xp6upCTk4ODAYDamtrUVZWhpqaGgDAr3/9axw5\ncgR1dXVYuHDhDRMfKZu33K6XiPrn9JTXxYsXsXHjRrzxxhv4+c9/jmeffRYhISEuvWlkZCQOHjyI\noKAgtLa2YsaMGTh+/LhNn6qqKhQXF2PXrl0AgHXr1qGzsxN5eXk2/X7/+9/jwoULWLt2rf2H45SX\n4vF2vUTK47Z1KOfOncP69euxfft2/PKXv0R1dTXGjRvn0iAtWlpaEBQUBAAIDg5Gc3OzXR+TyYTw\n8HBrW6PR2FxeYfXq1di2bRtGjx6Nzz77bFDjIfn0nuby5QI80VBwwymv5557DnfddRfGjBmD2tpa\nrFmzxulkkpKSgtjYWLuf9957z6nnOzpNubfCwkJ8++23yMrKwtNPP+3Ua9LgSHW9JE5z9eD1p6TD\nWCrDDY9QXn75ZYwYMQIFBQV2a01UKhUuXrzY53P37NnT52O33HILWltbERwcjJaWFodTZxqNBvX1\n9dZ2fX29zRGLxeLFi3Hffff1+V5ZWVmIiIgAAKjVasTHx1uLd5adkG3n2ocPH5bk9Y4dS/7HNJcR\njzwCGI3K+HzeGk+22R5s22g0oqSkBACs35eukOW04ccffxyRkZF46qmnsH79epw6dQobN2606dPZ\n2Yk77rgDn3zyCUJCQjBr1ixs3rwZiYmJOHXqFCZPngwAePXVV1FVVYW3337b7n1YQ1GW3utMWluH\nztlcRN7Gq+6H0vu04dDQUOj1eqjVajQ2NiI7Oxvl5eUAgIqKCuTm5qK7uxuZmZlYtWoVAOChhx7C\niRMnYDabMXnyZPzXf/0XJk6caPc+TCjKwnUmRN7BLQklMTER1dXVN3wBZ/rIhQlFWsZBnuvPOy3a\nGmw86RrGUlpuOcvr66+/Rmxs7A1f4MKFCwN+Uxo6hsqFHomonyOU06dP9/sC/v7+0Gg0Uo5JMjxC\nkR/XmRB5H7ccoQym2k8EcJ0J0VDCe8qT0yynGfaH60yc42w8qX+MpTLwjo0kOd7PhGhocvq04b//\n/e84efIkUlNT0dHRAbPZjLFjx7p7fIPCGoo8eDYXkXdz9bvTqSmvjRs34uGHH8Zjjz0GAGhqasJP\nf/rTAb8Z+TbLVJfZDCxYwGRCNNQ4lVA2bdqE/fv3W49IJk+ezDs1DkH9zVNbprr27gWGD2cy6Q/n\n/aXDWCqDUwllxIgRGDlypLXd3d2Ny5cvu21Q5J14RhfR0OZUDeXf//3fMXHiRLz55pt4/fXXsXnz\nZoSFheEPf/iDJ8boMtZQ3I8LF4l8j1uv5XXlyhW89tpr+Otf/woASE1Nxa9+9SsMG6bss46ZUNyP\nCxeJfI9bE8r333+PgIAA+Pn5AQCuXr2Krq4ujLbMcSgUE4q0HF0viWd0uY7Xn5IOYyktt57llZyc\nbFMz6ezsxI9//OMBvxn5nh07uHCRiHo4dYQSHx9vvRnQjbYpDY9Q3KN33WTHDiYSIl/j1iMUf39/\nHDlyxNo+fPiw4usn5D6W04MrKnqSCxER4GRC2bBhA9LS0jB79mzMnj0bP/nJT/Dqq6+6e2ykMJZz\n/Xl6sDS4dkI6jKUy9JtQuru78fnnn+PEiRNYv3491q9fjxMnTuDuu+92+U3b2tqQkpKCuLg4pKam\nor293WE/g8GA2NhYREVFoaioyO7xP/zhDxg2bBja2tpcHgs5b906roQnor45VUOZOXMmPv30U8ne\ntPc95V955RWcOnUKGzZssOnT1dWFO+64Ax9//DEmTJiAmTNnYsuWLUhISAAA1NfXIzs7G0ePHsWh\nQ4cwfvx4u/dhDUVaPEWYaGhwaw1lxowZePLJJ7Fv3z5UV1fj0KFDg7rt7+7du5GZmQkAWLJkifUe\n8r0dOHAA0dHRCAsLg7+/PzIyMmz6PfPMMyguLnZ5DDRwnOoiohtx6vL1NTU1UKlUqK2ttdleWVnp\n0pu2tLQgKCgIABAcHIzm5ma7PiaTCeHh4da2RqOxzpO+++670Gg0iIuLc+n9yXm9z+j65S+NCAxM\n5kp4iXDthHQYS2VwKqG4UvBKSUlBU1OT3fbCwkKnnq9SqWzalsOvjo4OvPjii9izZ4/dYyS93vc2\n+eEHgLVPIuqLUwmlra0Nq1evxr59+wAAc+fORUFBAcaNG9fnc3p/4V/vlltuQWtrK4KDg9HS0oKQ\nkBC7PhqNBvX19da25YjlxIkTOH36NKZNm2bdfuedd+LgwYMOXycrK8t6K2O1Wo34+HjrXzKWRMl2\n3+2ODgBIxvTpwHPP2f4lqITxeXPbsk0p4/HmdnJysqLG421to9GIkpISAIO79btTRXmtVouZM2di\nyZIlEEJgx44d2L9/PyoqKlx6095F+fXr1+PUqVPYuHGjTZ/Ozk7ccccd+OSTTxASEoJZs2Zh8+bN\nSExMtOk3efJkFuXdqL29Z9qL01xEQ4fL353CCTExMXbbYmNjnXmqQ+fOnRP33nuviI2NFSkpKeL8\n+fNCCCEaGhqETqez9tu9e7eIjo4WU6dOFS+++KLD15o8ebI4d+6cw8ec/Hh0nexsIebOFUKrFeIf\n/zVCCCEqKyvlGpJPYjylw1hKy9XvTqemvPz9/bF//37MmjULAPDpp5/C39/129GPHz/e4ZTYrbfe\nanMml1arhVarveFrnTx50uVxkGO96ybLl/P0YCJyjlNTXgcPHkRmZiY6OzsBAKNGjcK2bduQlJTk\n9gEOBqe8XMMrCBMNbW65fP23336L2267zdq2nN7rqPitREwoA2M5RXj4cCAwENi6lcmEaChyy8LG\n+fPnW39PT09HSEiI1yQTGrj+7glvOSuEpMF4SoexVAanLxnMWoXv40p4IhqMG055JSQkoKamxu53\nb8Epr4HhKcJEBLiphuLn52e9zW9HRwdGjRpl84YXL150Yaiew4TSP94si4iu55YaytWrV3Hp0iVc\nunQJV65csf5+6dIlxScTcs5AbpbFeWppMZ7SYSyVgbddHOJYNyEiqTi1DsVbccrLsd7TXJs2Abm5\nrJsQ0TWufne6vtydvFbvlfC5uVwJT0TS4JTXEOTqNBfnqaXFeEqHsVQGJpQhaMeOnlv48rIqRCQl\n1lCGEJ4iTETOcOs95ck3DOQUYSKigWJCGUIGe4ow56mlxXhKh7FUBiaUIYS1EyJyJ1kSSltbG1JS\nUhAXF4fU1FS0t7c77GcwGBAbG4uoqCgUFRVZt7/wwgvQaDRISEhAQkICDAaDp4budZYvB5KTe+5x\nAvScIuxqMul9L3QaPMZTOoylMsiSUPLz85GWloba2lpotVrk5+fb9enq6kJOTg4MBgNqa2tRVlZm\nvTilSqXCM888g5qaGtTU1OD+++/39EfwGqybEJGnyJJQdu/ejczMTADAkiVLbG77a3HgwAFER0cj\nLCwM/v7+yMjIsOnHs7ecI+WlVThPLS3GUzqMpTLIklBaWloQFBQEAAgODrbeCbI3k8mE8PBwa1uj\n0cBkMlnb//Ef/4GpU6diyZIlaGtrc/+gvRTrJkTkKW679EpKSgqamprsthcWFjr1fJVK1edjv/rV\nr/D8888D6KmnPPHEEygtLXXYNysrCxEREQAAtVqN+Ph463yr5a8aX2vv2JGMY8eAjg4jfvMbQK+X\n5vUt2+T+fL7StmxTyni8uZ2cnKyo8Xhb22g0oqSkBACs35eukGVhY2RkJA4cOIDg4GC0tLRg5syZ\nOH78uE0+olbsAAAPXUlEQVSfffv2oaioCLt27QIAvPTSS7h8+TJWr15t06+xsRE/+tGPcPToUbv3\nGaoLG5OTr12ra+FCXquLiAbGqxY26nQ66xFFaWkpdJZTkHpJSkpCXV0dGhoaYDabodfrodVqAcBm\niuydd95BdHS0ZwbuJdx1SXrLXzQkDcZTOoylMshyteE1a9YgIyMDf/rTnxAaGgr9P/6EbmxsRHZ2\nNsrLyxEQEIBNmzYhNTUV3d3dyMzMRGJiIgDg2WefRW1tLS5fvoxJkybhjTfekONjKNaOHbyVLxF5\nHq/l5SN4nS4ikopXTXmR9LjehIjkxoTiIzxxK1/OU0uL8ZQOY6kMTCg+gutNiEhurKF4OdZOiEhq\nrKEMUaydEJFSMKF4OU/UTiw4Ty0txlM6jKUyMKF4OdZOiEgpWEPxQqybEJE7sYYyhLBuQkRKxITi\nhTxZN+mN89TSYjylw1gqAxOKF2LdhIiUiDUUL8G6CRF5CmsoPo51EyJSOiYULyFX3aQ3zlNLi/GU\nDmOpDEwoXoJ1EyJSOtZQiIjIhlfVUNra2pCSkoK4uDikpqaivb3dYT+DwYDY2FhERUWhqKjI5rFX\nX30V06ZNQ2xsLHJzcz0xbFksX95zj3idDugjTEREiiBLQsnPz0daWhpqa2uh1WqRn59v16erqws5\nOTkwGAyora1FWVkZampqAADl5eX44IMPcOjQIXzxxRf49a9/7emP4DFKKsZznlpajKd0GEtlkCWh\n7N69G5mZmQCAJUuWoLy83K7PgQMHEB0djbCwMPj7+yMjI8Pa7z//8z+xcuVK+Pv7AwCCgoI8N3gP\nU0IxnojIGbIklJaWFmsSCA4ORnNzs10fk8mE8PBwa1uj0cBkMgEAjh49ig8++ADx8fGYOXMm9u/f\n75mBy0BJxfjk5GR5B+BjGE/pMJbK4O+uF05JSUFTU5Pd9sLCQqeer1KpbNq9C0Td3d24dOkSDh8+\njM8//xzp6en45ptv7J4DAFlZWYiIiAAAqNVqxMfHW3c+y2Gy0to7diTj2DGgo8OI3/wG0OuVNT62\n2Wbbt9pGoxElJSUAYP2+dImQwZQpU0RLS4sQQojm5mYRGRlp16eqqkqkpaVZ28XFxaKgoEAIIcS8\nefOE0Wi0PhYZGSnOnDlj9xoyfbxBmztXCKDnZ+FCuUdzTWVlpdxD8CmMp3QYS2m5+t0py5SXTqdD\naWkpAKC0tBQ6nc6uT1JSEurq6tDQ0ACz2Qy9Xg+tVgsASEtLw4cffggAOHbsGH744QeEhIR47gO4\nGesmROSNZFmH0tbWhoyMDJw9exahoaHQ6/VQq9VobGxEdna2tfheUVGB3NxcdHd3IzMzE6tWrQIA\nmM1mPProo9azvl5++WXcd999du/jretQ2tt7zujaskX+ugkRDT2ufndyYSMREdnwqoWNZM8bFjBa\ningkDcZTOoylMjChKISSFjASEbmCU14KodP1JJPp05Wx5oSIhi7WUBzwpoTCQjwRKQVrKF5OrQb0\nemUnE85TS4vxlA5jqQxMKDLzhmI8EZEzOOUls+TknmI80HPNLr1e1uEQEXHKy1txVTwR+QomFJkp\n6WrC/eE8tbQYT+kwlsrgtqsNU9+WL+9ZdzJ6dE9C4TQXEfkC1lBkwLoJESkZayhehHUTIvJFTCgy\n8Ka6SW+cp5YW4ykdxlIZWEORgWURIxGRL2ENxUOuL8R705EJEQ0trKEoHK8mTES+TpaE0tbWhpSU\nFMTFxSE1NRXtfVxzxGAwIDY2FlFRUSgqKrJuf/jhh5GQkICEhARMnjwZCQkJnhq6y3yhEM95amkx\nntJhLJVBloSSn5+PtLQ01NbWQqvVIj8/365PV1cXcnJyYDAYUFtbi7KyMustf9966y3U1NSgpqYG\n6enpSE9P9/RHGDBvLcQTETlLlhpKZGQkDh48iKCgILS2tmLGjBk4fvy4TZ+qqioUFxdj165dAIB1\n69ahs7MTeXl51j5CCEyaNAmVlZWIjIy0ex8l1VCIiLyFV9VQWlpaEBQUBAAIDg5Gc3OzXR+TyYTw\n8HBrW6PRwGQy2fTZt28fJkyY4DCZKAWvJkxEQ4XbThtOSUlBU1OT3fbCwkKnnq9Sqfrts3PnTixe\nvPiGfbKyshAREQEAUKvViI+PR3JyMoBr867ubB88CBw50tNesMCIF15w7/u5s/3KK694PH6+3GY8\npWv3rqEoYTze1jYajSgpKQEA6/elS4QMpkyZIlpaWoQQQjQ3N4vIyEi7PlVVVSItLc3aLi4uFgUF\nBda22WwWEyZMEA0NDX2+j0wfz4ZWKwQgxPTpQpw/L/doBqeyslLuIfgUxlM6jKW0XP3ulGXKS6fT\nobS0FABQWloKnU5n1ycpKQl1dXVoaGiA2WyGXq+HVqu1Pr53715MnToVt956q8fG7QpfKsZb/rIh\naTCe0mEslUGWonxbWxsyMjJw9uxZhIaGQq/XQ61Wo7GxEdnZ2SgvLwcAVFRUIDc3F93d3cjMzMSq\nVausr7F06VLMnDkTy2+wqINFeSKigXP1u5Mr5clpRqORfwlKiPGUDmMpLa86y4uIiHwPj1CIiMgG\nj1CIiEhWTCjktN7n+tPgMZ7SYSyVgQmFiIgkwRoKERHZYA2FiIhkxYRCTuM8tbQYT+kwlsrAhEJE\nRJJgDYWIiGywhkJERLJiQiGncZ5aWoyndBhLZWBCISIiSbCGQkRENlhDISIiWcmSUNra2pCSkoK4\nuDikpqaivb3dYT+DwYDY2FhERUWhqKjIuv2TTz5BfHw8YmJiMG3aNOzfv99TQx/SOE8tLcZTOoyl\nMsiSUPLz85GWloba2lpotVrk5+fb9enq6kJOTg4MBgNqa2tRVlaGmpoaAMDKlStRVFSEuro6rF27\nFitXrvT0RxiSDh8+LPcQfArjKR3GUhlkSSi7d+9GZmYmAGDJkiXWW/72duDAAURHRyMsLAz+/v7I\nyMiw9gsPD8eFCxcAAO3t7Zg0aZLnBj+E9XUkSa5hPKXDWCqDvxxv2tLSgqCgIABAcHAwmpub7fqY\nTCaEh4db2xqNxnpYu3btWsyePRvPPfccuru78emnn3pk3ERE1De3JZSUlBQ0NTXZbS8sLHTq+SqV\nyqbd+4yDZcuWYePGjXjwwQfx9ttv49FHH8WePXsGN2Dq1+nTp+Uegk9hPKXDWCqEkMGUKVNES0uL\nEEKI5uZmERkZadenqqpKpKWlWdvFxcWioKBACCHETTfdZN3e3d1t0+4tMjJSAOAPf/jDH/4M4MfR\nd7IzZJny0ul0KC0txVNPPYXS0lLodDq7PklJSairq0NDQwNCQkKg1+uxefNmAMCkSZPw0UcfYe7c\nufjwww8xefJkh+9z/Phxt34OIiK6RpaFjW1tbcjIyMDZs2cRGhoKvV4PtVqNxsZGZGdnW4vvFRUV\nyM3NRXd3NzIzM7Fq1SoAwP79+/HYY4/BbDZj5MiReP3113HXXXd5+mMQEVEvPr1SnoiIPMcnVsr3\ntQCytyeeeALR0dFITEy0rmchx/qLp9FoxM0334yEhAQkJCSgoKBAhlF6h0cffRQTJkxAbGxsn324\nbzqnv1hyvxyY+vp63HPPPYiNjcU///M/o7i42GG/Ae2fLlVeFKSzs1NEREQIk8kkzGazmD59uqiu\nrrbpU1ZWJubPny+EEKK6ulpMmzZNjqF6BWfiWVlZKR544AGZRuhdqqqqRHV1tYiJiXH4OPdN5/UX\nS+6XA9PU1CS++OILIYQQly5dErfffrs4fPiwTZ+B7p9ef4RyowWQFr0XUiYkJODKlSswmUxyDFfx\nnIknAF5000lz5szBuHHj+nyc+6bz+oslwP1yICZMmICYmBgAQGBgIOLi4tDY2GjTZ6D7p9cnFEcL\nIK//wM70oR7OxEqlUuHTTz9FbGws5s2bhyNHjnh6mD6D+6Z0uF+67vTp0/j8888xe/Zsm+0D3T9l\nOW1YStcvgOzL9X+5OPu8ocaZuNx5550wmUwICAjAX//6VyxYsACnTp3ywOh8E/dNaXC/dM13332H\nhQsXYsOGDRgzZozd4wPZP73+CEWj0aC+vt7arq+vt8mojvqYTCZoNBqPjdGbOBPPwMBABAQEAADu\nu+8+jBgxwuFVEah/3Delw/1y4MxmM9LT07F48WIsWLDA7vGB7p9en1B6L4A0m83Q6/XQarU2fXQ6\nHbZv3w4AqK6uhp+fH8LCwuQYruI5E8/W1lbr74cOHcL333+PkJAQTw/VJ3DflA73y4ERQmDZsmWI\niorC008/7bDPQPdPr5/yCggIwKZNm5CammpdAJmYmGhdVb9ixQqkp6ejsrIS0dHRGDlyJLZu3Srz\nqJXLmXju3LkTW7ZsAQCMGDECO3bswLBhXv+3iVssWrQIH330EVpbWxEeHo41a9bAbDYD4L45UP3F\nkvvlwHzyyScoLS1FXFwcEhISAAAvvvgivv32WwCu7Z9c2EhERJJg+iYiIkkwoRARkSSYUIiISBJM\nKEREJAkmFCIikgQTChERSYIJhYiIJMGEQuQBfn5+SExMxJkzZwb9Wr/4xS8QFBSEd955R4KREUnH\n61fKE3mD0aNHo7q6WpLX2r59O5YuXcqLSJLi8AiFaIA+//xzTJs2DV1dXfj+++8RExODr776akCv\n8Ze//MV6yYt58+YBAF544QU88sgj+NGPfoSIiAj8z//8D5577jnExcVh3rx56OrqsnkNXuSClIZH\nKEQDlJSUhJ/+9KfIy8tDR0cHMjMzERUV5fTzz5w5g5ycHPzv//4vwsLCcPHiRetjp0+fhtFoxBdf\nfIEZM2bg3Xffxbp16/DQQw/h/fffx89+9jN3fCQiSTChELng+eefx/Tp0zFq1Ci8+uqrA3ruxx9/\njHvvvdd61daxY8cC6LnPxP333w+VSoWYmBh0d3cjJSUFABAbG2tzGXEiJeKUF5ELWltb8f333+O7\n775DR0fHgJ6rUqn6nK4aMWIEAGDYsGEYPny4dfuwYcPQ3d3t+oCJPIAJhcgFK1asQEFBARYvXoyV\nK1cO6LmzZ8/Ghx9+aL2Vant7uzuGSORxnPIiGqA333wTI0eOxMMPP4zu7m7MmjULRqMRycnJTj0/\nNDQUr732Gu6//34MHz4cwcHB2LNnDwDb26tefxYXz+oipeP9UIg8YMyYMbh06ZJkr5eVlYUHHngA\n6enpkr0m0WBxyovIA8aOHSvpwsZ9+/Zh1KhREoyMSDo8QiEiIknwCIWIiCTBhEJERJJgQiEiIkkw\noRARkSSYUIiISBL/D5upbph/P2HSAAAAAElFTkSuQmCC\n", + "text": [ + "<matplotlib.figure.Figure at 0x48a36d0>" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 3.4, Page number: 128" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from sympy import *\n", + "\n", + "#Variable declaration:\n", + "Lo=10.6*10**-3 #Initial inductance(H)\n", + "L2=2.7*10**-3 #H\n", + "\n", + "\n", + "#Calculations:\n", + "theta,i=symbols('theta i')\n", + "L=Lo+L2*cos(2*theta)\n", + "i=2 #Coil current,A\n", + "def T(theta):\n", + " return i**2*diff(L,theta)/2\n", + " \n", + "\n", + "#Results:\n", + "print \"Torque,Tfld =\",T(theta),\" N.m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Torque,Tfld = -0.0108*sin(2*theta) N.m\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 3.6, Page number: 134" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "\n", + "#Variable declaration:\n", + "r1=2.5*10**-2 #radius of rotor(m)\n", + "h=1.8*10**-2 #Axial length(m)\n", + "g=3*10**-3 #Air gap length(m)\n", + "Bag=1.65 #Magnetic field(T)\n", + "uo=4*pi*10**-7 #permeability of free space(H/m)\n", + "\n", + "#Calculations:\n", + "H=Bag/uo\n", + "Ni=2*g*H\n", + "T=uo*(Ni)**2*h*(r1+0.5*g)/(4*g)\n", + "\n", + "#Results:\n", + "print \"The maximum torque:\", round(T,2),\"Nm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The maximum torque: 3.1 Nm\n" + ] + } + ], + "prompt_number": 29 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 3.7, Page number: 140" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "%matplotlib inline\n", + "from matplotlib import *\n", + "\n", + "#Variable declaration:\n", + "i1=0.8\n", + "i2=0.01\n", + "\n", + "\n", + "#Calculations & Results:\n", + "def df(f,x,h=0.1e-10):\n", + " return ( f(x+h/2) - f(x-h/2) )/h\n", + "\n", + "\n", + "\n", + "def l11(x):\n", + " return (3+cos(2*x))/1000.0\n", + "\n", + "def l12(x):\n", + " return (0.3*cos(x))\n", + "\n", + "def l22(x):\n", + " return (30+10*cos(2*x))\n", + "\n", + "def g(x):\n", + " return ((i1**2)/2)*df(l11,x) + ((i2**2)/2)*df(l22,x) + (i1*i2)*df(l12,x)\n", + "\n", + "def r(x):\n", + " return ((i1**2)/2)*df(l11,x) + ((i2**2)/2)*df(l22,x)\n", + "def s(x):\n", + " return (i1*i2)*df(l12,x)\n", + "\n", + "x=linspace(-pi,pi,100000)\n", + "\n", + "\n", + "plot(x,r(x))\n", + "plot(x,s(x))\n", + "plot(x,g(x))\n", + "grid()\n", + "annotate(\"Total torque\",xy=(-0.5,0.003))\n", + "annotate(\"Reluctance torque\",xy=(-2,-0.0015))\n", + "annotate(\"Mutual Interaction torque\",xy=(1.6,-0.0026))\n", + "xlabel(\"Theta [radians]\")\n", + "ylabel(\"Torque [N.m]\")\n", + "xlim(-pi,pi)\n", + "\n", + "\n", + "#Results\n", + "print \"Tfld = -1.64*10**-3*sin(2*x)- 2.4*10**-3*sin(x)\"\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n", + "Tfld = -1.64*10**-3*sin(2*x)- 2.4*10**-3*sin(x)" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n" + ] + }, + { + "output_type": "stream", + "stream": "stderr", + "text": [ + "WARNING: pylab import has clobbered these variables: ['vectorize', 'prod', 'plotting', 'Circle', 'diag', 'sinh', 'trunc', 'plot', 'eye', 'det', 'tan', 'product', 'gamma', 'roots', 'sin', 'zeros', 'cosh', 'interactive', 'conjugate', 'take', 'trace', 'beta', 'exp', 'ones', 'multinomial', 'cos', 'transpose', 'solve', 'diff', 'invert', 'pi', 'tanh', 'Polygon', 'reshape', 'sqrt', 'floor', 'source', 'add', 'poly', 'mod', 'sign', 'power', 'binomial', 'log', 'var', 'seterr', 'flatten', 'nan', 'test']\n", + "`%pylab --no-import-all` prevents importing * from pylab and numpy\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAcAAAAEPCAYAAADVmxQSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXdYFOcTx7+AvUfBioolFo4udiVgxII9UbFG0diVqCnm\np0aNLRE1doMt2CMIKipIROUUGypFBWtEkQMLiJ12cPP745UL6B0ccHe7LPt5Hh7dvbfM3O7t7Ftm\nxoCICCIiIiIiIqUMQ64FEBERERER4QLRAIqIiIiIlEpEAygiIiIiUioRDaCIiIiISKlENIAiIiIi\nIqUS0QCKiIiIiJRKODWAQUFBsLS0hLm5OVasWKGyjLu7OyQSCezs7BAZGalx3dWrV8PQ0BApKSk6\nk19EREREpOTCmQHMyMjAlClTEBQUhBs3bsDX1zePgQMAPz8/PH78GDExMdixYwfc3Nw0qhsfH4/g\n4GA0btxYrzqJiIiIiJQcODOAYWFhkEgkaNCgAcqUKQNXV1cEBATkKRMYGIjRo0cDAGxtbZGVlQWZ\nTFZg3dmzZ8PDw0Ov+oiIiIiIlCw4M4AymQwNGzZUHpuamkImk2lUJiEhQW1df39/mJqawsrKSsca\niIiIiIiUZMpw1bGBgYFG5TSJ1JZTJi0tDcuXL0dwcHCh6ouIiIiIlD44M4CmpqaIj49XHsfHx+cZ\n1eUu0759ewD/jQjlcnmeujnnHzx4gEePHsHa2lp5vk2bNrhy5Qpq166dp+3mzZvjwYMHulJPRERE\nRHBYW1sjKiqKazG0B3FEWloaNW7cmGQyGWVmZpK9vT2Fh4fnKePr60sDBw4kIqLw8HCysrLSuC4R\nkZmZGb148UJl//mpvnDhwiJqxV+EqBORMPUSdSo5CFGv/HTi0GToBM5GgBUqVMCff/6Jnj17QqFQ\nYPTo0bCzs8OWLVsAAJMmTcLXX3+NkJAQSCQSlC9fHl5eXvnW/RhNp1k/5tGjR0XWi68IUSdAmHqJ\nOpUchKiXEHVSB2cGEAB69+6N3r175zk3adKkPMcbN27UuO7HxMbGFk9AERERERHBIkaCUcHYsWO5\nFkHrCFEnQJh6iTqVHISolxB1UocBUencJmlgYCDuEBUREREpBEJ7boojQBVIpVKuRdA6QtQJEKZe\nok4lByHqJUSd1CEaQBERERGRUok4BSoiIiIiohFCe26KI0ARERERkVKJaABVIMQ5cCHqBAhTL1Gn\nkoMQ9RKiTuoQDaCIiIiISKlEXAMUKXlkZgJxccDLl4CJCVCnDlCpEtdSiYgIHqE9NzmNBCMiojHP\nnwN79gD+/kB4ODN6NWsCycnA06dA+fKAmRng4gJMngyIyZBFREQKQJwCVYEQ58BLrE5xccC4cUDL\nlkB0NPDzz8CzZ0BsLHDtGqQ7dwJpaazcli2AXA7Y2QHTpgEJCVxLXyRK7LXKByHqBAhTLyHqpA7R\nAIrwE7kcWLKEGbMGDZjB8/JiI7wqVfKWNTAAatQAOnQAVq0C7txhU6JWVsDcuUBWFjc6iIiI8Bpx\nDVCEf9y5A4waBRgbA9u2AR/lidSYp08BNze2ZujjA9SqpV05RURKGUJ7boojQBF+cfw44OAATJgA\nnDhRdOMHAHXrsvbatAHatWNTqCIiIiIfEA2gCoQ4B857nYiAlSuBSZOAo0fZvxrkcyxQLyMjwMMD\nWLwYcHICjh3Tjrw6hPfXqggIUSdAmHoJUSd1iLtARbiHCJg3jxmnsDDA1FT7fYwcCbRoAfTtC+za\nBfTqpf0+REREShTiGqAI9yxaBPj5ASEhbN1Pl1y8CAwYABw+DHTponG1Fy9eoHv37gCAp0+fwsjI\nCCYmJjAwMMCVK1dQpsx/75Jr167FpEmTULFixXzbdHR0xOrVq9GmTZs85zWtLyKib4T23BSnQEW4\nZdkytkHl9GndGz8A6NQJ2L8f+Ppr4P59javVqlULkZGRiIyMxOTJkzF79mxERkYiIiIij/EDgHXr\n1iE1NbXANg0MDGCgYppX0/q5USgUhSovIiIiGkCVCHEOnJc6rV0L7N7NjF/t2kVqokh6OTuzUefQ\noUB6epH6JSIEBgbCwsICEokEI0eOREZGBtavX4/ExEQ4OTnhyy+/BABMmjQJbdu2RYsWLfDzzz/n\n2+769euRkJCQp76XlxfMzc1hbm6OmTNnKstWqVIFP/zwA+zt7XH58mVs2bIFzZo1Q6dOnTBhwgTM\nmDEDAMvw7efnl6deDosXL4aVlRVat26N//3vf0X6LjSBl/efFhCiXkLUSR2cGsCgoCBYWlrC3Nwc\nK1asUFnG3d0dEokEdnZ2iIyMLLDu/PnzYW1tDQsLCzg4OCA2NlbneogUgcOHmc9ecDBQr57++588\nGWjeHPjhhyJVT01Nxbhx43D8+HHExMSgfPnyWLt2Ldzd3VG/fn1IpVKcPn0aALBy5UpcvXoVt2/f\nRlhYGMLDw9W26+7ujlq1ainrP378GL/88gsuXryI6OhoxMTEwNvbWylD586dce3aNTRs2BBLlixB\nREQEQkNDcffuXeXo8uNRZs7x0aNHkZCQgBs3biAmJgbR0dE4depUkb4PEZGSCGcGMCMjA1OmTEFQ\nUBBu3LgBX1/fPAYOAPz8/PD48WPExMRgx44dcHNzK7Duzz//jOvXryM6OhpDhgzBr7/+WmjZHB0d\ni60f3+CVTpGRwMSJLKxZo0bFaqrIehkYANu3M1cLX99CV69QoQJatWoFMzMzAMCoUaMQGhqqsuyO\nHTtgbW2NNm3aICYmBnfv3i2w7RwuX76M7t27o0aNGjA0NMTw4cOV/RgZGWHgwIEAgEuXLqF79+6o\nXr06jIyMMGTIkALXak6ePImTJ0/C1tYWbdq0wd27d/Ho0SMNv4HCwav7T4sIUS8h6qQOznaBhoWF\nQSKRoEGDBgAAV1dXBAQEwNbWVlkmMDAQo0ePBgDY2toiKysLMpkMsbGxauvmnt559+4d6nExuhBR\nz6tXbP1t0ybmn8cl1asD3t4suoydHdC0aaGq5zYwRKRyPe/u3bvYtGkToqKiUKVKFbi5uSGrEJFp\nPt50kLufChUqKP9vaGj4SbkcDA0NlWuECoUCmZmZys9++eUXjBs3TmN5RESEBGcjQJlMhoa5nJxN\nTU0hk8k0KpOQkJBv3Xnz5qFRo0bYtWtXgWsuqhDiHDgvdCICxo9nBmfoUK00WWy97O2ZC8awYSxi\njIZkZGTg3r17yhHT33//DQcHBwBAxYoV8f79ewBAeno6qlSpgsqVKyM5ORknTpwosG0iUtbv0KED\nzpw5g1evXkGhUMDHx0fZT27at2+PM2fO4PXr18jOzoavr6/SOJqamiqnXQMCAiCXywEAPXv2hJeX\nF9I/rIM+e/YMycnJGn8HhYEX958OEKJeQtRJHZyNAFW9LauiKFtuly1bhmXLluH333/HrFmz4OXl\npbLc2LFjlVNYNWrUgI2NjXL4n3MTCOU4KiqKe3kOH4bjw4fAvn1aaz+HYrXn7g6pjw/wzTdwPHBA\no/qJiYn47rvv0K9fPygUCtSrVw+urq4AgPHjx6NDhw6oU6cOIiIiYGlpCVNTU9SvXx9dPrheSKVS\nvHr1SqX8Li4ueeovXrwY1tbWAIBBgwZhyJAhkEqleXZ+PnjwAEOGDIGdnR3q1q2LmjVrKl8KJ0+e\nDAcHB/j5+WHw4MGoUqUKpFIpqlatir59+8LOzg6ZmZkoW7YsAgMDYWxsLMz7TwfHOfBFHl3oJ5VK\ndTY1zjnEEefOnaM+ffoojz08PGjp0qV5yowbN44OHjyoPJZIJCSTyTSqS0QUFxdHLVu2VNk/h6qX\nTsLDiYyNie7f51oS1Tx/zuSLjuZaEq2wc+dOmj59OtdiiAgMoT03OZsCbdu2LaKjo5GQkAC5XA4f\nHx/07t07TxkXFxfs27cPABAREQEjIyM0aNAg37oPHz5U1vf394elpaX+lBJRzZs3bMpz0ya285KP\nmJgACxcCM2awqVoBoOksi4hIqYVL6xsYGEgSiYRat25Ny5cvJyIiT09P8vT0VJaZNm0amZubk62t\nLYWHh+dbl4ho0KBBZGVlRa1btyYXFxdKTExU2Xd+qoeEhBRTM/7BmU4KBZGrK9HkyTppXqt6yeVE\nVlZEPj7aa7MIiPdfyUGIeuWnE8cmQ+twGgu0d+/en4z6Jk2alOd448aNGtcFgEOHDmlPQJHis28f\ny8Jw7RrXkhRMmTLAxo0sbqiLC1C5MtcSiYiI6BAxFqiI7njyBLC2BoKCmJtBSWHUKKBxYxamTURE\nRInQnpuiARTRDUTAV18B5uYlz5AkJrJs8pcuAZ9/zrU0IiK8QWjPTTEWqAo+3uIsBPSuk7c3cO8e\nsGCBTrvRiV716wNz5gDffcfJhhjx/is5CFEvIeqkDtEAimifpCRg5kzAywsoX55raYrGd98BDx6w\nWKUiIiKCRJwCFdE+o0ez7A6rV3MtSfHw8WFZ6q9c0Sg7vYiI0BHac1McAYpol1OngNBQYPFiriUp\nPoMHA9nZwJEjXEsiIiKiA0QDqAIhzoHrRaf0dGDqVOZKoCcXAp3qZWjINvDMn88MoZ4Q77+SgxD1\nEqJO6hANoIj2WLkSkEiAvn25lkR79OrFskb4+HAtiYiIiJYR1wBFtMPDh0DbtkB4OPOhExL//APM\nmgXcvAkYGXEtjYgIZwjtuSmOAEW0w/ffMyMhNOMHAD16AFWrsiz2IiIigkE0gCoQ4hy4TnUKDgau\nX2dGUM/o5VoZGLCcgcuW6cUvULz/Sg5C1EuIOqlDNIAihUZBCiS8ScCVhCu4FHsOqVMn4vb/JiDy\n5W08fv0Y7zLfcS2i9unbF8jKYtOhIiIigkBcAxRRy6NXj3Dh8QU8ePkAca/i8Oj1I8S9ioPsjQw1\nKtSAaTVTjD6djPYxrzB7Zmu8z0pFSloKklOTUalsJbSo1QItarVAa+PW6GDaAW3rt0XlciU4wPS+\nfcD27UBICNeSiIhwgtCem6IBFFGSkpaCgHsBCI4Nxtm4s0jPSkfXRl3RyrgVGldvjMY1GqNx9cZo\nVL0RKpatCDx7BlhYML+/Vq2U7RARklKTcO/FPdx7cQ83n93E5YTLuPHsBiQmEvRr0Q/9W/aHVR2r\nkpWzTi5nsUG9vYH27bmWRkRE7wjtuSkaQBVIpVI4OjrqVyAdo06ntxlv4XvLF/uj9yNMFoZuTbqh\nd/Pe+MLsC7Ss1TJ/A/Xtt8xFQMOIL+lZ6bgUfwnH7h2D/11/ZCmyMKDlAIy2Gg37+vZFMoZ6v1Zr\n1wIXL+rULaI03X8lHSHqlZ9OQjOAnOYDFOGOqKdR+PPqn/C55YMvGn+BiXYT4T/MH5XKVtKwgSjg\n+HHgzh2N+6xQpgKcmjjBqYkTVvdYjdvJt+F3yw+uvq6oUaEGJttPxgjLEahSrkoRtdID48cDS5YA\njx4BZmZcSyMiIlIMxBFgKYKIEBwbjN/O/4Z/U/7FpDaTMN52POpVrVfYhoAvvwSGDAGmTCm2XApS\nIPhBMDzDPXEu7hzcbNzwfcfvCy+Xvpg9myXP9fDgWhIREb0itOemaABLCVcSruDnUz8j4W0CFjgs\nwFDJUJQ1Klu0xo4eBebOZaPAMtqdRIh7FYc1l9dg9/XdGGM9BnO6zEHdKnW12kexefAA6NABiIsD\nKmk4YhYREQBCe26KbhAqEJIfzN3kuxjsMxguy1wwzGIYoqdEY6TVyKIbP7kc+PFHYNUqrRs/AGhc\nozHW9lqLmKkxUJAC5pvMsSBkAd5nvldZnpNr1awZM4D79+ukeSHdfzkIUSdAmHoJUSd1cGoAg4KC\nYGlpCXNzc6xYsUJlGXd3d0gkEtjZ2SEyMrLAurNnz4a5uTnMzc3Rt29fvHjxQud68JGENwmYeGwi\nunh1gX19e+z9ai8mtplYdMOXw7ZtQKNGQM+e2hFUDfWq1sO63utwffJ13E+5j9abWuNA9AH+vH3O\nmAFs2MBJwlwREREtQRyRnp5OZmZmJJPJSC6Xk729PUVEROQp4+vrSwMGDCAiooiICLK2ti6w7pkz\nZyg7O5uIiObMmUMzZ85U2T+HqusUebacPM57UK0VtejHkz/Si9QX2mv89WuiOnWIIiO116aGnH10\nlqz/tKauf3WlyCf67/8TsrOJWrYkOnuWa0lERPSG0J6bnI0Aw8LCIJFI0KBBA5QpUwaurq4ICAjI\nUyYwMBCjR48GANja2iIrKwsymSzfuk5OTjA0ZGp17twZCQkJ+lWMQyKfRKLdtnYIjg3G5W8vw8PZ\nAzUr1tReBx4ebORnY6O9NjXEobEDwieGY6TlSPTc2xNzgucgTZ6mdzmUGBoC06ezUaCIiEiJhDMD\nKJPJ0LBhQ+WxqakpZDKZRmUSEhIKrAsAW7duxYABAwotW0mbA89WZOO30N/Qc29PzOwwE/+M+gfN\nazbPU6bYOiUkAH/+CSxdWrx2ioGRoREm2U/Cjck3EPsqFm23tcWuI7s4kwdjxgCnTwPx8VpttqTd\nf5ogRJ0AYeolRJ3UwZkfoKZOz1TENZZly5ahXLlyGDlypNoyY8eOhdkHX64aNWrAxsZG6QCacxPw\n/biZbTOMPjwar+68wsYuGzHUeqjK8lFRUcXr79tvgZ494fjhxYNL/etUqYOpxlMR+DIQ7kHuMGpq\nBNMUU27kGTUK8PSE1NmZs++jJBwX+/7j6XEOfJFHF/pJpVI8evQIgoSruddz585Rnz59lMceHh60\ndOnSPGXGjRtHBw8eVB5LJBKSyWQF1t25cyd17NiR0tLS1PbPoepawzvam0w8TOi30N8oKztLdx1d\nv05UuzbRq1e666OIXH96nVpsaEETjk6g1MxU/Qtw9y77bvK510REhIIQnpu54UybtLQ0aty4Mclk\nMsrMzCR7e3sKDw/PU8bX15cGDhxIRETh4eFkZWVVYN0TJ06Qubk5JSUl5dt/Sb6Q7zLekdsRN/p8\n/ed0RXZF9x326kW0bp3u+ykib9Lf0DDfYWT9pzXdS76nfwGcnYn27dN/vyIieqYkPzdVwak2gYGB\nJJFIqHXr1rR8+XIiIvL09CRPT09lmWnTppG5uTnZ2trmMZCq6hIRNW/enBo1akQ2NjZkY2NDU6ZM\nUdl3fhcyJCSkmJrpjvsv7pPlZksafWg0vc14q3G9IusUHEzUvDlRRkbR6uuYHL0UCgVtvrKZTDxM\nyDvaW79C+PoSde2qteb4fP8VFSHqRCRMvfLTSTSAAqEkGsAT909Q7ZW1afOVzaRQKApVt0g6ZWcT\n2dgQ5ZqG5hsf6xWeGE7N1jWjaQHTKF2erh8hMjOJ6tUjunVLK83x9f4rDkLUiUiYepUmAyiGQish\nrL28Fh4XPOAzxAddGnXRT6e7dwOensCFCywregnhdfprjDs6DnGv4uAzxAdNP2uq+07nzgXS04E/\n/tB9XyIiHFHSnpsFIRpAnkNEmHNqDo7fO46gUUFoVL2RfjpOSwNatgQOHAA6ddJPn1qEiLDhygYs\nD10OnyE+cGjsoNsOc+KDymRA+fK67UtEhCNKynNTU8RYoCr4eIszV8iz5XDzd0Po41CEuoUWy/gV\nWqd164C2bXlv/NTpZWBgAPf27tj71V4M9hmMPdf36FaQZs0AKyvgyJFiN8WX+0+bCFEnQJh6CVEn\ndYj5AHlKqjwVQw8OhYIUODX6FCqXq6y/zpOSWLDrixf116eO6N60O0LGhKDv330R9zoO87rO010W\n+vHjgR07AFdX3bQvIiKiVcQpUB6SkpaCfn/3Q9PPmuKv/n8VP4B1YXF3BxQKYONG/farI4iARy+e\nYIBPb3Rr6oQ1Pf/QjRFMSwNMTYGICKBxY+23LyJIFAogNZXNnJfV80+9sPD5uVkURAPIM2RvZOi5\ntyd6N+8ND2cPGBroeZb633/ZWtbt24CJiX771hIvXrBk9adPM1v04MGHpA0VXiJziAuqplmgh9wT\n7dsaoV8/ttSpNaZPB2rXBhYs0GKjIkIhK4vtKTt2DLh0CbhzB3j5EqhYEcjMBKpVAyQSoF07oH9/\noHNnwMiIa6n/g6/PzaIirgGqgKs58DvJd9D5r84Yaz0Wq3qs0qrx01in//2PZTwvIcYvt16hocCg\nQUDTpoC/P9ClC9vImpzMNmimv/oMSX8Eo3XnWMjajcL9WDmcnNjDZv9+9nAqNm5ugJcXe63Xgk5C\nQYg6AZrr9fQpMG8emyCYNQuoWpWF1b11i913798DGRnseNEi9vnMmUC9esCcOWxvlb4Q6rVShWgA\neUKYLAyOOx3xq+Ov+LHzj9wIcekScPky++WVICIjgW7dmO3p2ZPF7T50CJg4EbCzAyrnWj6tVbUK\npBMCYFz/HZ50/Rr3H6ZjwQJg82bA3JyNGouFnR17ep09W8yGRITA+/fM8JmbA69eASEhbFZi4ULA\nyQmoU4clFgHYv3XqsHt54UJW7uJFNjK0sgJ++gl4+5ZbfQSHvh0P+QKfVD9x/wQZexjTsbvHuBNC\noSDq1InIy4s7GQpJairRrFksFOeWLURyueZ1M7MyyfWgK32560t6m/GWFAqi48eJTE2Jpk4leqt5\nkJ1PWbWKaOzYYjQgIgQCAogaNSIaMYIoPr54bT15wm6p+vWJjnH4mODTc1MbCEubQsCXC+kd7U21\nV9amC48vcCuInx+RlRVRlg6DamuR69eJJBIiV1eiAsK+qiUrO4vGHRlHHbd3pJdpL4mI6OVL9qBp\n2pRIKi2icE+eENWoQfTuXREbECnJpKcTzZzJjN/p09ptOzSUvaQtWMACNekbvjw3tYWwtCkE+V1I\nfYU3OnDzANVZWYeinkTpvK98dcrMJPr8c6J//tG5HNpg/34iY2OinTuJzpwJKVZb2Yps+u7Ed2S3\nxY5SUlOU548dY2/bP/1UxHcCFxei3buLJFNpC69VkvlYr/h4Int7ooEDiV680E2fT54QOTiwWywl\npeDyhaU0hUIT1wA54mDMQXwX9B1Ojj4J67rW3AqzZQtgZgb06MGtHBqwdi3w889srW7MmOJHaDM0\nMMSanmvgZOaEHnt74FX6KwBA377AjRvAlSvAV18B794VsuExY4BdHCbrFdE7kZFAx47A4MFsDbpm\nTd30U7cucOoU0KIFYG8PXL+um35KBVxbYK7gUnX/O/5Ue2VtinwSyZkMSl69IqpThyhK96PQ4qBQ\nEM2fT9SyJVFcnC7aV9B3J76jdtva0ev018rzGRlEY8YQtW9fyDf6tDSimjWJHj/Wuqwi/EMqJTIx\n0X/c+JzZkBMn9NOf0EyGOALUM+fizuHbo9/i+PDjsKlrw7U4wG+/Ab17A9Ycj0LzQaFg7nWBgcC5\nc0AjHYRDNTAwwJqea2BX1w599vfB+8z3AIBy5ZhXQ5cubHfeixcaNlihAjBkCLBHxyHYRDjn5Ek2\n6jtwgP2rT4YPZy4/33zDfF9FCgnXFpgr8lNdV+sVUU+iyMTDhIIfBOuk/fxQqdODB2yUkpCgd3k0\nRaFguzIdHIhev/70c21fq2xFNo05PIacdztTmvy/LO8KBdGcOSw71MuXGjZ28SIbsuojdRXPEaJO\nRESrV4eQiQnR+fPcyhEWxnZDHz9e/LbENUARrRP7MhYu+12w0WUjujftzrU4jJ9+Yk7v9etzLYla\n1q9no75jx1iUDF1jaGCI7f23o3qF6hh9eDQUxBzaDQzYYNnBAejTh4WuKpAOHZiXc3i4boUW4YQr\nV4BffwUOHmQRW7ikXTs2Ehw7lv1eRDRDDIWmB569e4YuXl0wu8NsTGk7RS99FsjZs2yjxu3bLA4T\nDzl2DJg8mTkD6zu0ZnpWOnrt7QWbujZY03ONMnaoQsGmm969A/z8NAhTtWgRi3W1bp3OZRbRH/fv\ns5ehrVuBfv24luY/Tp0CRowAzpwBLCy0377QQqEJazxbCPSl+uv012TraUsLQxbqpT+NyMoisrUl\nOnCAa0nUEhnJNhWEhXEnw8u0lyTZJKFVF1blOZ+RQeTkRDRjhgaN3L/P5qYK46UvwmveviVq3ZrI\n05NrSVSzbx9R48bMXULbCM1kiFOgKtBWLLz0rHQMPDAQHUw7YOEXC7XSZlHJo9POnWzUN3QoV+Lk\nS2IiCwS8eTOb2skPXcYtrFGhBk6MPIF1Yevw982/lefLlWPb3E+dYjLmS/PmQJMmhYqxJsRYjELR\niYhlverUCZg0iZ96jRgBjBsHDBzIYuAWFj7qpCs4NYBBQUGwtLSEubk5VqxYobKMu7s7JBIJ7Ozs\nEBkZWWDdgwcPQiKRwMjICBERETrXQR3ZimyMPDQSxpWMsaH3Bt3loCssb98C8+czhzq+yJSL9+/Z\nlNLUqfrfUaeKhtUbImBEAL4L+g5nHp5Rnq9Rg03R/vqrBmE/R4xg0bZFSjzr17OEKXzPFPbLL2y3\n9JQpHzKhiKiGq6Fneno6mZmZkUwmI7lcTvb29hQREZGnjK+vLw0YMICIiCIiIsja2rrAurdv36a7\nd++So6MjhYeHq+1fl6orFAqadGwSfbnrS0qXp+usnyLxww9E33zDtRQqycoiGjCAyM2t0Bsndc6Z\n2DNk4mFC159ez3P+n3+I6tUjksnyqZwTGi01VbdCiuiU8+fZbHZsLNeSaMa7dyxcoDbD+3JoMnSC\n2ozw/TRY2a1ZsyZ2FTHaRVhYGCQSCRo0aAAAcHV1RUBAAGxtbZVlAgMDMXr0aACAra0tsrKyIJPJ\nEBsbq7Zuq1atiiSPNlkoXYhridcQMiYE5cuU51qc/7h9mzm1RUdzLYlK5s8HXr8GfHz4Nzh1auKE\n9b3Xo8/+Prgw7gIaVWfOiD16ANOmAcOGsY0HKhOa1q0LtG3LHLWGDNGv4CJa4elTwNWV/XyaNOFa\nGs2oXJn5Jjo5sSnbFi24loh/qDWAd+7cwfbt21Xu+MnZCTRt2rQidyyTydCwYUPlsamp6Sdzz6rK\nyGQyJCQkFFi3OEilUjg6Ohap7oawDfCO8cZ5t/OoWr6q1mQqLtKQEDguX86sTN26XIvzCSdOAHv3\nsnBS5cppXq8416qwDLMYhsS3iei1txcujLuAzyp+BoClULxwgU07/f67msrDh7NpUA0MoD510hcl\nWaesLPYCFvSBAAAgAElEQVSCM3484OKS9zO+62Vhwabphw9n2c40+W3xXSdtotYALl26FF988UW+\nlRcUI+u1pmtiqgywthg7dizMzMwAADVq1ICNjY3ywucY1MIcn449jZ2vdyLULRQxV2MKXV+Xx1G7\ndgH//gvH6dN5IU/u48REYORIKRYuBIyNC1c/B33JO9txNmRvZPhi0RdY1WMVenzZA4aGwMSJUkyY\nAHTr5ogePVTUNzEBTp6E48uXwGef8er718dxVFQUr+QpzPHcucD791I4OABA3s9z4JO8Hx9PmQLs\n3y/F6NGAt3fh6uf8/9GjRxAkXM29njt3jvr06aM89vDwoKVLl+YpM27cODqYK7ieRCIhmUymUV1H\nPa8Bno49TbVX1qYbT29otV2t8O4dy81S5Pw+uiM7m8jZmWjhQq4l0ZxsRTYNPTiUBvsMpmzFfzlp\nzpxhGSTUpmf66iui7dv1I6SIVvDzYy4FRU25xReSk1kapaCg4rXDocnQCQXuAr148SL69u0La2tr\nWFpawtLSElZWVsU2vG3btkV0dDQSEhIgl8vh4+OD3r175ynj4uKCffv2AQAiIiJgZGSEBg0aaFT3\ng3EvtpyacDvpNob7DYf3YG9Y1rHUS5+FYulSFqqigBE9F2zcCLx5w2ZmSwqGBobYNXAXkt4nYVbQ\nLOV95uTENnxOnKhm5524G7REER/PAjH4+ADGxlxLUzxq1QJ27wbc3IBnz7iWhkcUZCHNzMzI39+f\nHjx4QA8fPlT+aYPAwECSSCTUunVrWr58OREReXp6kmcuD9Np06aRubk52dra5hnRqapLRHTo0CEy\nNTWlChUqUJ06dahXr14q+85P9cLELXz27hk1WduEdkbu1LiOXomJITI2phA/P64l+YToaKJatZiv\neFHhMsZkjqP8ygsrlefS01le4b/+UlEhNZXtBi0g9qoQ42aWNJ2ys4m+/JLoo4mlTyhpes2dS9Sr\nV/7JdEtTLNACtenatas+5NA72jCAafI06ri9I807PU9LUmmZ7GyiLl2INm7k3Q81M5MFo9m6tXjt\ncK3X41ePyfQPU9p3Y5/y3I0bLEWNyvfEsWOJ/vgj3za51kkXlDSdNmwg6tCh4AA+JU2vzEymV363\nYGkygAXGAg0ODoaPjw+6deuGcuXYFiIDAwN89dVXOh+d6pLixrQjIow8NBIKUmD/1/thaMDDoDrb\ntgHbt7NgmgUGrdQvixcDYWHMM4BvLg+F5eazm/hy95c47HoYnRuxqMgeHkBQEIsWY5j71ggOBubO\nBa5e5UZYkQJ58ABo3579bIToOvDwIYuwFBJS+HihQosFWqABHDlyJO7evQuJRALDXL9kLy8vnQun\nS4p7IRefXYzA+4EIGROCimV5GEw6MZHl+DtzBrDk17rkzZvAl18CERGAqSnX0miHoH+D4Obvhkvj\nL8Gshhmys5nv1fjxbE1QSVYWUzo0FPj8c87kFVENEdC9O3N3+P57rqXRHdu3A1u2MNeIMmp9AT5F\naAawwPFsy5YtScG3sBxaID/VC5rW8I72pkZrGtGTtzqINqsNFAqigQNZCvUP8GWqRi4natNGe5sh\n+aIXEdG6y+tIskmizCh/8yabCo2P/6jg9OlES5aobYdPOmmLkqKTlxe7PzWNXV5S9PoYhYKtca5c\n+elnpWkKtMB5u86dO+Pu3bu6t8QlhGuJ1zAtcBr8h/mjbhX+OZQDALy9gXv3eLm18o8/gM8+Y8F6\nhcaMdjPQpVEXDPcbjmxFNiwsWCb7T+IxDhvGQnSI8Irnz4E5c9jKQWFGRSURAwOWyun331ls09JK\ngVOgrVq1woMHD9CkSROUL8/CehkYGODGjRt6EVBXFGUon/g2Ee23t8f6XusxqPUgHUlWTJ49Y1Of\n/v5sIYNH5KytXLkCNG3KtTS6QZ4tR699vWBX1w4re6xEZibQpg0wbx6zewBYUkEzMyAwUDdJ20SK\nxMiRLDf0ypVcS6I/Vq8GAgJYshJN1uKFNgVaoAFUFwEgJ4JKSaWwFzJNnoYvdn6BAS0HYJ7DPB1K\nVgyIgEGDgFat8onJxQ1ELG5mjx7Ajz9yLY1ueZH6Au23t8cvDr9gjM0YhIWxyxITw0a/ANiXUKEC\nsGQJp7KKME6cYDFdb95kMTRLC1lZQMeOzN9x/PiCywvNAAprQrcQ5Kf6x3PgCoWCRvqNpGG+w/i9\nHrp9O5G1NXNG+wiu1yp27yaysdF+Xliu9VJHzPMYMvEwoYuPLxIR0eTJRFOm5Cpw9SpR8+Yq017w\nVafiwGed3r5l0V7++afwdfmsl6ZERrIsF8+esWNxDbAA+vTpo10rzHNWXlyJO8l3sKP/Dv7k9fuY\nBw+An39mEaXL8ygDBYCUFDbg2bpV+GsrOZibmOOvAX9h8MHBkL2RYfly4PBhNv0LgM2LKhQs+rcI\npyxcCHTtymYnSiM2NsDo0cKfmVFFgVOgqkhMTET9+vV1IY/e0HQoH3g/EBOOTUDYt2EwrcbTPfty\nOeDgwDK8z5rFtTSfMGkSSxPE9ySiuuD387/D95YvQt1C4eddEX/8wYxgmTJgC4NZWYCaZNAiuufa\nNaBPH5YhzMSEa2m44+1boHVrtn+uc2f15YQ2BVokAygENLmQd5PvoqtXVxwZdgSdGnbSk2RF4Pvv\n2a5Pf/+PvK655/Jl4KuvgFu3WBb10gYRYcShEShjWAa7BuxG9+4GGDgQcHcHcOMG0L8/80zm68yC\ngMnOZg7h7u7AmDFcS8M9Bw6wrQPXrqmfqRGaAVT7tHRyclL5161bN3Tr1k2fMuodqVSK1+mvMeDA\nAPz25W/8Nn6HDwN+fsCuXfkav4/Tt+iDrCzmArBqle6MHxd6FQYDAwPs6L8DMc9jsObyH9i8mUXB\nSUwEC1BQsWKueVEG33UqCnzUydMTqFoV+OaborfBR72Kiqsr+51+/72Ua1H0htoVmZW59gLnrHtd\nvnwZK1asQO3atXUvGYdkK7Ix8tBIdG/aHePtNNgaxRWxsWx+8dgxoGZNrqX5BE9P9oMaPpxrSbil\nUtlKODLsCNpvbw/LgZaYPLkHZs0CvL0N2FPH25t3LitCJykJWLQIkErFwXcOBgZsmaJzZzY7L/DH\nPAANp0ClUimWLl2KtLQ0zJ8/X2XqoZJGfkP5+Wfm4/zj8wgeHYyyRmX1LJmGpKezO3XMmA/zafwi\nKQmQSFgkNtHVjXEu7hyGHByC0yMuoH+X5vD0BHqY3mK7Lx4/5t30tZCZMAGoUgVYs4ZrSfjH7NnA\n69fAjh2ffia0KdB8DWBQUBCWLVuGcuXKYf78+XByctKnbDpF3YX0u+WH709+j6sTrsKkMk9XxYmA\nsWOBtDQ2euDhK+ykSWx2b+1ariXhF5uvbsbmq5vxS/1LWDCnKm7eBMq1sWTD5fx2H4hojWvXgH79\ngDt3gOrVuZaGf7x5wzbE+PkBHTrk/UxoBlDtK2fbtm0xefJkuLq6wsPDA9WqVUNERITyT4hEP4/G\n5IDJmNtwLn+NH8BCVdy8CXh5aWz89LlWER7O9uMsWqT7vkraGswU+ylo36A9Dma6oVlzYi8IQ4ey\nF5kPlDSdNIEvOikULDzd8uXaMX580UubRERIsWIFCwyQnc21NLpF7Rpg5cqVUblyZfj5+cHPz++T\nz0NCQnQqmL55mfYSAw8MxJqea2CawlN3BwA4cgRYt47lEuJhyAoiYMYMYNmy0rnrsyAMDAywqc8m\nOO50RKcJv8Hj27kYc2go6gxzYvNxPEtbJTR272b/CnbXZ0YGkJrKptMrVCiyT/DIkSxbxLZtLEqM\nUBHdIMA2vfT9uy9a1WqFNb14vChw4QIwcCCLIdm2LdfSqGTPHmD9emafxSUt9SS8SUC77e3Q+cV2\nlH/cG3tu2rAXmy++4Fo0wfL6NZva8/fn7c9Hc4jYHG5ICHDuHHNklMmA9++BSpXY5+npzAG3QQOg\neXO267hrV3aPVa1aYBfXrwPOzsyFydiYnRPaFKhaAxgREQE7O7t8K2tShq/kvpBzT8/FZdllnBx9\nEmUMeRqqJDqaJdHbs4e3ISvevmVhSFWtHYh8yoXHFzDI+ysY7byAS10PwswwHti8mWuxBMvs2Wx9\na/t2riUpIkTMZcbLi1nx8uUBJyfA0ZEFwG/cmE275CyLEAHv3gHx8Szlw/XrbNvrlSuAlRV7nnTv\nzhJXqnH8c3dndnTrVnYsNAOoNrCbpaUlvXjxQu1fcnIy2djY6CA6m37IUd0n2ocar2lMz989V37G\nu/h+MTFE9eoR7d9f5Cb0odNPPxGNGaPzbvLAu2tVSDZf2UymyyXkYnGdFLVrE8nlJV4nVXCtU0wM\ny82YE+9SW+hNr8uXiTp1ImralGjZMqJ//y16W6mpRMHBRHPmsAC9tWsTzZhBFB5OpFDk0enlS6K6\ndYmuXGHH+ZiMEonaSao3b96gTZs2av/s7e1RtmzxXASCgoJgaWkJc3NzrFATDsrd3R0SiQR2dnaI\nzBU3UV3dlJQUODs7w8rKCj179sSrV6/U9h/9PBpTA6fikOsh/m56uXWLvaV5ePDaoe7uXbZtmmdJ\nKHjPZPvJcDZvjytdlyC5QkPg7FmuRRIcRGwk88svJdC3LT4eGDWKhVOaMAG4fx+YOxdo1qzobVas\nyJ4pv//OYtGeP8/8iL/+GrCzA44eZSNHsAHlb7+xDTEKhZZ04hNcWd709HQyMzMjmUxGcrmc7O3t\nKSIiIk8ZX19fGjBgABERRUREkLW1dYF1p0+fTmvWrCEiojVr1pC7u7vK/gFQ8/XNaXfUbl2pWHzO\nniWqU4dozx6uJckXhYKoVy+iVau4lqRkkiZPI8natjSvZW9KHzORa3EEh68vkYWF9jOR6JR374gW\nLCCqWZNo/nyWskLXZGezlBgDB7J+f/iB6PFjys4m6tCBaMcO4Y0AOdPm7Nmz1KdPH+XxypUracmS\nJXnKjBs3jnx9fZXHEomE4uPj863btGlTSk5OJiKipKQkatasmcr+AZB7oGrjyAu8vIhMTIhOnuRa\nkgI5epSoZUuijAyuJSm5xL+Op1YzTOhVxepEmZlciyMY3r9nqY5K1KzyyZNEpqZEw4cTxcVxI8PD\nh0SzZhF99hnR8OEUs+sq1a0rPAPI2T49mUyGhg0bKo9NTU0hk8k0KpOQkKC2blJSEmrVqgUAMDY2\nxvPnz9XKsKrHKpXnOfXtUSiAOXOApUvZdJizs1aa1ZVO6eksAcW6dUC5cjrpIl+E4odlWs0UK8b7\n4naN99gy+xeuxdE6XF0nDw8W8NrRUTfta1UvhYLlZho7lm102b8faNRIe+1riFQqBczMgD/+YIHa\n27SB+fyvEELC26HM2ZZHTfPqkQY7joioSHn6Jti3g5mzM1CpEmrUqAEbGxs4fvil5NzYej1OS4Pj\n1q1ASgqkq1cDz57BsXVrrbQfFRWlE/kvXnSEhQVQvrwUUqmev69ccHK9tHxcDcBtu754FLAJJ/p9\ngYrlKvJKvuIc6+r+y+/46VNgwwZHREaWgPsvKAhYvhyOABAeDumdO4BUyvn1AwDp27d45OiIB+FS\n4BmERUFDRLlcTtu2baMFCxYQEVF8fDyFhYUVe+h57ty5PNOYHh4etHTp0jxlxo0bRwcPHlQeSyQS\nkslk+dZt2rQpJSUlERHR8+fP850ClY92I6pRg2jqVKL794utU7GQSok+/5zo229LzFxifDxbKnjw\ngGtJhEPGv3H0onw5clo1lBQqssWLaM6QIUSLFnEthQY8fUrUrh3RqFFE6elcS6OSI7ePkOkfpqVv\nCnTixImIiIiA94dQTdWqVcNkLYQGaNu2LaKjo5GQkAC5XA4fH59Pgmy7uLhg3759AJjPoZGRERo0\naJBvXRcXF+zduxcAsHfvXri4uKiVYVmzv4Dbt4HPPgM6dmRO5qdO6Xe7U3Iy4ObGdnp5eLDQC+U4\nmEssAj/9xNIdNW3KtSTCoVyzRkAzO1Q9ew0eoTwOysBzpFIWjIH3Wc4fPWIxYHv2ZGFqihi5RZfc\nSb6DCccmwHeIL9eiaJ+CLKS5uTkRUR6fv5zdmMUlMDCQJBIJtW7dmpYvX05ERJ6enuTp6aksM23a\nNDI3NydbW1sKDw/Pty4R0YsXL6h79+5kaWlJzs7O9PLlS5V9A6CaNXOtMb97R/Tnn0SWlhRSvz7R\nb78RPX6sFT1VkpZGtG4d88GZOZPozRvd9UXa91c6d46t0797p9VmCw3X/mW6IGT6dDrZ+CuqsqgO\nnY49zbU4WkGf10kuJ7K0JMo1eaQziqVXbCzbobN+vbbE0Qq5dXqd/ppabmhJ28K3EZHwNsEUqI2V\nlRVlZWUpDWBKSgpJJBKdC6ZrANCiRURDh370gUJBIRs3Ek2cyOb3nJyItm0jev5cZTuFJj6eaPFi\n5l3avz9RVJR22i0AbT6AsrKIbG2L5ZevNQRpAA8epKxqNaiWxQmqvaIuPXr5iGuRio0+r9OmTexn\nq48Z5CLr9fAhUaNGTFiekaNTtiKbBvw9gCYdm6T8rNQZwK1bt1KfPn2ofv369Msvv1DLli1p586d\n+pBNpwCg1NQCtkinpRH5+RENHkxUrRqbp587l+jECaIPrhYFkpVFFBFBtGYNkaMj21Y8aRLRzZta\n0kT/eHoSde2qnwdMqcXBgfYO9SebKavJ1tOWUjNTuZaoRJCczLyHbtzgWpJ8ePKEqHlz3o38Pmax\ndDF13N6RMrL+25MgNAOoUTDs69evIzg4GADg7OwMa2trHU7K6oecmHZ+fsCvvwIREWrD4TEyMoCL\nF4HTp1lQ6ogIFlGhZUsWbLZmTXYMAK9eAU+eAImJwL17bCtz165A795Ar14sSnsJJSWFBRT+5x/A\nxoZraQTM5s3IOnsBTS7tRau5o1C3jiF2D9xdpN3OpYkpU1hCjY0buZZEDW/fsmDUAwYwlweecvze\ncUw+PhlXJ1xFvar1lOeFFgu0QAP4+PFjAP+5I+T8ABtx4J+iTXIuJBGLCjRwIEvjA7AtwDnbgdVC\nBCQksNBECQnMMqSns8+qVwfq1WN/LVrwIuumRjppwPTpbI8QX2I2a0svPiGVSpn7S8uW8N3wBIvX\nEowmdMYYmzGY2WEm1+IVCX1cp8hI9n55+zZ7H9UHhdIrKwvo25cFrfb05GUiawDY478H39/7Hv7D\n/NGxYcc8nwnNABboB+ji4qI0eunp6Xj48CFatmyJmJgYnQunDwwMWPoeR0fA1bUQsQINDABTU/ZX\nSoiMBA4eZOFJRXRMnTpAmzb4utIJbKr2FZwyD+P38x1gXccaTk2cuJaOdygUwNSpLA+lvoxfoZk1\ni/27aRNvjd+bjDeYd2Yeln2z7BPjJ0QKnQ8wKioKGzduxPYSm1OE8fGbTIlPlaJjsrNZiqMpU4Bx\n47iWppSwZQsQEoLo+QfQrRvw5z+nMe30SFz+9jLMaphxLR2v+OsvlrLn4kWe5qHcto0lPL50iRcz\nQqpQkAKDvAehXpV68OzrqbKM0EaARUqIa2FhgejoaF3Iozc+vpA5yTIPHwbat+dQMJ6ycSMb/Uml\nvH15FR5JSSyRaWIiZs2vjDdvAMsJa7Hr+i5cGHcBlcpW4lpCXpCSApibszzRvExPeuMGy713/jzb\nM8BTFkkX4VTsKZwZcwbljFT7IgvNABb4rrR69Wrl38qVKzF8+HAY56QHFhDVqzM/9ClTgNOnpVyL\no3U+Dt1UGBISgEWL+LlsURy9+IpSJxMT9jYWEIBFiz5sPEr/Dha1LTD+6PgS9SDS5XWaOxcYPJgb\n41egXu/eAUOHAmvX8tr4HblzBH9F/gXfob64GHqRa3H0RoEG8O3bt3j37h3evXuH9PR09OjRAwEB\nAfqQTe+MHMkMob8/15Lwi5kz2YvBh7CkIvrE1RXw8UH16mzpaOJEA6zvvhX/pvwLjwseXEvHOVev\nst/r0qVcS6ICIvbD6dyZPVx4SszzGEw4NgF+Q/1Qt0pdrsXRK0WaAhUC6obyt28DDg5s1qJePRUV\nSxkBAcB33wE3b/7n5SGiR1JSgCZNAJkMqFoVQ4awjcVT5sjQbls7bO+/HS6fqw/3J2Ry1qWnTwfG\njOFaGhV4eQGrVjErXYmf09UpaSlot60dFnyxAN9Yf1NgeaFNgRZoAPv165dH6Y//f/ToUd1LqQPy\nu5D/+x8QF8eykZRm3r8HJBK2fq+lrEwiRcHFBRg9Ghg+HE+fAlZWQHAw8O6zCxjkPQihbqFoaczf\n6TVd4ekJ7NsHnDvHv6l53LrF/P2kUvYj4iFZiiy47HOBZW1LrO65WqM6QjOABU6BNmnSBFWqVMHE\niRMxYcIEVK1aFc2aNcMPP/yA77//Xh8y6h0HB6nS510oFGUN5tdf2ewNn42foNcAc3B1BT4Eo69b\nF/jtN+Dbb4H29Ttj+ZfL0f9Af7xKf6V/QQuBtq9TUhKwYAH3HgUq9UpNZet+K1bw1vgBwI8nf4SB\ngQFWOK/Ic16Ivyl1FOgHGBYWhrCwMOVx//790b59e6xdu1angnFJxYrMN3DqVDYVysMA7Trnxg1g\n50429SnCMQMGsCgNr18D1atj3Dg28lm/Hpg9+1vceHYDw/2G4/jw4zAyNOJaWr0wcyYbFFtZcS2J\nCtzdAVtbluWFp3hFeuH4/eO48u0VlDHkLC0s9xQUK6158+b08OFD5fGjR4+oefPmxQ3BxjkaqE4D\nBhAtXKh7WfhGdjZRhw5EW7ZwLYmIkn79iHbvVh7eu0dUqxbLxSjPltOXu76k2UGzORRQf/j5sdSZ\n799zLYkKjhwhatZM59ldisP5uPNk4mFCt57fKnRdTZ6bJYkCtTly5AjVrVuXHBwcyMHBgerWrUv+\n/v76kE2naHIhHz9mD5mYGD0IxCP+/JOoUydmCEV4wp49RLmSQBMR/f47kbMzC0r+IvUFNV/fnP6K\n+IsjAfXD8+cskcr581xLooKkJKJ69YhCQ7mWRC1xr+Ko3qp6FHgvsEj1S5UBzM7OJm9vb0pNTaWw\nsDC6evUqpaYKIyp9fhcyd4qTzZvZaCgrSw9C6RBN07Y8eUJkbFxyklUIMh2SKp1evyaqWpUoJUV5\nKjOTyMaGaNcudnzr+S0y8TCh0Dj+PYC1dZ2GDiX6/nutNKUV8uj1zTcstydPeZvxlqz/tKZVF1bl\nWy6/ayU0A5jvJhhDQ0OsXr0aFStWRLt27WBvb4+KpWwv/KRJbA1w3TquJdEPs2axDRYWFlxLIpKH\natVY1PbDh5WnypZloft+/BF4/hxobdIaewbtwZCDQ/Dw5UMOhdUNBw8C168DS5ZwLYkKQkLYHy+F\nY2HORh4aiTb12mB2x9lci8MbCnSD+Pnnn1GnTh0MHjwYlStXVp6vyduIs5pRmO28//7L/I0uXQI+\n/1zHgnHIP/8wv93oaN66LZVufHyYT8qH1GQ5/Pgji9aT47azIWwDtoRvwcXxF1GtfDUOBNU+z5+z\nDS9HjrDfIq/IyGDCrVjB0srwkJ9P/YxLsksIHh2sNsyZJgjNDaJAA2hmZvZJDjIDAwPExsbqVDBd\nU9gLuXYte/kOCeFpsN1i8v49+w1v3MjSForwkNRUoH594O5dli0i12lLS7YrtE8flrpsWuA0PHz1\nEMeGHyvxu/yIgCFDgGbNmI3hHUuWANeu8TaE1M6onVh6bikuf3sZxpWKF8ZSaAZQWBO6hSA/1VXN\ngWdlEXXsSLRhgw6F0iEFrcHMmEE0YoR+ZNEmpWYNMIcRI4g2bvzkdHAwUaNG/20+zMzKJOfdzjQ9\nYLpuhCwkxblOBw4QtW5NlJamPXm0RciePWynXFwc16Ko5OS/J6nOyjp0O+m2xnXENcBcZGRkYMWK\nFejbty/69euHlStXIjMzs1hGNyUlBc7OzrCyskLPnj3x6pVqJ96goCBYWlrC3NwcK3K9+qmrn5KS\nAicnJ1StWhUzcrLbagkjIxbZ6NdfWbg0IXH6NBvd8jaLtsh/DB+uMkRR9+4s4cC8eey4rFFZ+Azx\nwZlHZ7AhbIOehdQeT58yt7pdu4AKFbiW5iOIWIqj//0P4GGC8MgnkRh5aCT8hvqhlXErrsXhJwVZ\nyBEjRpCbmxudPn2aTp06RePHj6cRxRwqTJ8+ndasWUNERGvWrCF3d/dPyqSnp5OZmRnJZDKSy+Vk\nb29PERER+dZ///49nT9/njw9PWn69PzffDVQXSVbtrCdd+npRarOO1JS2MghKIhrSUQ0IiODjTge\nPfrkoxcv2C78Cxf+OxebEkv1VtWjo3eO6lFI7aBQEA0cSPS//3EtiRr27SOysmLbcXlGbEos1V9d\nn/xu+Wm13aI+N/mKWm3kcjkREZmbm3/ymapzhaFp06aUnJxMRERJSUnUrFmzT8qcPXuW+uTye1q5\nciUtWbJEo/peXl46M4AKBXOQ//HHIlXnFQoF0ZAhbPpTpAQxcSJzAlTB4cNEZmbMGOYQJgsjYw9j\nuvD4gso6fGXfPiKJhKcvmykpzCHx0iWuJfmE5PfJ1HJDS9oQpv31GqEZQLVToO3atQPAFj0fPXqk\nPP/o0SMYFnMXSFJSEmrVqgUAMDY2xvPnzz8pI5PJ0LBhQ+WxqakpZDKZRvU/3rRTWPKLhWdgwLae\n79tXsmKFqtJp+3bg3j2WB7GkIsS4hQXqNGKE2kjtAweyvzFjAIWCnWvXoB32DtqLQd6DEP2cm0TW\nhb1OT54wl5xdu3gainDuXGDgQEjT07mWJA9p8jT0+7sfBrYaiOntphepDSH+ptShdnsYfdjp4+Hh\ngQ4dOqBVq1YgIty7dw87duwosGFnZ2c8ffr0k/PLli3TSLCPjRgRFduwfczYsWNhZmYGAKhRowZs\nbGzg6OgI4L+bQNWxsTEwc6YUw4YBt245wsQk//J8OI6KispzvHOnFD/8AISFOaJCBe7lK+pxDnyR\nRy/HXbtCmpgIeHnB8UO8ydyfr1gB2NhIMXkysHUrq19eVh4Tak5A7329cd7tPB5GPdSr/B/ff/mV\nz9Y/gaAAACAASURBVMoC+vWTomdPoE0b/chXqOPLlyH18WHW+QN8kC9bkY0NzzegWc1m6GHUA1Kp\nVCu/L6lUmmcQJCTUukGYmppi9uzZICKkpqaiwocV6IyMDFSqVAmzZxfdmbJZs2YICwuDsbExkpKS\n0LFjR/z77795yoSGhmLFihU4fvw4ACg338ybN6/A+rt27cK1a9ewYYP6xX9tbOedM4c55gYGlizX\niLdvgXbtgJ9+4nW8XpH8+PFHoFw5QM0LZXw80LYtcx10cPjv/Pqw9dh0dRPOu52HSWUTPQlbOH74\ngQVjDwwEyvDNg0MuB+zt2Y9/xAiupVFCH1xf7qfcR8CIgGL5+uWH0Nwg1D62s7OzldngFQoFUlNT\nkZqaqjxfHFxcXLB3714AwN69e+Hi8mlCz7Zt2yI6OhoJCQmQy+Xw8fFB7w8OagXV19cFWrqU+WDx\nNPiDSohYpJcuXUTjV6IZMQL4+292QVXQsCHbtTxiBPDs2X/n3du7Y3Drweizvw/eZb7Tk7Cas3cv\nc3Y/cICHxg8ANmwAatdmu3F5xG/nf8Ml2SX4DfXTmfETJOoWB21sbHS28PjixQvq3r07WVpakrOz\nM718+ZKIiBISEsjFxUVZLjAwkCQSCbVu3ZqWL19eYH0iosaNG1PNmjWpSpUq1LBhQ7p9W7X/Sz6q\nF8pn6ckTogYNiI4d07gKJ+TotHo1ka0tP32qikKp8wPMQaEgatWK6OLFfIvNm0fUrVveWLYKhYK+\n9f+WnHc7U0ZWRvGE1RBNdLp6ledxaJ8+ZTtwcz1T+HD/7YzcSWZrzSjxTaJW2itNfoCcGEA+oC0D\nSMQ2gpmY8PiHS0ynwEC2cU3FDvoSCx8eQNpGY52WLiWaOjXfIllZRE5OzBDmRp4tp4EHBtIw32GU\nrdB92o+CdHr6lKhhQ6JDh3QuStH59luiWbPynOL6/gu6H1RoR/eCEA0gkdLNQKho+0Lu3UvUuDFR\nonZewrROZCQz0hdK1k54kfyIjWVDpoz8R3FPn7J7c+/evOfT5Gnk4OVA0wOmk0Kh0J2cBZCRQdS5\nM9GCBZyJUDAREUR16hDlmm3imvDEcDLxMKHzcfrLDSU0A6h2DTDHzUBEM0aOBMaPB/r1Y3E1+UR8\nPNC3L7B5M9CpE9fSiGiNJk2AVq1YFPN8qFMHCAhgbgUnT/53vkKZCjg67ChCH4diWahmu7O1DREw\nbRpgbAwsXMiJCAVDBMyezcJA1ajBtTQAgIcvH6Lf3/2wpe8WdG7UmWtxSiwlaO+i/vh4i72mzJ/P\nAkoPGgSkpWlXpqLy/DkLbt2vnxSurkawtbVFq1at0KdPH7x+/TrfuosWLcLq1auL1O/atWuRpocv\nQdW12rVrF548eaLzvnVFoe6/UaOAPXsKLCaRsHB3o0bl9V+tXqE6Tow8Aa8oL2wN31p4YTVElU4K\nBTB9OhAVBezezeOd1EePAklJ7A33I4r6rCgOyanJ6LWvF+Z2mYtBrQdpvX0udOIKvt5yJRIDA2Dr\nVvY2O2gQwLWP7JMngKMj8PXXwNChQKVKlRAZGYk7d+7AxMQEmzdvzrd+cfwu161bh9TU1CLXLw47\nd+5EYmJioeoocrzGSxpDhrBhXQEvMwDQuTPg6wsMGwbkfsbVq1oP/4z6B4uki3Do9iHdyZqL7Gxg\nwgRm/E6dYukOeUlmJnM5Wb2aF9tSX6e/Rq+9vfB1668xrd00rsUp+XA9B8sVulRdLicaNoyoVy/u\ndlvGxxN9/jnRh+hxRERUpUoV5f///PNPmjRpEhER3blzhxwdHcnKyoratWtH0dHRRES0aNEiWr16\nNRERffHFF3Tt2jUiYuHnzMzMiIiFzJs6dSq1atWKrKysaO3atbR+/XoqV64cWVpaUrdu3YiIaOLE\niWRvb0+ff/45zZkzRylH48aNaeHChdS2bVtq0aIF3fywk+jNmzfk6upK5ubmZGVlRb6+vkRE5O/v\nT3Z2dmRhYUH9+/enNznpDz5w8OBBqlKlCrVs2ZJsbW0pLS2NAgICyMLCgszNzWnEiBGU/iG2VuPG\njWnOnDnUrl078vb2piNHjlDz5s2pXbt2NGPGDOrbty8RES1cuJBWrfovi7ZEIqG4D9H/t27dSlZW\nVmRubk5ubm7KEIJ6ZdAgom3bNC5+5gxbDw79KHF8RGIEmXiY0JnYM1oWMC9yOUtq4eRE9PatTrsq\nPuvWEfXsybUURMQyunf5qwtNC5jG2Zqt0EyGsLQpBLq+kHI50dChzAi+f6/Trj7h0SOiZs2IPDzy\nns8xgFlZWfTVV1/Rpk2biIioU6dOdP/+fSIiunz5MnXu3JmI8hpAR0dHCg8PJ6K8BvCPP/4gV1dX\nZR+vXr0iIiIzMzN6kSsg5evXr5V9Ozo6Ko2pmZkZ/fnnn0REtHnzZhozZgwREbm7u9MPP/yQp/7T\np0+pY8eOlJqaSkREv//+O837eHvjR7K+f/+e6tSpQw8fPiQiIjc3N/r9QxxNMzMz+uOPP4iIKDU1\nlerWrassN3z4cOrXr5/ye8htAC0sLCguLo6ioqKoT58+lPXBx2DKlCm0rRCGSGscPkzk4FCoKsHB\nqjdFnYk9QyYeJhSeGK5FAf8jI4Po66+ZTflwGflLSgpvtne/z3xPjjsdadyRcXrZtasOoRlAcQpU\nBdqYAy9ThsULrV0bcHJiaV30we3bbNpzxgw2c5ODVCpFWloabG1tUa9ePcTHx2Py5MlITk5GREQE\nhgwZAltbW+U5TTl9+jQmTJigPK5evbrKcjt27IC1tTXatGmDmJgY3L17V/nZgAEDAAB2dnaIj49X\ntjt58mRlmWrVqiE0NBT3799Hp06dYGtri927dyM8PFxlf/TBQTw6OhotW7ZUhrwbNWoUQkNDleUG\nDx4MALh58yZatGihLDd8+PB8AyoQEYKDgxEZGQl7e3vY2trizJkzSvmLQ6HvPxcX4NYt4OFDjat0\n786WDgcMYNOiOTg1ccKWvlvgss8F159eL5wc+SCVSpGeDgwezIKp+PsDFStqrXndsHQpW8uwsFBb\nRB/rZe8z32PAgQFoULUBtvbbCkMD3T62S9MaIPeT2gKmTBlg505g8WIWeszXl/2rK/z92brKypUs\nGPLHVKxYEZGRkUhLS0Pv3r3h7++Prl27wsTEBJGRkfm2bWhoqFwnS/9ocTM/QwEAd+/exaZNmxAV\nFYUqVarAzc0NWVlZys/Lf4h2bGRklGctTlW7vXv3xu7du5XH6n6sOeuXBcWUrVy5slI/dTrl1h3I\nq//48eOxePFilTLojXLlAFdXtpOkEFspe/Zky4f9+wMxMWwTl5ERMKj1IGQpstBzb0+cHH0SVnWs\nii3i48csbV7DhuzFsGzZYjepWx48YLE+Y2I4FeNl2kv02d8HrYxbYWu/rTAyNOJUHqEhjgBVkBMQ\nVhsYGLBn0vr1zBXBw4NtANAmaWnAzJls1Hf8uGrjl1unihUrYu3atZg3bx5q1aoFExMTZcxVIsKt\nW7eUZXMMgampKa5duwYAOHz4sPJzZ2dnbNu2TVkuZ2dpxYoV8f6DP0h6ejqqVKmCypUrIzk5GSdO\nnChQJ2dnZ2zZskV5/ObNG3Tt2hUhISF4/Pixst3cGUNy65fTt4WFBe7du6cM5vv333/DIXdwzA9I\nJBLcu3cPcXFxAABvb2+loTQ1NUVERAQAFtT54cOHMDAwgLOzM3x8fPDy5UuljDkZS4pDke6/sWOZ\nASzkZh5bW+DKFbYpxtkZyBF/iGQI1vdejx57euDa/9u787ioqv4P4J9BxQ3SUkGTJxGVdVZQDAXF\nBEVxL3EhFCtLjBQpXH76PIBmJak8mUtomqiZoKaVIomCkLsJiKBBLiBoCmouEJsz5/fH1XlQtgFm\nuMPl+369eL0YvOee73dmuqdz71lu/V73eJ5SKoHVq4HAQFd4e3NLnOl94wdwa30GBnJzSGqgzWvF\ni+4U3sGQyCFw7O6Ib8d8i5YGjdNf0WVO+oYawEYybhxw7hzXQDk7c6PftCE2FpDJuBGfKSk19zAr\n9nzkcjl69+6N6OhoREVFYdWqVZBKpRCLxdi9e3elMkFBQQgPD0e/fv2Qn5+v/ru/vz86deoEGxsb\nyOVybH86JP/dd9/FkCFDMHToUMhkMkgkEvTp0wfe3t5wdnauNr5n5122bBlu3LgBW1tbyOVyHD16\nFKampti4cSPGjBkDuVwOR0fH5xrrZ3x8fDBjxgzY29tDJBJh8+bNGD16NOzs7FBcXIy5c+dWej/a\ntm2LiIgIuLm5oX///ujSpYu6Uffy8sJff/0FsViMtWvXwsrKCgAgk8mwaNEiuLi4qHcSqevoU61x\ncADatweSkupctFs3biTmG29wDeL69VzD5WXnpb4dGnc1rs7n/fNPYPBgbm3PM2e4KQ96O9WhohMn\nuIDnzeMthBsPb2DQ1kEYZz0O4cPDdX7bs9ni6dkj72pKXZfLGymV3IA9ExNuJNyxY9yyjnWhUjGW\nmMgNsOndm7GDB2svw/eSTbqiq7yOHTumHgXa2OqdU3g4Yz4+Dar74kXGBg9mTCxmbPdubim1pOwk\n1iWsC/vh4g8aneP+fcaCg7llM7/6ivvON5nvn0rFmJMTY1u3anS4LvLKvJvJeoT3YKtPrtb6uTXR\nnJZCo/+taGQGBtxuDJmZ3P+0z54NWFoCn30G3LxZfbmyMu5/TJct43p5770HTJgApKdzYyCI9ml7\n/0md8/bmJm1rMCewOmIxkJAArFjBPUvu0weI2+yCDU5H8MnhT/D1maq3GMvO5nqOnp6AuTn3zO/s\nWWDOnCbS63vmxx+5LV7efpuX6i/cvgDXra7496B/Y54Tfz3Q5qLa/QCFTl/2tWKMu1Bs2QJERXGj\nRsVi4NVXubENRUXcxeXUKaB3b2DoUG4En5sbN2CBkOe89RYwbBjw/vsNPhVjwPnz3K5LP/4I3FNl\no8xrGF577AW3FsvQqqUId+9yt97v3eNWHBo5knuW+PLLWsilsZWXc0vmrF3LvYeN7FTuKYyLGoev\nR3wNLzuvRq9fE/py3dQWagD1yJMnXM8wI4Pbw62sDGjXDjAz49bwpOVZSa1iYrhhx6dPa/3UBQXA\nhT8L4Hd8JLqo5Hiz9QaYdG4JW1vu2WGT6ulVZf167oFlxQVTG8mRa0cwZe8UbBu3DSP6jGj0+jWl\nj9fNBuHv7iu/akq9yTyvqAMh5sSYMPNqUE5PnnAbVD5dzUcXHpU8Ym7b3Ni4XePYP2WazWbX+8/p\n0SNur7CUlDoV00Ze+y/vZ13CurDE7MQGn0sb6BkgIaRpatGCmwfz3Xc6q8K4tTEOTj2I1i1aw+N7\nDzwoeaCzuhpNWBh321Mub9Rqt1/Yjg8OfIAY7xgM6lF5eg7RLboFSojQXLnCrXydm8s9SNYRFVMh\nIDYAiTmJiPWORTfjbjqrS6du3QIkEu5h5muvNUqVKqbC0sSl2Jq6FTHeMbDtYtso9TaU0K6b1AMk\nRGh69+b2CTx4UKfVGIgM8JXHV/Cy9YLTZietLp3WqIKDuWHVjdT4FZUVYfKeyTh89TDOvHemyTR+\nQkQNYBWEuBaeEHMChJmXVnJ67z3gm28afp5aiEQiLB60GF+4fQG37W6Izoiu8ji9/ZwyMrg1BBct\nqlfxuuaVdS8Lr29+HW1btUX89HiYGtW80gwf9Paz0gHeGsD79+/D3d0dUqkUw4cPx4MHVT9HiI2N\nhUQiga2tLVasWFFr+cOHD8Pe3h5SqRQSiQS/1rJbNiGC5OXFLTdUYdFxXZosnozDbx/GgiMLEHQ4\nCE9UT2ovpA8WLuQav0bY6X3vpb0YuGUg/Pv5Y+vYrWjTso3O6yS14Gv0jb+/PwsPD2eMMRYeHs7m\nzJlT6ZiSkhJmbm7O8vLyWHl5Oevbty9LTk6usfyFCxdYfn4+Y4yx9PR0ZmpqWuXeWTymTkjjWLyY\nsY8+atQq7xbdZR47PJjLFheW+zC3Ueuus4QExnr2ZOzp/pC6UvakjAXGBrIe4T3YuZvndFqXrgnt\nuslbNhYWFuzu3buMMW5/uV69elU6JjExkXl6eqpff/nll2zZ0x1eNSnPGGNdunRR7x9XkdA+SEIq\nyc1l7OWXuSH+jUipUrJPEz9lpl+asv2X9zdq3RpTKhnr25exHzRb3q2+ch7ksIGbBzKPHR7sbtFd\nndbVGIR23eTtFmhBQQE6PZ3Z3blzZ+Tn51c6Ji8v77nV/s3MzNSr7WtSfs+ePZDJZGhbx43HhHgP\nXIg5AcLMS2s5mZlxSwdFRmrnfBoyEBlg8aDF2Ou1F4GHA/Hez+8h5nBMo8ZQq2cLvns1bMWV6j4r\nxhh2XtyJvhv7wrOPJw5OPYhO7ZrGShZC/G+qOjrdX8Pd3R23q9gJdvny5RqVr20vt5pcunQJCxcu\nRFxc9avY+/r6qjdA7dixo3pFf+B/XwKhvE59uv2EvsSjrdfP6Es8evf6o4+A99/HMVtbwMCg0etP\n/SAV836dB58NPgi+H4w5k+fw//6UluLYvHlAUBBcny5fo83vX35RPt4Kews3Ht7AofmH4PCqg/58\nH+qR37Fjx9TbiQkOX11PCwsLVlBQwBhjLD8/v8pbmElJSc/dAg0LC2OffvppreVzc3OZpaUlO3ny\nZLX185g6IY1HpWJMKmXs1195DWP/5f3s1VWvMr8DfuxB8QNeY2GrVzNW4bqiLaVPSln4qXDWOawz\nm394PisuL9Z6HXwT2nWTt1ugI0eOxI4dOwAAO3bswMgqtjTo168f0tPTcfPmTZSXlyM6OhojRoyo\nsfyDBw/g6emJL774Ak5OTo2UDSF6SiTidkr+uupdHBrLWOuxSPdLR7myHLbrbbHtwjYoVVreGVoT\n9+8Dn3/ObXWhJYwxHMg6AMkGCWKvxCLRNxEr3FfQKM+mgK+W9969e8zNzY1JJBLm7u7O/v77b8YY\nYzdv3mQjR45UHxcTE8Ps7OyYjY0N++yzz2otv2zZMta+fXsml8vVP896ihXVlLrer1tYD0LMiTFh\n5qX1nIqKGOvcmbGrV7V73jqomNOJGyeY07dOTLJewg5kHqhylLbOzJvH2KxZWjvdlh+3MPdt7sx6\nrTWLyYrR2nn51JzWAhVWNnVADaAwCDEvneQUFMTYxx9r/7waejEnlUrF9l/ez2zX2TKXLS7s5I3q\nH1dozZUr3C69t283+FQFRQXM74Af6/BBB7bm9BpW9qRMCwHqh+bUANJaoIQ0B9evA/36ATk5QPv2\nfEejplQpse3CNgQfC4bDqw747I3PYNPFRjeVvfUWt2/T4sX1PkVhWSE2nNuAsJNhmCKeguDBwU1m\ndKc2CO26SQ0gIc3F2LHclu1a2CxX24rLi7Hu3DqEnQjDwNcG4sN+H2Joz6Eaj/quVVIS4OMD/PEH\nUMdpUQBw5f4VbDq/CVtSt+CNnm8geHBws1zDU2jXTVoLtAovDnEWAiHmBAgzL53l9GwwDA8XsNpy\natuqLT4Z8Amuz70Oj14eCPw1EDbrbBB+Khx3Cu80rHKVCggMBL74ok6NX5myDFHpURi6bSgGbB4A\nFVPh9LunEfVWlLrxo+9f06bTeYCEED0ydCigVAKJicDT+V76pr1he3zQ9wO87/A+jt84jm9TvkVo\nYij6vtoXE2wmYLTlaPyrw79qP1FF27cDrVoBkyfXeuiDkgeIvRKLnzN/RuyVWMi7yvGBwwcYZz0O\nrVu2rmdWRF/RLVBCmpP164GjR4G9e/mORGP/lP+DX6/8in1/7MOhK4fwUuuXMLjHYLiau8KhmwN6\ndOwBI0Ojqgs/fsxtDbVvHwxefx3e3t7Yvn07AKC8vBzdunWDhdQCw5YMw4ncEzh/6zwGmw/GGMsx\nGGU5Ct2Mu+Hhw4fYuXMn/Pz86p2Dr68vRo8ejTfffFOjv1eUmJgIQ0NDnU/rioyMxLBhw9CtG7ev\n48yZMxEYGAgbm/89k63PdbOx4q8P6gES0pxMmwb85z/AtWuAhQXf0WikXat2GG8zHuNtxoMxhksF\nl5CYk4gDWQfw+fHPkfMgB+1atUOPjj1g3tEcPTr0QI8OPdChTQc4fL0H7ex74ohBClq1aYW403GY\nsmsKrj6+ikunLqHEsATX/74OEUQIGhCEwT0Go73h84OE/v77b6xfv75BDaBIJKryeWZ1f68oISEB\nxsbGdWpAlEolWrRoUacYt27dCrFYrG4AN23aVKfy1alP/CqVCgYGun9CR88AqyDEe+BCzAkQZl46\nzcnIiBsEs3Kl7uqogrZyEolEsDOxw+x+sxE9MRqXP7yMov8rwqUPL2GD5wZMtpuMbkbd8Of9P/HH\n8f0w330E4eNMkfxXMhgYbJxs0CmvE/7r8V94lnhi+dzleN3sdSx7YxnOfn8W33z9vz0UJRIJcnJy\nsHDhQly9ehUKhQLz589HYmIiRo8erc7L398fkU/XWw0JCYGjoyOsra3h6+sLlUqlPl9tPSdzc3N1\neSsrK6SnpyM7OxsREREIDw+HQqHAiRMncPv2bYwaNQoymQxyuRyJiYnqun18fODq6gpfX1/k5OTA\nxcUFCoUCYrFYfRwAhIaGwsbGBnK5HAsWLMDevXvx+++/w9vbG5aWligpKYGrqyvOnz8PAPjuu+9g\na8s99wwICFCfx8jICEuWLIFCoYBCocBff/31XE5VxX/16lUMGDAAMpkMzs7O6mXWfH19MWvWLAwc\nOBALFy5EVlYWFAoFHBwcsGTJEhgbG6vf82fvP4Dn3v9Tp07ByckJUqkUQ4YMwc2bN2v+QvEx90If\n1JQ6zS1rOoSYl85zun2b2yXi1i3d1lNBo39OKhVjQ4cy9nTLNMYYMzIyYmlpaeytt95iJSUlTC6X\ns2PHjrFRo0YxxhgLCQlhK1euVB8vFotZTk4Oy87OZmKxWP33hIQEdZmEhATm7+/Ptm7dyhhj7OHD\nh+rjfHx82J49exhjjPn6+qp/r8jX15ft3buXMcaYubk527BhA2OMsfXr17Pp06er41q1apW6zPjx\n49nx48cZY4zl5OSol4EMDg5mffv2ZeXl5YwxxoqLi1lZGTc/MSsri0kkEsYYYz/++CMbOHCg+t+e\nxezq6srOnz+v/qyevc7JyWHdu3dnf//9NwPA3Nzc2K5duxhjjIlEInbo0CHGGGPz589nwcHBlXJ8\nMX53d3e2c+dOxhhjkZGRzMPDgzHG2PTp09m4cePUxw0bNkx9XEREBDMyMqr0/jPGbY0XGRnJSktL\nmb29vXqXoF27djFvb+9K8VREPcAquOrpAIGGEGJOgDDz0nlOpqbA9OncqMhG0uifU3Q0kJ8P+Ps/\n92eJRILs7Gz88MMP8PT01OhUrIae24t5HThwAA4ODpDJZIiPj0dmHTckHjt2LADA3t4eubm5VcZw\n5MgR+Pv7Q6FQYOzYsSgtLcWjR48gEokwZswYtGzJPdkqKirC22+/DTs7O3h5eSErK0tdfsaMGWjV\nqhUA4KWXXnqunoo5McZw+vRpuLm5oePTTYOnTJmC3377DQBgaGgIDw8PAICDg8NzMVdUMf5Tp07B\n6+kuHFOmTMGJEycAcL37CRMmVHnc5FoGMDHGkJaWhitXrsDNzQ0KhQLLly/HnTs1jyCmZ4CENEcL\nFwI2NsAnnwD/quOoSn33+DHw8cfArl1Ay8qXuDFjxuCTTz5BYmIiCgoK1H83MDB47pZlSUlJlad/\n8bji4mKIRCIUFhYiICAAaWlp6Nq1K0JDQ/HkyZM6hd66NTfStEWLFs/VUZFIJMK5c+fUDV1F7dq1\nU/++atUqmJubIyoqCkqlEm3atFGXr65Rr+45ZcXjWYVdeZ41okDl96U6NT3zrBh/dcfW9DnJZDIk\nJSXVGoP6XBof2YzQc6WmQ4h5NUpOpqbAzJmAhluTNVSjfk6hoYCbG+DsXOU/v/POOwgJCYGdnd1z\nfzczM0NycjIAbvuw69evAwDatm2Lf/7557njMjIyUFZWhpiYGMTHxwMAnjx5AgMDA3Ts2BHFxcXY\n/WzPwQZ6sX43Nzd8883/nlWmp6dXWa6kpASmpqYAgJ07d0Kp5BYfd3d3x9atW1FWVgYAePjwobqe\noqKi5z4rkUgEJycnxMfH48GDBwCA6OhoDBo0qN7xDxgwANHR0QCAXbt2wcXFpcpyFY+LiopS/73i\n+//48WMcPXoUIpEIUqkUN27cQEpKCgDu86itB04NICHNVVAQtzHs0wu9IKSncxsAh4VV+qdnvYnu\n3bvD/+mt0YqjML28vPDXX39BLBZj7dq1sLKyAgCYmppCLpfD1tYWCxYsgIWFBcaOHQtra2uEhobC\n3t4eALen6IwZM2BtbQ0PDw/079+/yvo1UTGu0aNHY+fOnZDL5Thx4gS++eYbxMXFQSKRQCwWY82a\nNVXW4efnh02bNsHBwQEZGRkwMuKmiowdOxbu7u6QSqVQKBRYsWIFAMDHxwczZszA+++//1yvyszM\nDEuXLlWP4rSxscHEiRMr1VfdiNYX41+3bh3Wrl0LqVSKiIgIrFu3rsr4v/76a4SFhVW6tVrx/ffy\n8lK//4aGhti9ezdmzZoFuVz+3AChat9nVtMNbgGjeYCEgJsSkZcHbNnCdyQNxxg3wd/LC/jwQ76j\nESQ+r5vGxsZ4/PixVs9JzwAJac4CA4E+fYCsLMDSku9oGub774HCQmDWLL4jITqgtXVhK6BboFWg\n50pNhxDzatScOnYE5s7lnpvpkM5zys/nBvRs2ADUcQJ4Q9D3r/E8evRI6+ekBpCQ5m7uXCAuDsjI\n4DuS+vP356Z2ODryHQlpQugZICGEWxkmKQn4+We+I6m73bu5Z5kpKcDTof5EN4R23aQGkBAClJYC\ntrZARAQ3haCpKCgAJBJg/37g9df5jkbwhHbd5OUW6P3799XDcIcPH66eX/Ki2NhYSCQS2Nraqofq\n1lT+zJkz6uGvNjY22LZtW73i09d74A0hxJwAYebFS06tWwNffgkEBADl5Vo/vc5y8vfnNrrl0/z1\nsQAAEAZJREFUqfGj71/TxksDGBwcDE9PT6SlpWHEiBEIDg6udExpaSn8/PwQGxuLtLQ07NmzRz3B\nsbryMpkMKSkpSE1NRUJCAgICAtSTPQkhtRg/HujWDVi7lu9INLN7N3DhArB0Kd+RkCaKl1ugvXr1\nwtmzZ9GpUyfcvXsXr7/+Oq5cufLcMUlJSQgLC8OBAwcAACtXrkRJSQmWLFmiUfnr16/Dzc0NV69e\nrTIGoXXlCdGKrCxgwADg/HmgRw++o6leXh7g4MA9s3xhwjnRHaFdN3npARYUFKBTp04AgM6dOyM/\nP7/SMXl5efhXhTUKzczMkJeXV2v5s2fPws7ODnZ2dli9erUu0yBEeCwtudugs2dzE8v1UXk54O0N\nzJlDjR9pEJ01gO7u7pBIJJV+ftZwlNmLkx4rLsBaE0dHR2RkZCA5ORlz585Vr3NXF0K8By7EnABh\n5sV7TvPnAzducItJa4lWc5o3D2jfnlvQm2e8f1Y6IMScqqOzlWDi4uKq/bcuXbrg7t276Ny5MwoK\nCmBiYlLpGDMzs+fWf8vLy4OZmZnG5a2trdGrVy/88ccfldbke8bX1xfm5uYAuHX85HK5eiuQZ18C\nobxOTU3Vq3i09foZfYlHEK8NDXFs9mzAzw+ujo5Ar1768/3LygKOHMGxlSuB337j/f16Rq8+Py3n\nd+zYMfWmtULDyzPAjz76CL169UJAQADCw8Nx/fr15xZ0BbiVzK2trXHixAmYmJhgwIABiIiIgL29\nfbXlc3Nz8eqrr6JFixbIycmBk5MTLl68qL5dWpHQ7mUTonVr1gDffQecPAm0bct3NNw8xYkTgd9+\na/rLtjVRQrtu8tIA3r9/H5MmTcKdO3fQtWtXREdHo2PHjrh16xZmzpyJgwcPAgAOHTqEoKAgqFQq\n+Pj4YNGiRTWW37ZtG7788kv1quShoaEYN25clTEI7YMkROsYAyZPBl56Cdi0id9YcnK4qQ6RkcCw\nYfzG0owJ7rpZ437xAlZT6gkJCY0XSCMRYk6MCTMvvcrp0SPGrK0Z++67Bp2mQTkVFjImlTK2enWD\nYtAFvfqstKSmnITWZNBuEISQ6hkbA3v2cNsMKRSATNa49atU3Bqf9vbc6FRCtIiWQiOE1O7774GQ\nEOD334EOHRqnTsaAjz8GTp8GEhK41WoIr4R23aQGkBCimdmzgdxc4McfgVatdFuXUgn4+QFpaUBM\nDPDKK7qtj2hEaNdN2g6pCi8OcRYCIeYECDMvvc3pv//lbklOmwY8eVKnonXKqbycq+PPP7ltmvS4\n8dPbz6oBhJhTdagBJIRoxtAQ2LsXuH8fmDIFKCnRfh2lpdxUhwcPuJ6fsbH26yDkKboFSgipm5IS\nbgeG/HyuQezcWTvnvXCB6/nZ2nLTHQwNtXNeojVCu25SD5AQUjdt2gBRUdyi2Q4O3AT1hnjyBFi+\nnNuHMDAQ2LmTGj/SKKgBrIIQ74ELMSdAmHk1iZwMDIDPPwfWrQOmTuUmzF+/Xu3h1eZ06RLXkCYm\nAsnJ3JQHDdb81RdN4rOqIyHmVB1qAAkh9TdqFJCZCYjFQL9+XA8uK6vmMkolN61hyhRg8GBgxgzg\n11+BCru/ENIY6BkgIUQ77twBVqwAfvgBMDHhGreKzweVSq5xjI8HzMy4nuPMmdxSa6RJENp1kxpA\nQoh2KZXc5PXTp4EXtyPr3RtwdgYsLPiJjTSI0K6b1ABW4dixY+ptQYRCiDkBwsyLcmo6hJhXTTkJ\nrQGkZ4CEEEKaJeoBEkII0YjQrpvUAySEENIsUQNYBSHOgxFiToAw86Kcmg4h5iXEnKpDDSAhhJBm\niZ4BEkII0YjQrpvUAySEENIs8dIA3r9/H+7u7pBKpRg+fDgePHhQ5XGxsbGQSCSwtbXFihUrNC5/\n48YNGBkZYdWqVfWKT4j3wIWYEyDMvCinpkOIeQkxp+rw0gAGBwfD09MTaWlpGDFiBIKDgysdU1pa\nCj8/P8TGxiItLQ179uxBSkqKRuUDAwPh6elZ7/hSU1PrXVZfCTEnQJh5UU5NhxDzEmJO1eGlAYyJ\niYGPjw8A4O2338bBgwcrHXPmzBnY2dmhe/fuaNmyJSZNmqQ+rqby+/fvh4WFBWxtbesdX3U90qZM\niDkBwsyLcmo6hJiXEHOqDi8NYEFBATp16gQA6Ny5M/Lz8ysdk5eXh39VWB3ezMwMeXl5NZYvLCxE\nWFgYQkJCdJwBIYSQpq6lrk7s7u6O27dvV/r78uXLNSovemFPMMZYpb+9KCQkBPPmzUO7du0aNFIp\nOzu73mX1lRBzAoSZF+XUdAgxLyHmVC3GAwsLC1ZQUMAYYyw/P5/16tWr0jFJSUnM09NT/TosLIx9\n+umnNZZ3cXFh5ubmzNzcnHXs2JG98sorbN26dVXGIJPJGAD6oR/6oR/60fBHJpNptS3gm856gDUZ\nOXIkduzYgYCAAOzYsQMjR46sdEy/fv2Qnp6OmzdvwsTEBNHR0YiIiKixfFJSkrp8aGgojI2NMXv2\n7CpjaE4PegkhhFTGyzPA0NBQHDx4EFKpFIcOHcLSpUsBALdu3VKP3mzTpg02bNiA4cOHQyaTYcKE\nCbC3t6+xPCGEEKKpZrsSDCGEkOaNVoKpxpIlSyCTySAWizFo0CBcu3aN75AaLDAwELa2trC1tcWo\nUaNw7949vkNqsN27d8POzg4tWrRAcnIy3+E0SHULPzRl77zzDkxNTSGRSPgORWtyc3MxaNAgSCQS\nWFlZISwsjO+QGqykpAT9+vWDQqGApaUl5s2bx3dIjYPvh5D66vHjx+rf16xZw6ZNm8ZjNNoRHx/P\nlEolY4yxBQsWsICAAJ4jarjLly+zzMxM5urqys6fP893OPVWUlLCzM3NWV5eHisvL2d9+/ZlycnJ\nfIfVYElJSSw5OZmJxWK+Q9Ga27dvs4sXLzLGuOtEnz59WGpqKs9RNdw///zDGGOsvLyc9e/fn8XH\nx/Mcke5RD7AaRkZG6t8LCwvRrVs3HqPRjiFDhsDAgPvIBw4ciJs3b/IcUcNZW1vD0tKS7zAarKaF\nH5oyFxcXvPzyy3yHoVWmpqYQi8UAuOuEVCrFrVu3eI6q4dq2bQsAKCsrg1KphKmpKc8R6R41gDVY\nvHgxXnvtNURGRmLhwoV8h6NVGzduxNixY/kOgzxV08IPRH9lZ2fj3LlzcHZ25juUBlOpVJDL5TA1\nNcWQIUMatJpWU9GsG0B3d3dIJJJKP7/88gsAbtL+jRs34Ovr22TuideWE8DlZWhoCG9vbx4j1Zwm\nOTV1tS3yQPRPYWEhJk6ciK+++grGxsZ8h9NgBgYGSE1NRV5eHpKSkprFoti8zAPUF3FxcRodN3Xq\nVAwbNkzH0WhHbTlFRkbi4MGDiI+Pb6SIGk7Tz6kpMzMzQ25urvp1bm7ucz1Col/Ky8vx5ptvYurU\nqRg3bhzf4WhVhw4d4OnpidOnT8PV1ZXvcHSqWfcAa3L9+nX17z/99JMgRrHFxsYiLCwMP//8M9q0\nacN3OFrHmvCMnooLP5SXlyM6OhojRozgOyxSBcYY3n33Xdja2jaZO0O1uXfvHh4/fgwAKC4uRlxc\nnCCuebWheYDVmDBhAq5evYry8nL07NkT3377bZMfCNOnTx+UlZXhlVdeAQA4OTlh/fr1PEfVMPv2\n7cOcOXNw9+5ddOjQAQqFAocOHeI7rHo5dOgQgoKCoFKp4OPjg0WLFvEdUoNNmTIFiYmJuHfvHkxM\nTLB06VLMmDGD77Aa5Pjx4xg0aBCkUqn61vXnn38ODw8PniOrv4sXL2LatGlgjKGkpARTp07Ff/7z\nH77D0jlqAAkhhDRLdAuUEEJIs0QNICGEkGaJGkBCCCHNEjWAhBBCmiVqAAkhhDRL1AASQghplqgB\nJIQQ0ixRA0iarXv37kGhUEChUKBbt24wMzODQqHAyy+/DDs7uzqd66effsLly5frVCYkJARmZmYI\nCQmpU7kX+fr6Yu/evQCAmTNn1jmOmly7dg1yuVwQa10S8iJqAEmz1alTJ6SkpCAlJQWzZs1CYGAg\nUlJSkJqaqt42SlP79u3DpUuX6lRGJBIhMDCwygZQqVTW6TzPViTZtGkTbGxs6hRHTSwsLJCamqq1\n8xGiT6gBJOSpZ4siMcagVCoxa9YsiMViuLq6oqioCACQmZmJIUOGQCaToX///sjIyMDJkyfxyy+/\nICgoCPb29rh27Ro2btwIR0dH2NnZYfTo0SgsLKyxToDrEfr4+MDV1RW+vr7IycmBi4sLFAoFxGIx\nEhMTAXDb1sycORNWVlbw8PBAfn6++hyurq5ITk4GAMyaNQv9+vWDpaXlc9t5mZubIyQkBI6OjrCy\nskJ6ejoA4OjRo+oesUKhUK8NSYhQUQNISBX+/PNP+Pv7Iz09Haampti9ezcA4J133sGmTZtw4cIF\nrFmzBh988AEGDBiAMWPGYOXKlUhOToaFhQUmT56Ms2fPIiMjA3K5HBERERrV+8cff+DIkSPYvn07\nTE1NER8fj5SUFOzbtw8fffQRACAqKgp5eXnIzMzEtm3bcPLkSXX5itsqhYWF4dy5c7h8+TLOnDmD\n8+fPq4/p2rUrzp49i4CAAKxcuRIAsHr1amzcuBEpKSk4ffo02rVrp5X3khB91ay3QyKkOj179lTv\n+u3g4IDc3Fzcu3cPycnJmDhxovq44uJi9e8Ve3NnzpzBv//9bxQXF+Px48dwc3OrtU6RSIQxY8ag\nZUvuP8uioiLMnj0b6enpMDQ0RFZWFgDgt99+w6RJkwAAJiYmeOONN6o83+bNm7F161aIRCLcunUL\nmZmZcHBwAAD1Zsj29vbYs2cPAGDQoEGYM2cOpkyZgvHjx9N2TETwqAEkpAqtW7dW/96iRQuoVCow\nxtClSxekpKRUWaZi72v69OmIi4uDnZ0dIiMjNd5ctGKva9WqVTA3N0dUVBSUSqV6CysDA4Nat37K\nzMzEunXrkJqaCiMjI8yYMQNPnjyplN+z3ABgwYIFGDVqFGJiYuDs7IzDhw/DyspKo7gJaYroFigh\nGurcuTO6dOmCAwcOAOB6fM8GvrRt21b9nBAAysrKYGJiAqVSie+//75e9ZWUlMDU1BQAsHPnTvXA\nGGdnZ/Ut2YKCAiQkJFQqW1paCiMjI7Rv3x53797VaIuo7Oxs2NnZISgoCI6OjsjIyKhX3IQ0FdQA\nEvJUxR5cxd8rvo6KisKqVasglUohFovVDdGkSZOwdOlS9SCY0NBQODg4wMXFBdbW1pXOp0kMfn5+\n2LRpExwcHJCRkQEjIyN1Xd27d4eVlRWmTZuGAQMGVDqPVCqFRCJBnz594O3tDWdn51rrXLlyJaRS\nKWQyGVq2bAlPT0+NYiakqaL9AAnhSWhoKIyMjPDxxx/zHUqtjI2NaVQoERzqARLCEyMjI2zcuLHB\nE+F16dlE+K5du/IdCiFaRz1AQgghzRL1AAkhhDRL1AASQghplqgBJIQQ0ixRA0gIIaRZogaQEEJI\ns/T/jVWB3070t1UAAAAASUVORK5CYII=\n", + "text": [ + "<matplotlib.figure.Figure at 0x3dbe950>" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 3.9, Page number: 148" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "\n", + "\n", + "#Variable declaration:\n", + "W=4.0*10**-2 #width of plunger lower arm(m)\n", + "W1=4.5*10**-2 #width of plunger upper arm(m)\n", + "D=3.5*10**-2 #depth of plunger (m)\n", + "d=8*10**-3 #length of magnet(m)\n", + "go=1*10**-3 #air gap length(m)\n", + "uo=4*pi*10**-7 #Permeability of free space(A.turns/m)\n", + "ur=1.06*uo #Relativity permeability\n", + "Hc1=-940 #Magnetising force(kA/m)\n", + "Bt=1.25 #Magnetic field induction(T)\n", + "N=1500 #No of turns\n", + "x=3*10**-3 #Position of plunger(m)\n", + "\n", + "#Calculation:\n", + "Ni=-Hc1*d*10**3\n", + "Rx=x/(uo*W1*D)\n", + "Ro=go/(uo*W*D)\n", + "Rm=d/(ur*W*D)\n", + "f=-((Ni)**2)/(uo*W1*D*(Rx+Ro+Rm)**2)\n", + "\n", + "\n", + "\n", + "#Results:\n", + "print \"The x-directed force:\",round(f,1),\"N\"\n", + "print \"Current in the excitation winding:\",round(Ni/N,2),\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The x-directed force: -703.3 N\n", + "Current in the excitation winding: 5.01 A\n" + ] + } + ], + "prompt_number": 31 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/.ipynb_checkpoints/chapter5-checkpoint.ipynb b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/.ipynb_checkpoints/chapter5-checkpoint.ipynb new file mode 100755 index 00000000..3f99f735 --- /dev/null +++ b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/.ipynb_checkpoints/chapter5-checkpoint.ipynb @@ -0,0 +1,609 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 5: Synchronous Machines" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 5.1, Page number: 254" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import math\n", + "import cmath\n", + "\n", + "#Varaible Declaration:\n", + "pf=0.95 #Lagging power factor\n", + "Vl=460 #Terminal voltage(V)\n", + "I=120 #Terminal current(A)\n", + "If=47 #Field current(A)\n", + "X=1.68j #Line syncchronous reactance(ohm)\n", + "\n", + "\n", + "#Calculation:\n", + "#Choosing motor reference direction:\n", + "Va=Vl/math.sqrt(3)\n", + "theta=math.acos(0.95)\n", + "Ia=I*cmath.exp(-theta*1j)\n", + "Eaf=Va-X*Ia\n", + "wc=120*math.pi\n", + "Laf=math.sqrt(2)*abs(Eaf)/(wc*If)\n", + "P=3*Va*Ia*pf\n", + "\n", + "#Results:\n", + "print \"Generated emf:\",round(abs(Eaf),1),\"V line to line\"\n", + "print \"Fied to armature mutual inductance:\",round(Laf*1000,1),\"mH\"\n", + "print \"Three phase power:\",round(abs(P/1000),1),\"kW or\",round(abs(P)/746),\"hp\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Generated emf: 278.8 V line to line\n", + "Fied to armature mutual inductance: 22.3 mH\n", + "Three phase power: 90.8 kW or 122.0 hp\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 5.2, Page number: 255" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import cmath \n", + "from math import *\n", + "\n", + "#Variable Declaration:\n", + "Pin=90.6*10**3 #Input power(kW)\n", + "Va=265.6 #Terninal voltage(V)\n", + "X=1.68j #Synchronous reactance(ohm)\n", + "Laf=22.3*10**-3 #Mutual inductance(H)\n", + "wc=120*pi #Angular frequency(rad/sec)\n", + "\n", + "\n", + "#Calculations:\n", + "Ia=Pin/(3*Va)\n", + "Eaf=Va-X*Ia\n", + "delta=degrees(cmath.phase(Eaf))\n", + "I=sqrt(2)*Eaf/(wc*Laf)\n", + "\n", + "\n", + "#Results:\n", + "print\"The phase angle,delta:\",round(delta,1),\"degrees\"\n", + "print\"Required field current:\",round(abs(I),2),\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The phase angle,delta: -35.7 degrees\n", + "Required field current: 55.04 A\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 5.3, Page number: 257" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "Eafl=13.8*10**3 #Open circuit voltage(V)\n", + "If1=318 #Field current(A)\n", + "If2=263 #Field current after extrapolation(A)\n", + "wc=120*pi #Angular frequency(Hz)\n", + "\n", + "#Calculations:\n", + "Eaf=Eafl/sqrt(3)\n", + "La1=sqrt(2)*Eaf/(wc*If1)\n", + "La2=sqrt(2)*Eaf/(wc*If2)\n", + "\n", + "#Results:\n", + "print \"Saturated Laf1:\",round(La1*1000,0),\"mH\" \n", + "print \"Unsaturated Laf1:\",round(La2*1000,0),\"mH\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Saturated Laf1: 94.0 mH\n", + "Unsaturated Laf1: 114.0 mH\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 5.4, Page number: 262" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "Ia=[118, 152] #Armature current from SC Characteristics(A)\n", + "If=[2.20, 2.84] #Field current from SC Characteristics(A)\n", + "Vll=220 #Line-to-line Voltage(V)\n", + "V=202 #Line-to-line air voltage(V) \n", + "P=45*10**3 #Power roted to motor(W) \n", + "Is_sc=1 #per unit rated current(A)\n", + "\n", + "#Calculations:\n", + "Va_ag=V/sqrt(3) #At field current of 2.20A,at air gap,(V)\n", + "Ia_ag=Ia[0]\n", + "Xs_u=Va_ag/Ia_ag\n", + "Ia_rated=P/(sqrt(3)*Vll)\n", + "Xa_g=Va_ag/1\n", + "Xs_u_pu=Va_ag/Is_sc\n", + "Xs=Vll/(Ia[1]*sqrt(3))\n", + "Ia_pu=Ia[1]/Ia[0]\n", + "SCR=If[1]/If[0]\n", + "Xs=1/SCR\n", + "\n", + "\n", + "\n", + "#Results:\n", + "print \"'All quantities are in per unit values'\"\n", + "print\"Unsaturated value of synchronous reactance:\",round(Xs_u,3),\"ohm\"\n", + "print \"Satureted value of synchronous reactance: \",round(Xs,3),\"ohm\"\n", + "print\"Short circuit ratio:\",round(SCR,3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "'All quantities are in per unit values'\n", + "Unsaturated value of synchronous reactance: 0.988 ohm\n", + "Satureted value of synchronous reactance: 0.775 ohm\n", + "Short circuit ratio: 1.291\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 5.5, Page number: 265" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "\n", + "#Variable declaration:\n", + "P_rated=45*10**3 #Rated power(KV)\n", + "Pl=1.80*10**3 #Short circuit load loss(W)\n", + "Ia_pu=1 #Per unit armature current\n", + "Ia=118 #rated armature current(A)\n", + "Ra_dc=0.0335 #Dc resistance(ohm/phase)\n", + "\n", + "\n", + "#Calculations:\n", + "Pl_pu=Pl/P_rated \n", + "Ra_eff1=Pl_pu/Ia_pu**2 #in per unit basis\n", + "Ra_eff2=Pl/(3*(Ia)**2)\n", + "\n", + "#Results:\n", + "print \"Armature resistance in per unit:\",round(Ra_eff1,3),\"per unit\" \n", + "print \"Armature resistance in ohms/phase:\", round(Ra_eff2,3),\"ohms/phase\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Armature resistance in per unit: 0.04 per unit\n", + "Armature resistance in ohms/phase: 0.043 ohms/phase\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 5.6, Page number: 269" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "%matplotlib inline\n", + "import cmath\n", + "import math\n", + "\n", + "\n", + "#Variable declaration:\n", + "Veq=1.0 #Externalsupply(p.u) \n", + "Eaf=1.0 #Internal voltage(p.u)\n", + "Xeq=0.23 #Eqv.resistance of external system(p.u)\n", + "Xs=1.35 #Saturated synchronous reactance(p.u)\n", + "\n", + "\n", + "#Calculations:\n", + "#for part (a):\n", + "P_max=Eaf*Veq/(Xs+Xeq)\n", + "\n", + "\n", + "#for part (b):\n", + "delta=[0]*500\n", + "Ia=[0]*500\n", + "Va=[0]*500\n", + "degree=[0]*500\n", + "for n in range(1,101,1):\n", + " delta[n-1]=(pi/2)*(n-1)/100\n", + " Ia[n-1] = (Eaf *exp(1j*delta[n-1]) - Veq)/(1j*(Xs + Xeq))\n", + " Va[n-1] = abs(Veq + 1j*Xeq*Ia[n-1])\n", + " degree[n-1]=180*delta[n-1]/pi\n", + "plot(degree,Va,'r.')\n", + "xlabel('Power angle,delta(degrees)')\n", + "ylabel('Terminal voltage(per unit)')\n", + "title('Terminal voltage vs. power angle for part (b)')\n", + "show()\n", + "#for part (c):\n", + "Vterm=1.0\n", + "P=[0]*500\n", + "deltat=[0]*500\n", + "Ia=[0]*500\n", + "Eaf=[0]*500\n", + "\n", + "for n in range(1,101,1):\n", + " P[n-1]=(n-1)/100\n", + " deltat[n-1]=math.asin(P[n-1]*Xeq/(Vterm*Veq))\n", + " Ia[n-1]=(Vterm*exp(1j*deltat[n-1])-Veq)/(1j*Xeq)\n", + " Eaf[n-1]=abs(Vterm+1j*(Xs+Xeq)*Ia[n-1])\n", + "plot(P,Eaf,'r.')\n", + "xlabel('Power [per unit]')\n", + "ylabel('Eaf [per unit]')\n", + "title('Eaf vs. power for part (c)')\n", + "show()\n", + "\n", + "\n", + "\n", + "#Results:\n", + "print \"(a) Maximum power supplied to external system:\",round(P_max,2),\"p.u\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n" + ] + }, + { + "output_type": "stream", + "stream": "stderr", + "text": [ + "WARNING: pylab import has clobbered these variables: ['prod', 'Circle', 'power', 'diag', 'sinh', 'trunc', 'binomial', 'plot', 'eye', 'det', 'tan', 'product', 'roots', 'vectorize', 'sin', 'plotting', 'zeros', 'cosh', 'conjugate', 'linalg', 'take', 'solve', 'trace', 'beta', 'draw_if_interactive', 'random', 'ones', 'transpose', 'cos', 'interactive', 'diff', 'invert', 'tanh', 'Polygon', 'reshape', 'sqrt', 'floor', 'source', 'add', 'multinomial', 'test', 'poly', 'mod', 'sign', 'fft', 'gamma', 'log', 'var', 'info', 'seterr', 'flatten', 'nan', 'pi', 'exp']\n", + "`%pylab --no-import-all` prevents importing * from pylab and numpy\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEZCAYAAACXRVJOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4TPf+B/D3RGRBEtllIwQJkZUgBFE0qPCrhqC0pUpz\ndbnVS91eWy9arvZ2uW2JW8ttLa2lC0WqJLFEBRVVqrGGJASxJWSffH5/RE6NLJOJzEyk79fz5DFn\n5pwzn3NmnPec7/csKhEREBHRn56JsQsgIqL6gYFAREQAGAhERHQPA4GIiAAwEIiI6B4GAhERAWAg\n1HsxMTGYP3/+Q88nLS0NJiYmKC0trYOq/jB37lyMGzeuTudJ9cPDfGfUajXGjBkDKysrdO/eXQ/V\nGca1a9fQoUMHFBYWAgDCw8OxfPnySse9cuUKOnbsiKKiIkOWWKcYCDXUrFkzWFlZwcrKCiYmJmjS\npIkyvG7dOr2975IlSzBz5ky9zf9hqVQq5bG+QocePbt378bevXtx7do1HDhwwNjlVMrExATnzp2r\ndpyFCxdi/PjxMDc3B1D2fb//O38/Z2dn9O3bF8uWLavzWg2FgVBDd+7cQW5uLnJzc9GqVSt8//33\nyvDo0aNrNI+SkhI9V2l4lZ3XyHMd9UNEHpl1m5GRAU9PT1hYWOg8rb7/n6jVauVxdeuzsLAQn3/+\nOcaOHVvjeT/99NOIjY19qPqMiYHwkEpLSzFr1iy4ubnBxsYGQ4cORXZ2NoA/fjGvWLECrVu3Rv/+\n/fG///0PPXv2xNSpU2FnZ4e2bdti//79WLlyJTw9PWFra4v//ve/yvyfe+45zJo1CwCQmJgId3d3\n/Pvf/4aLiwscHBywdOlSZdwtW7bA398f1tbWcHZ2xowZM2q0DIsWLcKIESM0nnv11Vfx6quvKssx\nYMAAWFlZwd3dHR9++KHGuOW/mHr37g0AaN68OaysrJCcnIyzZ8+iV69esLOzg42NDZ566incvHlT\nmXb//v3w8fGBjY0NRo4ciejoaGV5AeCrr76Cj48PrK2tERwcjEOHDlW6DDExMZg2bZrGc8OGDcMH\nH3wAoKxpy9nZGVZWVmjXrh127dpVo3Xj6emJhQsXws/PD1ZWVhg1ahTy8/OV1z/44AO4u7vD2toa\njz/+OC5cuAAAmDNnDl555RUAQHFxMZo2bYrp06cDAPLz82FhYYFbt24BAOLj4xEUFARra2v4+Pgg\nLi5OmX94eDhmzpyJnj17wsrKCufPn69Q4/z589G6dWs0a9YMbdu21dhjXbVqFcLCwjBt2jTY29vD\nzc0N3333nfJ6amoqQkJCYG1tjQEDBmDKlClVNgFev34do0ePhp2dHRwcHPD6669Xuje4fPlyTJ48\nGT/99BOsrKzw1ltvVbuugLJf659++im8vb3h4+NTYZ7l/5f++9//wsPDA3Z2dhpNqcnJyQgJCYGN\njQ3s7OwwceJEpZnn/vn7+Pigffv26NOnDwAgICAAVlZW2LBhQ4X3TE5ORvPmzeHq6qrx/JkzZ9C9\ne3dYWVnh8ccfx7Vr15TXunbtinPnziE9Pb3SdVjvCenM09NTdu3aJSIiCxYskB49esjVq1elpKRE\n/vKXv8iwYcNEROT8+fOiUqlk0qRJUlhYKAUFBbJy5UoxNTWV1atXi4jI7Nmzxc3NTf76179KSUmJ\n7Nq1SywtLSU3N1dERJ577jmZNWuWiIgkJCSIqampzJs3T0pLS2Xbtm1iZmYmN27cEBGRPXv2SGpq\nqoiInDx5UlxdXWXdunUatajV6grLc+HCBWnSpInyniUlJeLi4iLJyckiItK5c2eZOnWqlJSUyO+/\n/y4tWrSQLVu2iIjInDlzZOzYsSIikpaWVuE9zp49K3v27BERkZs3b0q/fv1k8uTJIiKSn58vzs7O\nEhsbKyIiW7duFXNzc2V59+7dK46OjvLLL7+IiMiaNWvExcVF8vPzKyzDnj17xMPDQxm+ceOGWFpa\nyuXLl+XYsWPi4eEhly9fFhGRzMxMOX/+vJZPuUyrVq0kKChIrl69Kjk5OdK3b1+ZOnWqiIhs2bJF\nnJyc5OTJk1JSUiJ/+9vfpHPnziIiEh8fL35+fiIikpSUJF5eXtKtWzcREdm1a5cEBgaKiMiZM2ek\nefPmsnPnThERSUxMFBsbG7l06ZKIiPTp00fatGkjZ8+eldLSUikpKalQ47fffivZ2dnKY3Nzc8nI\nyBARkZUrV0rjxo1l1apVIiKyZMkScXR0VKYNCAiQmTNnSmlpqRw+fFhsbW1l3LhxIlLxOzNgwACZ\nMmWKFBYWyo0bN6Rbt27y/vvvV7reVq1aJWFhYcpwdetKRESlUklkZKTk5uZKYWFhhfmV1zJ+/Hgp\nKiqS06dPS4sWLWTz5s0iIpKSkiJHjhwRkbLP18/PT955551q569SqeTs2bOV1i8i8vHHH8sTTzyh\n8VyfPn3Ew8NDzp49K4WFhTJmzBgZPny4xjj+/v5KXY8aBkIt3B8IrVu3Vh6LiFy6dEkaNWok+fn5\nype4/D+nSNl/0Hbt2inDx48fF5VKJVevXlWec3R0lMOHD4tIWSDMnDlTRMoCwdLSUmOD6+TkJPv2\n7au0ztdff11iYmJEpPpAEBEJCwuTzz//XEREduzYIV5eXiIicurUKTEzM5O8vDxl3NmzZ8uoUaNE\nRDMQtL2HSNmGoUOHDiIi8sMPP0irVq00Xu/bt68SCPeHYTlvb2/54YcfKsy3tLRUWrZsqYTPsmXL\npF+/fiIicvr0aXFycpJdu3ZJUVFRlbVVxtPTU1asWKEM79y5U9zc3EREZMyYMcpnI1IWcBYWFpKa\nmip5eXliYWEh169fl4ULF8rbb78t7u7ucufOHZk9e7a8+uqrIiIyd+5cZQNcLiIiQgnJ8PBwmT9/\nvk41d+nSRb766isRKfu+tW3bVnnt7t27yncyNTVVzM3NNTbA48ePr/TzTEtLE3Nzc40wXrt2rYSG\nhlZaw8qVKzUCobp1JVK2ca7qe3x/LefOnVOemzlzpjz99NOVjv+f//xHBg0apAxXNn9tgTB//nzl\ne14uPDxcZs+erQyfOXNGTE1NpaCgQHmuZ8+e8sUXX1Q53/qMTUYPKT09HU8++SRsbW1ha2uLjh07\nwszMDNevX1fGcXFx0ZjG2dlZeVzeWeXo6Kjx3P27u/ezt7eHickfH1uTJk2Ucffu3YuePXvCzs4O\ntra2+OSTT3D37t0aLceYMWOUpoa1a9fi6aefBlB25IS9vT0sLS2VcT08PHDlypUazTcjIwPDhw+H\ns7MzmjdvjtGjRys1Xb16tcLuuLu7u8a07733nrJubW1tkZGRobFuy6lUKowaNarSZWjbti3ee+89\nzJo1C87OzoiKikJGRkaN6n+wJjc3N2XZr169ipYtWyqvWVhYwMHBAVeuXIGlpSW6dOmC3bt3Y8+e\nPejTpw969OiBpKQkZbh8GTds2KCxjElJSbhx44Yy3we/Pw9atmwZOnXqBBsbG9ja2uLo0aMan3uL\nFi2Ux02aNAFQ1j5+9epV2NnZwczMrNJlvV9GRgaKi4vh4uKi1Pniiy/i9u3bWteftnVV0+V8sL77\nP4sTJ07g8ccfh4ODA5o3b4433nijwne/JvO/n52dHXJzc7XWoFarNb6Tubm5aN68uU7vVV8wEB6S\ni4sLdu3ahZs3byp/eXl5cHNzq7P3qOqohgeNHj0aY8eOxdWrV3Hz5k289NJLNT7iJyoqComJicjM\nzMS3336LMWPGACgLr+vXr2u0m6enp2tsZKqrc8aMGbC2tsaZM2dw69YtrFu3TqnJyckJly5d0hj/\n/rZXFxcXzJ07V2Pd3rlzp8pO/NGjR2Pjxo24cOECDh48iKeeekp5bezYsUhKSsLFixdhbm5eob+h\nOveHR0ZGhrLszs7OGu3gBQUFyM7OVgK/T58+2LVrF1JSUhASEoI+ffogLi4OBw8eVPpbXFxcMGHC\nBI1lzM3NrXH/z+nTp/HXv/4VK1euxO3bt3Hz5k0EBgbWqPPZyckJN27c0PjxUVXbd4sWLdCsWTPc\nuHFDqfP27ds4ceJEjerUtq5qqqrPYvLkyQgJCUFGRgZu3bqFRYsWPfTRbv7+/jh16pTWGho1agR7\ne3sAZR3iZ86cQUBAwEO9t7EwEB7SpEmT8I9//AOXL18GANy8eRPbt2+vs/mLDkeW5OXloWnTpjA1\nNUVKSgrWrFlT4zBxdHREeHg4nnvuObRp0wbe3t4AgHbt2qFTp06YNWsW1Go1UlNT8d///rfSjXLz\n5s2hUqk0Oj7z8vJgZmaGpk2b4sqVK3j33XeV13r16oWCggJ89tlnAIC4uDiNQxQnTpyIJUuWICUl\nBUDZRmTHjh24c+dOpcsQGBgIBwcHTJw4EQMHDoS1tTWAso3m3r17UVJSAjMzM5ibm2vsZVVHRPDJ\nJ5/g2rVryM3NxTvvvIORI0cCAKKjo/HZZ5/h999/R0lJCWbPng1fX1+0b98eQFkgfP755/D19UXj\nxo0RHh6Ozz77DG3atFE2IOPGjcM333yDhIQEiAiKi4uRlJSkEZTVff55eXkQEdjY2EBEsHbtWvzy\nyy81Wrb27dvD29sbCxYsQGlpKY4cOYLNmzdX+p3x8vJCSEgI3nzzTeWX94ULF5CUlFSj99K2rmpq\nwYIFKCoqwpkzZ7BixQrls8jLy4OFhQXMzc1x7tw5LFmyROu87OzsKu2kLxcSEoJbt25V+CxWrVqF\nc+fOobCwEHPnzsXQoUOVPf2DBw/C09MTHh4eOi1XfcFAeEj/+Mc/EBYWhm7duilHwuzZs0d5/cH/\nXJUdx1zdRvvB8asb9+OPP8bf//532NjYYPbs2YiKiqrx+wBlzUa7du1S9g7Kbdy4EUePHkXz5s3x\n2GOPYfr06YiMjKxQn42NDaZOnYouXbrAzs4OBw8exNy5c3HgwAFYWVlh8ODBGDp0qDK+paUlNm3a\nhHfffRc2NjZYsWIFIiMjlY117969sXjxYjz77LOwsrJCq1attB7SN2bMGMTHx2ssQ0FBAV577TXY\n2trCwcEBly5dwqJFiwAAa9asQadOnaqcn0qlwogRI/DYY4/B1dUVDg4OytEtkZGRmD59Ovr16wdb\nW1ukpKRg06ZNyrShoaEoKChQ9gY6dOgAS0tLZRgoC9x169bhzTffhI2NDVq0aIH58+dr/Lqt7nML\nCAjAlClT0KVLF7Ro0QI///wzevbsqTFtdd+3r776Ctu2bVOaWaKjozXC8v5xN2zYgEuXLqFVq1aw\ntrZGZGQkLl68WOV6u39abeuqpj9cunfvroTTiy++qHwPFy9ejFWrVsHa2hrPPfccoqKitP6/mTlz\nJqKjo2Fra4uNGzdWeN3MzAzPPfccVq9erTGfsWPHYsyYMUqT1/1H+q1ZswYxMTE1WpZ6SZ8dFOPH\njxcnJyfp1KlTleO8/PLL0rFjRwkKClKOEqA/r7CwMFm6dKmxy1DcfwDBn8HYsWNlxowZxi6jgpoc\nsKAP165dEx8fH41O46pcuXJFOnToUOlRUo8Kve4hjB8/XuOY6gdt2rQJFy9exIkTJ7B8+XKMHz9e\nn+VQPbR//35kZ2dDRLBu3TocPnwYAwcONHZZfxopKSlKv0F8fDy+/vpr5Vc3AQ4ODjh58qTSJFQd\nJycn/Pbbbxqd9I8aU33OvFevXkhLS6vy9W3btiknwQQFBaGkpAQZGRlVHulADc+vv/6KJ598Enfu\n3IG7uztWr16NVq1aGbusP4309HQMGTIEt2/fhp2dHRYvXowePXoYu6xK1bRZiWpPr4GgTUZGhkbn\ni7u7OwPhT2by5MmYPHmyscuoUnWdjg3B0KFDMXToUGOXoZWnp6fGJSdIP4zeqSwPHEHBXwFERMZh\n1D0Ed3d3pKeno1u3bgBQ5d5BW5UKZw1dHBHRI87Lywtnzpyp8fhG3UMYPHgw1qxZAwA4cuQIGjVq\nVOkJXWcBSJcukP79IeWPb96EDBr0x/D9rxlgvDkPM78HX+vZs+wxAHFw+OPxiBGQPn0qf62S8eZU\n9lrr1mXzGDSo7H1feOGP4WeeqfxxdePdvKmcG1HTvzlz5ug8jb7/WBNr+jPUdfasjj+lRY9GjRol\nLi4u0rhxY3F3d5fly5fL0qVLNQ4rnDJlinLY6c8//1zpfACI3LxZ9jdiRNm/IprDVT3W03hzOnas\n/fwefG3QIBFApEsXkf79/3hc3WuVjDenstd69ix7DJS9X58+fww7OFT+uLrxWrcue23QoLL3feGF\nP4afeabSx3PeeKPuvlR1ZM6cOcYuoQLWVDP1sSaR+lmXrpt4vQZCXdFzbtVKnX74+gyp+wNFx4Cp\n9LVaBMycjh1rFBzVBkz5ctaR+viflzXVTH2sSaR+1sVAMJCEhARjl1BBpTXV9d5SLQImYcuWh98z\nGTGi5qFS23VlZKypZupjTSL1sy5dt52qexPVayqVCo9AmX8Ot24BkyYBy5YBzZtrDgOVP27eHBg8\nGNi+HejSpWx4586Kj3/8ERgzpvLxfvwR+L//A3bvLpu3gwNw70ZEGo9HjCib7tQpoEkTwNERuHCh\n4uO1a4Hp0/8Yb+3asumIGhBdt50MBDKMmgZHVePpEio1DY6rV/8Yr3VroGVLBgc1KAwEarj0uTdi\nbg6UX7mTwUENBAOBqDZ7I9U1VTE46BHFQCCqjeqaqhgc9IhiIBDpE4ODHiEMBKL6oD4Ex4Nh8WCQ\nMDgaPAYC0aNEn8HxYFjcHyTVBQfDosFgIBA1RLUJjurO66guONg81WAwEIj+zGp64mB1wVEX/RoM\ninqBgUBE2lUXHHXRr1HV2eIMC4NiIBDRw6mLfo2qzhZnp7dBMRCIyDBqc5kRdnobFAOBiIyvNn0X\nddHpzaDQwEAgovpL353e7LvQwEAgokdfbTu9a9N30YDDgoFARA1bXfddNOCObgYCEf15PWwTVAPr\n6GYgEBE9qKZNUA2so5uBQESkiwbc0c1AICLSh0ewo5uBQERkaPrs6H6IvQoGAhFRfWLEJigGAhHR\no0DfTVDNmzMQiIgeeXXRBLV+PQOBiKhBq2kTFPcQiIj+pB5sggL7EIiI6B5dt50meqyFiIgeIQwE\nIiICwEAgIqJ7GAhERASAgUBERPcwEIiICAADgYiI7tFrIMTFxcHPzw8dO3bEokWLKryelZWFfv36\nwdfXF97e3oiNjdVnOUREVA29nZhWWFgIHx8f7Nu3D87OzggNDcWyZcsQFBSkjDNz5kyo1Wq88847\nyM7ORrt27ZCVlQVzc3PNInliGhGRzurNiWnJycnw9fWFm5sbTE1NER0dja1bt2qM4+HhgZycHABA\nTk4OHB0dK4QBEREZht4CISMjAx4eHsqwu7s7MjIyNMZ54YUXcOLECbi6uiIgIAAffvihvsohIiIt\nTPU1Y5VKpXWct99+G4GBgUhMTMTZs2cxYMAA/PLLL7Cysqow7ty5c5XH4eHhCA8Pr8NqiYgefYmJ\niUhMTKz19HoLBHd3d6SnpyvD6enpGnsMALBv3z7MmjULAODl5YXWrVvj5MmT6Nq1a4X53R8IRERU\n0YM/lt966y2dptdbk1FISAiOHz+OzMxMFBcXY/369Rg0aJDGOF5eXti5cycA4MqVK/jtt9/g6emp\nr5KIiKgaettDsLCwwJIlSxAREYHS0lKMGzcOwcHByqGlkydPxuzZszF27Fh07NgRarUa8+fPh5OT\nk75KIiKialR72GlxcTF27NiBPXv2IC0tDSqVCq1atULv3r0REREBU1O95YlmkTzslIhIZ3V2g5x5\n8+Zh06ZNCA0NRdeuXeHq6orS0lJcvnwZBw8exIEDBxAVFYWZM2fWWfFVFslAICLSWZ0FwubNmxEZ\nGVnl0UKlpaX4/vvvMXTo0NpVqgMGAhGR7ursxLShQ4dCpVJhw4YNFV7bsGEDTExMDBIGRERkGFov\nXREUFISUlBSN5wICAvDLL7/otbD7cQ+BiEh3um47q+wV3r59O7Zt24bMzEy88sorykzz8vJqdNIZ\nERE9WqoMBFdXV3Tu3BnfffcdOnfurARCkyZNsHDhQoMVSEREhqG1yai4uBiNGzc2VD2VYpMREZHu\n6qzJaMSIEdiwYQOCg4MrfZNjx47VrkIiIqqXqtxDuHTpElxdXZGWllbphIa8xAT3EIiIdFdn5yHU\nJwwEIiLd1fkNctauXQtPT080a9YMVlZWsLKygrW19UMVSURE9Y/WPYSWLVvihx9+QIcOHQxVUwXc\nQyAi0l2d7yF4enoaNQyIiMgwtF6uNCgoCKNHj8bQoUNhZmYGoCx1hg8frvfiiIjIcLQGwu3bt2Fu\nbo4dO3ZoPM9AICJqWHiUERFRA1VnJ6aVGz9+fIU3AIAVK1boWBoREdVnWgPhiSeeUEIgPz8f3377\nLVxcXPReGBERGZbOTUYigl69emHfvn36qqkCNhkREemuzg87fVBqairS09N1nYyIiOo5rU1GzZo1\nU5qMRAT29vZ455139F4YEREZFo8yIiJqoPTeZERERA0TA4GIiAAwEIiI6J5qA0GtVqNjx46GqoWI\niIyo2kBo1KgRvL29kZmZaah6iIjISLQedpqdnQ1vb2907doVTZs2BVDWc71582a9F0dERIajNRDm\nzZsHQPPwpfLzEoiIqOGo0XkIp0+fxrlz5xAREYH8/HwUFxcb9DaaPA+BiEh3dX4ewkcffYRRo0bh\nL3/5CwAgKysLQ4cOrX2FRERUL2kNhCVLlmD//v3KHkHr1q1x8+ZNvRdGRESGpTUQzMzMYG5urgyX\nlpaiqKhIr0UREZHhaQ2EXr16YcGCBcjLy0NCQgLGjBmDwYMHG6I2IiIyIK2dyiUlJfj000+VeypH\nRERgypQpMDEx3EnO7FQmItKdrtvOGh1llJ+fj+PHj0OlUsHPz0+jCak6cXFxmDZtGtRqNZ599lm8\n8cYbFcZJTEzE9OnTUVRUBBsbG+zevbtikQwEIiKd1XkgfPPNN3jxxRfh4+MDoOwGOUuWLMGTTz5Z\n7YwLCwvh4+ODffv2wdnZGaGhoVi2bBmCgoKUcbKystC/f3/Ex8fDyckJN27cgJ2d3UMvFBER6b7t\n1Hpi2t/+9jckJyfD09MTAHD+/Hn0799fayAkJyfD19cXbm5uAIDo6Ghs3bpVIxC+/PJLREdHw8nJ\nCQAqDQMiIjIMrR0Bjo6OShgAZYedlm/Aq5ORkQEPDw9l2N3dHRkZGRrjpKam4tKlSwgNDYW/vz8+\n++wzHUonIqK6pHUPISgoCEOGDEFUVBQAYNOmTQgMDMTXX38NABg+fHil09Xk8hZqtRrHjx9HfHw8\n8vLy0L17d4SGhsLX11eXZSAiojqgNRDy8/Ph6OiodPba29ujoKAAW7ZsAVB1ILi7uyM9PV0ZTk9P\n19hjAICWLVvC1dUVlpaWsLS0RJ8+fXDs2LFKA2Hu3LnK4/DwcISHh2tdOCKiP5PExEQkJibWenq9\n3VO5oKAAPj4+SEpKgpOTE3r06IHY2FgEBwcr46SkpGDatGn44YcfUFhYiJCQEKxZswaBgYGaRbJT\nmYhIZ3V2LaO5c+fiypUrVU54+fJlzJkzp8rXLSwssGTJEkRERCAgIADDhw9HcHAwYmNjERsbC6Cs\nOWrgwIHw9/dHYGAgnn322QphQEREhlHlHsL333+P9957D0VFRQgODoaLiwtEBFlZWThy5AjMzc3x\nt7/9zSBnLXMPgYhId3V+HkJ6ejqSkpJw4cIFqFQqtGrVCj169KjQH6BPDAQiIt3p5UxlAMjJyTHo\nPRDux0AgItJdnd8PYffu3Wjbtq1y5M/x48cxadKk2ldIRET1ktZAePXVVxEfHw8HBwcAQKdOnbB/\n/369F0ZERIalNRBEBC1bttR4jvdUJiJqeLSemObh4YGkpCQAZZfCXrp0Kdq0aaP3woiIyLC0dipn\nZWXhL3/5C3bu3AmVSoX+/ftj6dKlcHR0NFSN7FQmIqoFvR1lZEwMBCIi3dX55a9ffvnlCn0GFhYW\n6NKlC0aMGMH+BCKiBkJrp3JBQQF++eUXtGvXDm3btsWxY8dw9epVrF69GjExMYaokYiIDEBrk1HP\nnj2xd+9e5R7KarUavXv3xu7du9G+fXucO3dO/0WyyYiISGd1fmLalStXcPfuXWU4Ly8PWVlZMDU1\nRfPmzWtXJRER1Tta+xCmTp0KX19fPPbYYwCAhIQETJs2Dfn5+cpzRET06KvRUUYXLlxAcnIyVCoV\nunXrVuFENX1jkxERke70ctjptWvXcOrUKZSUlChHFfXu3bv2VeqIgUBEpLs6P+z0o48+wtKlS3H5\n8mUEBgbiwIEDCA0NRXx8/EMVSkRE9YvWTuWPP/4YP//8M1q1aoWEhAQcO3aMnclERA2Q1kCwtraG\npaUl1Go1ioqK0K5dO5w8edIQtRERkQFpbTJydXVFTk4OhgwZgn79+sHW1tagd0sjIiLD0OlaRjt2\n7EBBQQEGDhwIMzMzfdalgZ3KRES6q/MT08aNG6c8fvzxxzF06FA8//zztauOiIjqLa2BcPz4cY1h\ntVqN5ORkvRVERETGUWUgvP3227CyssKvv/4KKysr5c/e3h6DBw82ZI1ERGQAWvsQZsyYgYULFxqq\nnkqxD4GISHd1dqbykSNHAJTdU7myex4EBwfXskTdMRCIiHRXZ4EQHh5e7c1vEhISdK+ulhgIRES6\n4y00iYgIgB6uZVRYWIgPPvgAe/fuBQD06dMHr776qkHPQyAiIv3Tuofw9NNPw9zcHGPHjoWIYN26\ndcjPz8eaNWsMVSP3EIiIaqHOm4x8fX1x4sQJrc/pEwOBiEh3dX6msomJCdLS0pThtLQ05f7KRETU\ncGjtQ1i0aBG6d+8Ob29vAMCpU6ewfPlyvRdGRESGVaOjjPLy8pRLWPj5+cHS0lLvhd2PTUZERLqr\n8yYjf39/fPDBB7C3t0fXrl0NHgZERGQYWgNh8+bNaNSoEUaOHIkuXbrg3XffxcWLFw1RGxERGZBO\nJ6adPn0a8+bNw5o1a6BWq/VZlwY2GRER6a7Om4yAsiOLFi1ahFGjRuH333/Hv/71rxrNPC4uDn5+\nfujYsSPGHNBDAAAX+0lEQVQWLVpU5XiHDh2Cqakpvv7665pVTUREdU7rUUbdunVDUVERRo4ciQ0b\nNqBNmzY1mnFhYSFiYmKwb98+ODs7IzQ0FI8//jiCgoI0xlOr1XjjjTcwcOBA7gUQERmR1kD43//+\nBx8fH51nnJycDF9fX7i5uQEAoqOjsXXr1gqB8J///AdRUVE4dOiQzu9BRER1R2uTUW3CAAAyMjLg\n4eGhDLu7uyMjI0NjnMzMTHz33XeIiYkBgGqvrkpERPqlt1OOa7Jx/+tf/4qFCxcqHR9sMiIiMh6t\nTUa15e7ujvT0dGU4PT1dY48BAH7++WeMGjUKAJCdnY3t27ejcePGGDp0aIX5zZ07V3kcHh6O8PBw\nvdRNRPSoSkxMRGJiYq2nr/Kw002bNlV5yJJKpcLw4cOrnXFBQQF8fHyQlJQEJycn9OjRA7GxsVXe\naW38+PGIjIysdL487JSISHd1dj+ELVu2VNvsoy0QLCwssGTJEkRERKC0tBTjxo1DcHAwYmNjAQCT\nJ0+ucZFERKR/vGMaEVEDVed3TCstLcU333yD1NRUlJSUKM/Pnj27dhUSEVG9pPUoowkTJuC7777D\np59+ChHB+vXrceHCBUPURkREBqS1ycjHxwe///47AgIC8MsvvyA/Px8DBw7E7t27DVUjm4yIiGqh\nzq9lZG1tDQAwNTVFVlYWVCoV9xCIiBogrX0ITzzxBHJycvD666/D398fJiYmGD9+vCFqIyIiA9Lp\nKKM7d+5ArVbDxsZGnzVVwCYjIiLd1flRRiKC3bt3Iz09XWPGzzzzTO0qJCKieklrIIwcORKZmZkI\nDAxEo0aNlOcZCEREDYvWJqP27dsjNTXVqFciZZMREZHu6vwoo+DgYFy9evWhiiIiovpPa5NRVlYW\nvL290bVrV5ibmwMoS53NmzfrvTgiIjIcrYFw/2WniYio4eLF7YiIGqg660Po2bMnAKBZs2awsrLS\n+Cs/e5mIiBoO7iEQETVQdX5iGgBcu3YNmZmZKC0tVZ6r6s5nRET0aNIaCG+88QZWr16Ntm3bwsTk\njxamhIQEvRZGRESGpbXJyMvLCydPnoSZmZmhaqqATUZERLqr8xPTAgMDkZOT81BFERFR/ad1D+HQ\noUMYNmwYOnXqZLQT07iHQESkuzrvVH7mmWcwY8YMdOrUSelDMOZ1jYiISD+07iF0794dBw4cMFQ9\nleIeAhGR7nTddmoNhKlTp8LS0hJDhgxRmowAwx52ykAgItJdnQdCeHh4pU1EhjzslIFARKS7Ou1D\nKC0txbBhw/Daa689dGFERFS/VXvYqYmJCdavX2+oWoiIyIi0Nhm99tprKC0tRVRUFJo2bQoRgUql\nYh8CEVE9xz4EIiICoIdAqA8YCEREuqvzS1dkZmZi7NixGDBgAAAgNTUVy5Ytq32FRERUL2kNhLFj\nxyIyMhJXrlwBUHaxu48++kjvhRERkWFVGQglJSUAgOvXryM6OhqNGjUCAJiamsLUtEa3USAiokdI\nlYHQtWtXAEDTpk2RnZ2tPJ+SkqJxxjIRETUMVf7UL++I+Pe//42BAwfi3Llz6N27Ny5evIgNGzYY\nrEAiIjKMKo8ycnd3x9SpUyEiKC0thYmJifLY1NQUU6dONVyRPMqIiEhndXbpCrVajdzc3DopioiI\n6r8q9xCCgoKQkpLy0G8QFxeHadOmQa1W49lnn8Ubb7yh8foXX3yBxYsXQ0Rgbm6O2NhYdO7cWbNI\n7iEQEemszm+Q8zAKCwsRExODffv2wdnZGaGhoXj88ccRFBSkjOPt7Y2kpCRYWVkhLi4OEydOrJMg\nIiIi3VR5lNHOnTsfeubJycnw9fWFm5sbTE1NER0dja1bt2qM07VrV1hZWQEAevbsiczMzId+XyIi\n0l2VgWBvb//QM8/IyICHh4cy7O7ujoyMjCrHj42NxbBhwx76fYmISHd6bTLS5d7LiYmJWLFiBZKS\nkip9fe7cucrj8PBwhIeHP2R1REQNS2JiIhITE2s9vV4Dwd3dHenp6cpwenq6xh5DuWPHjmHixImI\ni4uDra1tpfO6PxCIiKiiB38sv/XWWzpNr/VaRg8jJCQEx48fR2ZmJoqLi7F+/XoMGjRIY5yLFy9i\n+PDhWL16Ndq2bavPcoiIqBp63UOwsLDAkiVLEBERgdLSUowbNw7BwcGIjY0FAEyePBn//Oc/cfPm\nTcTExAAAGjdujIMHD+qzLCIiqgTvh0BE1EDV+f0QiIjoz4GBQEREABgIRER0DwOBiIgAMBCIiOge\nBgIREQFgIBAR0T0MBCIiAsBAICKiexgIREQEgIFARET3MBCIiAgAA4GIiO5hIBAREQAGAhER3cNA\nICIiAAwEIiK6h4FAREQAGAhERHQPA4GIiAAwEIiI6B4GAhERAWAgEBHRPQwEIiICwEAgIqJ7GAhE\nRASAgUBERPcwEIiICAADgYiI7mEgEBERAAYCERHdw0AgIiIADAQiIrqHgUBERAAYCEREdI9eAyEu\nLg5+fn7o2LEjFi1aVOk4r7zyCnx9fREcHIyUlBR9lkNERNXQWyAUFhYiJiYGcXFxOHbsGDZu3Fhh\ng79p0yZcvHgRJ06cwPLlyzF+/Hh9lVPnEhMTjV1CBfWxJqB+1sWaaoY11Vx9rUsXeguE5ORk+Pr6\nws3NDaampoiOjsbWrVs1xtm2bRvGjRsHAAgKCkJJSQkyMjL0VVKdqo8ffn2sCaifdbGmmmFNNVdf\n69KF3gIhIyMDHh4eyrC7u3uFjX1NxiEiIsPQWyCoVKoajSciNZtOpSr7IyIi/RA92bNnjzzxxBPK\n8L/+9S+ZP3++xjgTJkyQDRs2KMO+vr6SkZFRYV5egIB//OMf//in05+Xl5dO221T6ElISAiOHz+O\nzMxMODk5Yf369YiNjdUYZ/DgwVi9ejWioqJw5MgRNGrUCG5ubhXmdeaBvQgiIqp7egsECwsLLFmy\nBBERESgtLcW4ceMQHByshMLkyZPx1FNPISEhAb6+vjA3N8fKlSv1VQ4REWmhEuHPbyIiqudnKtfk\nxDZDmDBhApydneHn56c8d+PGDQwYMAD+/v6IiIjArVu3DFpTeno6evfuDT8/P3h7e+Nf//qX0esq\nKChASEgIgoKC0L59e7z22mtGr6mcWq1GUFAQIiMj60VNnp6e8Pf3R1BQELp27VovagKAW7duYcSI\nEQgICECHDh1w4MABo9aVmpqKoKAg5c/GxgYfffSR0dfVnDlz0L59e/j4+CAqKgp5eXlGr2nhwoVo\n3749OnXqhA8//BBALb5TOvU4GFBBQYF4enpKRkaGFBcXS5cuXeTIkSNGqWXPnj1y5MgR6dSpk/Lc\nSy+9JO+//76IiLz//vvyyiuvGLSmrKws+fXXX0VEJDc3V9q1aydHjx41el15eXkiIlJcXCzdunWT\n+Ph4o9ckIvLee+/JmDFjJDIyUkSM//l5enrK9evXNZ4zdk0iIlFRUbJ27VoREVGr1XL79u16UVd5\nPS1atJCLFy8atabTp09L69atpbCwUERERo4cKZ999plRazp8+LD4+vpKfn6+lJSUSP/+/eXYsWM6\n11RvA2H37t0aRyktXrxY5s2bZ7R6zp8/rxEIbdq0kezsbBERuXbtms69+XXtqaeekq1bt9abuu7e\nvStdunSR48ePG72m9PR06devn8THx8uQIUNExPifn6enp/L+5YxdU3Z2trRt27bC88auq9wPP/wg\nYWFhRq/p+vXr0r59e7lx44YUFxfLkCFDZMeOHUatac2aNfL8888rw/PmzZP58+frXFO9bTKq7yet\nXbt2Dfb29gAABwcHXL161Wi1pKWl4dChQwgLCzN6XaWlpQgMDISzszP69u0LX19fo9f02muvYfHi\nxTAx+ePrbuyaVCqVsiv/8ccf14uaTp8+DUdHR4wcORKdOnXCM888g9zcXKPXVe7LL7/E6NGjARh3\nXdnZ2eH1119Hy5Yt4erqiubNm2PAgAFGrcnPzw+7d+/GjRs3kJeXh23btiE9PV3nmuptINT0xLY/\nuzt37iAqKgoffvghrK2tjV0OTExMcPToUWRkZGDPnj1ISEgwaj3ff/89nJycEBQUVOEkSGM6cOAA\njhw5gl27dmHlypXYuXOnsUtCaWkpDh06hGnTpuH48eOws7PDvHnzjF0WAKCoqAhbtmzBiBEjjF0K\nzp49iw8++ABpaWm4dOkS7ty5g9WrVxu1Jj8/P0ydOhXh4eHo27cv/Pz8arUNrbeB4O7ujvT0dGU4\nPT1dY4/B2BwdHZGdnQ2g7NeKk5OTwWsoLi7GU089haeffhr/93//V2/qAgAbGxs88cQTSE5ONmpN\n+/fvx+bNm9G6dWuMHj0a8fHxGDdunNHXU/n7OTo6IioqCocOHTJ6TR4eHnBzc0NISAgAICoqCkeP\nHoWTk5PRv1Pbt29H586d4ejoCMC43/ODBw+iR48esLe3h6mpKYYPH46kpCSjf34xMTE4duwYkpOT\n4erqCh8fH51rqreBcP+JbcXFxVi/fj0GDRpk7LIU5SfVAcDq1asxePBgg76/iOD5559Hx44dlaN5\njF3X9evXkZubCwDIz8/Hjz/+CD8/P6PW9PbbbyM9PR3nz5/Hl19+icceewxffPGFUWvKy8tDXl4e\nAODu3buIi4uDr6+v0b9THh4ecHBwwKlTpwAAO3fuRIcOHTBo0CCj1gUA69atU5qLAON+z9u2bYsD\nBw4gPz8fIoKdO3fCy8vL6J9f+YY/KysLX331FaKjo3WvSX/dHA9v27Zt4uvrKx06dJC3337baHWM\nGjVKXFxcpHHjxuLu7i4rVqyQ69evS//+/cXPz08GDBggN2/eNGhNe/fuFZVKJQEBARIYGCiBgYGy\nfft2o9Z17NgxCQwMlICAAPH29pa33npLRMTo66pcYmKicpSRMWs6d+6c+Pv7S0BAgLRr105mzZpl\n9JrKHT16VLp06SIdO3aUQYMGyY0bN4xe1507d8Te3l5ycnKU54xd05w5c6Rt27bSvn17iY6Olvz8\nfKPXFBYWJv7+/tK5c2eJj48XEd3XE09MIyIiAPW4yYiIiAyLgUBERAAYCEREdA8DgYiIADAQiIjo\nHgYCEREBYCBQLTRq1AhBQUHw8fHBsGHDlJPRHlXNmjWr9bSrVq3Cyy+/XONxvv32W5w8ebJG8/74\n44+xatWqCs+npaVpXIq9Pti8eXO9ucwF1R4DgXTWpEkTpKSk4Pfff4eVlRU++eQTvb6fWq3W6/z1\nfd2s++f/7bff4rffftM6jYhg+fLlGDt2rD5LQ2lpaZ3MJzIyEps2bUJxcXGdzI+Mg4FADyUsLAzn\nzp3D9evXERERAT8/P3Tu3BlHjhwBAPj7+yMnJwciAnt7e3zxxRcAgGeeeQa7du2CWq3GSy+9pNyQ\n5aOPPgIAJCYmolevXnjyyScr/TX84osvIiQkBO3bt8eMGTOU5z09PTF37lx07doV3t7eOH78OADg\nypUrCAsLQ2BgICZNmgRPT0/cuHGjwnz/+c9/wt/fHx06dMDf//73Spc5NjYWXl5e6NGjB/bv3688\nn5WVhSFDhiAgIACBgYHYvXu3xnQ//fQTtmzZgmnTpiE4OBjnzp3DsmXL0LVrV/j6+iIyMhJ37twB\nACQlJcHHxwempqbKtB06dEBISAg+/fRTZZ4lJSWVrj+1Wo0JEybA29sbgwYNwhNPPIFNmzYp62jG\njBno1q0bNm7ciM2bN6Nz587w8/PT2OP76aefEBoaCn9/f/Tt2xeZmZkAgPfffx++vr4IDAxEdHQ0\ngLLQCw0NxY4dOypdZ/SI0Pfp1NTwNGvWTETKboIzbNgw+eCDD+SFF15QLi+ye/du6dChg4iIvPji\ni7J161b59ddfJSQkRCZNmiQiIu3atZO8vDz58MMPZf78+SJSdlOk4OBgOXXqlCQkJEjTpk0lIyOj\n0hpu374tIiIlJSUSHh4uhw8fFpGy+wwsWbJEREQ+/fRTefbZZ0VEZOLEibJ48WIREfnxxx9FpVIp\nN6gpX57vvvtOqU+tVsuQIUPkxx9/1Hjfixcvipubm9y6dUtKSkqkV69e8vLLL4uIyJNPPin79u0T\nEZELFy4o155fuXKlvPTSSyIi8txzz8mmTZsqLIeIyMyZM+Xdd98VEZF33nlHeSwi0r59e9m/f7+I\niPz9739X7s1R1fpbvXq1cu+Ha9euia2trfK+np6e8u9//1tEym60FBoaqtzYaOHChfKPf/xDioqK\nJDg4WLmW/pdffilPP/20iIi4urpKUVGRiJRdVqLcihUrZPr06ZV+XvRoMDV2INGjJz8/H0FBQSgu\nLkZYWBhiYmIQFBSEN998EwDQu3dv3LlzB9nZ2ejVqxf27NmDVq1aISYmBsuWLcOlS5dga2sLS0tL\n7NixA6dPn8bGjRsBADk5OTh37hwsLCzQtWtXuLm5VVrD8uXLsWrVKqhUKly6dAmpqano3LkzAGDY\nsGEAgODgYGW++/fvx8yZMwEA/fv3h62tbYV57tixAzt27EBQUBCAsgvPpaWlaYzz008/oX///rCx\nsQEAjBgxAqdPnwZQdjG48+fPK+MWFhYiJyenwvvIfVeLSU5OxqxZs5Cfn4/c3Fz0798fAHDx4kWE\nhYUBAK5evYqCggKEhoYCAEaPHo0tW7YoNT+4/s6ePYv9+/cjKioKQNl18Pv27atRQ/lre/fuxenT\np9GjRw8AZZeZ7tatG44dO4YzZ84o9ajVajg7OwMo2+sbO3YshgwZgieffFKZp6urK+Li4iosLz06\nGAikM0tLS6SkpFR4Xh64LJZKpULv3r3x8ccfw9PTEwsWLMA333yDjRs3onfv3sp4S5curbDBSkxM\nRNOmTSt9/9TUVHzyySc4evQomjVrhvHjx6OkpER53dzcHEBZ5/f9beQP1leZWbNmYcKECVW+bmJi\nojGf+x+rVCocOnRIaea5//mqhp999ln8+OOP8PX1xf/+9z8kJiZWmPeD0z+4HJWtvy1btlRZJwCN\ndTto0CB8/vnnGq8fPnwYAQEB2LNnDx60detW7NmzB99//z3efvttnDhxAiYmJigtLeV9TB5x7EOg\nOtGrVy98+eWXAMp+dVpZWcHe3h7u7u7Izs7GmTNn0Lp1a4SFheHdd99VAiEiIgKxsbHKhvv8+fPI\nz8+v9r0KCgrQrFkzNG3aFNnZ2di+fbvW+nr06KG0oe/atQs3b96sME5ERARWrlyJgoICAGX9DuWX\nFO7Xrx8uX76Mbt26IT4+Hrdv34ZarVZ+mQNlex5Lly5Vhsv7L+7fGFtaWuLu3bvKcFFREZycnKBW\nq7FmzRplg9qqVStkZWUBKLv2f5MmTXDgwAEAwFdffaVRc2Xrr0ePHvjmm28AlF0W+cH+jHJhYWFI\nSEjAxYsXAZSt27Nnz8Lf3x8XL15Ugr+kpASpqakQEWRmZiI8PBzvvPMOcnJylBu3X758Ga1atary\nM6D6j3sIpLPKfgUuWLAAY8aMwbp169C4cWOl8xgAunfvrmywwsLC8OabbyrNIVOmTEFaWhp8fX1h\nZmYGW1tbbN68GSqVqspfmwEBAfDz80O7du3g5eWlzKuyOsvnMW/ePERFReGLL75At27d4OzsDAsL\nC43liYyMxG+//Ybg4GCYmZnB3NwcX375Jezs7HD27FnY2dnB3NwcM2fORHBwMFq0aKHR4b106VJM\nnDgRsbGxEBH06NEDy5Yt06gjOjoaEydOxPvvv4+NGzfirbfeQufOneHu7o4uXbooncphYWHKrTUB\nYOXKlZgwYQKaNWuGvn37KvOrbP1t2bIFo0ePxs6dO+Ht7Y02bdogODgYlpaWFdZRixYtsGzZMgwd\nOhRA2VFHCxYsgJeXFzZs2IAXX3wRhYWFKCkpwSuvvAIvLy+MGjUKd+/ehVqtxpQpU2BnZweg7MYx\nkZGRlX4W9Gjg5a/pT6GoqAimpqYwMTHBTz/9hIkTJ+LEiRM1mvbEiRNYuXIl3n33XT1X+QcRQXBw\nMJKTk2FmZlareeTn58PS0hLXr19H586d8dNPP8HFxaWOKy1TWlqK4OBgHD58uEKTGT06GAj0p3D6\n9GmMHDkSJSUlUKlUiI2NVTpp66tPP/0UlpaWGD9+fK2m7927N3JycnDnzh1Mnz4dkyZNquMK/7B5\n82YcO3ZM6binRxMDgYiIALBTmYiI7mEgEBERAAYCERHdw0AgIiIADAQiIrqHgUBERACA/wct+bjT\na/B03gAAAABJRU5ErkJggg==\n", + "text": [ + "<matplotlib.figure.Figure at 0x3794dd0>" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYVHX+B/D3IIogKKCCwuAlbEMIBDQNBZ3S1HDRvP0I\nFVf4WcTmtj219dNKhbYs3a19tmxdyKweuyiJ5oWkX6mD4GPoTy7mZbVMk4voYvaAIreZ7+8P1iMH\nmGGAOXOB9+t5ePacOd8585ljez7zvZ2vSgghQERE9B8O1g6AiIhsCxMDERHJMDEQEZEMEwMREckw\nMRARkQwTAxERyTAxkCJOnTqF0aNHw9XVFRs3brR2ODbj5s2bmD59OlxdXREbG2vtcDrtzJkzeOCB\nB9ott3fvXjz++OMWiIjMiYmBDBoxYgRcXFzg5uYm/T3zzDMmvXfDhg2Ijo7GzZs3sWLFCoUjtR8Z\nGRmoqqpCVVUVtm/fbu1wWrl06RIcHByg1+uNllu9ejVeeOGFds8XExOD06dP4/vvvzdXiGQBTAxk\nkEqlwr59+1BdXS39vfPOOya9t7S0FIGBgQpHaNt0Ol2r10pLS3HvvffCwaHj/9drbGw0R1gmnd/Y\nvNcrV65Aq9XiscceM+m8cXFxSE9P73J8ZDlMDNQpFy5cQFRUFDw9PTFgwADMnz8fN27cAAA8/PDD\nOHz4MFasWIH+/fvjxx9/lL13+/btrZoh/va3v2HOnDkAgC+//BL33nsvXF1d4ePjgw0bNpgU07Jl\ny/DUU09hxowZ6N+/PyZMmCD77AMHDuD++++Hm5sbgoODcfDgQQDAoUOHEBISIpV75JFHMH78eGk/\nKioKe/bsAdD0izo6Ohru7u4YOnQo1q9fL5VLSUnBggULEB8fDw8PD3z88cey+NauXYvXX38d27dv\nh5ubGz788EMIIbBq1Sp4e3vD3d0dCxculK7jnV/vW7ZswciRI/HII4+0+s5arRZqtRpvvPEGvL29\nMWTIEHzwwQfS8b179yIkJAT9+/eHt7c3Vq5cKR1ref5p06ZhypQpAAB3d3e4ubkhPz+/1Wd+8803\nGDt2LPr06SO9duHCBURHR2PAgAEYOHAgkpOTpWMajQZZWVlt/puRjRJEBowYMUJ8++23bR67cOGC\nOHz4sBBCiBs3boipU6eKpKQk6bhGoxEffPBBm++tqakRbm5u4ocffpBeGzdunNi+fbsQQghPT0+R\nl5cnhBCiurpaFBcXmxTv7373OzFgwABx/PhxodPpxIsvvijGjh0rhBDiypUrws3NTXzxxRdCCCF2\n7twp+vfvLyoqKkRNTY3o27evuH79uqivrxdeXl5CrVaLmzdvipqaGuHs7Cx++eUX0djYKAICAsQb\nb7whdDqdKCkpEffcc4/YtWuXEEKItWvXir59+4r9+/cLIYSora1tFWNKSoqIj4+X9t99910REBAg\nysrKxO3bt8Xjjz8u5s+fL4QQ4uLFi0KlUoknn3xS1NXVibq6ulbnO3TokHB0dBQvvfSS0Ov1Ij8/\nX7i6uoqioiIhhBCHDx8W586dE0IIcfbsWeHj4yM+//xzg+e/dOmSUKlUQqfTGbzOf/rTn8SKFSuk\n/fr6ejFq1Cjx0ksvifr6elFfXy++++476fj169eFSqUS1dXV7f0Tko1gYiCDhg8fLlxdXYW7u7v0\nt3nz5jbL7t27V4wePVra12g0BssKIcSSJUvEq6++KoQQ4vz588LNzU3cvn1bCCHEsGHDRHp6uqiq\nqupQvMuWLRNLly6V9mtqakSfPn3EDz/8INLT00VkZKSs/OTJk8U///lPIYQQUVFRYufOneLo0aNi\n+vTpIjY2VmRnZ4uDBw+KkJAQIYQQWq1WDBs2THaOdevWibi4OCFEU2KYNm2a0RjXrl0rlixZIu1P\nnDhRdp1++ukn4ejoKGpqaqQbd2lpqcHzHTp0SDg5OcmS0JIlS8TLL7/cZvnnn39eJCcnCyFEm+e/\n85qxxPDEE0+IlStXSvsHDhwQQ4cONVi+vr5eqFQqUVJSYrAM2RY2JZFBKpUKu3fvxo0bN6S///7v\n/wbQ1FY+b948qQkkLi4Ot27davV+QxYtWoTPP/8cAPDZZ59h7ty56Nu3L4CmDto9e/Zg+PDhiIyM\nRG5urskx+/r6StvOzs7w9PTE1atXce3aNfj5+cnKDhs2DNeuXQMATJkyBVqtFrm5uZgyZQqmTJmC\nnJwcHD58GBqNRvrO5eXl8PDwkP7eeOMN/Prrr9I5hwwZYnKsAHDt2jUMGzZM2vfz84NOp0NlZaX0\n2tChQ42ew9PTE05OTtK+Wq3G1atXAQC5ubmYNGkSPD094eHhgffee6/Vv1N752/Jw8MD1dXV0v6V\nK1cwYsQIg+XvlHV3d+/Q55D1MDFQp6xcuVLqP/j111/x+eeftzuSpblp06bh3//+N4qLi7Ft2zYs\nWrRIOjZhwgTs3bsXlZWVWLhwIf7rv/7L5POWlZVJ27dv38Yvv/yCIUOGwNvbG5cvX5aVvXz5Mry9\nvQE0JYZDhw5JieBOosjJyZHa3YcOHYrf/OY3skRZVVWFr776CoDxRHhHyzLe3t74+eefpf2SkhI4\nODhg0KBBJn/nX375BbW1tbJz3ElQcXFxWLJkCa5du4YbN25gxYoVRv+dTPkOISEhOH/+vLTv6+sr\n+w4tnT17FiNGjICrq6spX4dsABMDGSUMjE6pqalBnz590K9fP1y9ehV//etfTX4vAPTu3RsLFy7E\nn/70J9y4cUPqWG1oaEBGRgZu3boFBwcHuLq6mjyCRwiBPXv24MSJE9DpdEhNTcX9998Pf39/zJo1\nCydPnsTOnTsBNHVwFxYWYvbs2QCAiRMn4ty5czh+/DjGjx+PwMBA/Pzzz8jPz8fkyZMBNCUPvV6P\njRs3or6+HkIInDt3DgUFBe1+X0PXJDY2Fm+//TbKy8tRW1uLV155BXPmzIGzs7NJ3xloGv302muv\nQa/XIz8/H3v27MGCBQsANP079evXD46OjigsLMSnn35q9Obv7u4OlUqFixcvGiwzbdo0FBQUoL6+\nHkBT53y/fv2wevVq1NfXo76+XtZpnZOTg+joaJO/D1kfEwMZFRMTI5vHMH/+fABNI3C+++47uLm5\nITo6GrNnz251w2nv1+eiRYtw4MABLFy4UHbz37x5M9RqNfr164eNGzfi008/BdD0C9/NzQ2lpaVt\nnk+lUuHxxx/HqlWr4OHhgYMHD2Lbtm0Amn7tZ2ZmYs2aNXB1dcXq1auxa9cu6Ze1i4sLxo4di6Cg\nIDg6OgJoShYjRoyQfr336tULX3/9NQ4cOCA1oS1dulQaRaRSqdr9zi3LrFixArNnz0ZoaCi8vb1R\nV1eHzZs3m3wNgabmKxcXF/j4+GD27Nl4++23MWbMGADAxo0bsWrVKgwYMABr1qyREoah8w8YMADP\nPfccxo0bB09PTxw7dqzV53l7e+Phhx/Gl19+KV2X/fv34/jx4xg0aBCGDh2KrVu3SuW3bduGpKSk\ndr8H2Q6VMOVnTiclJiYiKysLXl5ebU5wqaiowOLFi1FRUYHGxkY899xz/A+IOi0hIQFqtRp//vOf\nrR2KxWi1WsTHx6OkpMSin3v27Fn87ne/azNxNLd37158+umnUoIm+6BojSEhIQHZ2dkGj2/cuBHj\nx4/H6dOnceTIEaxcuRJ1dXVKhkTdmIK/caiF0aNHt5sUgKYaJ5OC/VE0MURFRcHDw8PgcT8/P1RV\nVQEAqqqqMHjwYNnoCqKOMKUppzvqid+ZlKVoUxLQNLsyJiamzaYkvV6Phx9+GOfPn0d1dTUyMjLw\n6KOPKhkOERG1w6qdz+vWrUNoaCjKy8tRVFSEp59+WjY+moiILM/Rmh+el5eH1atXAwD8/f0xcuRI\nnD17VvacGgAYNWoULly4YI0QiYjslr+/f6tnlZnCqjUGf39/fPvttwCAq1ev4syZM23OoLxw4QJE\n0+M7evzf2rVrrR6DrfzxWvBa8FoY/+vsD2pFawxxcXHIyclBZWUl/Pz8kJqaioaGBgBAUlIS1qxZ\ngyVLliAwMFCapOPl5aVkSERE1A5FE8OdZ+EY4u3tjW+++UbJEIiIeoYnnwTOnwdcXIDPPgO68Gwq\nq/YxUMfdeaAb8Vo0x2txV4+6Fs2TQVUVcOTI3dczMjp9WsWHq5qDSqWCHYRJRGRZGg2Qk9O0PWQI\nUFEBjBsHfPMN8J/nXnXm3slnJRER2ZMnn2xKCNHRQO/eTa+NGwd89x2wcKGUFLqCNQYiIlvWsu/g\nscfu1hLmzAH69AHS09tMBp29d7KPgYjIlp0/fzcRPPlkU4IAmmoJH33U5dpBW5gYiIhsTfNaQvPm\novT0u8cN1BLMgU1JRES2wNAIo3aai4xhUxIRkT1r3mR0Z+1wBZuLjOGoJCIia2g+uujXX+V9B2Yc\nYdQZbEoiIrIUQ81FCxc2NRWZue+gs/dOJgYiIktpZ0KauXGCGxGRLbLAhDRzY42BiMicujAhzdw4\nKomIyBZYYUKauTExEBF1lZUnpJkbm5KIiDpDgQlp5maTTUmJiYnIysqCl5cXvv/++zbLaLVavPji\ni6ivr8eAAQOQc6cKRkRky2xoQpq5KToqKSEhAdnZ2QaPV1RUYMWKFdi3bx+Kioqwa9cuJcMhIuo8\nG56QZm6K1hiioqJw6dIlg8e3bduG2NhYaZ1nT09PJcMhIuoYYyukffaZvO+gCyum2Rqrdj6fO3cO\nABAREYFbt27hmWeewfLly60ZEhHRXYaai7phMmjOqolBp9Ph1KlTOHjwIGpqavDggw8iIiICQUFB\nrcqmpKRI2xqNpmet60pElmNohNGOHcALL9hEp7IhWq0WWq22y+dRfFTSpUuXEBMT02bn82uvvYbG\nxkbppr98+XJMnToVcXFx8iA5KomIlGJDE9LMzSZHJbVn1qxZeOGFF6DT6VBXV4ejR49ixYoV1gyJ\niHoCY30HdjghzdwUTQxxcXHIyclBZWUl/Pz8kJqaioaGBgBAUlISwsLCMHPmTISEhKChoQHLly9H\naGiokiERERnvOwDsbkKauXGCGxF1fy2bixYtAvbvt5u+g87iY7eJiJqz8NoHtoiJgYioOQuvfWCL\nuB4DEZEdrn1gi1hjICL71Y2HmpqDXQ5XJSLqMA41VRwTAxHZFw41VRybkojI9jWvJTQ0AN9+2+2H\nmpoDRyURUffBvgOzYB8DEXUf3WDdZHvGxEBEtqGbrZtsz9iURETWYwfrJtszNiURke1r2XfQjddN\ntmec+UxElnMnEezf37rvgLOTbQabkohIWYaGmn7zzd3jbDJSBIerEpHtYN+BTWAfAxFZD/sOuhVF\n+xgSExPh7e2N4OBgo+WOHz8OR0dH7Ny5U8lwiMicmj/J9MwZ9h10I4o2JeXm5sLV1RVLly7F999/\n32YZnU6HRx55BC4uLkhISMD8+fNbB8mmJCLbY2y9A4B9BzbAJtdjiIqKgoeHh9Ey7777LhYsWIDB\ngwcrGQoRmYOp6x24uwMZGUwKdsqqw1XLysqwe/duJCcnA2jKbkRkQ5ongl9/lQ837dfvbjIYPpyJ\noBuxaufzs88+izfffFOq7hir8qSkpEjbGo0GGo1G+QCJeiKud2C3tFottFptl8+j+HDVS5cuISYm\nps0+hnvuuUdKBpWVlXBxccH777+P2bNny4NkHwOR5bDvoNuwy+GqP/30k7SdkJCAmJiYVkmBiCzA\n0APs2lrvICPDenGSRSiaGOLi4pCTk4PKykr4+fkhNTUVDQ0NAICkpCQlP5qIjDE272DOnKa+gzvJ\ngImgx+HMZ6KewlDfwcKFwM2bTR3Kd5qM2EzULfCRGETUmqFkwL6DHoGJgYhaM9SRzLWSewSbnOBG\nRBbWct6BoUdTcN4BGcEaA5G9M9Z3kJ7OJqIejE1JRD1FyxFFjz1meN4Bk0GPZpfzGIjIRKbORmbf\nAZkBawxEtoojiqiL2JREZO9MbSJirYBMxKYkInvXfPZxe01EnI1MCmKNgciamtcSGhqAb79lExGZ\nDZuSiOyFob6DOXOAPn2YCMhs2JREZKuMPbBuyJCm/+X6BmRDmBiIlMDhpWTH2JREZC4cXko2hn0M\nRJbG4aVk45gYiCzB1DUNmAzIBthkYkhMTERWVha8vLzaXPN569at+Mtf/gIhBJycnJCWloaxY8e2\nDpKJgayJTURkp2wyMeTm5sLV1RVLly5tMzEcO3YMo0ePhpubG7Kzs7Fq1SoUFha2DpKJgSyJTUTU\nTdhkYgCAS5cuISYmps3E0Fx1dTX8/f1x7dq1VseYGEhxbCKibsju5zGkpaVhzpw51g6DehJjTURA\nUyJIT79blo+joB7CJhKDVqvFli1bcOTO/zHbkJKSIm1rNBpoNBrlA6PuxdSJZm3VCpgMyA5otVpo\ntdoun8fqTUknT57EvHnzkJ2djVGjRrUdJJuSqLPYREQ9mF02JV2+fBnz5s3DJ598YjApEHUYm4iI\nukTRGkNcXBxycnJQWVkJb29vpKamoqGhAQCQlJSE5cuXY9euXRg2bBgAoHfv3jh27FjrIFljIGM4\nioioTTY7KskcmBioFTYREbXL7IkhMzOz3ZM6OzsjOjq6wx/aUUwMBIATzYg6yOyJYeDAgZg9e7bB\nNwohkJubiwsXLnT4QzuKiaGHYhMRUZeYvfN55syZ+PDDD42+efHixR3+QCKjOvu4anYcE5lNu30M\ndXV1cHJyavc1JbHG0I2ZWitgExFRhynW+RweHo6CgoJ2X1MSE0M30DwBDB4M/PwzO46JFGb2pqQr\nV66gvLwcNTU1KCgogBACKpUKt27dQlVVVZeCpR7A2CzjQYOAysqmbc4tILI5BhPD119/jY8//hhl\nZWV4/vnnpdednZ3x5z//2SLBkZ0xtX/A3R349ls+foLIRrXblJSZmYn58+dbKp42sSnJhrSsCbz4\nYseHkDbfZhMRkWLM3sewdetWxMfH46233oJKpZJev9Ok9Nxzz3U+2o4GycRgXcYmk127xiGkRDbK\n7H0MNTU1AJrWSWgrMVA305GaAHC3T2DRorv7HEJK1C3wkRg9mTlqAr/+ymYhIhul2HDVK1euIC0t\nDSUlJdDr9dKHbdmypXORdgITQxd0tk9g0SIOGyWyc4olhrCwMEyfPh1jx46Fg4OD9GGW7JBmYugg\n1gSICAonhsLCwk4HZg5MDG1gTYCI2qFYYnjllVcQGRmJmTNndjq4rurRicHUGcOsCRBRC4olBldX\nV9TU1KBPnz7o3bu39GGmzH5OTExEVlYWvLy8DC7t+cwzz+DAgQNwcnLCBx98gLCwsNZBdsfEYOiG\n33y75bODWs4YZk2AiIywyYV6cnNz4erqiqVLl7aZGDIzM7F161Z8+eWXKCwsREJCAoqKiloHaa+J\nwdDN39gNv/l2y2cHGZsxzJoAEbWg2JrPhw8fbvP1yZMnt3vyqKgoXLp0yeDxr776CvHx8QCa+jIa\nGxtRWloKtVrd7rktylh7vrFf+4aeD2TsERHNt1vOEm6+3XKeAOcNEJGZtJsYNmzYIE1oq62txbFj\nxzB27FgcPHiwyx9eWloKPz8/aV+tViuTGExttjF0w2/53J/m7fmGfu0bu/kbu+E3327r2UG8+ROR\nwtpNDPv27ZPtl5WV4Y9//KPZAmhZzTE4qzo62vQbuam/3FveyA3d8I3N9u3sr33A8A2fN38isqJ2\nE0NLPj4+OHnypFk+XK1Wo6SkBBMmTAAAo7WFlP37AWdn4PZtaABozPHLveWN3NANv2V7/mef8dc+\nEdkcrVYLrVbb5fO02/n8hz/8QdrW6/UoKiqCj48PvvjiC5M+4NKlS4iJiTHY+fzJJ59g165dKCgo\nQEJCAoqLi1sHqVJBtLxZtxyJY+iGb+zJns23W3bgtjxGRGRnFBuV9NFHH0nNOw4ODlCr1dBoNCY9\nSC8uLg45OTmorKyEt7c3UlNT0dDQAABISkoCAKxYsQKHDh2Ck5MTNm/ejPDw8La/3I0bTTum3Mhb\nliMi6oFscriqudjtcFUiIivq7L3TQYFYiIjIjjExEBGRjNHEoNfr8eKLL1oqFiIisgFGE4ODgwOO\n3JnYRUREPUK78xiCg4Mxd+5czJs3Dy7/mQ+gUqkwb948xYMjIiLLazcx1NbWYsCAAa0egcHEQETU\nPXG4KhFRN6XYcNXTp08jMjISAQEBAIAzZ84gNTW14xESEZFdaDcxJCYm4q233oKzszMAYPTo0cjg\nM3+IiLqtdhNDbW2t9JA7oKlq0qtXL0WDIiIi62k3MXh6euLHH3+U9vft24eBAwcqGhQREVlPu53P\n586dQ2JiIk6cOAEvLy8MHjwY27dvx6hRoywVIzufiYg6QfGH6F2/fh1CCAwaNKjDH9JVTAxERB2n\n2Kika9euISkpCZMnT4ZGo8FTTz2Fa9eudSpIIiKyfe0mhrlz52L48OHYt28f9uzZg+HDh2Pu3LmW\niI2IiKyg3aak0NBQFBUVyV4LCwtDYWGhooE1x6YkIqKOU6wpaerUqcjIyIBer4der8eOHTvw8MMP\nm3Ty7OxsBAcHIzAwEOvXr291vKKiAlOnTkVQUBDuu+8+pKWldfgLEBGRebVbY3B1dUVNTQ0cHJpy\niF6vR79+/ZrerFKhqqqqzffV1dUhICAAeXl58Pb2RkREBNLT0xEWFiaVeeWVV6DT6fDGG2+gsrIS\n9957LyoqKuDk5CQPkjUGIqIOU6zGcPPmTej1ejQ2NqKxsRF6vR7V1dWorq42mBQAID8/H0FBQfD1\n9YWjoyNiY2ORlZUlK+Pn5yedo6qqCoMHD26VFIiIyLIMJoYrV660++aKigqDx0pLS+Hn5yftq9Vq\nlJaWyso88cQTOH36NHx8fDBmzBj8/e9/NyVmIiJSkMHEMGvWrHbfHB0dbfCYSqVq9/3r1q1DaGgo\nysvLUVRUhKeffhrV1dXtvo+IiJRjcD2G4uJiuLm5GX1z//79DR5Tq9UoKSmR9ktKSmQ1CADIy8vD\n6tWrAQD+/v4YOXIkzp49i/Hjx7c6X0pKirSt0Wig0WiMxkZE1NNotVpotdoun0ex9Rhqa2sREBCA\nI0eOwMvLCxMnTkRaWhrCw8OlMk8//TS8vLywdu1aXL16FaGhoSguLoaXl5c8SHY+ExF1WGfvne2u\n4NZZffv2xaZNmzBjxgzo9XrEx8cjPDxcGpKalJSENWvWYMmSJQgMDIROp8Nrr73WKikQEZFlcQU3\nIqJuyuzDVS9evNilgIiIyD4ZTAzz588HAJNnORMRUfdgsI+hrq4Or7/+Os6fP4+3335bVh1RqVR4\n7rnnLBIgERFZlsEaQ2ZmJnr16gWdTofq6mrcvHkTN2/elGY9ExFR99Ru5/NXX31ldCKbJbDzmYio\n4xRbwU2v12PXrl04d+4cGhoapBnNa9as6VykncDEQETUcYo9RC8xMRG7d+/GP/7xDwBARkYGfv75\n545HSEREdqHdGkNAQAD+9a9/YcyYMSguLsbt27cxc+ZM5OTkWCpG1hiIiDpBsRrDnechOTo6oqKi\nAiqVijUGIqJurN1HYsyaNQtVVVV4/vnnERISAgcHByQkJFgiNiIisoIOPRLj5s2baGxshLu7u5Ix\ntcKmJCKijjN7U9KGDRuk7S+++AJA0zKf7u7ueOmllzoRIhER2QODieHzzz+XttetWyc7tn//fuUi\nIiIiq2q385mIiHoWJgYiIpIx2Pncq1cvuLi4AABu374NZ2dn6djt27fR2NhomQjBzmcios4we+fz\nnYfnVVdXo7GxUdq+s2+K7OxsBAcHIzAwEOvXr2+zjFarxfjx4xEaGoopU6Z0+AsQEZF5KbaCW11d\nHQICApCXlwdvb29EREQgPT0dYWFhUpmKigpMmzYNBw8ehJeXF3755Rd4enq2DpI1BiKiDlNs5nNn\n5efnIygoCL6+vnB0dERsbCyysrJkZbZt24bY2Fhpnee2kgIREVmWYomhtLQUfn5+0r5arUZpaams\nzLlz51BeXo6IiAiEhIRg8+bNSoVDREQmaveRGJ115/Hcxuh0Opw6dQoHDx5ETU0NHnzwQURERCAo\nKKhV2ZSUFGlbo9FAo9GYMVoiIvun1Wqh1Wq7fB7FEoNarUZJSYm0X1JSIqtBAMCwYcPg4+MDZ2dn\nODs7Y8qUKTh58mS7iYGIiFpr+aM5NTW1U+dRrCnpgQcewKlTp1BWVoaGhgZkZGTg0UcflZWZNWsW\n8vLyoNPpUFNTg6NHj2L06NFKhURERCZQrMbQt29fbNq0CTNmzIBer0d8fDzCw8ORlpYGAEhKSkJY\nWBhmzpyJkJAQNDQ0YPny5QgNDVUqJCIiMoFiw1XNicNViYg6zuaGqxIRkX1iYiAiIhkmBiIikmFi\nICIiGSYGIiKSYWIgIiIZJgYiIpJhYiAiIhkmBiIikmFiICIiGSYGIiKSYWIgIiIZJgYiIpJhYiAi\nIhkmBiIikmFiICIiGUUTQ3Z2NoKDgxEYGIj169cbLHf8+HE4Ojpi586dSoZDREQmUCwx1NXVITk5\nGdnZ2Th58iR27NiBwsLCVuV0Oh3+53/+BzNnzuQqbURENkCxxJCfn4+goCD4+vrC0dERsbGxyMrK\nalXu3XffxYIFCzB48GClQiEiog5QLDGUlpbCz89P2ler1SgtLZWVKSsrw+7du5GcnAygaX1SIiKy\nLkelTmzKTf7ZZ5/Fm2++KS1YbawpKSUlRdrWaDTQaDRmiJKIqPvQarXQarVdPo9KKNSwn5ubi/Xr\n12Pfvn0AgL/85S+or6/Hyy+/LJW55557pGRQWVkJFxcXvP/++5g9e7Y8yP8kDiIiMl1n752KJYba\n2loEBATgyJEj8PLywsSJE5GWlobw8PA2yyckJCAmJgbz5s1rHSQTAxFRh3X23qlYU1Lfvn2xadMm\nzJgxA3q9HvHx8QgPD0daWhoAICkpSamPJiKiLlCsxmBOrDEQEXVcZ++dnPlMREQyTAxERCTDxEBE\nRDJMDEREJMPEQEREMkwMREQkw8RAREQyTAxERCTDxEBERDJMDEREJMPEQEREMkwMREQkw8RAREQy\nTAxERCQOtZuAAAAMFUlEQVTDxEBERDJMDEREJKN4YsjOzkZwcDACAwOxfv36Vse3bt2KkJAQBAcH\nY9y4cThx4oTSIRERkRGKruBWV1eHgIAA5OXlwdvbGxEREUhPT0dYWJhU5tixYxg9ejTc3NyQnZ2N\nVatWobCwUB4kV3AjIuowm1zBLT8/H0FBQfD19YWjoyNiY2ORlZUlKzN+/Hi4ubkBACZNmoSysjIl\nQyIionYomhhKS0vh5+cn7avVapSWlhosn5aWhjlz5igZEhERtcNRyZOrVCqTy2q1WmzZsgVHjhxp\n83hKSoq0rdFooNFouhgdEVH3otVqodVqu3weRRODWq1GSUmJtF9SUiKrQdxx8uRJLF++HNnZ2fDw\n8GjzXM0TAxERtdbyR3NqamqnzqNoU9IDDzyAU6dOoaysDA0NDcjIyMCjjz4qK3P58mXMmzcPn3zy\nCUaNGqVkOEREZAJFawx9+/bFpk2bMGPGDOj1esTHxyM8PBxpaWkAgKSkJLz66qu4ceMGkpOTAQC9\ne/fGsWPHlAyLiIiMUHS4qrlwuCoRUcfZ5HBVIiKyP0wMREQkw8RAREQyTAxERCTDxEBERDJMDERE\nJMPEQEREMkwMREQkw8RAREQyTAxERCTDxEBERDJMDEREJMPEQEREMkwMREQkw8RAREQyiiaG7Oxs\nBAcHIzAwEOvXr2+zzDPPPIOgoCCEh4ejsLBQyXCIiMgEiiWGuro6JCcnIzs7GydPnsSOHTta3fgz\nMzNx+fJlnD59Gh988AESEhKUCqfbMMdC390Fr8VdvBZ38Vp0nWKJIT8/H0FBQfD19YWjoyNiY2OR\nlZUlK/PVV18hPj4eABAWFobGxkaUlpYqFVK3wP/o7+K1uIvX4i5ei65TLDGUlpbCz89P2ler1a1u\n+qaUISIiy1IsMahUKpPKtVyP1OD7VKqmPyIiUpSjUidWq9UoKSmR9ktKSmS1g+ZlJkyYAKCpBqFW\nq1udyx+AlBKYHJCammrtEGwGr8VdvBZ38Vo08ff379T7FEsMDzzwAE6dOoWysjJ4eXkhIyMDaWlp\nsjLR0dH45JNPsGDBAhQUFKBXr17w9fVtda4fW9QqiIhIOYolhr59+2LTpk2YMWMG9Ho94uPjER4e\nLiWHpKQkzJ8/H4cOHUJQUBCcnJzw4YcfKhUOERGZSCVaNvITEVGPZlMznzkh7q72rsXWrVsREhKC\n4OBgjBs3DidOnLBClJZhyn8XAHD8+HE4Ojpi586dFozOcky5DlqtFuPHj0doaCimTJli4Qgtp71r\nUVFRgalTpyIoKAj33Xdfq2bs7iQxMRHe3t4IDg42WKbD901hI2pra8WIESNEaWmpaGhoEOPGjRMF\nBQWyMjt27BBz5swRQghRUFAgxowZY41QFWfKtcjPzxdVVVVCCCH2798vQkNDrRGq4ky5FkII0djY\nKB566CExa9YssWPHDitEqixTrsOVK1dEUFCQuHr1qhBCiOvXr1sjVMWZci1efvllsXLlSiGEEP/+\n97+Fu7u7qK2ttUa4ijt8+LAoKCgQ999/f5vHO3PftJkaAyfE3WXKtRg/fjzc3NwAAJMmTUJZWZk1\nQlWcKdcCAN59910sWLAAgwcPtkKUyjPlOmzbtg2xsbHw8vICAHh6elojVMWZci38/PxQVVUFAKiq\nqsLgwYPh5ORkjXAVFxUVBQ8PD4PHO3PftJnEwAlxd3X0e6alpWHOnDmWCM3iTLkWZWVl2L17N5KT\nkwGYPofGnphyHc6dO4fy8nJEREQgJCQEmzdvtnSYFmHKtXjiiSdw+vRp+Pj4YMyYMfj73/9u6TBt\nRmfum4qNSuoos0+Is2Md+U5arRZbtmzBkSNHFIzIeky5Fs8++yzefPNNqFQqCCFa/TfSHZhyHXQ6\nHU6dOoWDBw+ipqYGDz74ICIiIhAUFGSBCC3HlGuxbt06hIaGQqvV4sKFC3jkkUdQXFws1bJ7mo7e\nN22mxtCRCXF3GJoQZ+9MuRYAcPLkSSxfvhx79uwxWpW0Z6ZcixMnTuDxxx/HyJEjkZmZid///vfY\ns2ePpUNVlCnXYdiwYZg+fTqcnZ0xcOBATJkyBSdPnrR0qIoz5Vrk5eVh4cKFAJomeY0cORJnz561\naJy2olP3TbP1gHTR7du3xfDhw0Vpaamor68X48aNEydOnJCV2bFjh3jssceEEEKcOHFChISEWCNU\nxZlyLX7++Wfh7+8vjh49aqUoLcOUa9HcsmXLRGZmpgUjtAxTrkNBQYGYOnWqaGxsFLdu3RKBgYGi\nsLDQShErx5Rr8fvf/16kpKQIIYSoqKgQQ4YMkTrlu6OLFy8a7Xzu6H3TZpqSOCHuLlOuxauvvoob\nN25I7eq9e/fGsWPHrBm2Iky5Fj2BKdchLCwMM2fOREhICBoaGrB8+XKEhoZaOXLzM+VarFmzBkuW\nLEFgYCB0Oh1ee+01qVO+u4mLi0NOTg4qKyvh5+eH1NRUNDQ0AOj8fZMT3IiISMZm+hiIiMg2MDEQ\nEZEMEwMREckwMRARkQwTAxERyTAxEBGRDBMD2YVevXohLCwMAQEBmDNnDqqrq60SQ3h4OK5cuWLx\nz25LWloatm7dCgD46KOPZHEtXrwYAwcORGZmprXCIzvGxEB2wcXFBYWFhfjXv/4FNzc3vPfee4p+\nnk6nazOGgoICDB06tMvn1+v1XT5HUlKS9NTMjz/+GOXl5dKxTz/9FLNnz+6WzxIj5TExkN2JjIzE\nTz/9hOvXr2PGjBkIDg7G2LFjUVBQAAAICQlBVVUVhBAYOHCg9Kt66dKlOHDgAHQ6HVasWIExY8Zg\n9OjReOeddwA0PZAwKioKc+fONbroyR2urq54/vnnERoaikmTJuHatWsAmp5y+tBDD2HMmDGYMGEC\nTp8+DQBYtmwZnnrqKUyaNAkrV66Uneujjz7CH/7wB2n/t7/9LQ4fPix9ziuvvIKwsDCEhYVJNYOU\nlBS89dZbyMzMxP/93/9h8eLFCA8PR11dnXQezl+lzmBiILvS2NiI7OxsBAUFYdWqVdBoNPj+++/x\nt7/9DUuWLAHQtD5FXl4eTp8+DX9/f+Tl5QEAvvvuO0ycOBHvvfcehg4diuLiYhQVFeHjjz/GDz/8\nAAAoLCzExo0bcebMmXZjqampwYQJE1BUVIRZs2Zh9erVAJpW1Hr//fdRXFyMd955R/bYjqtXr+LI\nkSPYsGGD7Fwtf9k336+pqUFkZCQKCwsxffp06dEPKpUKKpUK8+fPx7hx4/DZZ5+hoKCg2647QJZj\nM89KIjLm9u3bCAsLQ0NDAyIjI5GcnIywsDC89NJLAIDJkyfj5s2bqKysRFRUFA4fPozhw4cjOTkZ\n6enpKC8vh4eHB5ydnfG///u/+OGHH7Bjxw4ATQu5/PTTT+jbty/Gjx8PX19fk2JycHDAggULADQ9\nr+a3v/0trl+/jhMnTkhP9rwTO9B0I583b16Hv3ufPn0wc+ZMAMDYsWPx9ddft1mOtQMyFyYGsgvO\nzs5trlXb8maoUqkwefJkbNy4ESNGjMDrr7+OXbt2YceOHZg8ebJU7p///Cceeugh2Xu1Wi369evX\nqfiEENJ6EF5eXgbX1XVxcWnzdQcHB1m/Q21trbTdu3dvg+WaY38CmQubkshuRUVFYdu2bQCA3Nxc\nuLm5YeDAgVCr1aisrMSPP/6IkSNHIjIyEn/961+lxDBjxgykpaVJN9iLFy9Kv+o7Qq/XY+fOnQCA\n7du3IzIyEoMGDcLgwYOxb98+AE0Jw5RmKbVajaKiIgghUFZWZtKTckWzRYmcnZ1x69atDn8HorYw\nMZBdaOvX8Ouvvw6tVouQkBA8++yzUiczADz44IP4zW9+A6Cps7q8vByRkZEAgKeffhq+vr4ICgrC\nmDFjkJCQgIaGBqnN3lT9+vXD0aNHERYWhn379uHVV18F0JQk3nrrLYSEhOD+++/HF198YfR7AIBG\no4GPjw/uu+8+/PGPf8TYsWPbfE/zGJtvx8fHIyEhoVXnM1Fn8LHbRCZyc3OTzZ9ouW9rli1bhpiY\nGMyfP9/aoZCdYY2ByET9+/dHeHg4KioqANh2m/7ixYuRm5sLZ2dna4dCdog1BiIikmGNgYiIZJgY\niIhIhomBiIhkmBiIiEiGiYGIiGSYGIiISOb/AYya6qOulzG5AAAAAElFTkSuQmCC\n", + "text": [ + "<matplotlib.figure.Figure at 0x3965f10>" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) Maximum power supplied to external system: 0.63 p.u\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 5.7, Page number: 272" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "P_rated=2000*746/3 #per phase rated power of motor(W)\n", + "Xsm=1.95 #Synchronous reactance(ohm)\n", + "Vl=2300 #Line to line voltage(V)\n", + "f=60 #Angular frequency(Hz)\n", + "p=30 #No. of poles\n", + "Xsg=2.65 #Synchronous reactance of generator(ohm)\n", + "\n", + "\n", + "#Calculations:\n", + "#for part (a):\n", + "Vp=2300/sqrt(3)\n", + "Ip=P_rated/Vp\n", + "Eafm=sqrt(Vp**2+(Ip*Xsm)**2)\n", + "Pm=3*Vp*Eafm/Xsm #Max power delivered to motor(W)\n", + "ws=2*2*pi*f/p\n", + "Tmax=Pm/ws #MAx torque of motor(Nm)\n", + "\n", + "\n", + "#for part (b):\n", + "Eafg=sqrt(Vp**2+(Ip*Xsg)**2)\n", + "Pm2=3*Eafm*Eafg/(Xsg+Xsm) #Max power delivered to motor(W)\n", + "Tmax2=Pm2/ws #Max torque(Nm)\n", + "\n", + "\n", + "\n", + "#Results:\n", + "print\"(a) Max power :\",round(Pm/1000,0),\"kW,3-ph\"\n", + "print\" Max torque :\",round(Tmax/1000,1),\"kNm\"\n", + "print \"(b) Max power :\", round(Pm2/1000,0),\"kW,3-ph\"\n", + "print \" Max torque:\", round(Tmax2/1000,1),\"Nm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) Max power : 3096.0 kW,3-ph\n", + " Max torque : 123.2 kNm\n", + "(b) Max power : 1639.0 kW,3-ph\n", + " Max torque: 65.2 Nm\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 5.8, Page number: 279" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import *\n", + "\n", + "\n", + "#Variable declaration:\n", + "P=45 #Power rated(KVA)\n", + "Va=220 #Terminal voltage(V)\n", + "Pin=45 #Power input to the armature(KVA)\n", + "If=5.50 #field current(A)\n", + "Rf=35.5 #Field winding resistance(ohm)\n", + "Ra=0.0399 #Armature dc resistance(ohm/phase)\n", + "Xal=0.215 #Leakage reactance of motor(ohm)\n", + "pf=0.80 #Lagging power factor \n", + "Pc=1.8 #Core loss(kW)\n", + "Pw=0.91 #Friction & windage losses(kW)\n", + "Ps=0.37 #Stray load loss(kW)\n", + "\n", + "\n", + "#Calculations:\n", + "Ia=P*10**3/(sqrt(3)*Va)\n", + "P1=If**2*Rf/10**3 #Loss in field winding(kW)\n", + "P2=3*Ia**2*Ra/10**3 #Loss in armature(kW)\n", + "Pl=(Pc+Pw+Ps+P1+P2)\n", + "Pi=Pin*pf+P1\n", + "Po=Pi-Pl\n", + "eff=(Po/Pi)*100\n", + "\n", + "#Results:\n", + "print \"Efficiency of the synchronous machine:\",round(eff,1),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Efficiency of the synchronous machine: 84.3 %\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 5.9, Page number: 287" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import math\n", + "import cmath\n", + "\n", + "#Variable declaration:\n", + "Xd=1 #Direct axis synchronus reactance(p.u)\n", + "Xq=0.60 #Quadrature axis synchronous reactance(p.u)\n", + "Va=1 #Terminal voltage(p.u)\n", + "pf=0.8 #Lagging power factor\n", + "Ia=0.8-1j*math.sin(math.acos(0.8)) #Line current(p.u)\n", + "\n", + "\n", + "#Calculations:\n", + "phy=-math.acos(pf)\n", + "E=Va+1j*Xq*Ia\n", + "delta=cmath.phase(E)\n", + "Id=abs(Ia)*math.sin(delta-phy)*cmath.exp(1j*(-pi/2+delta))\n", + "Iq=abs(Ia)*math.cos(delta-phy)*cmath.exp(1j*delta)\n", + "Eaf=Va+Xd*Id*1j+Xq*Iq*1j\n", + "\n", + "\n", + "#Results:\n", + "print \"Generated voltage:\",round(abs(Eaf),2),\"p.u Volt\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Generated voltage: 1.78 p.u Volt\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 5.11, Page number: 291" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from pylab import *\n", + "import cmath\n", + "from sympy import *\n", + "\n", + "#Variable declaration:\n", + "P_rated=2000*746 #Rated power of motor(W)\n", + "Xs=1.95 #Synchronous reactance(ohm/phase)\n", + "Xd=1.95 #Direct axis synchronous reactance(ohm/ph)\n", + "Xq=1.40 #Quadrature axis synchronous reactance(ohm/ph)\n", + "pf=1 #Power factor of the machine\n", + "Vl=2300 #Line to line voltage(V)\n", + "\n", + "#Calculatons:\n", + "Va=float(Vl/sqrt(3)) #volt\n", + "Ia=float(P_rated/(Va*3)) #ampere\n", + "E1=Va-1j*Ia*Xq #From phasor diagram\n", + "delta=cmath.phase(E1) #power angle\n", + "Id=Ia*sin(abs(delta)) #direct axis current(A)\n", + "Eaf=abs(E1)+Id*(Xd-Xq)\n", + "r=symbols('r')\n", + "def P(r): #Process for finding maximum power\n", + " return Eaf*Va*sin(r)/Xd + Va**2*(Xd-Xq)*sin(2*r)/(2*Xd*Xq)\n", + "P1=diff(P(r),r)\n", + "#On differentiation,\n", + "#P1 = 1023732.58489791*cos(r) + 355250.305250306*(2*(cos(r))**2-1)\n", + "l = solve(1023732.58489791*cos(r) + 355250.305250306*(2*(cos(r))**2-1),r)\n", + "P_max = (P(round(l[0],5)))\n", + "\n", + "\n", + "#Results:\n", + "print \"Maximum mechanical power:\",math.ceil(3*P_max/10**3),\"kW,3-phase\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Maximum mechanical power: 3236.0 kW,3-phase\n" + ] + } + ], + "prompt_number": 1 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/README.txt b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/README.txt new file mode 100755 index 00000000..4b574a6d --- /dev/null +++ b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/README.txt @@ -0,0 +1,10 @@ +Contributed By: SANTOSH BARNWAL +Course: be +College/Institute/Organization: BIRLA INSTITUTE OF TECHNOLOGY MESRA +Department/Designation: ELECTRICAL & ELECTRONICS +Book Title: ELECTRIC MACHINERY +Author: A. E. Fitzgerald, Charles Kingsley, Jr., Stephen D. Umans +Publisher: McGraw-Hill, New York +Year of publication: 2003 +Isbn: 0-07-112193-5 +Edition: Sixth Edition
\ No newline at end of file diff --git a/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter1.ipynb b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter1.ipynb new file mode 100755 index 00000000..3eaa70a1 --- /dev/null +++ b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter1.ipynb @@ -0,0 +1,560 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:29b5ec9b20f222bcfeb31d6e80f55e5d32272a4cce1e9227a6328e93313e209d" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<h1>Chapter 1:Introduction to Magnetic Circuits<h1>" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 1.1, Page number: 9" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import *\n", + "#Variable declaration:\n", + "Ac=9 #Cross-sectional area of the core(cm**2)\n", + "Ag=9 #Cross-sectional area of the air-gap(cm**2)\n", + "g=0.050 #Air-gap length(cm) \n", + "lc=30 #Mean Length of the core(cm)\n", + "N=500 #No. of windings\n", + "ur=70000 #Relative permeability of the core material\n", + "Bc=1.0 # Magnetic Flux Density of the core(T)\n", + "uo=4*pi*10**-7 #Permeability of free space\n", + "\n", + "#Calculation\n", + "Rc=lc*10**-2/((ur*uo*Ac)*10**-4)\n", + "Rg=g*10**-2/((uo*Ag)*10**-4)\n", + "Q=Bc*Ac*10**-4\n", + "i=Q*(Rc+Rg)/N\n", + "\n", + "#Results\n", + "print \"a.Reluctance of the core,Rc:\",round(Rc,2), \"A.turns/Wb\" \n", + "print \" Reluctance of the air-gap,Rg:\", round(Rg,2), \"A.turns/Wb\"\n", + "print \"b.The flux, Q:\", round(Q,4), \"Wb\"\n", + "print \"c.The current,i:\", round(i,2), \"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "a.Reluctance of the core,Rc: 3789.4 A.turns/Wb\n", + " Reluctance of the air-gap,Rg: 442097.06 A.turns/Wb\n", + "b.The flux, Q: 0.0009 Wb\n", + "c.The current,i: 0.8 A\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 1.2, Page number: 10" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import *\n", + "#Variable declaration:\n", + "I=10 #Current in the coil(A)\n", + "N=1000 #No of turns in the rotor\n", + "g=1 #Air gap length(cm)\n", + "Ag=2000 #Cross-section of the air-gap(cm**2)\n", + "uo=4*pi*10**-7 #Permeability of free space\n", + "\n", + "#Calculation:\n", + "Q=(N*I*uo*Ag*10**-4)/(2*g*10**-2)\n", + "Bg=round(Q,2)/(Ag*10**-4)\n", + "\n", + "#Results\n", + "print \"The air-gap flux, Q:\", round(Q,2), \"Wb\"\n", + "print \"The flux density, Bg:\", round(Bg,4), \"T\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The air-gap flux, Q: 0.13 Wb\n", + "The flux density, Bg: 0.65 T\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 1.4, Page number: 13" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import *\n", + "#Variable declaration\n", + "lc=0.3 #length of the core(cm)\n", + "ur1=72300 #Relative permeablity for case(a)\n", + "ur2=2900 #Relative permeablity for case(b)\n", + "Ac=9 #Cross-section of the core(cm**2)\n", + "Rg=4.42*10**5 #Reluctance of the air-gap(A.turns/Wb)\n", + "N=500 #No of coil turns\n", + "uo=4*pi*10**-7 #Permeability of free space(H/m)\n", + "\n", + "#Calculations:\n", + "Rt1=(lc/(ur1*uo*Ac*10**-4))+Rg\n", + "L1=N**2/Rt1\n", + "Rt2=(lc/(ur2*uo*Ac*10**-4))+Rg\n", + "L2=N**2/Rt2\n", + "\n", + "\n", + "\n", + "#Results:\n", + "print \"(a)Inductance,L:\",round(L1,2),\"H\"\n", + "print \"(b)Inductance,L:\",round(L2,2),\"H\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a)Inductance,L: 0.56 H\n", + "(b)Inductance,L: 0.47 H\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 1.5, Page number: 15" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from pylab import *\n", + "from matplotlib import *\n", + "from math import *\n", + "%matplotlib inline\n", + "#Variable declaration:\n", + "Ac=9e-4 #Cross-section of the core(m)\n", + "Ag=9e-4 #Cross-section of the air-gap(m)\n", + "g=5e-4 #Air-gap length(m)\n", + "lc=0.3 #Mean length of the core(m)\n", + "N=500 #No. of turns of the core(m)\n", + "uo=4*pi*10**-7 #Permeability of free space(H/m)\n", + "\n", + "#Calculations:\n", + "Rg=g/(uo*Ag) #Reluctance of the air-gap(A.turns/Wb)\n", + "ur=[0]*200 #Initialising array\n", + "L=[0]*200\n", + "\n", + "for n in range(1,101,1):\n", + " ur[n-1]=100+(10000-100)*(n-1)/100\n", + " Rc=lc/(ur[n-1]*uo*Ac) #Reluctance of the core(A.turns/Wb)\n", + " Rtot=Rg+Rc\n", + " L[n-1]=(N**2)/Rtot #Inductance(H)\n", + " \n", + "\n", + "#Results:\n", + "print \"The reqired plot is shown below:\"\n", + "plot(ur, L,'g.')\n", + "xlabel('Core relative permeability, ur')\n", + "ylabel('Inductance,L (H) ')\n", + "title('plot of inductance vs. relative permeability for Example 1.5.')\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The reqired plot is shown below:\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEXCAYAAABRWhj0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdcE/f/B/BPgKDsPRMgCMgQwcEQrZq6cIILGYo4QVvb\n2lqrVq046qjab221Fq1Wq7KcjMoo1ah1gAqtAwcowbAUGbKFJPf7w9+1+ebLCEgY8no+Hvcwl3zu\n7n0fuXvffT43GBRFEQAAAFkodHYAAADQfSBpAACAzJA0AABAZkgaAAAgMyQNAACQGZIGAADIrEsl\nDR6PxzUzMxN0xLKeP39uNGLEiMuampoVK1eu3Cn9+9KlS/dv2bJlXVvmfeTIkXnDhw+/8vZRQlMU\nFBTET58+7dOWaU+cODHb09Mzqb1j6q5a2u4ktwXpso6OjvcuX748oj3iaGmbfFdxOBz+H3/8Mbqz\n45CVUmcH0Fbz5s07YmZmJti8efP6tkx/4MCBYENDwxcVFRWajf2+f//+pW8X4dvjcDj8w4cPLxg1\natSFzo6lu+Lz+Zw+ffo8FQqFSgoKCmJCCJk9e/aJ2bNnn+js2LqL5raFe/fuOdKfQ0NDQ588eWJ1\n7NixwLYsp6VtsrWOHDkyb+HChYdUVVVr6O8YDAb1+PHjvsbGxkXtsYz2wGAwKAaD0eob5hoaGpj+\n/v4Rt2/fHpybm2tx8eLF90eOHHmpqfJcLpeXmprqrqSkJCSEEDabnffgwQP71i63S51pdKTc3FwL\ne3v7B50dR3MYDAZFURSjs+PoaEKhsN0PZrpbPYrF4h63bb7NNtnU38ywYcOuVlZWatBDRUWFZldK\nGG9rxIgRl48fPz7H2Ni4qKXEw2AwqH379n1I10VbEgYhhBCKojp0sLCw4G/btm21g4PDfR0dndL5\n8+cfrqur60VRFLl48SKXzWYL6LKZmZn2I0eO5Glra5f169fvXmxs7BSKokhYWFgwk8msV1ZWfq2u\nrl7p5eUV09iyrl69OtTFxeWmlpZWuaura9q1a9c8KIoiQUFBRySn/+OPP0ZJTxsUFHRk3bp1m+m4\nWCxW3u7duz8zNDR8bmJiUvDLL7/Mo8u+fPlSb8qUKbGampqv3NzcUtetW7f5vffeu0JRFMnJyeEw\nGAyxSCRSoMuPHDmS9/PPPy+kxw8cOLDY3t4+U0NDo8LBweF+enr6wDlz5hxTUFAQqaio1Kirq1fu\n3Lnzc4qiyMyZM08aGxsXamlplY8YMeLS/fv3HSRj/uCDD/ZNmjQpXkNDo8Ld3f3GkydP+tC/37t3\nr9+YMWN+19XVLTEyMiraunXrGoqiiEgkUti2bdtqKyurbD09vZezZs2KKi0t1WmsTu3s7B7Ex8dP\noscbGhqU9PX1izMyMgbU1tb2nj179nE9Pb2X2traZa6urmnPnz83bOlvgq6jQ4cOLTA3N88dOXIk\nj6IocujQoQX29vaZOjo6pZ6enom5ubnm9DQMBkNMr1t8fPykAQMGZGhqar4yMzN7FhoauoEuZ2Zm\n9ozBYIjV1dUrNTQ0Kq5fvz7kl19+mUf//yxZsmT/559/vlMyHi8vr5hvv/32U4qiSH5+vun06dNP\nGxgYvLC0tHz6/ffff9TUegQFBR0JCQn5aezYsckaGhoVI0eO5EnG/ODBAzu6/m1tbR9GR0f7SE67\nZMmS/RMmTDivpqZWlZKSMtrCwoK/c+fOz/v3739HXV29csGCBYeKioqMxo8fn6CpqflqzJgxv5eV\nlWnT87h+/foQDw+Pa9ra2mXOzs5/8Xi8kfRvhw8fnk//jfXp0+dJWFhYMP0bvd1t3bp1jb6+fjGH\nw8k5ceJEQFPbguQ2amFhwU9JSRmdkJAwXllZ+TWTyaxXV1evHDBgQMbJkydnDh48+JZkHe3evfsz\nb2/vc43VnfQ2+fr1a+VPPvnkO1NT03xTU9P85cuX/+f169fKktvkjh07vjA2Ni6cO3fuUel5Sv4/\nSw/Z2dlWurq6Jenp6QPp/2d9ff3iS5cujZClvlgsVt4333yz0sDA4IWJiUnB2bNnp/72228TbWxs\nHuvq6pZs27ZtNV1+w4YNoTNmzDjl6+sbqaGhUTFo0KDbf//9txP9O4fDyaH3QWKxmCHrtig5sNls\nAR17UwOXy70oud9p69ApSaN///538vLyWKWlpTrDhg37s7E/yPr6eqaVlVX2tm3bVjc0NChduHDh\nfQ0NjYpHjx71pSiKzJs375f169dvamo5JSUlutra2mXHjx+fLRKJFCIiIvx0dHRK6f+AlqaX/P3i\nxYtcJSWlhg0bNoQKhULF8+fPT1BVVa0uLy/XoiiK+Pr6Rvr6+kbW1NSo3Lt3rx+LxcobPnz4ZYpq\nPGlwudyLhw4dWkBRFImOjvZhsVh5t27dGkz/MdM7Gsk/JskNoaqqSq2+vp65fPny/wwYMCBDcsPT\n09N7efPmTRehUKg4e/bs435+fhEURZGKigoNY2Pjwm+//fbT169fK1dWVqqnpqa6URRFvvvuu088\nPDyu5efnm9bX1zNDQkJ+8vf3D2+sXjZt2rR+9uzZx+nx+Pj4SQ4ODvcpiiI//fRTyJQpU2Jra2t7\ni8ViRnp6+sCKigqNlv4m6DoKCgo6UlNTo1JbW9v73Llz3tbW1lkPHz60FYlEClu2bFk7dOjQq/Q0\nkkmDx+ONvHfvXj+KosidO3f6GxkZFZ07d86boijC5/MtpOtfcmdy+fLl4WZmZs/o30pLS3VUVFRq\nCgsLjUUikcKgQYNub968eV1DQ4PS06dPLfv06fMkKSlpXGPrERQUdERDQ6PiypUr79E7PHo5VVVV\namw2W3DkyJEgkUikkJGRMUBfX784MzPTnp5WS0urnD6wqaur68XhcHI8PDyuvXjxwiA/P9/U0NDw\n+cCBA9P/+usv57q6ul6jRo36Y+PGjV9RFEXy8vJYenp6LxMSEsZTFEV+//33MXp6ei9fvnypR1EU\n+e233yY+ffrUkqIocunSpRGqqqrV9A6T/vtesWLFrvr6eualS5dGqKmpVT1+/NimsW1BMmlI/o2G\nhoZuCAwM/JX+7fXr18q6urolDx48sKO/GzBgQMaZM2emtbTNURRF1q9fv8nDw+NacXGxfnFxsf7Q\noUOvSm+Tq1ev3lZfX8+sra3tLT2/5pIGRVHk4MGDixwcHO7X1NSojBs3LmnlypXf0L/JUl+bN29e\nJxQKFQ8ePLhIT0/vZUBAwImqqiq1+/fvO6ioqNTw+XwLinqTNJhMZv3p06enC4VCxV27dq2wtLR8\nKhQKFaXrsDXbouQga9IwMDB4oa+vXzxs2LA/JQ8qWjN0eNLgcDg5kln7/PnzE6ysrLKl/yAvX748\n3NjYuFByWn9//3D6KFLy6Kex4ddffw10d3e/Ifmdh4fHtSNHjgTRf6DNTS/5+8WLF7kqKio1kjse\nQ0PD56mpqW5CoVCRyWTW08mMoijy5Zdfft3cmYZk0hg3blxSU0evjSUNyaGsrEybwWCI6R3zvHnz\nflm8ePEBybq1s7N7QFEUCQ8P9x80aNDtxuZjb2+fKbmcgoICEyaTWS8ZMz1kZ2dbaWhoVNAbaUBA\nwInNmzevo6g3R2dDhw69eufOnf6t+Zug6ygnJ4dDfzd+/PgEuo4o6s3ZkKqqavWzZ8/MKOq/k4b0\n8Mknn3z36aeffttU/UvuTMRiMcPc3Dz38uXLwynqzVnf6NGjUyiKIjdu3HA3NzfPlZz31q1b18yf\nP/9wY8sNCgo6IrmBV1VVqSkqKgoFAgE7MjLSlz6QoIfg4OAweqcfFBR0JCgo6Ij0/394eLg/PT5j\nxoxTH3zwwT56/Icfflg2derUsxRFke3bt6+S3GFTFEU8PT0Tjx49OrexWKdOnXp2z549H9N/30pK\nSg01NTUq9O+zZs2Kov9fpbeFppLGhg0bQufMmXNMcjlLlizZv3bt2i0U9eZMV0dHp7S+vp7Z0jZH\nURSxsrLKppMgRVEkKSlpHIfDyaHjUFZWfk2feTQ2/PLLL/OUlJQatLW1y+jB2to6S7KMl5dXjKOj\n411nZ+e/moqrsfpSUVGpEYvFDIp6c0DGYDDEaWlprnT5wYMH34qJifGi68XDw+Ma/ZtYLGaYmJgU\n/Pnnn8Ok67A126LkIEvSSE1NdaMPOI8ePTpXQ0OjoqltqLmhU9pNJa++MDc3f1ZQUGAqXaagoMBU\n+ooOCwuLXLpsS+13BQUFpubm5s+amr619PT0SuiOVEIIUVVVramqqlIvLi42EAqFStLrJOt88/Ly\n2FZWVk9kKSsWixVWr1693draOltLS+uVpaVlDiGEvHz5Up8uY2Rk9Jz+rKKiUltVVaVOCCECgcCs\nT58+TxubL5/P50ybNu2sjo5OmY6OTpmDg0OmkpKS8Pnz50bSZa2srJ7Y29s/iI2N9aqpqVGNi4ub\nEhAQEE4IIYGBgcc8PT2T/Pz8IlksVv6qVat2tKZ/QrIOc3NzLT755JM9dEx6enolhBCSn5/Pkp4u\nNTXV/f33379oaGj4QltbuzwsLCykpKRET5ZlMhgMys/PLzIiIsKfEELCw8MD6E7y3Nxci4KCAlM6\nBh0dnbJt27atefHihWFT82Kz2Xn0uJqaWrWurm5pQUGBaW5urkVqaqq75LzCw8MD6DpmMBhUY1cw\nSf9/So737t27jv7/zc3NtTh58qSP5PyvXr06rKioyJgQQhISEiYMGTLkhp6eXomOjk7Z+fPnJ0rW\nkY6OTpmKikotPW5hYZFbWFhoIksdNicoKOhoeHh4ACGEHDt2LNDX1zeKyWQ2yDJtQUGBqYWFRS49\nLr2vMDAwKFZWVq5vbh5Dhgy5UVZWpkMPWVlZNpK/L1q06Of79+/3++ijj36QjKul+tLT0yuh90F0\nvTW17RHyptOZ/kz/nTS2L2rNtthabm5uaWpqatVMJrNh7ty5vw4bNuzq+fPnJ7Z2Pp2SNJ49e2Yu\n+dnU1LRAuoypqWmBQCAwoyQ6MHNzcy1YLFY+IS0nDRaLlZ+bm2sh+Z3k9LKQ5YoGAwODYiUlJaH0\nOtGf1dTUqgkhpKamRpX+jt6QCXmzo8zOzraWZfknTpyYHRsb6/XHH3+MfvXqlVZOTo4lIbJ18pqb\nmz9r6hJVc3PzZ4mJieMlN66amhpVExOTwsbK+/v7R0RERPjHxMR49+vX7z6djJSUlIRfffXVpvv3\n7/e7du3a0Pj4+Mm//vrr3JZia2x9zc3Nnx04cCBYMqbq6mq1IUOG3JCeLiAgIHzq1Knn8vLy2OXl\n5dpLliz5ie5IluX/0N/fP+LUqVMzc3NzLdLS0txmzJhxmo7B0tIyRzKGiooKzfj4+MmNzYeiKIZA\nIDCjx6uqqtRLS0t1WSxWvrm5+bORI0dekpxXZWWlxr59+z6UtX7oZTT2vbm5+bPAwMBj0vP/4osv\nvnn9+nWvGTNmnP7iiy++efHihWFZWZnOxIkTz0vOi/4/p8dzc3MtJLdLWeqxsTJDhgy5oaysXH/5\n8uURERER/oGBgcdkXVdTU9MCPp/Pocel9xVtueJIUlVVlfry5cu/W7Ro0c8bNmzYWFZWpkMIIbLU\nV2tJ/l2IxWKFvLw8dmP7vdZui52hw5MGRVGMH3/88YP8/HxWaWmp7tdff73Wz88vUrqcu7t7qqqq\nas0333zzRUNDA5PH43Hj4+Mn02WNjIyeN3ed/sSJE88/fvy4b0REhL9QKFSKioryffjwod3kyZPj\n6ThailOWPxJFRUXR9OnTz4SGhobW1taqZGZmOhw9ejSI/t3AwKCYxWLlHzt2LFAkEikePnx4wZMn\nT6zo3xctWvTzrl27Pk9PTx9EURQjOzvbmk46RkZGzyXLVlVVqffq1eu1rq5uaXV1tdqXX365VTrm\npuKcNGnSb4WFhSZ79uz55PXr170qKys10tLS3AghZMmSJT99+eWXW+nlFhcXG8TGxno1NS8/P7/I\npKQkz59++mkJfZZByJtr+O/evdtfJBIpamhoVDKZzAZFRUVRS3XYmCVLlvy0devWLzMzMx0IIeTV\nq1daJ0+e9GmsbFVVlbqOjk6ZsrJyfVpamlt4eHgAvUMxMDAoVlBQEEvWo7QBAwb8pa+v/3LRokU/\njx8/PlFTU7OCkDdHZhoaGpXffPPNF7W1tSoikUjx3r17jrdu3XJpal7nz5+fePXq1WH19fXK69ev\n3+zh4XGdxWLlT5o06bfHjx/3PX78+JyGhgZmQ0MD8+bNm64PHz60I+Ttr+6aM2fO8bi4uCnJycnj\nRCKRYl1dXW8ej8fNz89n1dfXK9fX1yvr6+u/VFBQECckJExITk4eJz2PDRs2bGxoaGBeuXJl+G+/\n/TbJx8fnJB2bLPEZGxsX8fl8jnTZwMDAY8uWLdurrKxcP3To0GtNTS89nb+/f8SWLVvWvXz5Uv/l\ny5f6mzZt+qo1Sacln3zyyR43N7e0AwcOBE+aNOm3JUuW/EQIIbLWV2vcvn178NmzZ6cJhUKl7777\nbnnv3r3rGjsAau22+Pr16151dXW9pT9Le/XqlVZSUpJnXV1db6FQqHTixInZV65cGT5+/PjE1q5L\nhycNBoNBBQQEhI8bNy7ZysrqiY2NTda6deu2SP5OCCHKysr1cXFxUxISEiYYGBgUL1u2bO+xY8cC\n+/bt+5gQQhYuXHgoMzPTQUdHp2z69OlnpJejq6tbGh8fP3n37t0r9PX1X+7atevz+Pj4ybq6uqX0\ncpo7UpH+vbmye/fuXVZVVaVubGxctGDBgsMLFiw4LFn+4MGDi3fu3LlSX1//ZWZmpsOwYcOu0r/N\nnDnz1Nq1a78OCAgI19TUrJg+ffoZ+ohnzZo127Zs2bJOR0en7Ntvv/1s7ty5v1pYWOSyWKx8R0fH\nex4eHtelY5SOkx7X0NCo/P3338fGxcVNMTExKezbt+9jHo/HJeTNxuPl5RU7bty4ZE1NzQoPD4/r\ndEJpjLGxcdHQoUOvXb9+3cPX1zeK/r6oqMjYx8fnpJaW1isHB4dMLpfLozfypUuX7l+6dOn+5upb\ncnzq1KnnVq1atcPPzy9SS0vrVf/+/e8mJSV5Nlb+xx9//OCrr77apKmpWbF58+b1kjGpqqrWrF27\n9uthw4Zd1dXVLU1NTXVvrJ4CAgLCL1y4MEoyCSooKIjj4+Mn//XXXwP69Onz1MDAoDg4OPhAU/cR\n0H/bGzdu3KCnp1eSkZEx8Pjx43Po+k9OTh4XGRnpx2Kx8k1MTArXrFmzrb6+XpmetrVH85LTsNns\nvJiYGO+tW7d+aWho+MLc3PzZ7t27V1AUxdDQ0Kj8/vvvP541a1a0rq5uaUREhL+3t3eM5HxNTEwK\ndXR0ykxNTQsCAwOPhYWFhdDbmqzbAp1k9PT0SlxcXG7R3wcGBh67f/9+vzlz5hxvad0k571u3bot\nLi4ut5ycnO44OTndcXFxudXYvqK5+V2/ft1DQ0Ojkh40NTUrbt++PTgmJsY7OTl5HH0PyrfffvtZ\nenr6oIiICH9Z6qup7aypOLy9vWOioqJ8dXV1S0+cODH7zJkz0xs7oGrttmhra/tIVVW1pqCgwNTT\n0zNJTU2tmk44W7du/XLixInnCXmTCNevX7/Z0NDwhYGBQfG+ffs+jImJ8ba2ts4m5M1ZnIaGRmVe\nXh67uTolhBAGRXXsS5gsLS1zDh06tBA3rMG7Zv78+b+w2ey8tt5w+q6qra1VMTIyep6RkTFQ1v67\nd8nGjRs3ZGdnW7f1pseuRq5nGomJiePt7Owe2tjYZO3YsWNVY2V4PB534MCBGY6Ojve4XC5PnvEA\nyNPbNjG9q/bv37/Uzc0trScmDELevb8LuT1GRCQSKS5btmxvSkrKGBaLle/q6nrTy8srVrJMeXm5\n9ocffrgvKSnJk81m50leBQTQ3bT1cRDvMg6Hw2cwGNS5c+emdnYsneVd+7uQW/PU9evXPTZu3Lgh\nMTFxPCGEbN++fTUhhKxevXo7XebHH3/8oKioyHjTpk1fySUIAABoV3I708jPz2dJXnfOZrPzUlNT\n3SXLZGVl2TQ0NDDff//9i5WVlRqffPLJHumrI96lDA0A0JHk0TQmtz4NWXb2DQ0NzPT09EHnz5+f\nmJSU5Ll58+b10jffENLxd6131WHDhg2dHkNXGVAXqAvURfODvMjtTIPFYuVL3tAiEAjMJO+KJOTN\njW36+vovVVRUalVUVGpHjBhx+e+//3a2sbHJkldcAADQdnI703BxcbmVlZVlw+fzOfX19cpRUVG+\n0h3h3t7eMX/++ed7IpFIsaamRjU1NdXdwcEhU14xAQDA25HbmYaSkpJw7969yzw9PZNEIpHiwoUL\nD9nb2z8ICwsLIYSQkJCQMDs7u4fjx49PdHJyuqOgoCBevHjxQSSNpnG53M4OoctAXfwLdfEv1IX8\ndfjNfa31/y8i6uwwAAC6FQaDQaju1BEOAADvHiQNAACQGZIGAADIDEkDAABkhqQBAAAyQ9IAAACZ\nIWkAAIDMkDQAAEBmSBoAACAzJA0AAJAZkgYAAMgMSQMAAGSGpAEAADJD0gAAAJkhaQAAgMyQNAAA\nQGZIGgAAIDO5ve4VAAA6RnBcMHlc8pioMlVJ+Ixwot1bW27LwuteAQDkRHJnbqhmSPjl/H927F/8\n/kWjvzX1ublpKl5XkKuCq4QQQnwcfEi0T7TcXveKpAEAPVpTO/a27OSly0nuzA1UDUhxTTEh5M2O\n/UX1C3Ip99L//NbU5+amMVYzJkXVRcTV1JUkByYT7d7acksaaJ4CgG6lvXfyj0set7jzDo4Llmkn\nL13OWM2YEEKIq6kr0eqtRVKephBXU1dyYMoBEnA6oNHfmvrc3DQnfU6Slb+vJAemHJBr0xQhONMA\ngA4k3fbenkfvbTmS93HwIVX1VSQhO6HZHXZyYDIJOB3Q6nKSO3N6/ekde3ld+T/jkr819bm5aRpL\nFGieAoBO97ZH+dJt77Lu2KWP3ummmPbYydPr1dYddnPl5H3U3xwkDQBoN2094p8aObXVO/nm2t7b\n8+hd8nNrdvLvKiQNAGhUW67QaesR/9s25Ui3vXe3o/fuBEkDoIeR9WygLVfotPWIn46rPdveQT6Q\nNADeEW1JBrImAHkf8UP3gaQB0MXJMxnImgDoOHDED90yaSQmJo5fvnz5dyKRSHHRokU/r1q1aofk\n7zwej+vt7R3Tp0+fp4QQMmPGjNPr1q3b8l8BImlAF9NUH4I8kwESALRWt0saIpFI0dbW9lFKSsoY\nFouV7+rqejMiIsLf3t7+AV2Gx+Nxv/32289iY2O9mgwQSQM6iKyXkzZ1BRGSAXQl3e6O8LS0NDdr\na+tsDofDJ4QQPz+/yJiYGG/JpEEIkctKATSluSuNZL0zWJWpSghp+a7c8BnhTSaDaJ/of2KSHpf8\nDNDVyC1p5Ofns8zMzAT0OJvNzktNTXWXLMNgMKhr164NdXZ2/pvFYuXv2rXrcwcHh0zpeYWGhv7z\nmcvlEi6XK6+w4R0hSxOSrMlA+lEOdHkkA+hKeDwe4fF4cl+O3JIGg8FosU1p0KBB6QKBwExVVbUm\nISFhwtSpU889fvy4r3Q5yaQB0BjpTuimzhqaexYQPR9ZriBCMoCuRvqAeuPGjXJZjtySBovFyhcI\nBGb0uEAgMGOz2XmSZTQ0NCrpzxMmTEj44IMPfiwtLdXV1dUtlVdc0L3JcgYhaxMSXVaWZIDEAPCG\n3JKGi4vLraysLBs+n88xNTUtiIqK8o2IiPCXLPP8+XMjQ0PDFwwGg0pLS3OjKIqBhAFt6XeQPINo\nTRMSkgFA68gtaSgpKQn37t27zNPTM0kkEikuXLjwkL29/YOwsLAQQggJCQkJO3Xq1Mz9+/cvVVJS\nEqqqqtZERkb6ySse6NokE0Vb+h0aezQ0kgNA+8PNfdBhmjuDkLyMtbk7nOn54PJUgOZ1u/s02guS\nRvcmyxmE9IPwWup3AICWIWlAtyB9FVNbziCQHADeHpIGdFlNnU3gDAKg8yBpQJfSVKKQfpQGXRbJ\nAaBjIWlAp5K12akjX3APAE1D0oAO15ZmJyQKgK4BSQM6BJqdAN4NSBogF2h2Ang3IWlAu0GzE8C7\nD0kD3gqanQB6FiQNeCvcI1w0OwH0IEga0GqSZxcN4oZmH+4HAO8WJA1oUXOd2t623kRZURmJAqCH\n6HbvCIeOJ/muCenHiB+ZegTJAgDeGpJGNyd5dsFUZBJCGn8RERIGALQHNE91c5Id3GiCAgAamqfg\nH02dXaAJCgDkDWca3QA6uAGgtXCm0YOhgxsAugokjS4KHdwA0BWheaqLQgc3ALwNNE/1AOjgBoCu\nDmcaXQjOLgCgveBMowdABzcAdHU40+hE0pfS0t/h7AIA3hYeWPgOkmyO8nHwIdE+0Z0cEQC8K9A8\n9Y5o6VJaAICuDGcaHQyd3QDQEeR1pqHQ3jOUlJiYON7Ozu6hjY1N1o4dO1Y1Ve7mzZuuSkpKwjNn\nzkyXZzxdgXRnd7RPNBIGAHQbzTZPNTQ0MJOTk8ddvnx5BJ/P5zAYDMrCwiJ3xIgRlz09PZOUlJSE\nTU0rEokUly1btjclJWUMi8XKd3V1venl5RVrb2//QLrcqlWrdowfPz5RHlmxK5Bskto/aT/emgcA\n3VaTZxqbN29e7+rqejM+Pn6ynZ3dwwULFhwOCgo6amtr+yguLm6Ki4vLrS1btqxravq0tDQ3a2vr\nbA6Hw2cymQ1+fn6RMTEx3tLlfvjhh49mzpx5ysDAoLi9VqqroZ8dlZCdQFb+vhJnFwDQbTV5puHs\n7Pz32rVrv1ZQUBBL/7ZgwYLDYrFYIT4+fnJT0+fn57PMzMwE9Dibzc5LTU11ly4TExPjfeHChVE3\nb950ZTAYjXZehIaG/vOZy+USLpfb7Ep1NZJNUujwBgB54PF4hMfjyX05TSYNLy+v2OYmVFBQEDdX\npqkEIGn58uXfbd++ffX/d3Yzmmqekkwa3YH0/RfhM8Jx/wUAyJX0AfXGjRvlspwmk8aUKVPi6M/0\nTl1yPDY21qu5GbNYrHyBQGBGjwsEAjM2m50nWeb27duD/fz8Igkh5OXLl/oJCQkTmExmQ0sJq6uT\nfpR5tE+piCozAAAgAElEQVQ07sEAgHdCk0ljxYoVu+lksXjx4oM///zzIjpxyHIW4eLicisrK8uG\nz+dzTE1NC6KionwjIiL8Jcs8ffq0D/15/vz5v0yZMiWuuycMQtAcBQDvriaTBpfL5dGf1dXVq0aO\nHHmpVTNWUhLu3bt3maenZ5JIJFJcuHDhIXt7+wdhYWEhhBASEhIS1uaouyBcIQUAPYFMN/cNHDgw\nIyMjY2AHxPM/usvNfXgkCAB0JR3+GJHS0lJdQgihKIohEokU6XGarq5uaXsH052hSQoAeoImzzQ4\nHA6f7rugKIoh2Y/BYDAoyf4IuQbYTc40yuvKcYUUAHQZeMptFyR9aS2SBQB0FR3+7ClZziSePHli\n1b7hdC+Sd3oHxwV3djgAAHLXZJ/GmjVrtlVXV6t5eXnFuri43DIxMSmkKIpRWFhocuvWLZfY2Fgv\nDQ2NysjISL+ODLgrQT8GAPQ0zTZPZWdnW0dGRvpdvXp1WG5urgUhhFhYWOS+9957f/r7+0f06dPn\nqdwD7MLNU+jHAICuCn0aXQD6MACgu+iW79N416APAwB6OiSNVkAfBgD0dG1KGgUFBabtHUh3ED4j\nnPg4+JDkwGQ0TQFAj9SmPg1zc/Nnz549M5dDPP+jK/VpAAB0Fx3+GJHmvKuvZW0MOr8BAP6FPo0W\noPMbAOBfTZ5pfPTRRz809Vt5eXmPOdxG5zcAwL+aTBqDBw++3djLliiKYri4uNySb1hdB17VCgDw\nL9zcBwDwDuoyHeFffvnlVi0trVeLFi36WU9Pr6S9A+oK0PkNANC4VneEu7q63lRUVBQtX778O3kE\n1BWg8xsAoHGtPtOYNm3aWXkE0pWg8xsAoHEtnmk8evTIdvTo0X/069fvPiGE3Llzx2nLli3r5B9a\n58Gd3wAAjWuxI3zEiBGXd+7cuXLJkiU/ZWRkDKQoiuHo6Hjv/v37/TokQHSEAwC0Wqc95bampkbV\n3d09VSIQislkNrR3IAAA0PW12KdhYGBQnJ2dbU2Pnzp1aqaJiUmhfMPqWLhaCgBANi02Tz158sQq\nODj4wPXr1z20tbXLLS0tc06cODGbw+HwOyTADmie4h7hkku5lwghhPg4+JBon2i5Lg8AQN46/c19\nVVVV6mKxWEFTU7OivYNoTkckjYknJpKE7ATiauqKzm8AeCd0Wp/GmjVrtpWXl2urq6tXaWpqVpSV\nlemsW7duS3sH0plwtRQAgGxaPNMYMGDAX3/99dcAye8GDhyYkZGRMVCukf0/XD0FANB6nXamIRaL\nFerq6nrT47W1tSr19fXK7R0IAAB0fS0mjdmzZ58YPXr0H4cOHVr4888/LxozZkzK3Llzf5Vl5omJ\niePt7Owe2tjYZO3YsWOV9O8xMTHezs7Ofw8cODBj8ODBty9cuDCqLSsBAAAdQ6aO8ISEhAkpKSlj\nGAwGNXbs2N89PT2TWppGJBIp2traPkpJSRnDYrHyXV1db0ZERPjb29s/oMtUV1erqampVRNCyN27\nd/tPmzbtrOTlvYTIr3kKl9kCwLusU59yO2HChIQJEyYktGbGaWlpbtbW1tn0pbl+fn6RMTEx3pJJ\ng04YhLy5OktfX/9la5bxNuiHEhLyJoHgMlsAgJa1mDROnz49Y/Xq1dufP39uRGctBoNBVVRUaDY3\nXX5+PsvMzExAj7PZ7LzU1FR36XLnzp2bumbNmm2FhYUmycnJ4xqbV2ho6D+fuVwu4XK5LYXdIjyU\nEADeJTwej/B4PPkviKKoZoc+ffo8yczMtG+pnPRw6tSpGYsWLTpIjx87dmzOsmXLfmiq/OXLl4f3\n7dv3kfT3b0Jsf2W1ZZRPtA9VVlsml/kDAHSm/993tmq/LcvQYke4sbFxkWSTkqxYLFa+QCAwo8cF\nAoEZm83Oa6r88OHDrwiFQqWSkhK91i6rLbR7a5Non2j0ZQAAtEKLzVMuLi63fH19o6ZOnXpOWVm5\nnpA3zVPTp08/09J0WVlZNnw+n2NqaloQFRXlGxER4S9Z5smTJ1Z9+vR5ymAwqPT09EGEEPKuvg0Q\nAOBd0GLSePXqlZaKikqtdH9DS0lDSUlJuHfv3mWenp5JIpFIceHChYfs7e0fhIWFhRBCSEhISNjp\n06dn/Prrr3OZTGaDurp6VWRkpN/brQ4AAMiTzM+e6iy4IxwAoPU67ZLb2tpalUOHDi3MzMx0qK2t\nVWEwGBQhhBw+fHhBewcjb7g3AwDg7bTYER4YGHjs+fPnRomJieO5XC5PIBCYqaurV3VEcO2Nvjcj\nITuBBMcFd3Y4AADdTotJIzs723rz5s3r1dXVq4KCgo6eP39+YmP3W3QHuDcDAODttJg06CumtLS0\nXt29e7d/eXm5dnFxsYH8Q2t/eAQ6AMDbabFPY/HixQdLS0t1t2zZss7Lyyu2qqpKffPmzes7Irj2\nRt+bAQAAbdPi1VNPnz7t06dPn6ctfScvuHoKAKD1Ou19GjNnzjwl/Z2Pj8/J9g4EAAC6viabpx48\neGCfmZnpUF5ern3mzJnpFEUx6AcVSr6UCQAAeo4mk8bjx4/7xsXFTXn16pVWXFzcFPp7DQ2NyoMH\nDy7umPAAAKArabFP4/r16x4eHh7XOyie/4E+DQCA1uu0Po39+/cvLS8v/+f61LKyMp0FCxYcbu9A\n5CU4Lphwj3DJxBMTSXldeWeHAwDQrbWYNO7cueOkra39z95WR0enjH4ibXeAu8ABANpPi0mDoihG\naWmpLj1eWlqqKxKJFOUbVvvBXeAAAO2nxZv7VqxYsdvDw+P6rFmzoimKYpw8edJn7dq1X3dEcO0h\nfEY4CY4LJgemHMBd4AAAb0mmR6Pfv3+/34ULF0YxGAxq1KhRFxwcHDI7IDZCCDrCAQDaQl4d4S0m\njWfPnpkTQv5ZOP1odHNz82ftHUxjkDQAAFqv05KGo6PjPTpR1NXV9c7JybG0tbV9dP/+/X7tHUyj\nASJpAAC0Wqe9hOnevXuOkuPp6emD9u3b92F7BwIAAF1fm1736ujoeE86mcgLzjQAAFqv0840du/e\nvYL+LBaLFdLT0wexWKz89g4EAAC6vhaTRmVlpQbdp6GkpCScPHly/IwZM07LPzQAAOhq2tQ81ZFa\n2zwVHBdMHpc8JqpMVRI+Ixz3ZgBAj9ThzVNTpkyJk1g4JblwBoNBxcbGerV3MO2BfmwIIW8SCN7U\nBwDQfppMGitWrNhNCCFnz56dVlRUZDxnzpzjFEUxIiIi/I2MjJ53XIitg8eGAADIT4vNU4MHD759\n+/btwS19Jy+tbZ4qryvHY0MAoMfrtEej19TUqD558sSKHn/69Gmfmpoa1fYOpL1o99Ym0T7RSBgA\nAHLQ4tVT//nPfz59//33L1paWuYQQgifz+ccOHAAzxgHAOiBZLp6qq6urvfDhw/tGAwGZWdn97BX\nr16vOyA2Qghu7gMAaItOe/YUIYRcu3ZtaE5OjqVQKFSi79mYO3fur+0dTGOQNAAAWq/T+jTmzJlz\n/PPPP9919erVYbdu3XK5efOm682bN11lmXliYuJ4Ozu7hzY2Nlk7duxYJf37iRMnZjs7O//t5OR0\nZ9iwYVfv3Lnj1JaVAACAjtHimYa9vf2DzMxMB/oMQ1YikUjR1tb2UUpKyhgWi5Xv6up6MyIiwt/e\n3v4BXeb69eseDg4OmVpaWq8SExPHh4aGht64cWPIfwWIMw0AgFbrtGdPOTo63issLDQxNTUtaM2M\n09LS3KytrbM5HA6fEEL8/PwiY2JivCWThoeHx3X6s7u7e2peXh67sXmFhob+85nL5RIul9uaUAAA\n3nk8Ho/weDy5L6fFpFFcXGzg4OCQ6ebmlkZ3gMtyR3h+fj7LzMxMQI+z2ey81NRU96bKHzp0aOHE\niRPPN/abZNIAAID/JX1AvXHjRrksp8WkEdrGPXZrmrMuXrz4/uHDhxdcvXp1WFuWBQAAHaPFpMHl\ncnltmTGLxcoXCARm9LhAIDBjs9l50uXu3LnjtHjx4oOJiYnjdXR0ytqyLAAA6BhNJg11dfWqps4W\nGAwGVVFRodncjF1cXG5lZWXZ8Pl8jqmpaUFUVJRvRESEv2SZZ8+emU+fPv3M8ePH51hbW2e3bRXw\nZFsAgI7SZNKoqqpSf6sZKykJ9+7du8zT0zNJJBIpLly48JC9vf2DsLCwEEIICQkJCdu0adNXZWVl\nOkuXLt1PCCFMJrMhLS3NrbXLwpNtAQA6xjvxPo2JJyaShOwE4mrqSpIDk3GmAQA9XqfeEd6ZZEka\neLItAMB/Q9IAAACZddpjRAAAAGhIGgAAIDMkDQAAkBmSBgAAyAxJAwAAZIakAQAAMkPSAAAAmSFp\nAACAzJA0AABAZkgaAAAgMyQNAACQGZIGAADIrMU393VVePESAEDH67ZnGvSLlxKyE0hwXHBnhwMA\n0CN026ShylQlhBDiaupKDkw50MnRAAD0DN32fRp48RIAQNPwEiYAAJAZXsIEAACdDkkDAABkhqQB\nAAAyQ9IAAACZIWkAAIDMkDQAAEBmSBoAACAzJA0AAJAZkgYAAMhMrkkjMTFxvJ2d3UMbG5usHTt2\nrJL+/eHDh3YeHh7Xe/fuXbd79+4V8owFAADentwejS4SiRSXLVu2NyUlZQyLxcp3dXW96eXlFWtv\nb/+ALqOnp1fyww8/fHTu3Lmp8ooDAADaj9zONNLS0tysra2zORwOn8lkNvj5+UXGxMR4S5YxMDAo\ndnFxucVkMhvkFQcAALQfuZ1p5Ofns8zMzAT0OJvNzktNTXVvy7xCQ0P/+czlcgmXy33r+AAA3iU8\nHo/weDy5L0duSYPBYLTbo2klkwYAAPwv6QPqjRs3ymU5cmueYrFY+QKBwIweFwgEZmw2O09eywMA\nAPmTW9JwcXG5lZWVZcPn8zn19fXKUVFRvl5eXrGNlZXHM98BAKD9yfUlTAkJCROWL1/+nUgkUly4\ncOGhNWvWbAsLCwshhJCQkJCwoqIiY1dX15sVFRWaCgoKYg0NjcrMzEwHdXX1qn8CxEuYAABaDW/u\nAwAAmckracitI7y9BccFk8clj4kqU5WEzwjHe8EBADpBt3mMyOOSx+RS7iWSkJ1AguOCOzscAIAe\nqdskDVWmKiGEEFdTV3JgyoFOjgYAoGfqNn0a5XXlJDgumByYcgBNUwAALUBHOAAAyExeSaPbNE8B\nAEDnQ9IAAACZIWkAAIDMkDQAAEBmSBoAACAzJA0AAJAZkgYAAMgMSQMAAGSGpAEAADJD0gAAAJkh\naQAAgMyQNAAAQGZIGgAAIDMkDQAAkBmSBgAAyAxJAwAAZIakAQAAMkPSAAAAmSFpAACAzJA0AABA\nZkgaAAAgMyQNAACQGZJGN8Lj8To7hC4DdfEv1MW/UBfyJ9ekkZiYON7Ozu6hjY1N1o4dO1Y1Vubj\njz/+3sbGJsvZ2fnvjIyMgfKMp7vDBvEv1MW/UBf/Ql3In9yShkgkUly2bNnexMTE8ZmZmQ4RERH+\nDx48sJcsc/78+YnZ2dnWWVlZNgcOHAheunTpfnnFAwAAb09uSSMtLc3N2to6m8Ph8JlMZoOfn19k\nTEyMt2SZ2NhYr6CgoKOEEOLu7p5aXl6u/fz5cyPpeTE2MghjI0NeoQIAgIyU5DXj/Px8lpmZmYAe\nZ7PZeampqe4tlcnLy2MbGRk9/6+Zhb75hxGKxLFx48bODqHLQF38C3XxL9SFfMktaTAYDEqWchRF\n/VcmkJ5O+ncAAOg8cmueYrFY+QKBwIweFwgEZmw2O6+5Mnl5eWwWi5Uvr5gAAODtyC1puLi43MrK\nyrLh8/mc+vp65aioKF8vL69YyTJeXl6xv/7661xCCLlx48YQbW3t8v9pmgIAgC5Dbs1TSkpKwr17\n9y7z9PRMEolEigsXLjxkb2//ICwsLIQQQkJCQsImTpx4/vz58xOtra2z1dTUqn/55Zf58ooHAADa\nAUVRXXZISEgYb2tr+9Da2jpr+/btqzo7nvYenj17Zsblci86ODjc79ev3709e/Z8TFEUKSkp0R0z\nZszvNjY2j8eOHZtcVlamTU+zdevWNdbW1lm2trYPk5KSxtHf37p1a7Cjo+Nda2vrrI8//nhPZ69b\nWwehUKg4YMCAjMmTJ8f15LooKyvTnjFjxik7O7sH9vb2mTdu3HDvqXWxdevWNQ4ODvcdHR3v+vv7\nh9fV1fXqKXUxf/78w4aGhs8dHR3v0t+157rX1dX1mjVrVpS1tXWWu7v7DT6fb9FSTJ1eKU0NQqFQ\n0crKKjsnJ4dTX1/PdHZ2/iszM9O+s+Nqz6GwsNA4IyNjAEVRpLKyUr1v376PMjMz7VeuXPnNjh07\nvqAoimzfvn3VqlWrtlMURe7fv+/g7Oz8V319PTMnJ4djZWWVLRaLGRRFEVdX17TU1FQ3iqLIhAkT\nzickJIzv7PVry7B79+7PAgICTkyZMiWWoijSU+ti7ty5Rw8dOrSAoijS0NCgVF5ertUT6yInJ4dj\naWn5tK6urhdFUWTWrFlRR44cCeopdXH58uXh6enpAyWTRnuu+759+z5YunTpjxRFkcjISF9fX9/I\nlmLq9Epparh27ZqHp6dnIj2+bdu21du2bVvd2XHJc/D29j73+++/j7G1tX1YVFRkRFFvEoutre1D\ninpzFCF5xuXp6Zl4/fr1IQUFBSZ2dnYP6O8jIiL8QkJCfurs9WntIBAI2KNHj065cOHC+/SZRk+s\ni/Lyci1LS8un0t/3xLooKSnR7du376PS0lKdhoYGpcmTJ8clJyeP7Ul1kZOTw5FMGu257p6enok3\nbtxwp6g3Byf6+vrFLcXTZZ891dg9HPn5+azOjEme+Hw+JyMjY6C7u3vq8+fPjegLAoyMjJ7TNzwW\nFBSYSl6BRteJ9PcsFiu/O9bVp59++p+dO3euVFBQENPf9cS6yMnJsTQwMCieP3/+L4MGDUpfvHjx\nwerqarWeWBe6urqlK1as2G1ubv7M1NS0QFtbu3zs2LG/98S6oLXnukvuZ5WUlIRaWlqvSktLdZtb\nfpdNGrLe5/EuqKqqUp8xY8bpPXv2fKKhoVEp+RuDwaB6Ql3Ex8dPNjQ0fDFw4MAMqol7c3pKXQiF\nQqX09PRBH3zwwY/p6emD1NTUqrdv375askxPqYsnT55Yfffdd8v5fD6noKDAtKqqSv348eNzJMv0\nlLpoTGese5dNGrLc5/EuaGhoYM6YMeN0YGDgsalTp54j5M3RQ1FRkTEhhBQWFpoYGhq+IKTx+1rY\nbHYei8XKz8vLY0t+393ud7l27drQ2NhYL0tLyxx/f/+ICxcujAoMDDzWE+uCzWbnsdnsPFdX15uE\nEDJz5sxT6enpg4yNjYt6Wl3cunXLZejQodf09PRKlJSUhNOnTz9z/fp1j55YF7T22CbofSmLxcp/\n9uyZOSFvDlZevXqlpaurW9rc8rts0pDlPo/ujqIoxsKFCw85ODhkLl++/Dv6ey8vr9ijR48GEULI\n0aNHg+hk4uXlFRsZGelXX1+vnJOTY5mVlWXj5uaWZmxsXKSpqVmRmprqTlEU49ixY4H0NN3F1q1b\nvxQIBGY5OTmWkZGRfqNGjbpw7NixwJ5YF8bGxkVmZmaCx48f9yWEkJSUlDH9+vW7P2XKlLieVhd2\ndnYPb9y4MaS2tlaFoihGSkrKGAcHh8yeWBe09tgmvL29Y6TnderUqZmjR4/+o8UAOruTp7nh/Pnz\nE/r27fvIysoqe+vWrWs6O572Hq5cufIeg8EQOzs7/zVgwICMAQMGZCQkJIwvKSnRHT16dEpjl9R9\n/fXXX1pZWWXb2to+TExM9KS/py+ps7Kyyv7oo4++7+x1e5uBx+ONpK+e6ql18ddffzm7uLjcdHJy\n+nvatGlnysvLtXpqXezYseML+pLbuXPnHq2vr2f2lLrw8/OLMDExKWAymfVsNltw+PDh+e257nV1\ndb18fHyi6Utuc3JyOC3FxKCoHtkUCAAAbdBlm6cAAKDrQdIAAACZIWkAAIDMkDQAAEBmSBrQrKKi\nImM/P79Ia2vrbBcXl1uTJk36LSsry6az4lFXV69q7vdXr15p7d+/fyk9XlBQYOrj43NS/pF1nqbq\nZMOGDRsvXLgwihBCuFwuLz09fRAhhEyaNOm3iooKTem6ApBJZ19ShqHrDmKxmDFkyJDrYWFhwfR3\nf//9t9OVK1fek2X6hoYGpbYsk37IWmODurp6ZXPTSz+np6sMIpFIQV7zbqlOKIoiXC734u3btwd1\nRl0JhULFzq5/DO034EwDmnTx4sX3lZWV64ODgw/Q3zk5Od157733/iSEkJUrV+7s37//XScnpzvR\n0dGzCCGEx+Nxhw8ffsXb2zvG0dHxnlgsVli5cuVONze3NGdn578PHDgQLL0cPp/PsbW1fRQUFHS0\nf//+dwUCgdnOnTtX0tOEhoaGSk9TVVWlPmbMmJTBgwffdnJyuhMbG+tFCCGrV6/e/uTJE6uBAwdm\nrFq1akdubq5F//797xJCyJAhQ25kZmY60POgj76rq6vVFixYcNjd3T110KBB6fS8JPF4PO6IESMu\nT548Od7Ozu7h0qVL91P//7iT5OTkcUOHDr02ePDg27NmzYqurq5WI4QQDofDX7169fbBgwffPnny\npA+Hw+F/+eWXWwcOHJjh4uJyKz09fdC4ceOSra2ts+n3zBBCSFPrPm3atLMuLi63HB0d7x08eHCx\nZHyfffbZt46OjvfGjBmT8vLlS31CCJk3b96R06dPz5BeFw6Hwy8pKdGTrKsvvvjim6CgoKMxMTHe\ndLnZs2efaKwuJP/f6LolhJBdu3Z9vnHjxg103X766af/cXV1vfn9999/3NQ8oBvq7KyFoesOe/bs\n+fjTTz/9trHfTp06NWPs2LHJYrGY8fz5c0Nzc/PcwsJC44sXL3LV1NSq6Ofyh4WFBW/ZsmUtRb25\nkcjFxeWm9A1EOTk5HAUFBRH96OakpKRxwcHBYRT15gh90qRJ8ZcvXx5OUf8eVQuFQsWKigoNiqJI\ncXGxvrW1dRZFUYTP51tIHj1LHk3/5z//Wb5hw4ZQiqJIQUGBCf100DVr1mw9fvz4bIp68x6Lvn37\nPqqurlaVjPHixYvc3r171+bk5HBEIpHC2LFjk0+dOjWjuLhYf8SIEZdqampUKOrNo6o3bdq0nqIo\nwuFwcnbu3Pk5PQ8Oh5Pz008/hVAURT799NNv+/fvf6eqqkqtuLhY38jIqKixdZ88eXIcve6lpaU6\nFEWRmpoaFUdHx7v0OIPBEIeHh/tTFEU2bdq0ftmyZT9QFEXmzZv3y+nTp6dT1H+faXA4nJySkhJd\n6bq6dOnSiKlTp56lqH+ftNvcGZL0mcquXbtWbNy48St6eR9++OHezv4bxtD+g9ze3AfdX3MPQrt6\n9eqwgICAcAaDQRkaGr4YOXLkpZs3b7pqampWuLm5pVlYWOQS8uYo/O7du/1PnTo1kxBCKioqNLOz\ns605HA5fcn4WFha5bm5uafQ0ycnJ4wYOHJhBCCHV1dVq2dnZ1sOHD79ClxeLxQpr1qzZduXKleEK\nCgrigoIC0xcvXhhSTTzskBBCfHx8Tnp6eiaFhoaGRkdHz6L7OpKTk8fFxcVN2bVr1+eEEPL69ete\nAoHAzNbW9pHk9G5ubml03P7+/hF//vnne717967LzMx0GDp06DVCCKmvr1emPxNCiK+vb5TkPOhH\n4fTv3/9udXW1mpqaWrWamlp1r169Xr969UqruXXfs2fPJ+fOnZtKyJtnsdGPiVBQUBDTy5kzZ87x\n6dOnn2mqDiRJ19WIESMuf/DBBz++fPlS/9SpUzNnzpx5SvKJw62dp/S6w7sBSQOa1K9fv/v0zr4x\n0jsdOsmoqalVS36/d+/eZWPHjv29uWVJT7NmzZptks1i0k6cODH75cuX+unp6YMUFRVFlpaWOXV1\ndb2bWwaLxcrX09MruXv3bv/o6OhZkk1CZ86cmW5jY5PV3PSSSZSiKAaDwaAoimKMHTv29/Dw8ABZ\n1qtXr16vCSFEQUFBrKysXE9/r6CgIBYKhUpNrTuPx+P+8ccfo2/cuDGkd+/ede+///7FxtaXjqu5\n9WjO3Llzfz127FhgVFSU75EjR+Y1V1ZJSUkoFov/aeKura1VkVy29LrDuwF9GtCkUaNGXXj9+nUv\nyfbzO3fuOP3555/vDR8+/EpUVJSvWCxWKC4uNrh8+fIINze3NOlE4unpmfTjjz9+QO8QHz9+3Lem\npka1ueV6enomHT58eAHdN5Cfn88qLi42kCxTUVGhaWho+EJRUVF08eLF93Nzcy0IIURDQ6OysrJS\no6l5+/r6Ru3YsWNVRUWFpqOj4z16eZLt7hkZGQMbmzYtLc2Nz+dzxGKxQnR09Kzhw4dfGTJkyI2r\nV68Oe/LkiRUhb84MZLm6rLEzIgaDQTW17hUVFZo6OjplvXv3rnv48KHdjRs3htDTicVihZMnT/oQ\nQkh4eHiA5BlZcxqrq3nz5h357rvvljMYDMrOzu4hHcOYMWNSpKc3MjJ6/uLFC8PS0lLd169f94qP\nj58sy3Khe0PSgGadPXt2WkpKyhhra+tsR0fHe2vXrv3axMSkcNq0aWednJzuODs7/z169Og/du7c\nudLQ0PCF9PP9Fy1a9LODg0PmoEGD0vv373936dKl++kEIklymrFjx/4eEBAQ7uHhcd3JyemOj4/P\nyaqqKnXJcrNnzz5x69YtFycnpzvHjh0LtLe3f0AIIXp6eiXDhg272r9//7urVq3aIR3PzJkzT0VF\nRfnOmjUrmv5u/fr1mxsaGphOTk53HB0d723YsGFjY/G5urreXLZs2V4HB4fMPn36PJ02bdpZfX39\nl0eOHJnn7+8f4ezs/PfQoUOvPXr0yLaxupSMQzou+rP0us+aNSu6qqpKffz48YlCoVDJwcEhc82a\nNds8PDyu09OqqalVp6WlufXv3/8uj8fjfvXVV5ta/p/937oihBBDQ8MXDg4OmfPnz/+FLldYWGii\npLHZU3wAAACpSURBVKQklJ6eyWQ2fPXVV5vc3NzSxo0bl+zg4JApy3Khe8MDCwFkwOPxuLt3714R\nFxc3pbNjkaeamhpVJyenOxkZGQPpF4Lt27fvQwsLi9zJkyfHd3Z80PnQpwEgg57wdriUlJQxixYt\n+vmzzz77VvINkh9++OG+zowLuhacaQAAgMzQpwEAADJD0gAAAJkhaQAAgMyQNAAAQGZIGgAAIDMk\nDQAAkNn/ASu6P4PfImgPAAAAAElFTkSuQmCC\n", + "text": [ + "<matplotlib.figure.Figure at 0x2a2ba10>" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 1.6, Page number: 19" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from sympy import *\n", + "\n", + "#Variable declaration:\n", + "Bc=1.0 #Magnetic field induction in the core\n", + "w=377 #Angular frequency of magnetic field(rad/s)\n", + "Rc=3791.33 #Reluctance of the core(A.turns/Wb)\n", + "Rg=442321.3 #Reluctance of the air-gap(A.turns/Wb)\n", + "N=500 #No. of windings\n", + "i=0.80 #Current in the coil\n", + "Ac=9*10**-4 #Cross-section of the core\n", + "\n", + "\n", + "#Calculations:\n", + "L=N**2/(Rc+Rg)\n", + "W=(1./2)*L*i**2\n", + "t = symbols('t')\n", + "Bc = 1.0*sin(w*t)\n", + "e=N*Ac*diff(Bc,t)\n", + "\n", + "#Results:\n", + "print \"The Inductance, L:\", round(L,2), \"H\"\n", + "print \"The magntic stored energy, W:\", round(W,2), \"J\"\n", + "print \"Induced voltage, e:\",e,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The Inductance, L: 0.56 H\n", + "The magntic stored energy, W: 0.18 J\n", + "Induced voltage, e: 169.65*cos(377*t) V\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 1.7, Page number: 22" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import *\n", + "#Variable declaration:\n", + "Bc=1 #Magnetic field in the core\n", + "Hc=11 #Magnetising force(A.turns/m)\n", + "lc=0.3 #length of the core(m)\n", + "N=500 #No of windings\n", + "g=0.050 #Air-gap length(cm)\n", + "uo=4*pi*10**-7 #Permeability of free space(H/m)\n", + "\n", + "\n", + "#Calculation:\n", + "Fc=Hc*lc #mmf drop for the core path(A.turns)\n", + "Fg=Bc*g*10**-2/uo #mmf drop across the air gap(A.turns)\n", + "i=(Fc+Fg)/N\n", + "\n", + "\n", + "#Results:\n", + "print \"The required current,i:\" ,round(i,2) ,\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The required current,i: 0.8 A\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 1.8, Page number: 28" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from sympy import *\n", + "\n", + "#Variable declaration:\n", + "N=200 #No. of turns\n", + "Ac=4 #Cross-section of the core(in**2)\n", + "w=377 #Angular frequency of the magnetic field(rad/s)\n", + "Hm=36 #Max value magnetising force(A.turns/m)\n", + "Pc=1.2 #Core loss density(W/kg)\n", + "\n", + "\n", + "#Calculations:\n", + "t=symbols('t')\n", + "Bc=1.5*sin(w*t)\n", + "e=(round(N*Ac*0.94/(39.4**2),2)*diff(Bc,t))\n", + "Erms=275*0.707\n", + "lc=(6+6+8+8)/39.4 #Mean length of the core(m)\n", + "I=Hm*lc/N\n", + "Vc=4*0.94*28 #Core volume(m**3)\n", + "Wc=105.5*(2.54**3)*7.65*10**-3 #Core weight(kg)\n", + "Pa=1.5*13.2 #Watts per Kg\n", + "Irms=Pa/Erms #Current (A)\n", + "Pct=Pc*Wc #Total core loss(W)\n", + "\n", + "\n", + "#Results:\n", + "print \"The applied voltage,e:\", e, \"V\"\n", + "print \"The peak current,I:\", round(I,2), \"A\"\n", + "print \"The total rms current. Irms:\", round(Irms,2), \"A\"\n", + "print \"Total Core loss, Pct:\",round(Pct,2),\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The applied voltage,e: 271.44*cos(377*t) V\n", + "The peak current,I: 0.13 A\n", + "The total rms current. Irms: 0.1 A\n", + "Total Core loss, Pct: 15.87 W\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 1.9, Page number: 32" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from sympy import *\n", + "from math import *\n", + "\n", + "#Variable Declaration:\n", + "g=0.2 #air-gap length(cm)\n", + "lm=1.0 #length of magnetic section(cm)\n", + "Am=4 #Cross-section of the core(cm**2)\n", + "Ag=4 #Cross-section of the air-gap(cm**2)\n", + "\n", + "#Constants used:\n", + "uo=4*pi*10**-7 #Permeability of free space(H/m)\n", + "\n", + "#Calculations:\n", + "Hm=symbols('Hm')\n", + "def Bg(Hm):\n", + " return -uo*Ag*lm*Hm/(Am*g) \n", + "\n", + "Hm1=-49*10**3 #Coercivity of ALNICO 5 (A/m)\n", + "Hm2=-6 #Coercivity of M-5 electrical steel (A/m) \n", + "\n", + "\n", + "#Results:\n", + "print \"Flux Density of air gap:\", round(Bg(Hm1),2),\"T\"\n", + "print \"\\nFlux Density of air gap:\", round(Bg(Hm2*10**4),2),\"gauss\"\n", + "print \"\\nwhere value of Hm for different material.\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Flux Density of air gap: 0.31 T\n", + "\n", + "Flux Density of air gap: 0.38 gauss\n", + "\n", + "where value of Hm for different material.\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 1.10, Page number: 34" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from sympy import *\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "Ag=2 #Cross-section of air-gap(cm**2) \n", + "Bg=0.8 #Air-gap flux density(t)\n", + "Bm=1.0 #Core-flux density(T)\n", + "Hm=-40 #Magnetising force in the core(kA/m)\n", + "uo=4*pi*10**-7 #permeability of free space(H/m)\n", + "g=0.2 #Air-gap length(cm)\n", + "\n", + "#Calculations:\n", + "Am=Ag*Bg/Bm\n", + "lm=-g*Bg/(Hm*uo*10**3)\n", + "Vm=Am*lm\n", + "\n", + "\n", + "#Results:\n", + "print \"The minimum magnet volume,Vm:\",round(Vm,2),\"cm**3\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The minimum magnet volume,Vm: 5.09 cm**3\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 1.11, Page number: 39" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from sympy import *\n", + "from math import *\n", + "\n", + "#Variable Declaration:\n", + "Am = 2 #magnetic material cros-section(cm^2)\n", + "g=0.2 #air gap length(cm)\n", + "uo=4*pi*10**-7 #permeability of free space(H/m)\n", + "N=100 #No. of windings\n", + "\n", + "#Calculations and results:\n", + "#for part (a)\n", + "Bma = 1.0 #Tesla\n", + "Hma = - 4 #kA/m\n", + "Ag1 = 2 #cm**2\n", + "Ag2 = 4 #cm**2\n", + "\n", + "lm=g*(Am/Ag1)*(Bma/(-uo*Hma*10**4))\n", + "print \"(a) The Requied magnet length = \",round(lm,2),\"cm\"\n", + "\n", + "\n", + "#for part (b):\n", + "i,Hm=symbols('i Hm')\n", + "Bm=-uo*(Ag1/Am)*(lm/g)*Hm+(uo*N/g)*(Ag1/Am)*i\n", + "H_max=200 #kA/m\n", + "B_max=2.1 #Tesla\n", + "i_max=(B_max+2.50*10**-5*H_max)/(6.28*10**-2)\n", + "\n", + "print \"(b) Thus with the air-gap area set to 2 cm^2,\"\n", + "print \" increasing the current to i_max = 45.2 A and then reducing\"\n", + "print \" it to zero will achieve the desired magnetization.\"\n", + "\n", + "#for part (c):\n", + "Bm1=1.00 #Tesla\n", + "Bm2=1.08 #Tesla\n", + "Bg1=(Am/Ag1)*Bm1\n", + "Bg2=(Am/Ag2)*Bm2\n", + "print \"(c) The flux densities when plunger moves at two extremes are:\"\n", + "print \" Bg1 =\",Bg1,\"T and Bg2 =\",Bg2,\"T\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) The Requied magnet length = 3.98 cm\n", + "(b) Thus with the air-gap area set to 2 cm^2,\n", + " increasing the current to i_max = 45.2 A and then reducing\n", + " it to zero will achieve the desired magnetization.\n", + "(c) The flux densities when plunger moves at two extremes are:\n", + " Bg1 = 1.0 T and Bg2 = 0.54 T\n" + ] + } + ], + "prompt_number": 12 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter10.ipynb b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter10.ipynb new file mode 100755 index 00000000..2bcd2ccb --- /dev/null +++ b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter10.ipynb @@ -0,0 +1,538 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:603160d56b04457665b7cf5381387c06e4c52903d6f85f1c61a983bdc3c14ebc" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 10: Introduction to Power Electronics" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 10.5, Page number: 508" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "%matplotlib inline\n", + "from pylab import *\n", + "import numpy as np\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "w=2*pi*60 #frequency of voltage(Hz)\n", + "R=10 #ohm\n", + "C=0.01 #F\n", + "Vo=120*sqrt(2) #maximum voltage(V)\n", + "Nmax=800\n", + "tau=R*C #time constant(s)\n", + "\n", + "#Calculations:\n", + "# diode = 1 when rectifier bridge is conducting\n", + "\n", + "diode=1\n", + "t=[0]*801\n", + "vs=[0]*801\n", + "vrect=[0]*801\n", + "vR=[0]*801\n", + "iB=[0]*801\n", + "\n", + "t=[0]*801\n", + "for n in range(1,Nmax+2,1):\n", + " t[n-1] = (2.5*pi/w)*(n-1)/Nmax\n", + " vs[n-1]=Vo*math.cos(w*t[n-1])\n", + " vrect[n-1]=abs(vs[n-1])\n", + "#if the rectifier bridge is ON:\n", + " if diode==1:\n", + " vR[n-1]=vrect[n-1]\n", + " if (w*t[n-1])<=(pi/2):\n", + " iB[n-1]=vR[n-1]-Vo*C*w*math.sin(w*t[n-1])\n", + " elif (w*t[n-1])<=3*pi/2:\n", + " iB[n-1]=vR[n-1]/R+Vo*C*w*math.sin(w*t[n-1])\n", + " else:\n", + " iB[n-1]=vR[n-1]/R-Vo*C*w*math.sin(w*t[n-1])\n", + " if iB[n-1]<0:\n", + " diode=0\n", + " toff=t[n-1]\n", + " Voff=vrect[n-1]\n", + " else:\n", + " vR[n-1]=Voff*exp(-(t[n-1]-toff/tau))\n", + " iB[n-1]=0\n", + " if (vrect[n-1]-vR[n-1])>0:\n", + " diode=1\n", + "\n", + "\n", + "\n", + "#Results:\n", + "iR=(1/R)*np.array(vR)\n", + "plot(1000*np.array(t),vR)\n", + "xlabel('time [msec]')\n", + "ylabel('voltage [V]')\n", + "xlim(0,22)\n", + "ylim(0,180)\n", + "plot(1000*np.array(t),vrect,'--')\n", + "grid()\n", + "print \"The required plots are shown below:\"\n", + "show()\n", + "plot(1000*np.array(t),iR)\n", + "xlabel('time [msec]')\n", + "ylabel('source current [A]')\n", + "xlim(0 ,22)\n", + "ylim(-50,250) \n", + "plot(1000*np.array(t),1.5*np.array(iB),'--')\n", + "grid()\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The required plots are shown below:\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEMCAYAAAAidwoiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdcFGf+B/DPUkXALKgsVRcpSu9IVBQLWIPGGGNLwBKT\nqLHE7u9y8S5FjC3WnIlRiCaW2LsoRTQWOqKooC7SV5EqSt35/WHWEKWt7M4zu/u8X6953c2WmY/f\nm9sv80zjMQwDiqIoSj1pkA5AURRFkUObAEVRlBqjTYCiKEqN0SZAURSlxmgToCiKUmO0CVAURakx\nhTWBadOm7RQIBGIXF5d06Wvx8fG+vr6+8R4eHik+Pj4JCQkJPtL3Vq1atdzOzi6rV69edyIjI4MU\nlYuiKIpqhGEYhUxxcXH+ycnJHs7OzunS1wYMGBB79uzZoQzD4PTp08MDAgJiGIbBrVu3HN3c3FJr\na2u1RSKR0MbG5l5DQ4OGorLRiU50ohOdXkwK2xPw9/e/ZGRkVNr4NTMzs8Ly8vK3AKCsrIxvYWGR\nDwDHjh0bPXHixL3a2tp1QqEw29bW9l58fLyvorJRFEVRL2ixubKwsLBl/fr1u7xo0aK1EolE4+rV\nq28DQEFBgbmfn9816ecsLS3z8vPzLRp/l8fj0UubKYqi3gDDMLzm3mP1wPD06dN/2bRp09ycnJxu\nGzZsWDBt2rSdzX22qR990rtNyjZ99dVXxDPIc/L3Z3DxIq0XVyZaL+WoV2tYbQLx8fG+77777hEA\nGDdu3EHpkI+FhUV+bm6ulfRzeXl5ltKhIurNZWdnk44gV7W1gI6O4pavavVSNFov2XC1Xqw2AVtb\n23sXL14cAADR0dGD7O3tMwEgODj4+L59+ybU1tbqiEQi66ysLDtfX994NrNR3KfoJkBR6khhxwQm\nTpy49+LFiwOKi4u7WFlZ5f73v//9908//TRz9uzZW2tqanT19PSe//TTTzMBwNHRMWP8+PEHHB0d\nM7S0tOq3bds2ix4DaL/Q0FDSEeRK0U1A1eqlaLResuFqvXhtGTPiAh6PxyhLVkox7O2Bkydf/CdF\nUW3D4/HAcOXAMMWu2NhY0hHkqqZGsXsCqlYvRaP1kg1X60WbAKU06DEBipI/OhxEKY3OnYG7d4Eu\nXUgnoSjlQYeDKJVRWwvo6pJOQVGqhTYBFcbVMcg3pejhIFWrl6LResmGq/WiTYBSCgzzogloa5NO\nQlGqRamOCZRX1MNAXwMaGs0Ob1EqqL6hAU+rJOjSWQv1dfR/e4qShUodEzD+YBk0vzRAp/l9MfK7\nNbibW0w6EqUgJ6/dhefyBdD9whHaKzvCaJ0eJIuMUfS0iHQ0SsGu5F7BuivrmnyvrqEOEkbCciLV\nplRNoP70GjycV4Dlfb5CZkkGHLb2wohvv8fzmjrS0TiJq2OQLRGLgalTgfc3fw19HX3sHLUH5csq\nIFlZj9yld2Gib6KwdStjvUiSd72ynmRhUMQgTDk8BXraek1+ZveN3fDY7oFLDy/Jdd1s4Or2pVRN\nAAC6mbyF5eODkLV2F86Mu4LUgnQMGlGOggLSyaj2iosDPD1fnAoq/nEPLv3nG0we5IlO+rrg8QAL\nvgk0eEq3yVJtEJEagbd/eRvBPYOR+XkmZvnMavJzU92n4t/9/43xB8fj3zH/pnsFcqBUxwSayiqR\nAN9+C+zYAVy4ANjZEQhHtdsffwBz5gAREcCwYW3/noSRIOxyGD71/hTGesaKC0gpzJHbR7AwciFO\nTToFh64ObfqO+KkY4/4Yh+5vdceu0bugrUnPGGiOSh0TaIqGBvDlly+mgAAgM5N0IkpWv++VYN48\n4Px52RoAAPDAQ8nzEgz+dTAqaioUE5BSqJH2I3F9xvU2NwAAEBgIcG7KOZTXlOPruK8VmE71KX0T\nkJoxA1i5EhgxAiimx4sBcHcMsrEfjkUj9MIwnDvHwNVV9u/zeDysCVyDPlZ9MHb/WNTU17xxFmWo\nF5fIq146mjroqt9V5u911O6Ig+8fxLJ+y+SSQ9G4un2x+nhJRfv4Y+DefQn85mwHk/Qx8nO1oKUF\naGritf9s6jVVe+/xY6CwsOXv8QiecfnnrYdYeGUSVo/YCxeXNw/C4/GwadgmjD0wFgsjF2LLiC1y\nTElxma4WvYS8vZT+mMCr6hskMFs0ArpPvJH5v2/Q0ADU1wMNDfjHf3/1P2V9TxWWJZG8GE4j0aSg\nWYs9un0xqOtEnPy/L+SyjZRXl8PrJy+sDVqLMb3GyGWZFKXsWjsmoLAmMG3atJ2nTp0aaWJi8ig9\nPd1F+vrmzZs/37Zt2yxNTc2GkSNHnlq9evVSAFi1atXynTt3TtPU1GzYtGnT3KCgoMhX/iFtvoHc\nA7EYb0d4YP/43xEgDJDnP0ulMMzfzYHt5nS8YiXyJIlIWngCWlry2x3JfJIJMwMzGOoaym2ZlPww\nDIOv477Gp96fKvR0X+pvrTUBhT3cOC4uzj85OdnD2dk5XfpadHT0wCFDhpyvra3VZhgGjx496sow\nDG7duuXo5uaWWltbqy0SiYQ2Njb3GhoaNF55WDIjixN3TzA2G22YZ7XPZPqeKomJiSEdoUlZT7KY\nrt93ZfIr8klH+Qeu1our3qRee9L2ME5bnZjqumr5B2IYpriqmPnj1h8KWXZ7kdq+/vrtbPa3WmEH\nhv39/S8ZGRmVNn7txx9//Gz58uWrtLW16wCga9eujwHg2LFjoydOnLhXW1u7TigUZtva2t6TPoT+\nTY2yHwUvcy965gAH2RjZIOHjBJgbmpOOQrHoUdUjLDi3ABFjIhQ2ll8nqcPs07ORUpiikOWrIlYP\nDGdlZdnFxcX1X7FixXcdOnSoXrt27SJvb+/EgoICcz8/v2vSz1laWubl5+dbvPr90NBQCIVCAACf\nz4e7uzsCAgIA/H3kvfH8B/of4GjFUTAMg4sXL772vjrMS3ElT0BAAHg8HkSpIogg4kSexvNSXMnD\n9Xmptnx+7ZW1mOI1BV7mXgrNt3rIakxcNxHbRm7DoIGDWK0HF7av2NhYhIeHA8DL38sWtbSb0N5J\nJBIJGw8HOTs7p8+dO3cjwzCIj4/3sba2fsAwDObMmbN5z549k6Wfmz59+o5Dhw6NbbwsyDgcRFEM\nwzASiYR0BIphmOSCZEawRsCUPi9V+LoaJA2M90/ezG83flP4upQBSA0HNcXS0jJv7NixhwHAx8cn\nQUNDQ1JcXNzFwsIiPzc310r6uby8PEsLC4t8NrOpolf/+lA3EkYC/13+EJWK2vR5da+XrGSp1+3i\n21g9ZDX4HfiKC/QXDZ4G1getx/Ko5Xhe91zh62srrm5frDaBMWPGHI2Ojh4EAJmZmfa1tbU6Xbp0\nKQ4ODj6+b9++CbW1tToikcg6KyvLztfXN57NbJTq0eBpIMgmCMujlpOOovYmuUxCiHsIa+vz7+4P\nP0s/xGbHsrZOpdXSbkJ7pgkTJuw1MzMr0NHRqbG0tMzduXPn1NraWu0pU6bsdnZ2Tvf09EyKiYkJ\nkH7+22+/XWFjY3OvZ8+ed86ePTv01eWBDgcptdmnZjPn759nfb1Pa54ygjUCJl2czvq6KbIaJA2k\nI3ACWhkOUrmLxVoiKhWh21vdoKmhKadUVFtkPclCn519kPV5FivDAa9a8+caJBYmYv+4/ayvm6JI\nU/kbyMnio6Mf4dDtQ6RjsIYrY5D/jfsv5vWeR6QBAMAsn1mIzY5FxuOMFj/HlXopC1ov2XC1XmrV\nBJb1XYZv4r6h9yBnUXZZNk5nncbc3nOJZdDX0cfqIavx5NkTYhnUUcnzEijLSIM6U6vhIIZh4PWT\nF/4T8B+80/MdOSWjWrLg3AJoaWhhTeAa0lEolg2KGITPfT/Huw7vko6i1uhwUCM8Hg+L+izChmsb\nSEdRGxU1FZjrS24vgCIjpTAFmU8yMdJ+JOkoAICvL36N3Wm7ScfgJLVqAgAwznEc7j65ixviG6Sj\nKBwXxiB/Cf4FVm9Ztf5BDuBCvZRJS/Vad3Ud5vaeCx1NHfYCtcDHwgdrr64lOjzF1e1L7ZqAjqYO\nIsZEoLNeZ9JRKEol5VXk4XTWacz0mkk6yktDbYairqEOMdkxpKNwjlodE6AoAKiur4aOpg59aL2C\n/F/0/6GyphKbhm8iHeUffkr6CaeyTuHYhGOko7CKHhOgqFeM/H0koh5EkY6hshy6OGCO7xzSMV4z\nyWUSLj28hPwKekeaxmgTUGGkxiC5vsc2zmEctidtf+11ro7ZclVz9ZriOgX2ne3ZDdMGBjoG+MT7\nE9x8dJPI+rm6fdEmQMndlzFf4te0X0nHaNZk18mIEkWh6GkR6SgUy1YNXoWhtkNJx+AUtT8m8LDs\nIbrzu8t9ueqqtqEWVhuscGnqJU7+NSg14/gM2BrbYlm/ZaSjUJRC0WMCLSivLofb/9xQ8ryEdBSV\ncfTOUTh1deJ0AwCAT7w+wc/JP9Orxym1p9ZN4K0Ob2Gk/UjsubGHdBSFIDEG+UvKL5jhOYP19crK\n29wbI+xG/OMPAK6O2XJV43pJGAnqGurIhVECXN2+1LoJAMB0j+nYmbKTdAyVUFhZiPj8eIzpNYZ0\nlFbxeDxsHr4ZXTp2IR1FJUSLojHyd25cHUzJRu2bQIAwAE+eP8GtR7dIR5E76fNH2ZL+KB0hbiHo\nqN2R1fXKC9v1UnaN67X7xm6MsBtBLoyMCisL8fGJj1ldJ1e3L7U/MAwAS84vgZaGFr4b/J1Clk9R\nqqyqtgqWGyxxZ/YdCAwEpOO0SYOkAVYbrBD1URQcujqQjqNQxA4MT5s2badAIBC7uLikv/reunXr\nFmpoaEhKSkqMpa+tWrVquZ2dXVavXr3uREZGBikqV1Omuk9FD6MebK6SFVwdg+QqWi/ZSOt17O4x\n+Fn6KU0DAABNDU1McpmEPensHQ/k6valsCYwderUXWfPnh326uu5ublW58+fD+zevftD6WsZGRmO\n+/fv/yAjI8Px7Nmzw2bNmrVNIpGwNlTl0NVBKQ5mUhQX7bmxBx+6fkg6hsw+dP0Qv934Te3PEFPY\nD62/v/8lIyOj0ldf/+KLL9Z///33Sxq/duzYsdETJ07cq62tXScUCrNtbW3vxcfH+yoqm7rg6hgk\n1/yY8CN2JO+g9ZJRQEAAGiQN0NHUweieo0nHkZmrwBWGuoa4nHOZlfVxdfvSYnNlx44dG21paZnn\n6ur6j/s4FxQUmPv5+V2TzltaWubl5+dbvPr90NBQCIVCAACfz4e7u/vLwkp3teg8nZd1vttb3bBs\nxzLYVthyIo+yzR+dcJRTeWSZn+Q8CSczT0IiknAijzzmY2NjER4eDgAvfy9b1NJT6Ns7iUQiobOz\nczrDMKiqquro6+t7vby8vBPDMBAKhaLi4uLODMNgzpw5m/fs2TNZ+r3p06fvOHTo0NjGy3oRlZJF\nTEwMK+v5KfEnJjE/kZV1KUJ1XTVjFGbE/HHyD9JRlApb25ciPat9xjRIGlhZF6l6/fXb2ezvNGvj\n7vfv37fJzs4Wurm5pVlbW4vy8vIsvby8ksRiscDCwiI/Nzf35ZNH8vLyLC0sLOit/pSAhJHgv3H/\nRQetDqSjvDFdLV2Msh+FuJw40lEolulp66n9LcVZ+9e7uLiki8VigUgkshaJRNaWlpZ5ycnJngKB\nQBwcHHx83759E2pra3VEIpF1VlaWna+vbzxb2aQqayrh87MP6iX1bK9aIaS7ioqUkJ8AAx0DOHZ1\nVPi6FOl9x/eR2iGVdAylwsb2pUq4Wi+FNYGJEyfu7dOnz5XMzEx7Kyur3F27dk1t/D6Px3t50r+j\no2PG+PHjDzg6OmYMHz78zLZt22Y1fp8thrqGYBgGF7Mvsr1qpXXw9kGMcxwHHq/Z05CVQpBNEO6V\n3EN5dTnpKBTFKnqx2CtWXVqF3IpcbBu5TeHrUrTY2FiF/vXBMAx6bOqBox8chZupm8LWw5YL0Rcw\nZNAQ0jGUwpNnT/Dx5o9xeOlh0lGUhqL//9gcehdRGb3n+B6O3Dmi9ucOt0VyYTK0NLTgKnAlHUUu\ntDRYPVlOqR27ewxPnj0hHUNuip8VI0akns8fpnsCTXD50QU/jvwR/br1Y2V9yqquoQ455TmwMbYh\nHYVi2YjfRuAjt48wwXkC6ShykfE4A8P2DMPD+Q+VfmjzVXRP4A2McxiHa3nXWv+gmtPW1KYNQA1V\n1FTgcs5ljLRTnbuGOnRxgI6mDtLEaaSjsI42gSZ8OeBLLOqziHSMdpNeQEK1Da1X25y7dw59u/VF\n0tUk0lHkhsfjIbhnMI7fPa6wdXB1+6JNoAnqft6wujuUcQjV9dWkY3DWyayTeMf+HdIx5E7RTYCr\n6DEBinpFv5398K/+/8Iw29fuf0gBKHleAi0NLXTS7UQ6ilzVNdTBdJ0pbnx6AxadXrtrjdKixwQo\nuauqrYL4qZh0DIVR178I28pYz1jlGgDw4hjXluFbVO7AcGtoE1BhihqDPHrnKGaenKmQZZMkrZe0\nCdA9z5ZxdYy7PSa6TIS5oblCls3VetEm0IJ0cTqSClTn4Je8nMg8oZJjwlI9O/dER+2OSClKIR2F\nohSOHhNowc6UnTh3/xz2j9vP6nq5rK6hDiZrTZAxKwNmhmak4yjMoshFMNAxwMqAlaSjUFS70GMC\n7TDCbgQi70eirqGOdBTOuJRzCbbGtirdAABgmsc0erHgKx6WPaRnTakg2gRaYGpgCjtjO9aePCRv\nihiDPJV1SmWHghrXy7GrI4b0oPcRamz68ek4d+/cy3mujnFzFVfrRZtAK0bZj8KJzBOkY3BGF70u\nSvkoQap9qmqrcD3/Ogb3GEw6CivG7h+Lm49uko7BCnpMoBWJBYn46MhHyJidwfq6KYorTmWewpor\naxAbGks6CitmnZqFHkY9VOLOAfSYQDt5mnlibu+59K6ilFqLfBCJoTZDScdgzTDbYTh77yzpGKyg\nTaAVGjwNfOr9qVLeSoKrY5BcRevVvHP3zmGo7T+bgCrXa6BwIK7nX8fT2qdyWyZX66WwX7Zp06bt\nFAgEYhcXl3Tpa4sXL17j4OBw283NLW3s2LGHy8vL35K+t2rVquV2dnZZvXr1uhMZGRmkqFwUJYv/\nJf4P666sIx2DqJr6GvS27A13U3fSUVhjqGsIH3MfxGbHko6ieC09hb49U1xcnH9ycrKHs7NzuvS1\nyMjIwIaGBg2GYbB06dKwpUuXhjEMg1u3bjm6ubml1tbWaotEIqGNjc096eek04uoFMWuM1lnmH47\n+5GOQRGw+vJqZkXUCtIx2u2v385mf6sVtifg7+9/ycjIqLTxa4GBgec1NDQkANC7d+/reXl5lgBw\n7Nix0RMnTtyrra1dJxQKs21tbe/Fx8f7KiobJbvfbvymlk9eGtB9AFKLUlFWXUY6CsWyBX4L8M3A\nb0jHUDhiz9PbuXPntIkTJ+4FgIKCAnM/P7+XT3GxtLTMy8/Pf+02fqGhoRAKhQAAPp8Pd3f3l8/s\nlI630fm/51NTUzF//ny5LG/VnlUIdQ/FQOuBnPn3yXu+uXr1teqLjfs2YoBwAKfykp6X5/alDvNs\n1Ss2Nhbh4eEA8PL3skUt7Sa0dxKJRMLGw0HS6Ztvvvm/sWPHHpLOz5kzZ/OePXsmS+enT5++49Ch\nQ2MbfweEh4PSxenM2P1jiWaQVUxMjFyWU/q8lDH4zoB5XvdcLsvjqubqtf7KembmiZnshlEC8tq+\n1AWpeoHUcFBzwsPDQ0+fPj3it99+myx9zcLCIj83N9dKOp+Xl2dpYWGRz3a2ltgY2SDyfiTKq8tJ\nR2kz6V8J7RX1IAp9rfqig1YHuSyPq5qr1+Aeg5GQn8BuGCUgr+1LXXC1Xqw2gbNnzw5bs2bN4mPH\njo3u0KHDy5uQBAcHH9+3b9+E2tpaHZFIZJ2VlWXn6+sbz2a21uhp66GPVR9Ei6JJR2Hdufvn1Ooc\n8Ve5mLgg/mNObY6s+Vf0v1T62RGUApvAxIkT9/bp0+fK3bt3e1pZWeXu3Llz2ueff7756dOnBoGB\ngec9PDxSZs2atQ0AHB0dM8aPH3/A0dExY/jw4We2bds2i8fjce5S5sAegYgSRZGO0WbSccL2ihJF\nIdAmUC7L4rLm6sXj8aClQezwGTFl1WXYeH0j+B34Tb4vr+2L624/vo2CyoJ2L4er9VLYlr13796J\nr742bdq0nc19fsWKFd+tWLHiO0XlkYdB1oMw5fAU0jFYxTAM9r23D05dnUhHoVgW9zAOfpZ+0NXS\nJR2FqK0JW9H9re5Y3Hcx6SgKQe8dJIMGSQPM1pnh9uzb6NyxM9EsFKVo88/Oh0BfgOX+y0lHIerI\n7SPYnrQdZ6co520k6L2D5EhTQxO5C3JpA6DUQkx2DAZZDyIdg7gAYQCu5F5BbUMt6SgKQZuAjJRp\n15irY5Bc1Vq9HlU9wt3iu+yEIexx1WNkl2XDy9yr2c+oy/ZlpGeEnl164lretdY/3AKu1os2AYpq\nowsPLmDphaWkY7DCUNcQFz68oJYHxJsy2HqwUp0UIgt6TIBqVk19jVLt+Sha0dMiOGx1wOPFj+mP\no5pJyE9AxuMMhLiHkI4is9aOCTTbBA4dOvTeXz+8zX5ZT0/v+YgRI07LIWeraBNg3/g/xmOc4ziM\ndxpPOgpnOG9zxs7RO+FrQW9tRSmHN24CnTt3fhIcHHy8uS8yDMO7dOmS//37923kkLNVXGoCz+ue\n417JPbgIXEhHaVFsbOwbX6UoYSQwXWuKxJmJ6PZWN/kG46i21Gve2XkwMzDDsn7L2AnFYe3ZvtQR\nqXq11gSa3acdNmzY2V27dk1taeGTJ0/+rT3hlFVeRR6G/zYcuQtyweM1W1ulduvRLXTS7aQ2DaCt\nBgkHYWvCVtoEKJXR7J5AbW2tjo6ODmfOieLSngDDMOj2QzdEfxQNu852pOMoxKbrm3Dz0U389M5P\npKNwSsnzEqz+czVWD1lNOorC1Evq6TEPFfLG1wlYWlrmzZgxY0dUVNTglhagjng8HgZZD1Lp+whF\ni6LpOeJNMNYzVukGAAAOWx0gKhWRjkGxpNkmkJGR4ejt7Z349ddff2lpaZk3b968jdeuXfNjMxyX\nDRQOREw2tx+y0p7zkp88f4IAYYDcsigDrp7HzabssmxU1lRCyBe2+ll1rNfm65txNffqG32Xq/Vq\ntgl06dKl+NNPP/1fbGxsQEJCgo+1tbVowYIFG2xsbO5z/R4/bPDv5o9LOZfAlSEqebs09RJMDUxJ\nx6BYdunhJfTv3l9lj3W1l7hKjFNZp0jHkKs2XydQWVlpePjw4bHr16//orCw0OzRo0cmCs72D1w6\nJgC8OC7w6alPsT5oPfR19EnHoSi5mHliJlxMXPB5789JR+GkyPuR+CbuG8RNjSMdpc3ade+g58+f\n6x04cGD82LFjD9va2t6Ljo4etHr16qUFBQXm8o+qXHg8HraP2k4bAKVS4h7Gwb+7P+kYnNXHqg+S\nC5PxvO456Shy02wTmDRp0u/dunXLOXDgwPjJkyf/lp2dLYyIiAgZNmzYWS0trXo2Q1JvhqtjkFwl\nS71OZp7EsTvHFBeGgKe1T8Hj8eBi0rbrX9Rx+zLQMYCTiRPi82V/yBBX69XidQLbt2//xNDQsJLN\nQBSlDMqqy3D0zlGM7jWadBS5MdAxwO3Zt0nH4Lz+3fsj7mEcBggHkI4iF83uCRgZGZW21gBOnjw5\nqrn3pk2btlMgEIhdXFzSpa+VlJQYBwYGnre3t88MCgqKLCsre/nIolWrVi23s7PL6tWr153IyMgg\nWf8h1Ove5OrEtKI03Hp0S/5hlIAs9ZL+EHDpOBXb1PVq4Xm952GaxzSZv8fVejV7YLhXr153fv/9\n90kMw/CaetQjwzC80NDQ8PT09Cb3HS9duuRvYGDw9KOPPvpV+pklS5Z836VLl+IlS5Z8v3r16qWl\npaVGYWFhyzIyMhwnTZr0e0JCgk9+fr7FkCFDLmRmZtpraGhIXgbl2IFhVTXt2DT4mPvgM5/PSEfh\nPOEPQpydcha9uvQiHYWimvXGt40wNTUtWrhw4bqWFm5vb5/Z3Hv+/v6XsrOzhY1fO378ePDFixcH\nAEBISEhEQEBAbFhY2LJjx46Nnjhx4l5tbe06oVCYbWtrey8+Pt7Xz8+vfTfwZkFKYQrSxGkIdQ8l\nHeU1b3KvkriHcfji7S8UE4jjZK2XdG9AXZsAvXeQbLhar2abQGxsbIC8VyYWiwUCgUAMAAKBQCwW\niwUAUFBQYN74B9/S0jIvPz/f4tXvh4aGQigUAgD4fD7c3d1fFlV60IXt+Q62HfDDtR8gLBMSWX9L\n86mpqTJ9vvhZMUqrS+HY1ZET+dmel7Vepo9NcZG5iJleMzmRn+15Weul7vNs1Ss2Nhbh4eEA8PL3\nskUMwyhsEolEQmdn53TpPJ/PL238vpGRUQnDMJgzZ87mPXv2TJa+Pn369B2HDh0a2/izL6JyT019\nDWPwnQFT+ryUdJR225e+jwneG0w6htJ4XPWYuVF0g3QMubied50pqCggHYNSgL9+O5v9nWb1yWIC\ngUBcVFRkCgCFhYVmJiYmjwDAwsIiPzc310r6uby8PEsLC4t8NrO9KR1NHfha+OLPnD9JR2m3uJw4\n9O/Wn3QMpdGlYxfO3068rRZGLsTNRzdJx1AqDZIGSBhJ6x/kOFabQHBw8PGIiIgQAIiIiAgZM2bM\nUenr+/btm1BbW6sjEomss7Ky7Hx9fWU/EZcQ6S0kuEa6i9hWb1u+jZH2IxUTRgnIWi9VUV1fjZTC\nFLxt9bZM31PXekn13tFbpsbJ1Xq12gSqqqr0v/766y8//vjjnwEgKyvLrqVTQ6UmTpy4t0+fPlfu\n3r3b08rKKnfXrl1Tly1bFnb+/PlAe3v7zOjo6EHLli0LAwBHR8eM8ePHH3B0dMwYPnz4mW3bts1q\n6owkrpIeIFR2U1ynqO1BTnUWnx8Px66OMNAxIB1FqbgIXFRiBKDVeweNHz/+gJeXV9Kvv/760a1b\nt5yqqqr0+/TpcyUtLc2NpYwAuH2K6LO6Z7iaexWDewwmHYWiZPZt3LcoqS7BuqAWTwakXrEjeQcu\nPryI3e8W6Tf4AAAgAElEQVTuJh2lRe26dxAA3L9/32bp0qWrpQ+Y0dfXr5JnQFXQUbsjbQBqjqt/\noLTF5dzL6GfVj3QMpdPXqq9K7Am02gR0dXVrnj9/riedv3//vo2urm6NYmNR8sDVMUiuetN6fXDw\nA0Tej5RvGBb5d/NH3259Zf6eum9fPbv0RFl1GQorC9v0ea7Wq9UmsHLlypXDhg07m5eXZzlp0qTf\nBw0aFL169eqlbISjKGVgY2SDP3OV9y/CFf4rYKLP6p3hVYIGTwOBNoG4++Qu6Sjt0qbnCRQXF3eR\nPlXMz8/vWpcuXYoVnuwVXD4moOxuiG/g0O1D+E/Af0hHUUqnMk9hw7UNuPDRBdJRKOo1b3zbCKmk\npCQvHo/HmJubFzAMw8vJyelWXl7+Vvfu3R/SW0qrhhhRDMRPxaRjKK23rd7GxEMT6QPaKaXU6nDQ\n7Nmzt/bu3fv6xx9//PPMmTN/8vPzuzZu3LiD9vb2mefOnRvKRkhlsTxqOfbc2EM6xkttHYO8mncV\nfaz6KDaMEnjTMVtjPWNYdrJEuji99Q+rEK6OcXMVV+vVahMwNzcvSE1NdU9KSvJKSkrySk1Nde/R\no8eD8+fPBy5ZsuR7NkIqCzMDM05eNNaaK7lX8LalbBcKUf/Ur1s/3HqsnrfgppRbq8cEnJycbt26\ndcupqdfc3d1TU1NT3RWa8C/KcEwgsSARU49NRfpnyvMXYV5FHjy2e+DRokf04eLtIGEk0OCxegF+\nu13JvYKbj25iptdM0lEoBWr3MQEnJ6dbn3322Y8TJkzYxzAM78CBA+MdHR0zampqdLW1tevkG1e5\nuQncICoVoby6HG91eIt0nDa5mvtiKIg2gPZRtgYAAKezTitlbq55WvsUqUWp6NdNOa+1aHULCA8P\nD7Wxsbn/ww8/zN+4ceO8Hj16PIiIiAjR1taui46OHsRGSGWhrakNL3MvXM+/TjoKgLaNQQbaBGJ9\n0HrFh1ECXB2zVZSreVfbNQyobvVqTkVNBUbvG93qBYNcrVerewIdO3Z8tmjRorWLFi1a++p79PnD\nr+tj1QfJhckIslGOJ2TyO/DB78Bv/YOUSqmX1CMhPwF+ln6koyg9c0NzGOoYIvNJJnp26Uk6jsxa\nPSaQmZlpv2LFiu8yMjIcpVcO83g85sGDBz1YSfgXZTgmAAC1DbXQ1tCmwysUp6UUpmDy4cnImJ1B\nOopKmHRoEgJ7BGKqx1TSUV7T7nsHTZ06ddenn376Py0trfqYmJiBISEhEZMnT/5NvjFVh46mDm0A\naqquoQ4J+QmkY7TJldwr9LRgOepr1VdprxpvtQk8f/5cb8iQIRcYhuEJhcLslStXrjx16pT63nRe\niXB1DJKr2luvOkkdBoQPwPO65/IJpEDBPYOxpO+Sdi2Dbl9/87P0a/VYIFfr1eoxgQ4dOlQ3NDRo\n2tra3tuyZcscc3PzgqqqKn02wlGK1SBpgKaGJukYKqOjdkf06tILKUUpnP8r2+otq9Y/RLWZq8AV\n/bv3B8MwSjcS0OoxgYSEBJ9evXrdKSsr43/55ZdfV1RUdFqyZMn3jR8MzwZlOSagLBiGQfcfuiPh\n4wQIDASk46iMWadmwc7YDgveXkA6CkUBkMMxAZFIZG1oaFhpZWWVGx4eHnr48OGxOTk53doTatWq\nVcudnJxuubi4pE+aNOn3mpoa3ZKSEuPAwMDz9vb2mUFBQZFlZWVKe8oKwzC4U3yHdIwWPSh9AAkj\noXePlLPeFr1xLZ/Vv48oql1abQKrVq1a3pbX2io7O1v4888/f5ycnOyZnp7u0tDQoLlv374JYWFh\nywIDA89nZmbaDx48OCosLGzZm66DNAkjQe8dvVH8jPWbrf5DS2OQV/Ou4m2rt5Vu11WR5DFm62fp\nh+t53LhORNG4OsbNVVytV7PHBM6cOTP89OnTI/Lz8y3mzp27Sbo7UVlZadieK4U7depUoa2tXffs\n2bOOmpqaDc+ePetobm5esGrVquUXL14cAAAhISERAQEBscraCDQ1NOFj7oP4/HiMsBtBOk6Trudf\nh58FPUdc3uw626Fft36oqa+BrpYu6TgU1apmm4C5uXmBl5dX0rFjx0Z7eXklSZtAp06dKjZs2PDG\nA57GxsYlCxcuXNetW7ccPT2950OHDj0XGBh4XiwWCwQCgRgABAKBWCwWvzZQHRoaCqFQCADg8/lw\nd3dHQEAAgL+7LFfmTYtNsf/UfoyYP4JoHqlX3z8fdR6zfWY3+766zku1Z3l7xu7hzL/n1fl+/fvB\nbrMd/uf0P+hq6XKiXuo0L6XI9cXGxiI8PBwAXv5etohhmBan2tpa7dY+I8t07949GwcHh4zi4uLO\ndXV1WmPGjDmye/fuKXw+v7Tx54yMjEoaz7+IqjyO3j7KDNszjHSMJtU31DPdNnRjqmqrSEehWJZa\nmMr02tKLdAyVdfDWQSYuO450jH/467ez2d/kZvcEXFxcmr0VJo/HY27cuOHaeot5XWJionefPn2u\ndO7c+QkAjB079vDVq1ffNjU1LSoqKjI1NTUtKiwsNDMxMXn0JsvnCl8LX0w7Po3oKWOxsbEv/1Jo\nTFNDE9nzsunxgFc0Vy9Vcj3/OnwtfOWyLHWol6yySrJwOfcy/Lv7v/YeV+vVbBM4ceLEO4pYYa9e\nve58/fXXXz5//lyvQ4cO1RcuXBji6+sbr6+vXxURERGydOnS1RERESFjxow5qoj1s8XM0AyDrQej\nvKack/fmoQ1APcXnx6O3RW/SMVSWn6UfVkStIB1DJm16xrBYLBbEx8f78ng8xtfXN769f6V///33\nSyIiIkI0NDQknp6eyTt27JhRWVlpOH78+AM5OTndhEJh9oEDB8bz+fyyl0HpdQIU1W6uP7pi5+id\n8Db3Jh1FJT2tfQrBWgFKl5ZCR1OHdBwArV8n0GoTOHDgwPjFixevGTBgwEUAiIuL679mzZrF77//\n/h9yztoi2gQoZRItioaWhhb6d+9POspL1fXVMF9njqJFRZz5gVJFbv9zw453dsDHwod0FAByuFjs\nm2+++VdCQoLPr7/++tGvv/76UUJCgs/XX3/9pXxjUorw6hkJVMvkWa+MxxnYfWO33JYnDx20OuDR\n4kdyawB0+2pab4veTd5HiKv1avXeQQzD8Lp27fpYOt+5c+cnLXUVitvyK/JRJ6mDkC8kHUWl9bbo\nje1J20nHeI2WRqv/l6faaW7vudDW0CYdo81aHQ5avHjxmrS0NLdJkyb9zjAMb//+/R+4urre+P77\n79t3C0IZ0eEg+fjvxf/iWd0zhA0JIx1FpdU21MJotRGKFhbBUNeQdBxKjbX7mAAAHDp06L3Lly/3\n4/F4jL+//6V33333iFxTtoGyNoHEgkTU1Negb7e+pKMAAEb9PgrTPKZhrMNY0lFUXp9f+uDbQd9i\noPVA0lEoNdbuYwLr1q1b6Ofnd23Dhg0L1q9f/wWJBqDMUotSiQ0LvDoGyTAMrudfp6cINkPeY7Z+\nln64lqe6N5Pj6hg3V3G1Xq02gcrKSsOgoKDIfv36Xd6yZcucpm7nQDXP18IX8fnxpGMAALLLsqGj\nqQOLThako6iFUPdQDO4xmHQMAID4qZj4DQ0pbmrTcBAApKWluR04cGD8wYMHx1laWuZFRUWxunUr\n63BQvaQeRquNkDM/B0Z6RkSz7Lu5D/tv7ceRD+jOnLpZEbUCOpo6WBmwknQUimXtHg6SMjExeWRq\nalrUuXPnJ48fP+4qn3iqT0tDC55mnkgsSCQdBXpaehjnMI50DIoAOgzIroqaCvjt8IMy/OHaahPY\ntm3brICAgNjBgwdHFRcXd9mxY8eMN71vkLrytfBt9fmjivDqGOToXqMx2XUy6zmUBVfHbNtLwkiQ\nWJAo94uXVLVe8tBJtxNyynOQXZb98jWu1qvVk4Zzc3Otfvjhh/nu7u6pbARSRROcJqC0upR0DEpN\n3Sm+gy4du6BLxy6ko6gVHwsfJBYkwtrImnSUFrX5mABpynpMgKJIC08NR+T9SPz+3u+ko6iVb+K+\nQUVNBb4P/J5oDrkdE6AoSnZVtVUYumco0bFhHnicfcKdKvMx90FCQQLpGK2iTUCFcXUMkqsUUS99\nHX3cenQLojKR3JfdViHuIZjiOkXuy6XbV8u8zL2QXJgMCSMBwN160SagJjZc3YCKmgrSMdSSt7k3\nEvK5/xchJV9dOnZB9rxsaPC4/TNLjwmogae1T2GyxgRly8roLYQJ+DbuW5TVlGFN4BrSUSg1xMlj\nAmVlZfxx48YddHBwuO3o6Jhx/fr13iUlJcaBgYHn7e3tM4OCgiLLysq49ziudqhtqMX7f7z/cteQ\nTalFqXA2caYNgBAfCx+6J0BxFpEmMG/evI0jRow4ffv2bYcbN2649urV605YWNiywMDA85mZmfaD\nBw+OCgsLW0Yim6LoaOogsSARWU+yWFundAwyqSCJPkmqDRQ1Zutt7o3kwmQ0SBoUsnxSuDrGzVVc\nrRfrTaC8vPytS5cu+U+bNm0nAGhpadW/9dZb5cePHw8OCQmJAICQkJCIo0ePjmE7m6J5m3sTuXI4\nsTCRNgGCjPWMkfppKpGx4V0pu/C09inr66WUB+tPmBCJRNZdu3Z9PHXq1F1paWluXl5eST/88MN8\nsVgsEAgEYgAQCATipm5UFxoaCqFQCADg8/lwd3dHQEAAgL+7LJfnjYuMkdgpEZNdJ7O2fuDF7awD\nEIDY8lhO1YOL81LyXn5OWg5ykMPqv6e6vhqzr8/GJJdJSlcvVZqvrq9GbGwsOmh1gJQi1xcbG4vw\n8HAAePl72SKGYVidEhISvLW0tOri4+N9GIbBvHnzfvjXv/71NZ/PL238OSMjo5LG8y+iKrcL9y8w\n/jv9WV/vz0k/M3UNdayvlyLrz5w/Ga/tXqRjqL2PjnzE/JT4E7H1//Xb2exvMuv7p5aWlnmWlpZ5\nPj4+CQAwbty4g8nJyZ6mpqZFRUVFpgBQWFhoZmJi8ojtbIrmaeaJlKIU1saGpX8dzPCcQR8r2Aav\n/nWr7BILFDsMqGr1UhRvM28kFCRwtl6sNwFTU9MiKyur3MzMTHsAuHDhwhAnJ6db77zzzomIiIgQ\nAIiIiAgZM2bMUbazKZqRnhFiQ2JJx6DUhKKbANU20nsIcRWR6wTS0tLcZsyYsaO2tlbHxsbm/q5d\nu6Y2NDRojh8//kBOTk43oVCYfeDAgfF8Pr/sZVB6nQCl5BiGQb2kHtqa7DyE3GmbE34b+xvcTd1Z\nWR/VtOr6ahivNkbJ0pJ/HBdgi1yeMcwFtAlQyu6Tk5/Ay8wLM71mKnxdDMNgzZU1WOC3gLWmQzXP\nc7snto3cBj9LP9bXzcmLxSh2cHUMkqsUXS8XExfWbijG4/GwpO8ShTYAun213VDboYiKiSIdo0m0\nCaiwm49u4v+i/490DOovPub0ymF1tWrwKvS16ks6RpNoEyCEjaGtZxbP8KzumcLXoyqk51wripup\nGzKfZOJ53XOFroctiq6XquFqvWgTIGDBuQUITw1X+HoSCxLhbUbPDuGKDlod4NDVAalF9CF9FHfQ\nJkCA8C0hEgsVf8rYpbhL8DL3Uvh6VAUbY9z9u/fHw/KHCl8PG+gxAdlwtV60CRDAxj2Enjx7gvLq\ncth3tlfoeijZbBi6AROcJyh0HYkFiVh9ebVC10GpDtoECHA3dcfNRzdR21CrsHUkFSbBt68v5x9o\nwSVcHbOVVWx2LAqeFih8PapSL7a4+LrgYvZF0jFeQ38hCNDX0Yc13xo3H91U2Dr6deuH8DHhCls+\nxV30WBA35Vfm45OTn5CO8RraBAjxsfDB7ce3Fbb8jtodkZ2arbDlqyKujtnKiq3bRahKvdjy+NZj\n5FbkorKmknSUf6B3FSNkxzs7oKmhSToGpWJKn5fiUdUjeiyIgzQ1NOFs4ozUolT4d/cnHecluidA\nCBsNgI7ZyoatelXUVCCtKE0hy04qTIK7qTvdvjgoICAAXmZeSCpMIh3lH2gToCiW3S2+i4+OfqSQ\nZXuZeWHbyG0KWTbVfl5mXkguTCYd4x9oE1BB0ucV0DFb2bBVLxeBC7KeZKG6vlruyzbSM4KzibPc\nl9sUun3JJjY2Fv7d/Tl3V1faBFTQewfew6nMU6RjUM3ooNUB9p3tcUN8g3QUimX2ne3xxdtfkI7x\nD/RW0gRV11ejoLIAPYx6yHW5FustcHnqZVgbWct1uZT8TD8+Hd5m3vjM5zPSUSgVR28lzWHp4nS8\nd+A9uS6zsLIQ1fXVEPKFcl0uJV9eZl5ILuLW2DClnog0gYaGBk0PD4+Ud9555wQAlJSUGAcGBp63\nt7fPDAoKiiwrK+OTyMU2F4EL7hbfRU19jdyWmVSYBC8zL/B4PDpmKyM269WvWz9YdbJibX2KQLcv\n2XC1XkSawMaNG+c5Ojpm8Hg8BgDCwsKWBQYGns/MzLQfPHhwVFhY2DISudjWQasDbI1t5XrlcHJh\nMr1pnBJwFbji3wP+LddlfnTkI5y7d06uy6RUH+tNIC8vz/L06dMjZsyYsUM6TnX8+PHgkJCQCAAI\nCQmJOHr06Bi2c5HiaeYp1/OGc8pz4GnqCYCexy0rZa/X5ZzLrA4DKnu92Na4Xl/GfMmZ50qwfsXw\nggULNqxZs2ZxRUVFJ+lrYrFYIBAIxAAgEAjEYrFY0NR3Q0NDIRQKAQB8Ph/u7u4vCyvd1VK2eU8z\nTyQXJstteTuCd4BhGM78++g8O/Mnzp1A0c0i2HW240QeOt/y/L6T+2BebI7P3v9M7suPjY1FeHg4\nALz8vWwRwzCsTSdOnBg1a9asrQzDICYmJmDUqFEnGIYBn88vbfw5IyOjkle/+yKq6onPi2cWnluo\nkGXHxMQoZLmqSpnrFf0gmum3sx+r61TmepHQuF7Tj01ntsZvZWW9f/12Nvu7zOqewJUrV/ocP348\n+PTp0yOqq6s7VFRUdPrwww93CwQCcVFRkampqWlRYWGhmYmJySM2c5HkY+EDHwsf0jEoJZdcmAwP\nUw/SMag24tLtI1g9JvDdd9+tyM3NtRKJRNb79u2bMGjQoOjdu3d/GBwcfDwiIiIEACIiIkLGjBlz\nlM1cqkq6q0i1DYl6rbuyTi7Plbj5+CY8zTzlkKjt6PYlm8b18jJX0ybwKunZQcuWLQs7f/58oL29\nfWZ0dPSgZcuWhZHMRVFs2Zm6ExmPM9q9nF+Cf8Ekl0lySESxwcXkxenhirh1iKyINYEBAwZcPH78\neDAAGBsbl1y4cGFIZmamfWRkZBCfzy8jlUuZpRWlvbxvEMDd85K5ikS9PM08kVTQ/r8INXga0NHU\nkUOitqPbl2wa10tPWw+7390NCSMhF+gv9IphFVFRU4E+O/uAgWrdWkPV0SuH1dd7ju+ho3ZH0jFo\nE+AChmGwK2XXP/6Kl1VaURpcTFygpfH3sX46ZisbEvXyMvOSy54ACXT7kg1X60WbAAfweDx8c+kb\n3Cu598bLSC5MhocZPTtE2bibuiP9UTrqJfWko1BqijYBjpBeNPamUopSXl4pLEXHbGVDol6GuobY\nMHRDu84QyqvIk15Lwyq6fcmGq/WiTYAjPEw92jU2nFyYzPopgpR8zPSa+cZjwzX1NbDbbMeJs0wo\n5USbAEe0Z0+AYRjYGNu89kQpro5BcpUy1uvW41uwNbaFnrYe6+tWxnqR1FS9NlzdgP0397MfphHa\nBDjCw9QDyYXJb7Rbz+PxcOSDI9DV0lVAMorL6JXCyk2Dp4HYh7FkMxBdO/WSwECAL/y+QE2D/J4t\nwNUxSK5SxnqlFKUQGwZUxnqR1FS9vMzJP3ieNgEO+XLAl+ig1YF0DEqJ0GNBys1N4Iabj26irqGO\nWAbaBFQYHbOVDcl6/ZjwI05lnpLpOwzDQE9LD+6m7gpK1TK6fcmmqXoZ6hrCqpOVXG4d8qZoE6Ao\nDqioqUCUKEqm7/B4PESHRKOTbqfWP0xxlpe5F1KKUoitnzYBJZdbnotjd441+R4ds5UNyXq19zoR\nEuj2JZvm6rUuaB3GO41nN0wjtAkouWhRNPbfInuKGdV+HmYeSC1KJXLRF0WWqYEp0XsI0SbAMT8n\n/YwruVfa/PmWzg6hY7ayIVmvLh27wFDXEKIyEbEMsqLbl2y4Wi/aBDhGVCbC+fvn2/x5ep646lDG\nISFK+dEmwDGeZp5tvn2EhJEgtSi12RvH0TFb2ZCu19rAtRhkPahNny1+VoxoUbSCE7WMdL2UDVfr\nxXoTyM3NtRo4cGCMk5PTLWdn55ubNm2aCwAlJSXGgYGB5+3t7TODgoIiy8rK+Gxn4wJZ/hq8V3IP\nnTt2hrGesYJTUWyw62zX5v8tY7NjsfH6RgUnothE6loB1puAtrZ23YYNGxbcunXL6dq1a35bt26d\nffv2bYewsLBlgYGB5zMzM+0HDx4cFRYWtoztbFxgzbdGZU0lHlU9avWzupq6+GrAV82+z9UxSK5S\npnpxYRhQmerFBS3V6/z98xi1dxR7YRphvQmYmpoWubu7pwKAgYHBUwcHh9v5+fkWx48fDw4JCYkA\ngJCQkIijR4+OYTsbF/B4PHiaeSKlsPXzhrvzuyPUPVTxoSjOoVcKqxYnE6c3vndYe2m1/hHFyc7O\nFqakpHj07t37ulgsFggEAjEACAQCsVgsFrz6+dDQUAiFQgAAn8+Hu7v7y+4qHW9ThfnvA79HTloO\nYvNi27W81NRUzJ8/n/i/R1nmlaVeDMPg2uVrmG40HegJYnmUpV5cmW+pXncT76L+QT3yK/Nh2cmy\nXeuLjY1FeHg4ALz8vWwRwzBEpsrKSgNPT8+kI0eOjGEYBnw+v7Tx+0ZGRiWN519EpWQRExNDOoJS\nUZZ65ZXnMV2/78pIJBKiOZSlXlzRWr2G7h7KHLtzTO7r/eu3s9nfYiJnB9XV1Wm/9957hz788MPd\nY8aMOQq8+Ou/qKjIFAAKCwvNTExMWh8Up1ok/SuBahsu1OvcvXOYfHhyi5+pk9RhSd8l4PF4LKVq\nGhfqpUxaq5eHmUebhoHljfUmwDAMb/r06b84OjpmzJ8//wfp68HBwccjIiJCACAiIiJE2hwoSp1Y\nG1m3erGgkC/Eoj6LWEpEscXLzAsFTwtYXy+PYflAxOXLl/v1798/ztXV9QaPx2MAYNWqVct9fX3j\nx48ffyAnJ6ebUCjMPnDgwHg+n1/2MiiPx7Cdlct2p+1GV/2uGGY7rNnPxMbG0r/WZMCFekkYCfhh\nfDyc/xBGekZEs7SGC/VSJqTqxePxwDBMs7uNrB8Y7tev32WJRNLkHsiFCxeGsJ1HWf2R8QdC3EJI\nx6DkTIOnAVeBK1KKUtp84RhFtQe9Ypijzt07h7ln5jb7fltOEaR/pcmGK/UiNTYsK67US1lwtV60\nCXCUwECACw8uNPme+KkYVXVVEPKF7IaiWOFh6oGMYnIPGaHUC20CHOXY1RHZZdl4VvfstfdSilLg\nYerR6tkh0nOHqbbhSr0+dP0QO97Z0eR7J+6eQNQD2R4+oyhcqZey4Gq9aBPgKB1NHfTq0gs3xDde\ney+lkNzDxSnF09bUbrbB/37zdxRUsn8GCcWOBkkD63eSZf3soDeljmcHTT8+Hd5m3vjM57N/vP6g\n9AEYhoGNsQ2hZBQpPbf0xOHxh+Fk4kQ6CqUAdQ114K/mQ7xIDAMdA7kss7Wzg+ieAId5mHo0eVvp\nHkY9aANQQxU1FciryEPPLj1JR6EURFtTG05dnZBWlMbaOmkT4LCp7lOxefjmN/4+V8cguYrr9Uor\nSoOLiQu0NIje8uslrteLa9paLw8zD1YfPE+bAIfp6+ijg1YH0jEoAiSMBA/LHv7jtZYeJUqpDg9T\ndpsAPSZAURxUVVuFrmu6onxZObQ1tQEANx/dRIOkAW6mboTTUYoUnx+PT05+gpRP5NMI6DEBilJC\n+jr6EPKFyHj89/UCzibOtAGoARcTF9ga27L2bAHaBJTMkF+HQFQqatNn6ZitbLhWL7bHhmXFtXpx\nXVvrpaethz/e/4O1u8TSJqAEKmsqAQDP6p7hSu4VWHSyIJyIYgPbY8OUeqJNgONKnpfAaoMVJIwE\nN8Q34NDVATqaOm36LlfvVcJVXKuXp5kn6xcOyYJr9eI6rtaLNgGOM9YzRifdThCVijjxcHGKPR6m\nHtDX1icdg1JxtAkoAelfhLI+XJyO2cqGa/Uy0jPC2SlnAQBTDk9B1pMswon+iWv14jqu1os2ASUg\nHRtOLUqVqQmkpqYqMJXq4Wq96hrqcOTOEZgZmpGO8g9crRdXyVqvgxkHkV+Rr6A0f+NUEzh79uyw\nXr163bGzs8tavXr1UtJ5uEJ6lkjc1Dh4m3u3+XtlZWWtf4h6iav1ulN8B1adrOR2Lxl54Wq9uErW\neu27uQ8XH15UUJq/caYJNDQ0aM6ZM2fL2bNnh2VkZDju3bt34u3btx1I5+ICTzNPVNVWoaN2R87c\nMoBij6zDgJRqYOvsMM40gfj4eF9bW9t7QqEwW1tbu27ChAn7jh07Npp0Li6w7GSJuKlxMn8vOztb\n/mFUGFfrlVzEzRMCuFovrpK1Xp5mnuw8YY5hGE5Mf/zxx7gZM2b8LJ3fvXv3lDlz5myWzgNg6EQn\nOtGJTrJPLf32cmZsgcfjMS2939K9LyiKoqg3w5nhIAsLi/zc3Fwr6Xxubq6VpaVlHslMFEVRqo4z\nTcDb2zsxKyvLLjs7W1hbW6uzf//+D4KDg4+TzkVRFKXKODMcpKWlVb9ly5Y5Q4cOPdfQ0KA5ffr0\nXxwcHG6TzkVRFKXSSB8Qbst05syZYT179rxja2ubFRYWtpR0HmWYunfvnu3i4nLD3d09xcfHJ550\nHq5NU6dO3WliYiJ2dnZOl7725MkT4yFDhpy3s7PLDAwMjCwtLeWTzsmVqal6ffXVVystLCzy3N3d\nU9zd3VPOnDkzjHROrkw5OTlWAQEBMY6OjrecnJxubty4cS7DcHMbI16s1qb6+npNGxubeyKRSFhb\nW63WzOMAAAcvSURBVKvt5uaWmpGR4UA6F9cnoVAoevLkiTHpHFyd4uLi/JOTkz0a/6gtXrz4+9Wr\nVy9hGAZhYWFLly5dGkY6J1empuq1cuXKr9atW/cF6WxcnAoLC01TUlLcGYZBZWWlgb29/d2MjAwH\nLm5jnDkm0Bx6/cCbY+gZVc3y9/e/ZGRkVNr4tePHjweHhIREAEBISEjE0aNHx5BJxz1N1Qug21hz\nTE1Ni9zd3VMBwMDA4KmDg8Pt/Px8Cy5uY5xvAvn5+RZWVla50nlLS8u8/Px8ekP9VvB4PGbIkCEX\nvL29E3/++eePSedRBmKxWCAQCMQAIBAIxGKxWEA6E9dt3rz5czc3t7Tp06f/UlZWxiedh4uys7OF\nKSkpHr17977OxW2M802gtesHqKb9+eeffVNSUjzOnDkzfOvWrbMvXbrkTzqTMuHxeAzd9lr22Wef\n/SgSiaxTU1PdzczMChcuXLiOdCauefr0qcF77713aOPGjfMMDQ0rG7/HlW2M802AXj/wZszMzAoB\noGvXro/ffffdI/Hx8b6kM3GdQCAQFxUVmQJAYWGhmYmJySPSmbjMxMTkkfSHbMaMGTvoNvZPdXV1\n2u+9996hDz/8cPeYMWOOAtzcxjjfBOj1A7J79uxZx8rKSkMAqKqq0o+MjAxycXFJJ52L64KDg49H\nRESEAEBERESI9P+4VNMKCwtf3tv6yJEj79Jt7G8Mw/CmT5/+i6OjY8b8+fN/kL7OyW2M9JHptkyn\nT58ebm9vf9fGxubed999t5x0Hq5PDx48sHZzc0t1c3NLdXJyuklr9vo0YcKEvWZmZgXa2tq1lpaW\nuTt37pz65MkT48GDB1/g0ul7XJlerdcvv/wy7cMPP/zVxcXlhqura9ro0aOPFhUVCUjn5Mp06dKl\nfjweT+Lm5pba+BRaLm5jPIYhPiRFURRFEcL54SCKoihKcWgToCiKUmO0CVAURakx2gQoiqLUGG0C\nFEVRaow2AUrllJeXv/Xjjz9+Jp0vKCgwf//99/+Q93pWrly50tLSMm/lypUr5b3s1gwcODDG0NCw\nMikpyYvtdVOqhTYBSuWUlpYabdu2bZZ03tzcvOCPP/54X97r4fF4zBdffLGeRBOIiYkZ6O3tnciF\n2w5Qyo02AUrlLFu2LOz+/fs2Hh4eKUuXLl398OHD7tKrWcPDw0PHjBlzNCgoKNLa2lq0ZcuWOWvX\nrl3k6emZ/Pbbb18tLS01AoD79+/bDB8+/Iy3t3di//794+7evduzqXUxje6iuXLlypUhISER/fv3\njxMKhdmHDx8eu2jRorWurq43hg8ffqa+vl5Lms/JyemWm5tb2uLFi9cAwOPHj7uOGzfuoK+vb7yv\nr2/8lStX+gAv7j0zderUXa6urjfc3NzSDh8+PFbR9aPUDOmr1ehEJ3lP2dnZ3Rvf914kEgml87t2\n7Qq1tbXNevr0qf7jx4+7dOrUqXz79u0zGYbBggUL1v/www/zGIbBoEGDorKysmwZhsG1a9d6Dxo0\nKOrV9axcufKrtWvXLpTOf/XVVyv9/f3j6uvrNdPS0lz19PSenT17dijDMHj33XcPHz16dHRxcXHn\nnj173pF+p7y8vBPDMJg4ceLvly9f7sswDB4+fNjNwcEhg2EYLFmyZPWCBQvWSz/f+ArTgICAmKSk\nJE/S9aaTck+cebwkRckL08o97gcOHBijr69fpa+vX8Xn88veeeedEwDg4uKSfuPGDdeqqir9K1eu\n9Gl8HKG2tlantfXyeDxm+PDhZzQ1NRucnZ1vSiQSjaFDh56TLjs7O1s4atSokx06dKiePn36L6NG\njTo5atSokwBw4cKFIbdv33aQLquystKwqqpKPyoqavD+/fs/kL7O5/PLZK8IRTWPNgFK7ejq6tZI\n/7uGhoZEOq+hoSGpr6/XkkgkGkZGRqUpKSkesi5bR0enVrosbW3tusbrqa+v19LU1GyIj4/3jYqK\nGnzw4MFxW7ZsmRMVFTWYYRje9evXe0u/31hrTY2i2oMeE6BUjqGhYaX0LqqykP7YGhoaVlpbW4sO\nHjw4Tvr6jRs3XOWRraqqSr+srIw/fPjwM+vXr/8iLS3NDQCCgoIiN23aNFf6OenrgYGB57du3Tpb\n+jp9cAslb7QJUCqnc+fOT/r27funi4tL+tKlS1c3fnjHqw/yePW/S+d/++23yb/88st0d3f3VGdn\n55vHjx8Pbsu6m1u2dL6ystLwnXfeOeHm5pbm7+9/acOGDQsAYNOmTXMTExO93dzc0pycnG5t3779\nEwD417/+9U1paamRi4tLuru7e2psbGxAO0pDUa+hdxGlqDf0n//85ysDA4OnpJ6oNXDgwJh169Yt\n9PT0TCaxfko10D0BinpDBgYGT3/66aeZpC4WE4lE1o2PO1DUm6B7AhRFUWqM7glQFEWpMdoEKIqi\n1BhtAhRFUWqMNgGKoig1RpsARVGUGvt/5i5yreN7pjkAAAAASUVORK5CYII=\n", + "text": [ + "<matplotlib.figure.Figure at 0x25c1f10>" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEMCAYAAAAmgtofAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcFFX7APBnYRcQdhcwBWkxFwWVVWRRRAtRUcD8pYiX\nUEpfVEyTrLyV2luJdhHzjmVpaqKmQl6ALhhqkmYhYqDWesFclDsqIMt1gZ3fH7S+iFx2YHfnzPB8\nP5/56MzOzjw+Lvsw58w5w6MoChBCCHVuJkwHgBBCiHlYDBBCCGExQAghhMUAIYQQYDFACCEEWAwQ\nQgiBgYtBdnZ2T19f37MDBgz4e+DAgX9FRUW9BQAQERER4ejomOPh4ZHu4eGRnpiYOF77nnXr1q1y\ncXHJ7N+//42kpKQAQ8aHEEKoAc+Q4wwKCgp6FBQU9JDL5Rnl5eXCIUOGXI6LiwuKjY0NFolEqqVL\nl25uvL9CoZC98sorhy5dujQ0NzdX4ufnd/rWrVt9TUxMNAYLEiGEkGGvDHr06FEgl8szAACEQmG5\nq6vr9dzcXAkAAEVRvKb7x8fHTwoJCTksEAhqpVJplrOz8+3U1FQvQ8aIEEIIgG+sE2VlZUnT09M9\nhg8fnnLhwgXv7du3v7l///7/eHp6pm3atGmZjY1NaV5e3rPDhw9P0b7H0dExR1s8tHg8Hg6ZRgih\ndmjul3Ato3Qgl5eXC6dNm3Z027ZtbwuFwvKFCxd+qVQqnTIyMuQODg75y5Yt29TSe5v78nfY6AA5\nj3KAoihc2lhWr17NeAy6LP0/7w+KIgXjcbApZ6QsmC925KstBi8GtbW1gqlTpx6bOXPmwaCgoDgA\nADs7uyIej0fxeDxq3rx5u7VNQRKJJDc7O7un9r05OTmOEokkt+kxxeZiKKspM3TonJCVlcV0CDoR\nm4vhUc0jpsMAAPbkjBSYL3pIzZdBiwFFUbywsLA9MplMsXjx4q3a7fn5+Q7av584cWKym5vbNQCA\nwMDAhCNHjsxQq9VmSqXSKTMz08XLyyu16XF3TdwFErGk6WbEUup6NVgJrOBRNRnFAKHOyKB9Bhcu\nXPA+ePDgzEGDBl318PBIBwD49NNP3zt8+HBIRkaGnMfjUU5OTsqdO3cuAACQyWSK4ODgWJlMpuDz\n+XU7duwIb66ZaGSvkYYMm1Nmz57NdAhtmh03G85mnYXXPV9nOhQAYEfOSIL5oofUfBn01lJD4PF4\nFNtiRq0LORYC8TfiYduL2+C1Ia8xHQ5CnMTj8YBiugMZMSc5OZnpEHRi28UWquqqmA4DANiTM1Jg\nvughNV9Gu7UUoZZQFAUb/TdCiFsI06Eg1GlhMxFi3IyjMyCofxDMGDiD6VAQ4ixONhPF3YiDr9K+\nYjoMpCcCUwGY8Fj5UUSIM1j5E1hUUQSX8y8zHQYrkNo+2diByQcgeEAw02E8xoackQTzRQ+p+WJl\nMcBBZwghpF+s7DP46dZPEJUaBYmvJjIdDtITiqKgqq4KLAWWTIeCECdxss9AbC7G0aock1mcCe5f\nuTMdBkKdFmuLATYT6YbU9smmrM2tiSnwbMkZKTBf9JCaL1YWg962veGrCXg3EVfU1NWAlZkVMRPV\nIdQZsbLPgG0xo9ZNi50G0wdMh1ePvwqqVSow55szHRJCnMPJPgPELRRQwOPxwNrCGq8OEGIIFgOO\nI7V9sike8MBB6ADl6nKmQ2FNzkiB+aKH1Hzh3ESIcdpmv6sLrzIcCUKdF/YZIMZNiZkCMwfNhCmu\nU5gOBSHO4myfwVuJb8FfRX8xHQbSAzNTM5ybCCGGsfYn8PqD65CnymM6DOKR2j7Z2JFpRyCofxDT\nYTzGhpyRBPNFD6n5Ym0xwIFnCCGkP6ztM5gTPwd8nvOBuR5zmQ4J6Ym6Xg219bVgZWbFdCgIcQ5n\n+wysza3xyoBjtqVsgw+TP2Q6DIQ6JdYWA2wm0g2p7ZPNsbYgo8CzKWckwHzRQ2q+WDvOYI58DtMh\nID2pqasBvgmfqMnqEOpsWNtngLhj4uGJMH/wfBCYCmBLyhb4eebPTIeEEOdwts8AcYe2uGPTH0LM\nwWLAcaS2TzbF4/HA1sIWeNDiLy5Gw5ackQLzRQ+p+cJigBhHQcOVgWt3V/g97HeGo0Goc8I+A8S4\nlw69BOGe4fBS35eYDgUhzuJsn8H9ivswNXYq02EgPcC5iRBinkF/ArOzs3v6+vqeHTBgwN8DBw78\nKyoq6i0AgOLi4q7+/v6n+vbteysgICCptLTURvuedevWrXJxccns37//jaSkpICWji0wFcCZO2cM\nGT4nkNo+2diJ6SdgvMt4psN4jA05Iwnmix5S82XQYiAQCGq3bNmy5O+//x6QkpIy/Isvvnjj+vXr\nrpGRkSv9/f1P3bp1q+/YsWPPREZGrgQAUCgUspiYmOkKhUJ28uTJF8PDw3doNJpmYxSZiUClVgE2\nGSGEUMcZtBj06NGjQC6XZwAACIXCcldX1+u5ubmShISEwNDQ0GgAgNDQ0Oi4uLggAID4+PhJISEh\nhwUCQa1UKs1ydna+nZqa6tXcsU1NTKELvwsRT8Yi2ejRo5kOgZbS6lJQ16sZjYFtOWMa5oseUvNl\ntBHIWVlZ0vT0dI9hw4ZdLCwstLe3ty8EALC3ty8sLCy0BwDIy8t7dvjw4Sna9zg6Oubk5uZKmh5r\n9uzZIJVKgfcHDzabbIZRw0c9TrD2EgzX2bnu86EPzBsyD96e/jYR8eA6rrN1PTk5Gfbt2wcAAFKp\nFNpEUZTBF5VKJRw8ePDlEydOBFEUBTY2NiWNX7e1tS2mKAoWLVq0/eDBg69qt4eFhe0+duzYlMb7\nNoTcoP/n/SlFkYJCLTt79izTIdDyf9/+H/X9ze8ZjYFtOWMa5osepvL173dni9/TBr+Fo7a2VjB1\n6tRjs2bNOhAUFBQH0HA1UFBQ0AMAID8/38HOzq4IAEAikeRmZ2f31L43JyfHUSKR5LZ07G+nfAvP\nWT9n6H8CMrCauhqo19QDAOD8RAgxxKDFgKIoXlhY2B6ZTKZYvHjxVu32wMDAhOjo6FAAgOjo6FBt\nkQgMDEw4cuTIDLVabaZUKp0yMzNdvLy8Uls6/mCHwTj3fRu0l48kCzwSCKfvnAaAhplLH9UwWwzY\nkDOSYL7oITVfBu0zuHDhgvfBgwdnDho06KqHh0c6QMOtoytXrowMDg6O3bNnT5hUKs2KjY0NBgCQ\nyWSK4ODgWJlMpuDz+XU7duwI5/F4eLsQx1GN7gjDKwOEmIEjkDkuOTmZ2N9EtAIOBMDyF5ZDQJ8A\n2JqyFapqq2CVzyrG4mFDzkiC+aKHqXy1NQKZtc8zQNyhnZsIAGDx8MUMRoJQ54VXBohx/gf84d0X\n3gX/Pv5Mh4IQZ3F2biIAgJi/YmBryta2d0REw7mJEGIeq38CH9U8gr/v/810GETTDkIh2Y+v/Ahj\ne49lOozH2JAzkmC+6CE1X6wuBvhkLIQQ0g9W9xn8lPkTbE/dDomvJjIcFdIXDaWBoooi6CHswXQo\nCHEKp/sM8J507imtLgXXL1yZDgOhTofVxQCbidpGavtkS0RmIiirKWN0anK25YxpmC96SM0Xq4uB\nc1dnODjlINNhoA5qPDeRwFQAFnwLnJocISNjdZ8B4gbfaF/4cOSH4OvkCwAAz256FlJfSwVHsSPD\nkSHEHZzuM0Dc0LS4W1tgXxBCxobFgONIbZ9sisf73y8sfWz7QE19DWOxsCVnpMB80UNqvnBuIsS4\nxnMTAQD88MoPDEWCUOeFfQaIcaP2jYK1o9fCKOkopkNBiLM432cQlhAGVwuvMh0G6gCcmwgh5rH+\nJ/Deo3tQWF7IdBjEIrV9srFTs06BTy8fpsN4jA05Iwnmix5S88X6YmBtbo0DzxBCqINY32cwN34u\njHhuBMz1mMtgVEifKtQVUFlbCd2tujMdCkKcwfk+A5ySgnu+U3wHy08tZzoMhDoVLAYcR2r7ZGuY\nbvpjY86YhPmih9R8sX6cweuerwMPWrzyQSxQU1cDAlPB4zuKxOZiHIGMkJGxvs8AsZ/3Xm/4zO8z\n8H7OGwAA0vLSYMEPC+Dy/MsMR4YQd3C+zwCx31NzE+FzKhAyOiwGHEdq+2RTjecmsrGwAdsutozF\nwpackQLzRQ+p+cJigBjXdG6i7lbd4dJrlxiKBqHOqdU+g02bNi1r6wBCobB8wYIFO/UaVSuwz4B7\nnt/zPGwO2AzP93ye6VAQ4qwO9Rls3LhxeXl5ubClRaVSiTZu3MjoDeGF5YUw7uA4JkNAHWRmavZE\nMxFCyPhavbV05syZB1evXr2mtX0qKiqs9BsSPeZ8c0jJSWEyBKIlJyfD6NGjmQ6jVb/O/pXpEJ7A\nhpyRBPNFD6n5avXKYMOGDe+09FphYaF9W/sAAMydO3evvb19oZub2zXttoiIiAhHR8ccDw+PdA8P\nj/TExMTx2tfWrVu3ysXFJbN///43kpKSAtr6B4jMRFCuLgcNpWlrV4QQQi2gNc6gpKTE9tixY1MP\nHz4colAoZPn5+Q5tvef8+fM+QqGw/D//+c/+a9euuQEArFmzZrVIJFItXbp0c+N9FQqF7JVXXjl0\n6dKlobm5uRI/P7/Tt27d6mtiYvL4m765PgPhp0LIX5YPInORzv8WRLaC8gIQmglBaCZkOhSEOKHD\n4wwqKystDx8+HBIYGJjg7u5+Zfny5Rs/+OCDj3JycnR6WrmPj895W1vbkqbbmwsqPj5+UkhIyGGB\nQFArlUqznJ2db6empnq1dQ6ckoJ7Fv64EJL+SWI6DIQ6jVb7DEJCQg5fvHhxWEBAQNLixYu3jho1\n6ldnZ+fbo0ePTu7oibdv3/7m/v37/+Pp6Zm2adOmZTY2NqV5eXnPDh8+/HEHgKOjY05ubq6k6Xtn\nz54NUqkUAABsbGyAf48PZTVlIAHJ43t4tW1ynX1969atIJfLiYlH13XtwDMmzp+RkQGLFy8mKh8k\nr2O+yMxXcnIy7Nu3DwDg8fdlqyiKanFxd3fPGDZsWMrWrVvfzsvLc6AoCqRSqbK19zS3KJVK6cCB\nA69p1wsLC+00Gg1Po9Hw/vvf/348d+7cPRRFwaJFi7YfPHjwVe1+YWFhu48dOzal8bEaQn7Sjfs3\nqKraqqe2I4o6e/Ys0yG0qaq2iqrX1D+x7c2f3qS2/LGFkXjYkDOSYL7oYSpf/353tvg93WozUUZG\nhvybb76Z8/Dhw2d8fX3P+vj4nFepVKKCgoIebZeZltnZ2RXxeDyKx+NR8+bN261tCpJIJLnZ2dk9\ntfvl5OQ4SiSS3LaO169bP7DgW3QkJM7S/sZAMp9vfOBy3pPzEFlbMDdzKRtyRhLMFz2k5qvNPgNX\nV9fra9eu/fDGjRv9t2zZsiQ0NDTay8sr9YUXXvi9vSdt3PF84sSJydo7jQIDAxOOHDkyQ61WmymV\nSqfMzEwXLy+v1PaeB7ED1cxNDNbm1vCoBucnQshYaE1h7enpmebp6Zm2YcOGd86fP6/TQ2tDQkIO\n//rrr6MePHjQrWfPntlr1qxZnZycPDojI0PO4/EoJycn5c6dOxcAAMhkMkVwcHCsTCZT8Pn8uh07\ndoTzeDwcbtwByYTe09xU00FnEpGEsSsDtuSMFJgveojNV2ttSDt37pzf2uu67qPPBZrpM0AtY0N7\n7uCdg6lLuZeYDuMxNuSMJJgvekjtM2h1nEHv3r3vbNy4cTnVzG2g/97vz/vggw8+UigUMsOVq2bP\na6zTISMYsmsI7JqwC4Y8O4TpUBDirLbGGbTaTDRy5Mhz33///cTW9gkICGD8ZvD9V/ZDnioPVo5Y\nyXQoqB3MTc1xbiKEGMaJJ53turwLLuVdgq8nfs1QVOQitn2SYJgzejBf9DCVr07xpDMcgYwQQh3D\niSuDxMxEiEqNgsRXExmKCukbRVFw48ENcO3uynQoCHGCXq4M7ty501uXbUzBKwNucvvSDeo0dUyH\ngVCnoFMxmDp16rGm215++eXv9B9O+4jNxfgA9RZo5yphGx6PByJzESNFnq05Ywrmix5S89Xq3UTX\nr193VSgUskePHlkfP358CkVRPB6PR5WVlYmrq6uJmf+h7zN9IW5GHNNhoHaqrqsGM1MzMOE9+buJ\ndrK6rl26MhQZQp1Hq8Xg1q1bfb///vuJjx49sm58i6lIJFJ9/fXXrxk+PN2Y883Buasz02EQiQ13\neQzbPQz2B+0H9x7uT2y3tmBmSgo25IwkmC96SM1Xq8Vg0qRJ8ZMmTYr//fffX+jIXEQItaalmxiw\n+Q8h49FpbiJnZ+fbn3zyyX+zsrKkdXV1fICGu3r27t0717DhoY5iyz3gzQ06G9B9ACOD0diSM1Jg\nvughNV86FYNJkybFjxw58py/v/8p7SMocQI5pC8UNP9R+mrCV0aOBKHOS6dxBnK5PCMjI0NuhHja\nhHMTcY/bl25waMohcLN3YzoUhDhLL+MMJkyY8MOPP/74kv7C0r/pR6fDn/l/Mh0Gagecmwgh5ulU\nDLZu3bp44sSJ31tYWFSLRCKVSCRSicViokZ5FVcVw4PKB0yHQRxS72luLG1+Ggy0G8h0GI+xIWck\nwXzRQ2q+dOozKC8vFxo6kI7CUcgIIdR+Ol0ZaDQakwMHDsxau3bthwAA9+7de0773GJSYDFoHol3\nLeiqrKYMlCVKo5+XzTljAuaLHlLzpVMxCA8P3/HHH388f+jQoVcAAIRCYXl4ePgOw4ZGj3a0KuKO\nc3fPwaLERUyHgVCnoFMxuHjx4rAdO3aEd+nSpQoAoGvXrsW1tbUCw4ZGD14ZNI/U9kldMPV/yuac\nMQHzRQ+p+dKpz8DMzExdX19vql2/f/9+d+14A1K8Neytp+a2QezQ1txECCHD0+nb880339w+efLk\nE0VFRXbvvffep97e3hdWrVq1ztDB0dHNshtOaNYMUtsnG/PY6QE3H9x8arvYXIxzE7EA5oseUvPV\n5pWBRqMxcXJyUq5fv37FmTNnxgIAxMfHT3J1db1u+PBQZ9DSIEJrC2ts+kPISNosBiYmJpo33njj\ni4yMDDkWAPYhdR6UppobdCY2F0Nv295AUZRRB6WxJWekwHzRQ2q+dGom8vPzO3306NFprQ1lRqi9\nWpqbiG/Ch8vzL+PoZISMQKe5iYRCYXllZaWlqalpvYWFRTVAwxxBZWVlYoNH2ATOTcQ9/T7vBwkz\nEqBft35Mh4IQZ3V4biKNRmPy888/j9NoNCa1tbUClUolUqlUIiYKQWvyVfngvdeb6TBQO+DcRAgx\nr81ioO0zMEYwHWHBt4C/i/5mOgzikHpPc2NXF16Fvs/0ZTqMx9iQM5JgvughNV+c6TMQm4tBpVaB\nhiJq+ANCCLGCwfsM5s6du/fHH398yc7OrujatWtuAADFxcVdp0+fHnP37t1eUqk0KzY2NtjGxqYU\nAGDdunWr9u7dO9fU1LQ+KirqrYCAgKQnAm6lz0D4qRDyl+WDyFzU9r8csUJWaRYIzYTQzbIb06Eg\nxGp6eZ5BeXm5sL19BnPmzPnm5MmTLzbeFhkZudLf3//UrVu3+o4dO/ZMZGTkSgAAhUIhi4mJma5Q\nKGQnT558MTw8fIdGo9F5WDHel849a39dC/E34pkOAyHO0+mL9ty5cyObW3R5r4+Pz3lbW9uSxtsS\nEhICQ0NDowEAQkNDo+Pi4oIAGgazhYSEHBYIBLVSqTTL2dn5Np3ZUXF+oqeR2j6pKyYKPNtzZmyY\nL3pIzZdOcxN99tln72qfeVxdXW2RmprqNWTIkMu//PLLmPactLCw0N7e3r4QAMDe3r6wsLDQHgAg\nLy/v2eHDh6do93N0dMzJzc2VNH3/7NmzQSqVAgCAjY0NyOVyGD16NJyadQpupN2AQpPCx4M6tInv\nrOsZGRlExdPcurpeDX5j/MCEZ/LU68XXi6EESgCeB6PFk5GRQVR+SF/HfJGZr+TkZNi3bx8AwOPv\ny1ZRFEV7uXfvXs/Jkycf13V/pVIpHThw4DXtuo2NTUnj121tbYspioJFixZtP3jw4Kva7WFhYbuP\nHTs2pfG+DSEjLum9rTd1++HtZl/b9PsmasnJJUaOCCHu+fe7s8Xv6XZN8+no6Jhz/fp11/a8F6Dh\naqCgoKAHAEB+fr6DnZ1dEQCARCLJzc7O7qndLycnx1EikeS29zyIHahWbmJgarI6hDobnWct1S5v\nvPHGFyNGjPhtyJAhl9t70sDAwITo6OhQAIDo6OjQoKCgOO32I0eOzFCr1WZKpdIpMzPTxcvLK7W9\n50Hktk82RkHLcw89Z/0c9BD2MGo8bMgZSTBf9JCaL536DIYMGXJZ22fA5/PrXnnllUPe3t4XdHlv\nSEjI4V9//XXUgwcPuvXs2TN77dq1H65cuTIyODg4ds+ePWHaW0sBAGQymSI4ODhWJpMp+Hx+3Y4d\nO8K150XcxoPmi0FAnwAI6BNg5GgQ6nx0GmdQXl4u7NKlS5WpqWk9AEB9fb1pTU2NuaWlZaXBI2wC\n5ybiHulWKZwNPQtOtk5Mh4IQZ+llnIGfn9/pqqqqLtr1yspKSz8/v9P6CFCfdv+5G9Ykr2E6DEST\nOd8cn1KHEMN0+gmsrq62EAqF5dp1kUikqqystDRcWO1DURRkl2UzHQZRSG2fbOzmopvQy6YX02E8\nxoackQTzRQ+p+dKpGFhZWVVcvnx5iHY9LS3Ns0uXLlWGC6t9tPMTIYQQokenPoNLly4NnTFjxhEH\nB4d8gIbbQWNiYqZ7enqmGTzCJlrrM0jMTISo1ChIfDXRyFEhQ7qYcxGGSoZiUxJCHdBWn4FOdxMN\nHTr00vXr111v3rzZDwCgX79+N83MzNT6ClJfcDoKbhp3cBwo31aCbRdbpkNBiLN0/lXLzMxM7ebm\nds3Nze0aiYUAAItBc0htn6TD2PMTcSFnxoT5oofUfHHqurt/t/5watYppsNANFXXVeMoZIQYplOf\nAUlwnAH3OG52hJR5KeAodmz29RF7R0CkXySMeG6EkSNDiDv0Ms5Ao9GYHDhwYNbatWs/BAC4d+/e\nc3SmlkaoNRS0XtzF5mJ4VI1XBggZkk7FIDw8fMcff/zx/KFDh14BaHjyWXh4+A7Dhob0gdT2yaZa\nmo4CAGCww2DoIujS4uv6xpackQLzRQ+p+dLpbqKLFy8OS09P9/Dw8EgHAOjatWtxbW2twLChoc6i\nrWa/j8d8bKRIEOq8dLoyMDMzU9fX15tq1+/fv9/dxMQEnzzPAtqHXpCupVlLmcCWnJEC80UPqfnS\neQrryZMnnygqKrJ77733PvX29r6watWqdYYOrj3+79v/g8t57Z5dGzHAgm/BdAgIdXo6NRPNnDnz\n4JAhQy6fOXNmLEDDs4pdXV2vGza09qmpr4GS6pK2d+wkkpOTif1NROvO23eYDuEJbMgZSTBf9JCa\nL52KQUpKynCZTKZYtGjR5wAAZWVl4osXLw4bNmzYRcOGRx8OPEMIIfp0Gmcgl8sz0tPTPbQPmqmv\nrzf19PRMS09P9zB4hE20Nc4gNC4UfKW+MFs+23hBIYMqqSqB7LJsGGQ/iOlQEGItvYwz+PdAj7+B\nTU1N6xt3KJMErwy4J6MgA94++TbTYSDEaToVAycnJ2VUVNRbtbW1ArVabbZt27a3e/fuTVZD77+w\nGDyJ1Hua6TD2/ykXcmZMmC96SM2XTsVg586dCy5cuOAtkUhyHR0dc1JSUobv2rVrvqGDa4+V3ith\nyfAlTIeBaKiqrWp7biIcgYyQQbXZZ1BXV8cPDQ2N/vbbb181UkytwrmJuMdugx38Ff4X2FnZNft6\nUUURDNwxEIreKTJyZAhxR4f7DPh8ft3du3d71dTUmOs3NIQa6DQ3Ec5aipBB6XRrqZOTk3LEiBG/\nBQYGJlhaWlYCNPyGvnTp0s2GDQ91FKn3NDfV2txE5qbm4N3TG+o0dcA30ekj2yFsyRkpMF/0kJov\nnX6y+vTp80+fPn3+0Wg0JuXl5UKKoniN7y5CqCPaavbj8XjwS+gvRooGoc4Jn2eAGNfts25wY9EN\n6GbZjelQEOIsvTwD2dfX92wzB6Z++eWXMR0JzhDult6FKbFT4PJ8nJ+ILXBuIoSYp1Mx2LBhwzva\nv1dXV1scO3ZsKp/PrzNcWO1nKbCEe4/uMR0GMUhtn2wsZ2kO0yE8gQ05Iwnmix5S86VTMfD09Exr\nvD5ixIjfhg4deskwIXUMDjpDCCH6dCoGxcXFXbV/12g0JmlpaZ5lZWViw4XVfub8hjtga+pqHv+9\nMyPxN5D2uPngJliZWbX4nGR94krOjAXzRQ+p+dKpGAwePPhP7d1DfD6/TiqVZu3ZsyesoyeXSqVZ\nYrG4zNTUtF4gENSmpqZ6FRcXd50+fXrM3bt3e0ml0qzY2NhgGxubUjrH1V4ddOd372iIiBDbU7dD\nv2f6wZvD3mQ6FIQ4SafpKLKysqRKpdJJqVQ6ZWZmupw6dcp/xIgRv3X05Dwej0pOTh6dnp7ukZqa\n6gUAEBkZudLf3//UrVu3+o4dO/ZMZGTkSrrHxaai/yF1HhS6jDnwjCs5MxbMFz2k5kunYqCdnG7q\n1KnHpk2bdnT79u1v6usZyE1vdUpISAgMDQ2NBgAIDQ2NjouLC6J7zLTX0kBqI9VHeMgI2pqbCADA\n2twaCzxCBqRTM9HChQu/rKur47/xxhtfUBTFO3DgwKyFCxd+uXv37nkdOTmPx6P8/PxOm5qa1i9Y\nsGDna6+99nVhYaG9vb19IQCAvb19YWFhoX3T982ePRukUikAANjY2IBcLn/cDqeturjesK7dRko8\nza1PODQBcqJywMbCpsX9xVZiuFN6x2jxaZGQHzasa5ESD+nrWoY8X3JyMuzbtw8A4PH3Zasoimpz\ncXNzu6rLNrpLXl6eA0VRUFRU1N3d3T3j3LlzPjY2NiWN97G1tS1uvN4QMuIS8ToxVVJV0uo+3179\nlppxdIaRIkKIe/797mzx+1inZiI+n193+/ZtZ+36P//800cf4wwcHBzyAQC6d+9+f/LkySdSU1O9\n7O3tCwsKCnoAAOTn5zvY2dnhVJUd0PQ3EVK1NjcRAEAv617g3NW51X30hS05IwXmix5S86VTMdiw\nYcM7Y8amluQsAAASUElEQVSM+WXUqFG/jho16tcxY8b8snHjxuUdOXFlZaWlSqUSAQBUVFRYJSUl\nBbi5uV0LDAxMiI6ODgUAiI6ODg0KCorryHkQ+Sgdphfxfs4bPvL9yAjRINQ56Tw3UXV1tcXNmzf7\n8Xg8ql+/fjfNzc1rOnJipVLpNHny5BMADc9MePXVV79dtWrVuuLi4q7BwcGx9+7de665W0txbiLu\nEa8TQ87SHBCbEzl0BSFOaGtuIp2KQWxsbPCLL754UiwWl3300UcfpKene7z//vsfDx48+E+9RqsD\nXYrB5j82Q1lNGUSMjjBOUKhD7DbYwe23bmMxQMiAOvxwGwCAjz766AOxWFz222+/jThz5szYuXPn\n7n399de/0l+Y+iUwEcDDqodMh0EEUtsnGyt6p4ioQsCGnJEE80UPqfnSqRiYmprWAwD88MMPE157\n7bWvJ0yY8IO+xhkYAg46QwghenQqBhKJJHf+/Pm7YmJipr/00ks/VldXW2g0Gp3eywQsBv/TeLwB\n2/2i/AXU9WqDn4dLOTMGzBc9pOZLpy/02NjY4HHjxv2clJQUYGNjU1pSUmLbeFpr0mAx4KaZx2fC\n/Yr7TIeBECfpVAysrKwqpk6deszFxSUToGF8QEBAQJJhQ2s/LAb/Q2r7ZHtYW1gbZX4iLuXMGDBf\n9JCaL2KbejrCw8EDkkOTmQ4D6UiXuYkAsMgjZEj4DGTEOMtPLOHBuw/AUmDZ6n4BBwJg2fPLYJzz\nOCNFhhB36OXWUoQMiQLdirsxp7FGqLPBYsBxpLZPNtXW3EQAAM87Pg+2FrYGj4UtOSMF5oseUvOl\n0xTWCBmSrs1+y15YZuBIEOq8sM8AMc7iYwsoXVkKFnwLpkNBiLM6bZ/B8N3D4VrhNabDQDrAIoAQ\n8zhbDExNTPE2RCC3fbIx0q4K2JAzkmC+6CE1X5wtBnhPOkII6Y6zfQbTj06HKf2nwPSB040QFTKG\n4qpiuPHgBrzQ8wWmQ0GIdTptnwFeGXDPrYe3YMnPS5gOAyFOwmLAcaS2T7aHtbm1Uf5PuZQzY8B8\n0UNqvjg7zuDTMZ8C34Sz/zxOqaqtAgu+BfB4rQ88E5uL4VE1jkBGyBA422eA2IO/lg/V71e3WbzL\n1eXQY2MPOD2mHC5ffvr1prWkrXV97YPHxeMa+rgCAcCIEU+/h462+gxY+atzVFRDcszMGv7U/t3c\nHMDCovnF3BzA1NTwsRmrTnHpPBRQUFQEUFMFoFIBlJU1/KlSAVRWAtTXNyx1dVZQVVsNgUF1EBTI\nB0GjZ+01jbO5uPWxD0nHJSkWPK5hY7G27ngxaAsri8Ht2wBqNUBt7ZN/qtUA1dUtLxqNceJro7XD\nqOeprU0GgWC0wc/TEZpwgEGDeCC0BBCJAMTihj9FIgBLSwA+H8DEBMDUlAe9bafBgvdqYPlbhvvo\nJicnE/s0KhJhvughNV+sLAZRUUxHwB7JyQAEfu6eYLKGgsICAFOdbmc4YuhwEOqUsM8AMc5kjQnU\nfVgHJjzO3tyGEOM67TiD6/evw6AvBzEdBtIBSVNRINRZcbYYCM2EUFxVzHQYjCP1nubGKv9bSdRV\nARtyRhLMFz2k5oucn0A9w0FnCCGkO872GdRr6sHsYzOo/aCWqN86UcdcK7wGFnwLcHnGhelQEGKV\nTttnYGpiCpYCSyhXlzMdCtKjg9cOwvHrx5kOAyHO4WwxAMCmIgBy2yfbS2wmhkc1hp2Sgms5MzTM\nFz2k5ovIYnDy5MkX+/fvf8PFxSVz/fr1K9p7HOXbSnAUO+ozNKRnFEVBVW2VzvtbWxhnsjqEOhvi\n+gzq6+tN+/Xrd/P06dN+Eokkd+jQoZcOHz4c4urqeh0AxxlwjYbSAH8tHzSrdRsevv/Kfjh15xQc\nmHzAwJEhxC2s6zNITU31cnZ2vi2VSrMEAkHtjBkzjsTHx09iOi5EBmNNY41QZ0PcdBS5ubmSnj17\nZmvXHR0dcy5evDis8T6zZ88GqVQKAAA2NjYgl8sfz/WhbY8bPXo0aCgNnDx9EiwFlk+9/k3pN3Ct\n8BqobqkAAEDUVwQAAG/YvQF9bPtwZv+tW7eCXC4nJp7m9ueX/u9j2Pj/r7n1B4oH0LWgKwAA7E3f\nC+sOrnvifKpbKhjvPB6iFkY99X5d98/IyIDFixcb7Phc278quwrsxtoREw/p+7tp3OD4luMdPn5b\n68nJybBv3z4AgMffl60hrpno2LFjU0+ePPni119//RoAwMGDB2devHhx2Pbt298EoNdMlFOWA8N2\nD4PcpblPvXbjwQ2orK18anu/Z/qBlZkVZ/bXTopFSjzN7S82F4NzV+en9mlLQXkB5Knyntpub2UP\nErGk3ftrc2ao43Nt/7Tf08DzBU9i4iF9/zt/3oFpL03r8PHpaquZiLhikJKSMjwiIiLi5MmTLwIA\nrFu3bpWJiYlmxYoV6wHoFYO0vDSY//18+HPBnwaMGCGEyMe6PgNPT8+0zMxMl6ysLKlarTaLiYmZ\nHhgYmNCeY73+w+uQXpCu7xARQohziCsGfD6/7vPPP180bty4n2UymWL69Okx2juJ6KrT1Ok7PNYh\n9Z5mkmHO6MF80UNqvojrQAYAGD9+fOL48eMTO3qc+BnxUFpdqo+QEEKI04jrM2gLjjNACCH6WNdn\ngBBCyPiwGHAcqe2TJMOc0YP5oofUfGExQAghhH0GCCHUGWCfAUIIoTZhMeA4UtsnSYY5owfzRQ+p\n+cJigBBCCPsMEEKoM8A+A4QQQm3CYsBxpLZPkgxzRg/mix5S84XFACGEEPYZIIRQZ4B9BgghhNqE\nxYDjSG2fJBnmjB7MFz2k5guLAUIIIewzQAihzgD7DBBCCLUJiwHHkdo+STLMGT2YL3pIzRcWA4QQ\nQthngBBCnQH2GSCEEGoTFgOOI7V9kmSYM3owX/SQmi8sBgghhLDPACGEOgPsM0AIIdQmLAYcR2r7\nJMkwZ/RgvughNV9YDDguIyOD6RBYB3NGD+aLHlLzxUgxiIiIiHB0dMzx8PBI9/DwSE9MTByvfW3d\nunWrXFxcMvv3738jKSkpgIn4uKS0tJTpEFgHc0YP5oseUvPFZ+KkPB6PWrp06ealS5dubrxdoVDI\nYmJipisUCllubq7Ez8/v9K1bt/qamJhomIgTIYQ6C8aaiZrr1Y6Pj58UEhJyWCAQ1Eql0ixnZ+fb\nqampXkzExxVZWVlMh8A6mDN6MF/0kJovRq4MAAC2b9/+5v79+//j6emZtmnTpmU2NjaleXl5zw4f\nPjxFu4+jo2NObm6upOl7ebwW745CzYiOjmY6BNbBnNGD+aKHxHwZrBj4+/ufKigo6NF0+yeffPLf\nhQsXfvnhhx+uBQD44IMPPlq2bNmmPXv2hDV3HB6P98Sggtbuk0UIIdQ+BisGp06d8tdlv3nz5u2e\nOHHi9wAAEokkNzs7u6f2tZycHEeJRJJrqBgRQgg1YKTPID8/30H79xMnTkx2c3O7BgAQGBiYcOTI\nkRlqtdpMqVQ6ZWZmunh5eaUyESNCCHUmjPQZrFixYn1GRoacx+NRTk5Oyp07dy4AAJDJZIrg4OBY\nmUym4PP5dTt27Ahv2kyEEELIACiKYs2SmJj4Yr9+/W44OztnRkZGrmA6HjYsvXr1ynJzc7sql8vT\nhw4dmsp0PKQtc+bM2WtnZ1c4cODAa9ptDx8+7Orn53fKxcXllr+/f1JJSYkN03GSsjSXr9WrV0dI\nJJIcuVyeLpfL0xMTE19kOk5Slnv37vUcPXr0WZlM9veAAQP+2rZt21sUReZnjPFk6brU1dWZ9unT\n57ZSqZSq1WqBu7t7hkKhcGU6LtIXqVSqfPjwYVem4yB1OXfunM+ff/7p0fjL7Z133vls/fr171IU\nBZGRkStWrFgRyXScpCzN5SsiImL1pk2bljIdG4lLfn5+j/T0dDlFUaBSqYR9+/a9qVAoXEn8jLFm\nOorU1FQvZ2fn21KpNEsgENTOmDHjSHx8/CSm42IDCu/AapGPj895W1vbksbbEhISAkNDQ6MBAEJD\nQ6Pj4uKCmImOPM3lCwA/Yy3p0aNHgVwuzwAAEAqF5a6urtdzc3MlJH7GWFMMcnNzJT179szWrrc0\nBgE9icfjUX5+fqc9PT3Tvv7669eYjocNCgsL7e3t7QsBAOzt7QsLCwvtmY6JdNu3b3/T3d39SlhY\n2J7S0lIbpuMhUVZWljQ9Pd1j2LBhF0n8jLGmGGBHcvtcuHDBOz093SMxMXH8F1988cb58+d9mI6J\nTXg8HoWfvdYtXLjwS6VS6ZSRkSF3cHDIX7Zs2SamYyJNeXm5cOrUqce2bdv2tkgkUjV+jZTPGGuK\nQdMxCNnZ2T0dHR1zmIyJDRwcHPIBALp3735/8uTJJ3B6j7bZ29sXagdM5ufnO9jZ2RUxHRPJ7Ozs\nirRfaPPmzduNn7En1dbWCqZOnXps1qxZB4KCguIAyPyMsaYYeHp6pmVmZrpkZWVJ1Wq1WUxMzPTA\nwMAEpuMiWWVlpaVKpRIBAFRUVFglJSUFaMd0oJYFBgYmREdHhwIAREdHh2p/gFHzWho3hBr6UsLC\nwvbIZDLF4sWLt2q3E/kZY7oHm87y008/je/bt+/NPn363P70009XMR0P6cudO3ec3N3dM9zd3TMG\nDBjwF+bs6WXGjBmHHRwc8gQCgdrR0TF77969cx4+fNh17Nixp0m67Y+UpWm+9uzZM3fWrFn73dzc\nrg4aNOjKpEmT4goKCuyZjpOU5fz58yN4PJ7G3d09o/GttyR+xlj3DGSEEEL6x5pmIoQQQoaDxQAh\nhBAWA4QQQlgMEEIIARYDhBBCgMUAcdijR4+sv/zyy4Xa9by8vGdffvnl7/R9noiIiAhHR8eciIiI\nCH0fuy2+vr5nRSKR6vLly0OMfW7ELVgMEGeVlJTY7tixI1y7/uyzz+Z99913L+v7PDwej1q6dOlm\nJorB2bNnfT09PdNImM4AsRsWA8RZK1eujPznn3/6eHh4pK9YsWL93bt3e2lHx+7bt292UFBQXEBA\nQJKTk5Py888/X7Rx48blgwcP/vP555//o6SkxBYA4J9//ukzfvz4RE9Pz7SRI0eeu3nzZr/mzkU1\nmrUzIiIiIjQ0NHrkyJHnpFJp1vHjx6csX75846BBg66OHz8+sa6ujq+Nb8CAAX+7u7tfeeeddzYA\nANy/f7/7tGnTjnp5eaV6eXml/v777y8ANMxtM2fOnG8GDRp01d3d/crx48enGDp/qJNhetQbLrgY\nasnKyurVeN59pVIp1a5/8803s52dnTPLy8ut7t+/300sFj/auXPnfIqiYMmSJZu3bt36NkVRMGbM\nmDOZmZnOFEVBSkrKsDFjxpxpep6IiIjVGzduXKZdX716dYSPj8+5uro60ytXrgzq0qVL5cmTJ8dR\nFAWTJ08+HhcXN+nBgwfP9OvX74b2PY8ePRJTFAUhISGHfvvtN2+KouDu3bvPubq6KiiKgnfffXf9\nkiVLNmv3bzxidfTo0WcvX748mOl848LuhZHHXiJkDFQbc+z7+vqetbKyqrCysqqwsbEpnThx4vcA\nAG5ubteuXr06qKKiwur3339/oXE/g1qtNmvrvDwejxo/fnyiqalp/cCBA//SaDQm48aN+1l77Kys\nLOmECRN+sLCwqA4LC9szYcKEHyZMmPADAMDp06f9rl+/7qo9lkqlElVUVFidOXNmbExMzHTtdhsb\nm1L6GUGoZVgMUKdlbm5eo/27iYmJRrtuYmKiqaur42s0GhNbW9uS9PR0D7rHNjMzU2uPJRAIahuf\np66ujm9qalqfmprqdebMmbFHjx6d9vnnny86c+bMWIqieBcvXhymfX9jbRU3hDoC+wwQZ4lEIpV2\n1lY6tF+6IpFI5eTkpDx69Og07farV68O0kdsFRUVVqWlpTbjx49P3Lx589IrV664AwAEBAQkRUVF\nvaXdT7vd39//1BdffPGGdjs+QAbpGxYDxFnPPPPMQ29v7wtubm7XVqxYsb7xQ0SaPlCk6d+1699+\n++2re/bsCZPL5RkDBw78KyEhIVCXc7d0bO26SqUSTZw48Xt3d/crPj4+57ds2bIEACAqKuqttLQ0\nT3d39ysDBgz4e+fOnQsAAN5///2PS0pKbN3c3K7J5fKM5OTk0R1IDUJPwVlLEeqgNWvWrBYKheVM\nPeHL19f37KZNm5YNHjz4TybOj7gBrwwQ6iChUFi+a9eu+UwNOlMqlU6N+yUQag+8MkAIIYRXBggh\nhLAYIIQQAiwGCCGEAIsBQgghwGKAEEIIAP4fpbFEnCBosTAAAAAASUVORK5CYII=\n", + "text": [ + "<matplotlib.figure.Figure at 0x3529b90>" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 10.6, Page number: 522" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "%matplotlib inline\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "w=2*pi*60 #Angular freq of voltage(rad/sec)\n", + "Vo=230*sqrt(2) #volt\n", + "R=5.6 #Resistance(ohm)\n", + "\n", + "#Calculations:\n", + "Ls=[0]*101\n", + "tc=[0]*101\n", + "Idc=[0]*101\n", + "for n in range(1,101,1):\n", + " Ls[n-1]=n*10**-3\n", + " Idc[n-1]=2*Vo/(pi*R+2*w*Ls[n-1])\n", + " tc[n-1]=(1/w)*acos(1-(2*Idc[n-1]*w*Ls[n-1])/Vo)\n", + "\n", + "#Results:\n", + "plot(1000*np.array(Ls),Idc,'g.')\n", + "xlabel('Commutating inductance Ls [mH]')\n", + "ylabel('Idc [A]')\n", + "title('Load current,Idc vs Commutating inductance,Ls')\n", + "show()\n", + "plot(1000*np.array(Ls),1000*np.array(tc),'g.')\n", + "xlabel('Commutating inductance L [mH]')\n", + "ylabel('tc [msec]')\n", + "title('Commutating Inductance,Ls vs time,tc')\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEXCAYAAACtTzM+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlUE1f7B/AbNgVZAgIJCBjEogRBNnEpShQRF7DggmKL\n4EbfWmtdfm6tllhbxVrrWvuqL1W0RaVuVRQFlYC7RUFUqhYlgJiwrwKyZH5/6LQxBUQlJJDv55w5\nJ5PM3HnmJpknc++dCYOiKAIAAKCm6AAAAEA5ICEAAAAhBAkBAABeQkIAAABCCBICAAC8hIQAAACE\nECQEueLz+fzg4OD9io6jve3duzd06NChFxUdhypat27dijlz5uyWR9l6enqVQqGQ8zbr8ng8QWRk\n5Kw2DgnamMomBA6HIzx//ryXPLfBYDA65EUeoaGhe1etWrWmudeFQiFHTU1NIpFIlPLzU1FRob9g\nwYLNPXv2zNbT06vs3bt35sKFCzcVFxd3V3RsLXnTHxACgYBnaWmZK/3cihUr1u3evXtO20dHSGVl\npR6HwxG+zboMBoN61+9DU/urDDpTslPKL3R7aIsPqDJoaGjQkH2usbFRXRGxKIO6ujotLy+v83/+\n+afd2bNnfSorK/WuXr062NjYuOjGjRvuio4POp/OciwhhBBCUZRKThwOJ+v8+fMjZJ+vra3t8vnn\nn282NzfPMzc3z1uwYMGm58+fa1EURUpLS5njxo2LNTExKTA0NCzx9fU9+eTJkx70uo8fP7YeNmxY\nkp6eXoW3t3f8vHnztn300Uf7m4vh+PHjH/Tv3z9NX1+/3MbGJvPs2bOjKIoiPXv2FJ47d86LXi48\nPJxPl5OVlcVhMBiSyMjImVZWVtnDhg1L2rt3b8iQIUMuL1y48Ifu3bsXrVq16uvnz59rLV68+Hsr\nK6tsFosl/s9//vNTTU1NV4qiSGJiIq9Hjx5PNm7cuMjU1DTfzMzs6Z49e0IpiiI7d+4M09TUrNPS\n0nquq6tbOX78+N9l46ZjaGxsVKMoihQVFXX38/M7oa+vX+7u7n595cqVazw8PC7Sy9+9e9d+5MiR\nCUZGRsUsFku8du3aFbJlXrt2bSCbzRZJJBIG/dzRo0cDHB0db1MURa5fv+7u6uqaoq+vX85iscSL\nFi3a2FSd7t69ezaLxRI/e/ZMp7l6z8jIsPP09BQwmcxSe3v7uydOnPCjXwsJCdn7ySef7BgzZsxp\nXV3dSg8Pj4sikYg9f/78LUwms7Rv375/pqamOtHL9+zZU7hhw4b/c3BwSNfV1a2cOXNmpFgsZo0e\nPTpOX1+/fOTIkQmlpaVMut4tLCxypWOh3+u4uLjRWlpazzU1Net0dXUrnZycUimKIj///PMMOzu7\nDD09vYpevXo92rlzZxhFUaSqqqpb165da9TU1Bp1dXUr9fT0Kp4+fWrW1GclKipqupWVVbaxsXHh\nt99++wW97erqau3p06dHGRoaltjZ2WWsX79+qWx80hODwZA8evSoF11Pc+fO/XHcuHGxenp6FQMH\nDrxGv0ZRFImPj/fu06fPfQMDg7J58+Zt8/T0FERGRs6U/Tw39XkqLi42Cg0N3WNubp5naGhYEhAQ\ncPTZs2c6svsrEonY169fdx80aNBVJpNZamZm9nTevHnb6urqNKVj/u9///vxe++995DJZJZ++umn\n26X3adeuXXPo+uVyufdu3brlTFEUycvLM58wYcIRExOTAmtr68dbt279rLl64fF4ifS+SU81NTVd\nP/zww1+6d+9exGQySwcMGHAjPz/fVNHHvpYmhQegqKm5hLBq1aqvBw8efKWwsNC4sLDQeMiQIZdX\nrVr1Nf1BPXr0aEBNTU3XyspK3cmTJ8f4+/sfo9cdNGjQ1cWLF39fV1enmZycPFRPT68iODh4X1Pb\nv379uruBgUEZfeDPy8szv3//fp+mYuPz+eGyX/KQkJC91dXV2jU1NV337NkTqqGhUb99+/ZPGxsb\n1WpqarouWLBg0wcffHC8tLSUWVlZqevn53dixYoVaynqxYFJQ0OjPjw8nN/Q0KB++vTpMTo6Os/K\nysoMKIoioaGhe+h9bmqS/QJPmTLl4JQpUw5WV1dr3717175Hjx5Phg4dmkxRFKmoqNBjs9miH374\nYeHz58+1Kisrda9fv+7eVLk2NjaZCQkJI+n5SZMm/bZ+/fqldN3+8ssvH1IURZ49e6Zz7dq1gU2V\nMWXKlIOhoaF7mou9rq5O08bGJnPdunXL6+vrNS5cuDBcT0+v4sGDB7YU9eJAZ2xsXHjr1i3n2tra\nLiNGjDjfs2dP4f79+z+SSCSMlStXrhk+fPgF6c/R4MGDrxQUFJjk5eWZm5qa5js7O99KS0vrT6+/\nevXqr+h6lz3gSr/XfD4/XPbzcurUqbGPHz+2piiKJCUlDdPR0XlGH7QEAoGnbHlNfVbCwsJ21tbW\ndrl9+7Zjly5daunP2bJlyyJ4PF5iWVmZwZMnT3o4ODikW1pa5jRXd7IJoXv37kV//PGHW0NDg/qH\nH374y9SpUw9QFEUKCwuN9fT0Ko4cOTKhoaFBfdOmTQs0NDTq6YOmdIxNfZ7Gjh17aurUqQfKysoM\n6uvrNZKTk4c2t783b950uX79untjY6OaUCjsaWdnl7F58+bPpWP28/M7UV5erp+Tk2NpYmJScObM\nGR+KokhMTMzkHj16PElJSXGlKIpkZmbaZGdnWzU2Nqq5uLjcXLNmzcr6+nqNx48fW/fq1esR/YNN\ndmouIfz3v//92M/P70RNTU1XiUTCuHXrlnNFRYWeoo99LU0KD0BRU3MJwcbGJjMuLm40PX/27NlR\nHA4nq6kyUlNTnQwNDUsoiiLZ2dlWGhoa9dXV1dr069OmTfu1uTOEsLCwnc39ypWNralffVlZWRz6\n9T179oRaWVll0/MSiYTRrVu3KulfbFeuXBlsbW39mKJeHJi0tbWr6S8gRVHE1NQ0nz5Qh4aG7lm5\ncuWa5upO+gvc0NCgrqmpWUcfUCmKIl988cW39BlCdHR0kIuLy83WvCcrV65cM3PmzEiKepFIunXr\nVpWTk2NJURQZNmxYUnh4OL+wsNC4pTK8vb3j6cTX1JScnDyUzWaLpJ8LCgqK5vP54RT14kAXFha2\nk35t27Zt87hc7j16Pj093YHJZJZKv1fR0dFB9PzEiRMPz50790fp9ekfDa9LCLK/nJua/P39j23Z\nsmV+c+U19VnJy8szp193d3e/fujQoUCKokivXr0excfHe9Ov/e9//5vV2jOE0NDQPXPmzNlFv3b6\n9Okxffv2/ZOiKBIVFTV98ODBV6TXtbCwyG3NGcLTp0/N1NTUGukfJ9JTU/srO23atGlBQEDAUemY\nL1++PISeDwwMPET/yBg1atTZpn75X7t2baD094miKLJ27doVM2bM+LmpbTaXEH7++ecZQ4YMuZye\nnu7Qms+/Mkwq24fQnKdPn5r37Nkzm563srLKefr0qTkhhFRXV+t8/PHHOzkcjtDAwKDc09Mzqby8\n3ICiKMbTp0/NDQ0NS7W1tWvodaXLkfXkyRMLGxubR28bp2znmvR8YWGhSXV1tY6rq+tNQ0PDUkND\nw9IxY8bEFRUVGdPLdO/evVhNTU1Cz+vo6FRXVVXpvmkchYWFJg0NDRrS27eyssqhH+fm5lr26tXr\ncWvKmjZtWvTRo0cn1NXVaR09enSCq6vrTbrcyMjIWQ8fPrS1s7P7093d/capU6fGNVVG9+7di+n3\nqylPnz41l627nj17ZtPrMBgMytTUtIB+rWvXrrXS89ra2jWy9cRisfKlX5ee79q1a+3b1CstLi5u\nzKBBg65179692NDQsPT06dNj37RznM1mi+nH0u+zbF1YWFg8eZNyZfdbulzZslrbGZybm2tpZGRU\nYmBgUN6a5R8+fGjr6+sba2ZmJjIwMCj/8ssvv5Wtn+b2v7nvYHZ2dk/6+0xP69atW1FQUGDampho\nwcHB+318fM5OnTr1YI8ePfKWLVu2vqk+P2WChCDD3Nz8qfTQupycHKsePXrkEULIxo0bFz98+ND2\nxo0b7uXl5QZJSUmeFEUxKIpimJmZiUpLSw2rq6t16HWzs7N7NtfZZGlpmZuZmdm7qde6dev27Nmz\nZ93oebFYzJZdRrZc6XljY+MibW3tmoyMDG5paalhaWmpYVlZGbOiokK/NXXwJh1kJiYmhRoaGg05\nOTlW9HPSj62srHIeP37cqzVl2dnZ/dmzZ8/suLi4MdHR0dOmTZsWTb/Wu3fvzOjo6GmFhYUmy5Yt\nWz9p0qTDNTU12rJljBw58tzZs2d9pN8Haebm5k9zc3MtKYpi0M9lZ2f3pN/jtiBdtrRu3bo9k46r\nsbFRvbCw0ISel63358+fd5k4ceKRpUuXfldQUGBaWlpqOHbs2NN0+U29T2/y3pmZmYlyc3Mt6Xnp\nx++CrmN6nqIohvS8rq5ulXQ9SH++LS0tc0tKSozKy8sNZMttat8++eSTn7hcbkZmZmbv8vJyg2+/\n/fbL1o5+a+47aGVllWNtbZ1Ff3dKS0sNKyoq9GNjY31bUy5NQ0Oj4auvvvr63r179leuXBkSGxvr\nu2/fvulvUkZ7U+mEUFdXp1VbW9uVnhoaGjSCgoIOfPPNNyuLioqMi4qKjL/++uuvPvroo18IIaSq\nqkpXW1u7xsDAoLykpMRo9erV4XRZPXv2zHZzc0sJDw9fXV9fr3np0iWPlj5As2bNityzZ8+MCxcu\njJBIJGp5eXk9Hjx40IcQQpycnNIOHjw4taGhQSMlJcXtyJEjE9/ki66mpiaZM2fO7gULFmymDzh5\neXk94uPjR7VmfRaLlS97EA8NDd07Y8aMPbLLqqurN06YMOEon8/n19TUaGdkZHCjoqJC6HjHjRt3\nSiQSmW3ZsuXz58+fd6msrNRrabTPtGnTojdv3rzg4sWLQydPnvwb/fwvv/zyEb0vBgYG5QwGg5I+\nw6EFBwfvt7S0zJ04ceKRBw8e9JFIJGrFxcXd165d+wX9a1tHR6f6u+++W1pfX68pEAh4sbGxvlOn\nTj1ISPMH87Zga2v7sLa2tuvp06fH1tfXa37zzTcrnz9/3oV+nc1mi4VCIYeOoa6uTquurk7L2Ni4\nSE1NTRIXFzdG+j1ksVj5xcXF3aUT/ZvEHxgYGLNu3boVZWVlzLy8vB7bt2+f19rPWUvbGTt27Ol7\n9+7ZHzt2LKChoUFj69at86UP+k5OTmnJycnDcnNzLcvLyw3WrVu3gn7NzMxMNGbMmLi5c+fuKCsr\nY9bX12smJycPa25/q6qqdPX09Cp1dHSq79+/3/enn3765HVx07HPnj37f99///3/3bp1y4WiKEZm\nZmbvnJwcK3d39xt6enqV33333dKamhrtxsZG9bt37/ZLSUlxI+TF8FfZz159fb2m9LGE/mzduXPH\nobGxUV1PT69SU1OzXl1dvbE19asoKp0Qxo4de1pHR6eanr7++uuvVq5c+Y2bm1uKo6NjuqOjY7qb\nm1vKypUrvyGEkAULFmyuqanRNjY2LhoyZMiVMWPGxEl/gaKjo6ddv359oJGRUcnXX3/9VUhISFRz\n2x4wYMAfe/bsmbFw4cJNTCazjMfjCehf1mvWrFn16NEjG0NDw1I+n8//8MMPf5Vet6mzA9nn1q9f\nv6x3796ZgwYNumZgYFDu7e2d8PDhQ9vmypA2a9asyIyMDK6hoWHphAkTjhLy4tejh4fHpabW3759\n+7yqqipdNpstnjlz5s8zZ878mX5NT0+vMiEhwfvkyZN+ZmZmIltb24cCgYDX3LaDgoIOJCcnD/Py\n8jpvZGRUQj9/9uxZn379+t3V09OrXLhw4aaDBw9O7dKly3PZ9bW0tOrOnTs3sm/fvve9vb0TDAwM\nygcOHHi9pKTEaNCgQdc0NTXrT5486RcXFzfGxMSkcN68edv3798fbGtr+7Cpumyqbl930GxufQMD\ng/IdO3bMnT179v8sLCye6OrqVkk3pdAJsHv37sVubm4penp6lVu3bp0fGBgYY2RkVHLgwIGgDz74\n4Hd6+b59+94PCgo60KtXr8dGRkYlIpHIrKn4m4vzq6+++trCwuKJtbV11qhRo+InT578m5aWVt2b\n7pfs68bGxkW//fbb5OXLl0cYGxsXZWZm9pb+7IwcOfLclClTDjk6OqYPGDDgDz8/v5PSZe3fvz9Y\nU1Ozvm/fvvdZLFb+1q1b5ze1v2KxmP3999//X3R09DR9ff2KsLCwXVOnTj3Y0v5Lxz1p0qTDX375\n5bfTpk2L1tfXr5gwYcLR0tJSQzU1NUlsbKxvWlqaU69evR6bmJgUhoWF7aITUW5uruX7779/Wbrc\nTz755CfpY8msWbMixWIxe/Lkyb8ZGBiUc7ncDB6PJ1D2C1UZFNU5hs+C/NTV1Wk5OzunpqenOyr7\nLxx4ez/99NMnMTExgYmJicMVHYsymzNnzu7AwMAYb2/vBEXH0tbknhAaGxvV3dzcUiwsLJ6cPHnS\nr6SkxGjKlCmHsrOze3I4HGFMTEwgk8ksk2sQAPAvYrGY/ejRI5vBgwdf/euvv97z9fWN/eyzz7bN\nnz9/q6JjA8WQe5PRli1bPudyuRn0aVpERMRyuvnCy8vrfERExHJ5xwAA/1ZXV6f1n//857/6+voV\nXl5e5/39/Y/PnTt3h6LjAgWS55jW3NxcCy8vr3MXLlwY7uvre5KiKNKnT5/7YrGYRVEUEYlE7D59\n+txX9NhbTJgwYcJEEbmOiV24cOGmDRs2LJEeFZCfn8+ixy+zWKz8/Px8lux6nea+IAAA7Yh6x1Fy\ncmsyio2N9TU1NS1wdnZObS7Ilm4KpehMqSxTeHi4wmNQlgl1gbpAXTQ/tQW5nSFcuXJlyIkTJ8af\nPn16bG1tbdeKigr94ODg/SwWK18sFrPZbLZYJBKZSV8FCgAAiiO3M4S1a9d+kZuba5mVlWV98ODB\nqSNGjLiwf//+4PHjx5+IiooKIYSQqKioEH9//+PyigEAAFqv3S5Mo5uGli9fHpGQkOBta2v78MKF\nCyOWL18e0V4xdEQ8Hk/RISgN1MU/UBf/QF20HaW8MI3BYFDKGBcAgLJiMBiEUtZOZQAA6FiQEAAA\ngBCChAAAAC8hIQAAACEECQEAAF5CQgAAAEIIEgIAALyEhAAAAIQQJAQAAHgJCQEAAAghSAgAAPAS\nEgIAABBCkBAAAOAlJAQAACCEICEAAMBLSAgAAEAIQUIAAICXkBAAAIAQQoiGogNoSdjJMPKw+CHR\n0dQh0ROjCbMrU9EhAQB0WnI7Q6itre06cODA605OTmlcLjdjxYoV6wghhM/n8y0sLJ44OzunOjs7\np545c2Z0c2U8LH5IkrKTSFxmHAk7GSavUAEAgMjxDKFr1661iYmJw3V0dKobGho0PDw8Ll26dMmD\nwWBQixYt+mHRokU/vK4MHU0dQgghA8wHkF1+u+QVKgAAEDn3Iejo6FQTQkhdXZ1WY2OjuqGhYSkh\nhFAUxWjN+tETo8lk7mQSHxyP5iIAADmTax+CRCJRc3FxufXo0SObTz755Cd7e/t7hw8fnrRt27bP\n9u3bN93NzS1l48aNi5lMZpnsunw+nxBCCJdwSZpJGuHxePIMFQCgQxEIBEQgELRpmQyKotq0wKaU\nl5cb+Pj4nI2IiFjO5XIzTExMCgkhZNWqVWtEIpFZZGTkrFeCYjCo9ogLAKCzYDAYrW59aU67DDs1\nMDAoHzdu3KmUlBQ3U1PTAgaDQTEYDGr27Nn/u3Hjhnt7xAAAAC2TW0IoKioyLisrYxJCSE1NjXZC\nQoK3s7NzqlgsZtPLHDt2LMDBweGOvGIAAIDWk1sfgkgkMgsJCYmSSCRqEolELTg4eL+Xl9f56dOn\n70tLS3NiMBiUtbV11s6dOz9uTXm4JgEAQL7apQ/hTTXVh8DbyyNJ2UmEEEImcyeTmMkxiggNAEAp\ndZg+hLaAaxIAAOSrw5whlNWWkbCTYWSX3y40FwEAyGiLM4QOkxAAAKB5KtVkBAAA8oWEAAAAhBAl\nv/11SzAMFQCgbXXYMwTcGhsAoG112ISAYagAAG2rw44ywjBUAIB/YNgpAAAQQjDsFAAA2hASAgAA\nEEI68LBTaRiCCgDw7jrFGQKGoAIAvLtOkRAwBBUA4N11ilFGGIIKAKoOw04BAIAQgmGnAADQhjrF\nKCNpGHEEAPB25HaGUFtb23XgwIHXnZyc0rhcbsaKFSvWEUJISUmJkbe3d4Ktre3DUaNGxZeVlbXp\nERsjjgAA3o7cEkLXrl1rExMTh6elpTmlp6c7JiYmDr906ZJHRETEcm9v74SHDx/aenl5nY+IiFje\nltvFiCMAgLcj1yYjHR2dakIIqaur02psbFQ3NDQsPXHixPikpCRPQggJCQmJ4vF4gqaSAp/P//sx\nj8cjPB6vVduMnhiNEUcA0OkJBAIiEAjatEy5jjKSSCRqLi4utx49emTzySef/PTdd98tNTQ0LC0t\nLTUkhBCKohhGRkYl9PzfQWGUEQDAG2mLUUZyPUNQU1OTpKWlOZWXlxv4+PicTUxMHC79OoPBoBgM\nBo78AABKoF2GnRoYGJSPGzfu1M2bN11ZLFa+WCxmE0KISCQyMzU1LZDntsNOhhHeXh4Z++tYUlZb\nJs9NAQB0aHJLCEVFRcb0CKKamhrthIQEb2dn59Tx48efiIqKCiGEkKioqBB/f//j8oqBEIw6AgBo\nLbk1GYlEIrOQkJAoiUSiJpFI1IKDg/d7eXmdd3Z2Tg0MDIyJjIycxeFwhDExMYHyioEQjDoCAGit\nTn/rCtznCABUAe5lBAAAhJAOMMpI2eC2FgAAzVOpm9uhgxkAoHkqlRDQwQwA0DyV6kNABzMAdFbo\nVAYAAEIIOpXfCTqYAQBepVJ9CNLQwQwA8CqVTQjoYAYAeJXK9iGggxkAOhN0KgMAACEEncptCp3M\nAKDqVLYPQRY6mQFA1SEhvIROZgBQdehDeAmdzADQkaFTWU7QnwAAHU1bJAQ0GTUB/QkAoIqQEJqA\n/gQAUEVySwi5ubmWw4cPT7S3t7/Xr1+/u1u3bp1PCCF8Pp9vYWHxxNnZOdXZ2Tn1zJkzo+UVw9uK\nnhhNJnMnk/jgeDQXAYDKkFsfglgsZovFYraTk1NaVVWVrqur683jx4/7x8TEBOrp6VUuWrToh2aD\nwoVpAABvRKkvTGOz2WI2my0mhBBdXd0qOzu7P/Py8noQQt456PaEDmYAUBXtcqWyUCjkpKamOg8a\nNOja5cuX39+2bdtn+/btm+7m5paycePGxUwms0x2HT6f//djHo9HeDxee4T6L3QHMyEvkkPM5BiF\nxAEAIE0gEBCBQNCmZcp92GlVVZUuj8cTrFy58ht/f//jBQUFpiYmJoWEELJq1ao1IpHILDIyctYr\nQSlRk9HYX8eSuMw4MsB8APoUAEBpKf11CPX19Zq+vr6xY8aMiVuwYMFm2deFQiHHz8/v5J07dxxe\nCUqJEgIuWAOAjkCp+xAoimLMmjUrksvlZkgnA5FIZGZmZiYihJBjx44FODg43JFXDG2B2ZX5SjMR\n+hQAoLOS2xnCpUuXPIYNG5bs6OiYzmAwKEIIWbt27RcHDhwISktLc2IwGJS1tXXWzp07P2axWPmv\nBKVEZwiyeHt5f/cpTOZORp8CACgFpW8yelvKnBDQpwAAyggJQQGk+xSWJixF8xEAKAUkBAVD8xEA\nKAvc3E7BcM8jAOhMcIbwDjAkFQCUBZqMlAyGpAKAoqDJSMngfxQAoCNDQmhD6FMAgI4MTUZtCENS\nAUBR5N6H0JrbSpiYmBReuHBhxLsE8a+gOmhCkIYhqQDQnuR+L6PGxkb1uLi4MS1tZPz48SfeJYDO\nCs1HANDRtHiGcOnSJQ8PD49LLRVw8eLFoUOHDr3YpkF1gjMENB8BQHtS2LDTnJwcq0OHDk1ZsmTJ\nhnfZeHM6Q0KQhuYjAJC3dh12WlBQYPrjjz9+6uHhcYnH4wnEYjH7XTasStB8BAAdQYt9CBUVFfpH\njx6dcODAgaDMzMze/v7+x7Oysqzp/0aG1omeGP3KFc24gA0AlFGLTUba2to13t7eCV988cXaQYMG\nXSOEEGtr66ysrCxruQbVyZqMZKEJCQDamtybjNatW7ciPz+fNXfu3B0RERHLHz16ZPMuG4MX0IQE\nAMqoVZ3Kjx49sjl48ODUgwcPTv3rr7/eW716dXhAQMAxW1vbh3IJqpOfIWAEEgC0NYWMMrpz547D\ngQMHgg4dOjRFXmcMnT0hSEPzEQC0BdzttBPAX3ICQFuQex+Cr69v7OsKaG6Z3Nxcy+HDhyfa29vf\n69ev392tW7fOJ4SQkpISI29v7wRbW9uHo0aNii8rK1PpI2D0xGgymTuZxAfHk6UJSwlvL4+M/XUs\nKastU3RoAKBiWjxDMDAwKB82bFhySwXcvXu3X1OjjsRiMVssFrOdnJzSqqqqdF1dXW8eP37cf8+e\nPTOMjY2Lli5d+t369euXlZaWGkZERCx/JSgVOkOQhuYjAHhbcr+X0e+///7B6wro0qXL86aeZ7PZ\nYjabLSaEEF1d3So7O7s/8/Lyepw4cWJ8UlKSJyGEhISERPF4PIFsQlBVGH0EAIrULn0IQqGQ4+np\nmXT37t1+VlZWOaWlpYaEEEJRFMPIyKiEnv87KAaDCg8P/3uex+MRHo8n9zgVTfYvOXEBGwA0RyAQ\nEIFA8Pf86tWrlb9TuaqqStfT0zNp1apVa/z9/Y8bGhqWSicAIyOjkpKSEqNXglLRJiNZaEICgNZS\n+r/QrK+v15w4ceKR4ODg/f7+/scJIYTFYuXT90ESiURmpqamBfKMoSOTbkLS0dRBhzMAyFWrEkJV\nVZVuY2OjOj3f2Nio/uzZs24trUNRFGPWrFmRXC43Y8GCBZvp58ePH38iKioqhBBCoqKiQuhEAf8m\nPQJJWCbE/zUDgFy1qslo4MCB18+fP++lq6tbRQghlZWVej4+PmevXLkypLl1Ll265DFs2LBkR0fH\ndAaDQRHy4lYY7u7uNwIDA2NycnKsOByOMCYmJpDJZL7ykxdNRv+G6xUAoCXtdmGak5NTWlpamtPr\nnmsrSAhmTVezAAAZPklEQVT/httdAEBL2q0PoVu3bs9u3rzpSs+npKS4aWtr17zLhuHNMLsySczk\nGMLsyiQPix+i+QgA2lyL1yHQNm/evCAwMDDGzMxMRMiLzuBDhw5NkW9o0BzZ6xUwPBUA2kKrh53W\n1dVpPXjwoA+DwaD69OnzQFNTs15uQaHJqEWy1ytgeCoAyL0P4ciRIxNfHpwZdMewtAkTJhx9l403\nGxQSwhuR7nDmmnCJsEyIswUAFSP3hBAaGrqXwWBQBQUFpleuXBkyYsSIC4QQkpiYOHzIkCFXYmNj\nfd9l480GhYTwRqTPGPwP+uNsAUAFyf1eRnv37g0lhBBvb++EjIwMrnQfQkhISNS7bBjaDt3hTEjT\nF7PhbAEAWqNVo4xyc3Mt6RvVEfLiauOcnBwr+YUFbwsXswHA22rVKKORI0ee8/HxOTtt2rRoiqIY\nhw4dmuLt7Z0g7+DgzTV3toDRSADwOq0aZURRFOPYsWMBycnJwxgMBjVs2LDkgICAY3ILCn0IbQKj\nkQBUB/5CE94IRiMBdF5yTwi6urpVTQ03fblxqqKiQv9dNt5sUEgIcoHRSACdl9xHGVVVVem+S+Gg\nXDAaCQBaItf/QwDlhdFIACCrVaOMoPPBaCQAkIUzBHjlbAF3UwVQXUgI8MqttQnBX3cCqCoMO4V/\naW40kjXTmlgZWKEpCUAJyX2UEaim5voXtNS1/k4OYSfDMFQVoJNBkxG0SLp/Qb/Li8tOpDuf0ZwE\n0HnILSHMnDnzZxaLle/g4HCHfo7P5/MtLCyeODs7pzo7O6eeOXNmtLy2D21Dun+hpc5nl50uSA4A\nHZzcEsKMGTP2yB7wGQwGtWjRoh9SU1OdU1NTnUePHn1GXtuHttdS57O5njlGJgF0cHJLCEOHDr1o\naGhYKvv8u3Z6gPJAcxJA59Luncrbtm37bN++fdPd3NxSNm7cuJjJZDZ5tODz+X8/5vF4hMfjtVOE\n0FrSnc/RE6NfubMq3ZxECCEuO10wOgmgjQkEAiIQCNq0TLkOOxUKhRw/P7+Td+7ccSCEkIKCAlMT\nE5NCQghZtWrVGpFIZBYZGTnrX0Fh2GmHJ31nVS11LXI59zIhBDfSA5CXthh22q6jjExNTQsYDAbF\nYDCo2bNn/+/GjRvu7bl9aD/NNSfhQjcA5dWuTUYikciM/l/mY8eOBUiPQILOpbnmJOkL3cJOhv3d\nvITmJADFk1tCCAoKOpCUlORZVFRkbGlpmbt69epwgUDAS0tLc2IwGJS1tXXWzp07P5bX9kF5tHQj\nPekEgb4GAMXCrSugXcn+rSf6GgDaBv5CEzo86QQx7cg0/MUnwFtCQoBOpaW/+ERfA0DLkBCg05Ju\nSooPjsddVwFeA3c7hU5L9kK35u66io5ogLaDMwToEJrra5DtiEbTEqgqNBmBSmouOaBpCVQZEgKo\nvNYOY0VygM4OCQFABpqWQFUhIQC0AE1LoEqQEABaCU1L0NkhIQC8JTQtQWeDhADQBtC0BJ0BEgJA\nG0PTEnRUSAgAcoamJegokBAA2hGalkCZISEAKMjbNi0tTViKMwmQCyQEACXR2qalgmcFOJMAuUBC\nAFBCLTUtoR8C5AUJAUDJyTYtvU0/hGk3U/x7HLyWUieEmTNn/nzq1KlxpqamBXfu3HEghJCSkhKj\nKVOmHMrOzu7J4XCEMTExgUwms+xfQSEhgApobT+EiY4JKawuJITgTAKap9QJ4eLFi0N1dXWrpk+f\nvo9OCEuXLv3O2Ni4aOnSpd+tX79+WWlpqWFERMTyfwWFhAAqqLmzB4OuBuTc43M4k4AWKXVCIIQQ\noVDI8fPzO0knhL59+95PSkryZLFY+WKxmM3j8QT379/v+6+gkBBAxUknB0IIziTgtTrcX2jm5+ez\nWCxWPiGEsFis/Pz8fFZzy/L5/L8f83g8wuPx5B4fgLJgdmWSmMkxf89LP5b+e9FpR6YRQsi/ziR2\n+e165UxC+q9GcSbROQgEAiIQCNq0zHY9QzA0NCwtLS01pF83MjIqKSkpMfpXUDhDAGgVnEkArcOd\nIdBNRWw2WywSicxMTU0L2nP7AJ0NziSgLbVrQhg/fvyJqKiokGXLlq2PiooK8ff3P96e2wdQJdLJ\nQjo5EPLqmYSOpg4hhPx9JkEnB+kzibCTYa+cSSBZdE5yazIKCgo6kJSU5FlUVGTMYrHyv/76668+\n+OCD3wMDA2NycnKsMOwUQDm8zegm6WSB23MoB6UfZfS2kBAAFKO1fRLSyaK1t+fAWYV8ISEAQLtp\nLlm09vYcLXVmI1m8OyQEAFC41t6eA01Q8oWEAABKTZ5NUEgWr0JCAIAO612boNBf8SokBADodN7k\nDrHv2l/RmRIHEgIAqJS27q/oTB3dSAgAAC+9TX9FW3R0K0viQEIAAGiF5pKF9OO37ehWlsSBhAAA\n0IbepqNbWRIHEgIAQDtoqe+CEOVIHIbahkgIAADKQpGJI2tBFhICAEBHI5fEMesyEgIAQGf1Ronj\nozgkBAAAVVdWW4Y+BAAAeKEtRhmptVUwAADQsSEhAAAAIQQJAQAAXkJCAAAAQgghGorYKIfDEerr\n61eoq6s3ampq1t+4ccNdEXEAAMA/FJIQGAwGJRAIeEZGRiWK2D4AAPybwpqM3nV4FAAAtC2FnSGM\nHDnynLq6euPHH3+8c86cObtll+Hz+X8/5vF4hMfjtWOEAADKTSAQEIFA0KZlKuTCNJFIZGZmZiYq\nLCw08fb2Tti2bdtnQ4cOvfh3ULgwDQDgjXTYC9PMzMxEhBBiYmJSGBAQcAydygAAitfuCaG6ulqn\nsrJSjxBCnj171i0+Pn6Ug4PDnfaOAwAAXtXufQj5+fmsgICAY4QQ0tDQoPHhhx/+OmrUqPj2jgMA\nAF6Fm9sBAHQCHbYPAQAAlA8SAgAAEEKQEAAA4CUkBAAAIIQgIQAAwEtICAAAQAhBQgAAgJeQEAAA\ngBCChAAAAC8hIQAAACEECQEAAF5CQgAAAEIIEgIAALyEhAAAAIQQJAQAAHgJCQEAAAghSAgAAPAS\nEgIAABBCkBCUnkAgUHQISgN18Q/UxT9QF21HIQnhzJkzo/v27Xv/vffe+2v9+vXLFBFDR4EP+z9Q\nF/9AXfwDddF22j0hNDY2qs+bN2/7mTNnRmdkZHAPHDgQ9Oeff9q1dxwAAPCqdk8IN27ccO/du3cm\nh8MRampq1k+dOvXg77///oHscmN/HUvKasvaOzwAANVFUVS7Tr/99tuk2bNn76bn9+/f/9G8efO2\nSS9DCKEwYcKECdObTe96fNYg7YzBYFCvW4aiKEZ7xAIAAP9o9yajHj165OXm5lrS87m5uZYWFhZP\n2jsOAAB4VbsnBDc3t5S//vrrPaFQyKmrq9M6dOjQlPHjx59o7zgAAOBV7d5kpKGh0bB9+/Z5Pj4+\nZxsbG9VnzZoVaWdn92d7xwEAADLau1P5dVNcXNzoPn363O/du/dfERERyxQdT3tOOTk5ljweL5HL\n5d6zt7e/u2XLlvkURZHi4mKjkSNHJrz33nsPvb2940tLS5mKjrU9poaGBnUnJ6dUX1/fk6pcD6Wl\npcyJEyce7tu37592dnYZ165dG6iqdbF27doVXC73Xr9+/e4EBQVF19bWdlGVupgxY8bPpqam+f36\n9btDP9fSvq9du3ZF7969/+rTp8/9s2fPjmrNNhS+k9JTQ0ODuo2NTWZWVhanrq5Os3///mkZGRl2\nio6rvSaRSMROTU11oiiKVFZW6tra2j7IyMiwW7JkyXfr169fSlEUiYiIWLZs2bIIRcfaHtPGjRsX\nTZs27Vc/P78TFEURVa2H6dOnR0VGRs6kKIrU19drlJWVGahiXWRlZXGsra0f19bWdqEoigQGBh7a\nu3dviKrURXJy8tBbt245SyeE5vb93r173P79+6fV1dVpZmVlcWxsbDIbGxvVXrcNhe+k9HTlypXB\nPj4+Z+j5devWLV+3bt1yRcelqOmDDz44npCQMLJPnz73xWIxi6JeJI0+ffrcV3Rs8p5yc3MtvLy8\nzl24cGE4fYagivVQVlZmYG1t/Vj2eVWsi+LiYiNbW9sHJSUlhvX19Rq+vr4n4+PjvVWpLrKysjjS\nCaG5fV+7du0K6RYWHx+fM1evXh30uvKV6l5GeXl5PSwtLXPpeQsLiyd5eXk9FBmTogiFQk5qaqrz\nwIEDr+fn57NYLFY+IYSwWKz8/Px8lqLjk7eFCxdu2rBhwxI1NTUJ/Zwq1kNWVpa1iYlJ4YwZM/a4\nuLjcmjNnzu5nz551U8W6MDIyKlm8ePFGKyurHHNz86dMJrPM29s7QRXrgtbcvj99+tRcevRma4+l\nSpUQWnONgiqoqqrSnThx4pEtW7Z8rqenVyn9GoPBoDp7PcXGxvqampoWODs7p1LNXJOiCvVACCEN\nDQ0at27dcpk7d+6OW7duuXTr1u1ZRETEcullVKUuHj16ZLN58+YFQqGQ8/TpU/OqqirdX3755SPp\nZVSlLpryun1vTb0oVULANQqE1NfXa06cOPFIcHDwfn9//+OEvMj8YrGYTQghIpHIzNTUtECxUcrX\nlStXhpw4cWK8tbV1VlBQ0IELFy6MCA4O3q9q9UDIi192FhYWTwYMGPAHIYRMmjTp8K1bt1zYbLZY\n1eoiJSXFbciQIVe6d+9erKGh0TBhwoSjV69eHayKdUFr7jsheyx98uSJRY8ePfJeV55SJQRVv0aB\noijGrFmzIrlcbsaCBQs208+PHz/+RFRUVAghhERFRYXQiaKzWrt27Re5ubmWWVlZ1gcPHpw6YsSI\nC/v37w9WtXoghBA2my22tLTMffjwoS0hhJw7d26kvb39PT8/v5OqVhd9+/a9f+3atUE1NTXaFEUx\nzp07N5LL5WaoYl3QmvtOjB8//sTBgwen1tXVaWVlZVn/9ddf77m7u994bYGK7iSRnU6fPj3G1tb2\ngY2NTebatWtXKDqe9pwuXrzowWAwJP37909zcnJKdXJySo2LixtdXFxs5OXlda6zD6trahIIBJ70\nKCNVrYe0tLT+bm5ufzg6Ot4OCAg4WlZWZqCqdbF+/fql9LDT6dOnR9XV1WmqSl1MnTr1gJmZ2VNN\nTc06CwuL3J9//nlGS/v+7bfffmFjY5PZp0+f+2fOnPFpzTYYFKWSzW0AACBDqZqMAABAcZAQAACA\nEIKEAAAALyEhAAAAIQQJQWWIxWL21KlTD/bu3TvTzc0tZdy4caf++uuv9xQd1++///5Ba/5TW3a5\n8PDw1efPn/dqixjGjRt3qqKiQr+1ywuFQo6Dg8Odt9lWUlKS59WrVwe/zbrvSiAQ8Pz8/E6+6Xp8\nPp9vYWHxhM/n899kPR6PJ7h586YrPS9dbxcvXhzK5XIz3rYeQT6QEFQARVGMgICAYyNGjLiQmZnZ\nOyUlxW3dunUrlOES/2PHjgVkZGRw33S51atXh3t5eZ1vixhOnTo1Tl9fv6ItynqdxMTE4VeuXBnS\nHttqKwwGg1q0aNEPb5oQWrpydujQoRfj4uLGtEmA0GaQEFRAYmLicC0trbqwsLBd9HOOjo7pHh4e\nlwghZMmSJRscHBzuODo6psfExAQS8uLXpKenZ5K/v/9xGxubR8uXL4/Yv39/sLu7+w1HR8f0x48f\n9yKEkNDQ0L1z587dMXjw4Ks2NjaPBAIBLyQkJIrL5WbMmDFjD709XV3dKvrx4cOHJ82YMWPP1atX\nB588edJvyZIlG1xcXG49fvy41+7du+e4u7vfcHJySps0adLhmpoa7StXrgyRXS40NHTvkSNHJhJC\nCIfDEfL5fL6rq+tNR0fH9AcPHvQhhJDCwkITb2/vhH79+t2dM2fObg6HIywpKTGSrR/6eaFQyLGz\ns/szLCxsV79+/e76+Picra2t7UoIITdv3nTt37//bScnp7QdO3bMpdfdu3dv6GeffbaNnvf19Y1N\nSkryJISQM2fOjHZ1db3p5OSU5u3tnZCdnd1z586dH2/atGmhs7Nz6qVLlzxiY2N9Bw0adM3FxeWW\nt7d3QkFBgSkhL36Vz5w58+fhw4cn2tjYPNq2bdtn9Db27ds3nY5l+vTp++h9nTRp0mF3d/cb7u7u\nN94k6SxfvjzC3t7+Xv/+/W8vWbJkQ1PLUFK3EOHz+fyQkJCoYcOGJXM4HOHRo0cn/N///d/3jo6O\n6WPGjIlraGjQaGq9lsoEJaHoiy0wyX/asmXL/IULF/7Q1GuHDx+e6O3tHS+RSBj5+fmmVlZW2SKR\niJ2YmMhjMpmlYrGY9fz5cy1zc/O88PBwPl3eggULNlEURUJCQvYGBQVFUxRFfv/99/F6enoVd+/e\ntZdIJAxXV9eU27dvO1IURXR1dSultxkaGrqHoigSGhq658iRIxPo14qLi43oxytXrlyzbdu2eU0t\nJz3P4XCytm/f/ilFUWTHjh2fzJ49ezdFUeTTTz/dTt/x8cyZMz4MBkMiXT49cTicrOLiYqOsrCyO\nhoZGPR1zYGDgoV9++eVDiqKIg4ND+sWLFz0o6sUth+k7Tu7Zsyd03rx52+iyfH19TyYlJQ0rKCgw\nsbS0zBEKhT0p6sV/GlAURfh8fvjGjRsX0ctLX0i0e/fu2YsXL/6eoigSHh7Of//99y/V1dVpFhUV\nde/evXtRQ0OD+t27d+1tbW0f0PtBrx8UFBR96dKl9ymKItnZ2VZ2dnYZsvuZmJjIo+8cS09FRUXd\npe8OWl5eri+7Hp/PD//+++8X0/Ph4eH8oUOHJjc0NKjfvn3bUVtbu5q+8CkgIODo8ePHP6Aoinh6\negr69Olzn77Iksvl3nNwcEiny5G9cycmxU/t/o9p0P5auqnV5cuX3582bVo0g8GgTE1NCzw9PZP+\n+OOPAfr6+hUDBgz4g76TYu/evTN9fHzOEkJIv3797iYmJg6ny6bbpfv163eXzWaL7e3t7xFCiL29\n/T2hUMhxdHRMbyk+SuqX4p07dxxWrlz5TXl5uUFVVZXu6NGjzzS1nKwJEyYcJYQQFxeXW0ePHp1A\n79vx48f9CSHEx8fnrKGhYenr6sra2jqLjtfV1fWmUCjklJeXG5SXlxvQZ1TBwcH7W2ruoCiKce3a\ntUHDhg1L7tmzZzYhhDCZzLKm9iM3N9cyMDAwRiwWs+vq6rR69er1mJAX9Tpu3LhTmpqa9d27dy82\nNTUtEIvF7AsXLowIDAyMMTIyKpEu99y5cyOl+1gqKyv1qqurdXR0dKpb2l8mk1nWtWvX2lmzZkX6\n+vrG+vr6xr6ujhgMBjVmzJg4dXX1xn79+t2VSCRq9GfDwcHhjlAo5NDLRUdHT3NxcblFCCHZ2dk9\nW1M+KA6ajFSAvb39PenOPVmyB1o6gXTp0uU5/ZyampqEnldTU5NINwtoaWnVyS4ju5x0UqqpqdFu\nanuEvGiC2rFjx9z09HTH8PDw1dLLtpTY6O2qq6s3trbJoqVymiqrqTI1NDQaJBLJ398juomptXfc\n/Oyzz7bNnz9/a3p6uuPOnTs/lt5ful6lY2EwGFRT+0RRFOP69esDU1NTnVNTU51zc3MtX5cM6HJv\n3LjhPmnSpMOxsbG+0gm4JdLvuaamZj39vJqamqSxsVFdOq6mHoNyQkJQASNGjLjw/PnzLrt3755D\nP5eenu546dIlj6FDh148dOjQFIlEolZYWGiSnJw8zN3d/UZbf3lZLFb+/fv3+0okErVjx44F0AdM\nPT29SukRPlVVVbpsNltcX1+v+csvv3zU3HKt8f7771+m+0Ti4+NHlZaWGr5N7AYGBuVMJrPs8uXL\n7xNCyK+//voh/RqHwxGmpaU5URTFyM3Ntbxx44Y7g8GgBg0adC05OXkY/WuZ7rvQ09OrrKys1KPX\nr6io0Dc3N39KyIv+CPr5puqfwWBQI0aMuPDbb79Npsuj92nUqFHxW7dunU8vm5aW5tSafXv27Fm3\nsrIy5pgxY+J++OGHRbdv3+7/JnXTFOnYVfVW1B0VEoKKOHbsWMC5c+dG9u7dO7Nfv353v/zyy2/N\nzMxEAQEBxxwdHdP79+9/28vL6/yGDRuWmJqaFrQ0QkT2teYeS4uIiFju6+sb+/7771+mD4CEEDJ1\n6tSDGzZsWOLq6nrz8ePHvdasWbNq4MCB1z08PC7Z2dn92dxyze2ndGzh4eGr4+PjRzk4ONw5fPjw\nJDabLZb9f4nXxU/P79mzZ8ann376o7Ozc6r08x4eHpesra2zuFxuxueff77F1dX1JiGEGBsbF+3a\ntStswoQJR52cnNKCgoIOEEKIn5/fyWPHjgXQncp8Pp8/efLk39zc3FJMTEwK6XKbq38ul5vx5Zdf\nfuvp6Znk5OSUtnjx4o2EELJ169b5KSkpbv37979tb29/b9euXWFN7ef58+e9LC0tcy0tLXOtrKxy\n7ty54+Dn53eyf//+t4cOHXpx06ZNC5ur2zets9etB8oHN7eDTquurk5LXV29UV1dvfHq1auDP/30\n0x9v3brloui4OprVq1eH6+rqVtHJp60IhUKOn5/fyTt37ji0Zbnw9tCpDJ1WTk6OVWBgYIxEIlHT\n0tKqk24yg9bT1dWt2rVrV1hlZaXem16L0JyLFy8O/fTTT380MTEpbIvyoG3gDAEAAAgh6EMAAICX\nkBAAAIAQgoQAAAAvISEAAAAhBAkBAABeQkIAAABCCCH/D1IYMYHMZAvtAAAAAElFTkSuQmCC\n", + "text": [ + "<matplotlib.figure.Figure at 0x2ce0f10>" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEXCAYAAACqIS9uAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdcU1f/B/ATAsoIIyAIyAiCgymIoDjjYFTFalF/OECx\nytM66qpVWy1YLWJdRfvYp/hYnGgddaCCiBInTkAUaxUkMgRlDxFZ9/eHz7UphRAgIYH7eb9e9/Xi\nJjfnnHsC3xy+99wTFkVRBAAAmENJ3g0AAID2hcAPAMAwCPwAAAyDwA8AwDAI/AAADIPADwDAMAj8\nIBWZmZlmmpqa5RRFseTdFlECgYBvamqaJe92MM21a9eG9e3b94m82wGNQ+CXssjIyOkDBgy4p6mp\nWW5sbPxy7Nix52/cuDFE3u0SRygU8pSUlOrr6+sl/n3g8XjCy5cvj6L3zczMMsvLyzVZLJbUbwyZ\nPXv23rVr166XdrktwefzBXv27PlUnm1oSJE+1JSUlOqfP3/ek94fNmzYtSdPnvSVR93QPAR+Kdq2\nbduypUuXbl+zZs2G169fG2RlZZkuWLDg32fOnJkg77ZJoiWjdRaLRbXX6J7FYlGy+EBpaRvkWX9H\nIM//9hTtP02FR1EUNilsJSUl2hwOp/z48eM+TR1TVVXVdfHixT8aGxvnGBsb5yxZsmT7u3fvulAU\nReLj4/k9evTI/uGHH1bo6+u/NjIyenny5MmJ586dG9urV6+nurq6hRs3blxFlxUUFBQ8efLkYzNn\nzjygqalZZm9vn/L06dNeISEhqw0MDF6ZmZm9iI2NdaePNzc3F8bFxY0Wff3MmTMPUBRFTE1NM1ks\nVj2HwynncDjlt27dGpiWlmY5cuTIy3p6egXdunXLnzFjxsGSkhJtiqLIzJkzDygpKdWpqalVcjic\n8s2bN3+ZkZHBY7FY9XV1dUoURZERI0YI1q5d+92QIUOua2pqlnl4eFwoKCjQo+vft2+fv5mZ2Qs9\nPb2C9evXr2nYPtFt9uzZEWvWrFlPURSh66Ff361bt/zvv//+a/rYyspKtVmzZu3lcrlFNjY2qT/8\n8MMKExOTLPp5FotVn56e3pPenzVr1l66bIqiyKlTpz7u169fspaWVqmlpWVaTEyM59dff/09m82u\nVVVVfcvhcMoXLVq0g6Io8sUXX4SZmppmamlplTo7O9+7du3aUNH+nTJlylF/f/99mpqaZba2to/u\n3bvnTD+fmZlpOmnSpN/19fVf6+npFSxcuHAn/dyePXvmWFtbP+ZyuUWenp4xL168MGusX+Lj4/mi\n5ya6nTt3bqyNjU2qpqZmWY8ePbK3bNmyvLHfR21t7ZJHjx7Z0o+9fv1aX01NrTI/P79bfn5+t3Hj\nxp3V0dEp1tXVLRw2bNjV+vp6VsNyhg0bdpXFYtVraGhUcDic8qNHj05p2DZzc3Ph5s2bv7S3t0/h\ncDjlc+bM2ZOXl9fdy8srWktLq3TMmDEXi4uLdejjExISBrm5ud3U0dEp7tevX7JAIBjR2Hk2VndT\n76O8Y4QibXJvQGfZoqOjvZSVlWvowNfYtnbt2u/c3Nxu0n9UgwcPvrF27drvKOr9H7GysnLN+vXr\n19TW1rJ37949V09Pr2D69OmHKioqNFJTU23U1NQqhUKhOUW9DyyqqqpvY2Nj3Wtra9n+/v77zM3N\nhSEhIavp11tYWDyn6+bxeBmXLl0aRe8HBwcH0YFfKBSaiwZtiqJIWlqaZVxc3Ojq6mqV/Pz8bsOH\nD7+yZMmS7U2V11jgt7Kyevbs2TOrt2/fqvL5/PhVq1ZtpCiKpKam2nA4nPIbN24Mrq6uVvnyyy83\nq6ioVIuWJ7o1FvgDAwN/qaqq6vrgwQOHrl27Vj158qQPRVFk5cqVocOHD79SXFysk5WVZWJra/vI\n1NQ0ky6rYeCfPXt2BP0e3L5921VbW7uE/gDKyckxpsvl8/nxe/bsmSParoMHD84oKiri1tXVKW3d\nunWZoaFhLv1BTr8/0dHRXvX19azVq1eHDBo0KIGiKFJbW8t2cHB4sGzZsq2VlZVqVVVVXa9fvz6E\not4HLCsrq2dPnjzpU1dXp7Rhw4ZvBg8efKOxfhEX+A0NDXPpMktKSrQTExOdGjtuzpw5e7755psN\n9P5PP/204KOPPjpPURRZtWrVxs8+++zn2tpadm1tLZsur7GtYb82bBuPx8twc3O7+fr1a/2cnBxj\nAwODV05OTonJycn9qqqquo4aNerSunXrvqUoimRnZ/fQ09MriI6O9qIoily8eHGMnp5eQX5+fjdJ\n6hb3PmJ7v8m9AZ1lO3jw4AxDQ8NcccdYWlqm0b/MFEWRCxcuePB4vAyKev+HoqamVkmPqMrKyjRZ\nLFb9nTt3XOjjnZ2d750+fXoCRb0PLB4eHhfo586cOePN4XDKG76+tLRUi6L+GahFR/wNg3Zj28mT\nJyc6OTkl0vvNBX4+nx8vOhLftWvX515eXtEURZF169Z9O3369EP0c5WVlWpdunR515LAn5OTY0w/\n7+rqevu3336bSlEU6dmzZ/qFCxc86OfCw8PniRvxiwb+wMDAX5YtW7a1sTbw+fz4//73v5+Ke3+5\nXG5RSkqKPd2/7u7usfRz9Ac3RVHk5s2bbvr6+q8b628vL69o0Q+Yuro6JXV19TeZmZmmDY8VF/jN\nzMxe/PLLL4H0+9/UFhcXN9rS0jKN3h88ePCNAwcOzKQoinz77bfrPv7441NpaWmWzf3+SxL4IyMj\np9H7Pj4+x+fPn/9ven/nzp0LJ06ceJKiKBIaGrrSz89vv2j5np6eMfv27fOXpG5x7yO29xty/FKi\np6dXWFBQ0E3cBdKXL18am5ubv6D3zczMMl++fGksWgadS1ZTU3tLCCHdu3d/RT+vpqb2tqKigkPv\nGxgYvBZ9rlu3bgUNXy96fEu8evWqu6+v7xETE5NsbW3tUj8/vwOFhYV6LSnD0NAwr7G2v3z50tjE\nxCRb9Dk9Pb3C1patrq5eKVq26AVPMzOzTEnLzM7ONrG0tExv6vmGef4tW7Z8aWNj81hHR6eEy+UW\nl5aWahcUFHSjnxd979TV1SurqqpU6+vrlbKyskzNzc1fKCkp1Tes48WLF+aLFy8O43K5xVwut5ju\nl5ycnB6SngchhJw4ccLn/PnzY3k8npDP5wtu3bo1qLHj+Hy+oLKyUv3OnTuuQqGQ9+DBg36TJk06\nSQghK1as2GxlZZXm4eERa2lpmb5p06aVLWlDQw1/l0X3VVVVq+j38MWLF+bHjh2bQvcBl8stvnHj\nxpC8vDxDSepp7n0EXNyVGjc3t4SuXbu+O3ny5KSmjjE2Nn4pFAp59H5mZqaZsbHxy/Zon4aGxps3\nb95o0Puif0SNXbj8+uuvQ9hsdt2jR4/sSktLtQ8cOOAn+qHWloudxsbGL7Ozs03o/bdv36q19EOl\nKUZGRrmZmZlm9L7oz4S8D8CVlZXq9H5ubq4R/bOpqWlWWlqaVWPlNjzfa9euDdu8efOKY8eOTSkp\nKdEpLi7mamtrl1ISXGQ0NTXNyszMNKurq2M3fM7MzCwzPDw8sLi4mEtvb9680Rg0aNCt5soVNWDA\ngHunTp2amJ+frz9x4sRTU6dOPdrYcWw2u27q1KlHDx8+PO3w4cPTvL29ozQ0NN4QQgiHw6nYsmXL\nl+np6ZZnzpyZsG3btmWiM7naqqm+MjMzy/Tz8zsg2gfl5eWaX3311Q+SlCvufYT3EPilRFtbu/S7\n7777dsGCBf8+ffr0x5WVleo1NTUq0dHRH61cuXITIYRMmzbt8IYNG9YUFBR0Kygo6Pbdd9996+fn\nd6A92ufo6Jh85MgR39raWuV79+4NOHHihA8dzPT19fOVlJTq09PTLenjKyoqOBoaGm+0tLTKcnJy\nemzevHmFaHndu3d/JXp8Y5r6w/bx8TkRFRXlnZCQ4FZdXd0lODg4WFzAlCSY0qZOnXp048aNq0tK\nSnSys7NNdu7cuUj0eUdHx+RDhw7NqKurY8fExHhdvXp1OP3cp59+uiciIiLg8uXLo+rr65VycnJ6\n/Pnnn30aO9/y8nJNZWXl2m7duhVUV1d3+e67774tKyvTkqSNrq6ud4yMjHJXrVoVWllZqV5VVaV6\n8+bNwYQQ8tlnn/0nJCTk68ePH9sQQkhpaan2sWPHptCv5fP5gnXr1gWJlvfu3buuVVVVqvRWXV3d\n5dChQzNKS0u12Wx2naamZjmbza5rqj3Tp0+PPHLkiG9kZOT06dOnR9KPnzt3blxaWpoVRVEsLS2t\nMjabXddUOZL8Pkhq5syZB6OiorxjY2M96urq2FVVVaoCgYBP/9cTHBwcPHLkyPim6hb3PsJ7CPxS\ntGzZsm3btm1btmHDhjUGBgavzczMMnft2jWf/td5zZo1GwYMGHDPwcEhxcHBIWXAgAH31qxZs4F+\nfcNRpbhRdWNTHMXtr1+/fm16eroll8stDg4ODp4xY8Yh+jl1dfXKb7755vshQ4bc0NXVLbpz545r\nUFDQusTExP7a2tql3t7eUT4+PidEy1u9evXGDRs2rOFyucXbtm1b1lz9ou21tbVN3blz5yJfX98j\nxsbGLzU1NcsNDAxed+3a9Z0k5yquX4KCgtaZm5u/sLCwyPDy8orx9/ffL3p8WFjY4qioKG8ul1sc\nGRk5nX5vCCHExcXlbkRERMDSpUu36+jolPD5fAH9H8PixYvDjh8/PllXV7doyZIlP3p5ecV4eXnF\n9O7d+ymPxxOqqam9FU0riXt/2Gx2XVRUlHdaWpqVmZlZpqmpadbRo0enEkLIxIkTT61cuXKTr6/v\nEW1t7VJ7e/uHFy5c8KTLyM7ONhk6dOh1ej8nJ6eHmpraW3V19Up1dfVKDQ2NNy9evDA/ePDgTAsL\niwxtbe3S8PDwwEOHDs1oqs9cXV3vcDicitzcXKOPPvoomn782bNnvdzd3S9qamqWDx48+OaCBQv+\nPWLEiCuNlREcHBw8a9asfVwut/j48eOTJZmC29Tvh4mJSfbp06c/DgkJ+Zr+O9q6detyegCQlZVl\nKtoHDetu+D6OHDkyvuF/fkzHoihMTwb5qqio4HC53OK0tDQr0Wsg8HfZ2dkmvr6+R65fvz5U3m2R\nJycnp6TLly+P4nK5xfJuS0cl08BfUlKiM3fu3P+mpqbaslgs6tdff53T0lwldE5RUVHeo0ePvkRR\nFGv58uVb796963L//n1nebcLgAlkmupZvHhx2NixY8//8ccf1ikpKQ7W1tZ/yLI+6DjOnDkzoUeP\nHjk9evTISU9Ptzxy5IivvNsEwBQyG/GXlpZqOzk5JWENDQAAxaIsq4IzMjIs9PX18wMCAiIePHjQ\nz9nZ+X5YWNhidXX1SkKw9gkAQGu1ZKZbY2SW6qmtrVVOTEzsP3/+/F2JiYn9NTQ03oSGhq4SPUbe\nd68pyhYUFCT3NijKhr5AX6AvKDLvzDwyImIE+ejgR2TWyVl/+1kaZDbiNzExyTYxMcl2cXG5Swgh\nkydPPt4w8AMAMFVgVCB5WviUqKuoEwMNAyIsERJ1FXUS6RNJnhY+JVdevJ85q6+uT/Ir8z/8LA0y\nC/yGhoZ5pqamWU+fPu3du3fvp3FxcWNsbW1TZVUfAIAiaCqgSxrcA6MCibrK+5vLXYxdiLaqNol7\nHvfXzySuzW2UWeAnhJCdO3cumjFjxqHq6uoulpaW6REREQGyrK+j4vP58m6CwkBf/AV98RdF64vW\njtYlCe7h3uEfjmnsZ64/t83tl9sNXP/7Ig+51A0A0BzR4B7pE0m+uvjVh/2yd2XkRtYNQsjfA/oU\nmymkorqCRKdFNz5a/9/PsX6xH+poGNx1VHXEtovFYhGqjRd3EfgBgNGaGr2LBvcpNlPI6zevP4zk\nDTUMSd6bvBYFdNGfmwvu4iDwAwBIQFxqZuKRiY2mZkSDe6xfLJl+YvqHkfyxKcfIiosrpBrQJYXA\nDwDwP9JOzYgGdx1VHVJSVdKuAb4pCPwAwDjtlZqRZ3AXB4EfADqlzpSakTYEfgDosJiSmpE2BH4A\nUHhMT81IGwI/ACgEpGbaDwI/AMhFwzRNU8EdqRnpQ+AHAJmSNE3TVHBHakb6EPgBoM2kkaahy0Fw\nlz0EfgBoFdFgL40ZNNB+EPgBoEmSjuQxg6ZjQeAHgL9pzUgeM2g6FgR+AAaS9kgeAb5jQeAHYAiM\n5IGGwA/QSYmbJ4+RPLMh8AN0cK2ZJ4+RPLMh8AN0MJLe8SpunjwCPLMh8AN0AE3l5zFPHloDgR9A\nQTUV7HHHK7QVAj+AHLVmWiVG8tBW0gj8ytJqDEBn1zA//7TwaaP5+cCoQKKuok4IIY0G+6NTjsrt\nHAAIwYgfQKzW5OdxMRZkCakeABlAfh4UGQI/gBRIerMU8vOgCBD4AVpJ0hQOgj0oGgR+gBZoTQoH\nwR4UjcIHfh6PJ9TS0ipjs9l1KioqNXfu3HH9UDECP8gYUjjQGSl84LewsMi4f/++s66ubtE/Kkbg\nBxlACgc6uw4xj7+tDQRojrgUDiHv59I3NvMG8+mBqWQa+FksFjVmzJg4Nptd969//euXefPm7RZ9\nPjg4+MPPfD6f8Pl8WTYHOglxN1KJBvvGRvUI9tDRCAQCIhAIpFqmTFM9ubm5RkZGRrn5+fn67u7u\nF3fu3Llo2LBh1whBqgdaBikcgPcUPscvat26dUEcDqdi+fLlWwlB4IfmYRYOwD9JI/ArSasxDVVW\nVqqXl5drEkLImzdvNGJjYz3s7e0fyqo+6HzoFE50WjRJL0onhLxP4dyae4tMsZlCYv1iiY6qzod8\nPYI+gGRkluN/9epV90mTJp0khJDa2lrlGTNmHPLw8IiVVX3Q8TXM3WOhMwDZwA1cIFficvfh3uFI\n4QA00KFy/P+oGIGfsSTN3SPYA/xTh5jHD9CW6ZcAIH0I/CBzooEeX1ICIH9I9YBMiI7ya+pr8CUl\nAFKCHD8olKZy9x/3+Zh0YXdBoAeQAuT4Qa4kzd3vnbgXAR9AgcjsBi7o/ERvsGqYu294kxUAKA6k\neqBFkLsHkC/k+KFdIHcPoDiQ44d2gdw9QOeCHD/8Q2BUIOHv5ZOxh8aSkqoS5O4BOhmkeoAQgjVz\nADoK5PhBavh7+Y1+ETlG9gCKRaHX4wfFhnQOAHNhxM9QoiN8pHMAOg6keqBFxM3BR7AH6BgQ+KFF\nREf5mIMP0DFhHj80S3SUr8JWIYRgDj4A02HE38k0XDht4pGJGOUDdCIY8cM/iPvSE4zyAYAQBP5O\noal0Trh3+IfnMcoHABpSPZ0ALtoCMAdSPQyGi7YA0FoY8XdQGOUDMBNG/AyGi7YA0FoY8XcQDadp\n0o9hlA/ALLhzl0Earq1zdMpRObcIAOQBqZ5OrrlpmgAArSHzZZnr6urYTk5OSd7e3lGyrquzoW/G\nik6LJhoqGlgqGQCkQuYj/rCwsMU2NjaPy8vLNWVdV2eAaZoAIGsyHfFnZ2ebnD9/fuzcuXP/29ac\nFFNglA8AsibTEf/SpUu3b968eUVZWZlWY88HBwd/+JnP5xM+ny/L5iikhrN1ME0TAEQJBAIiEAik\nWqbMAv/Zs2fHGxgYvHZyckoSCAT8xo4RDfxM1XBRtUifSEzTBIAPGg6K161b1+YyZRb4b968OfjM\nmTMTzp8/P7aqqkq1rKxMy9/ff//+/fv9ZVVnRyQ6wqeDPaZqAoAstcs8/itXrozYsmXLl1FRUd4f\nKmbwPH7R9M7P434mKy6uwAgfACTSoebxs1gsZkb5Roimd1ZcXIERPgC0K9y5KwdjD40l0WnR+KJz\nAGixDjXiZzqkdwBAUSDwtxOkdwBAUSDwy4i4+flYawcA5AmBX0YwPx8AFBUCv4xgfj4AKCoEfinC\nBVwA6AgQ+KUIF3ABoCOQ+Xr8TIILuADQEWDE30ZI7wBARyM28BcVFek2V4CSklK9jo5OifSa1LEg\nvQMAHY3YwG9kZJRrbGz8UtwxtbW1yllZWabSbVbHgfQOAHQ0YgO/tbX1H8nJyY7ijnF0dEyWbpM6\nFszPB4CORuwibVVVVaqqqqpV4gqQ5JhGK+6gi7Q1vCMXwR4A2pM0FmkTO6uHDugJCQluol+fWFZW\npnX79u2Boscwheh34gZGBcq7OQAALSbRdM7PP//8Zw6HU0Hva2hovPnss8/+I7tmKS7k9AGgo5N4\nOqeSklI9/TObza6rq6tjy6ZJigdTNgGgM5FoxG9hYZGxY8eOL2pqalSqq6u7hIWFLe7Zs+dzWTdO\nUYimd+gpmwj6ANBRSRT4//Of/3x248aNIT169MgxMTHJvnXr1qDw8HDGJLiR3gGAzgRfvSiBkqoS\nTNkEAIUg81k9tD///LPP6NGjL9na2qYSQkhKSorDhg0b1rSlYkUXGBVI+Hv5ZOyhsYQQgvQOAHQa\nEgX+efPm7Q4JCfm6S5cu1YQQYm9v//Dw4cPTZNs0+cK0TQDorCQK/JWVleoDBw68Te+zWCxKRUWl\nRnbNkj/k9QGgs5Io8Ovr6+enpaVZ0fvHjx+fbGRklCu7ZslfpE8kmWIzhcT6xSLFAwCdikQXd9PT\n0y0DAwPDExIS3HR0dEosLCwyDh06NIPH4wlbXbGCXdzFUgwA0BFI4+Jui2b1VFRUcCiKYmlqapa3\npVJCFC/w8/fyPyyvPMVmCpZXBgCF1G6zen788cclZWVlWhoaGm+WLFnyY//+/RMvXLjg2ZaKFQ1y\n+gDAFBIF/l9//XWOlpZWWWxsrEdRUZHu/v37/VetWhUq68a1J+T0AYApJFqrh/634ty5c+P8/PwO\n2NnZPZJts9pHw7w+0jsAwAQSjfidnZ3ve3h4xJ4/f36sp6fnhbKyMi3RRdsaU1VVpTpw4MDbjo6O\nyTY2No9Xr169UTpNlh7M1QcAJpLo4m5dXR07OTnZ0dLSMl1HR6eksLBQLycnp4eDg0OKuNdVVlaq\nq6urV9bW1ioPHTr0+pYtW74cOnTodUIU4+Lu2ENjSXRaNHExdkGKBwA6BGlc3JUo1cNms+uUlZVr\nr169Orympkblf5VTzQV+dXX1SkIIqa6u7lJXV8fW1dUtaktjpQ1fmwgATCRR4A8ICIh4+PChva2t\nbapoiueTTz75Xdzr6uvrlfr375+Ynp5u+fnnn/9sY2PzWPT54ODgDz/z+XzC5/Nb1Pi20lHVQV4f\nABSaQCAgAoFAqmVKlOqxsbF5nJqaastisVqVmyktLdX29PS8EBoauorP5wsIkV+qBzdqAUBH1m7z\n+F1cXO4+fvzYprWVaGtrl44bN+7cvXv3BrS2DGnBBV0AYDqJUz1ubm4JhoaGeV27dn1HyPsRe0pK\nikNTrykoKOimrKxcq6OjU/L27Vu1ixcvugcFBa2TVsNbCzdqAQDTSRT4P/300z0HDx6caWdn96i5\naZy03Nxco1mzZu2rr69Xqq+vV/Lz8zswevToS21rbtvhgi4AMJ1EOX43N7eEhIQEN6lWrADTOQEA\nOpp2W6Rt/vz5u0pKSnS8vb2j6C9jYbFYVHOzesRW3E6BHxdzAaAzabd5/JWVlepdu3Z9Fxsb6yH6\neFsCf3uhL+YS8v5DANM3AYDpJAr8e/funS3jdsgMLuYCAPyd2Omc4eHhzc53lOQYecKqmwAAfyc2\nx9+zZ8/nW7Zs+bKxfNL/cvSstWvXrm/NHH9c3AUAaDmZ5/iHDx9+NSoqylvcMR4eHrFtaQAAALSv\nFn31olQrluGIHzN5AKCzarclGzoaLMsAANC0Thn4MZMHAKBpnTLVU1JVgmUZAKBTardUz+rVqzcW\nFxdz6f3i4mLumjVrNrSlYlmi19lH0AcA+CeJAn90dPRHXC63mN7ncrnF586dGye7ZgEAgKxIdOdu\nfX29UlVVlaqqqmoVIYS8fftWrbq6uotsmyY5zOIBAJCcRIF/xowZh0aPHn1pzpw5v1IUxYqIiAjw\n9/ffL+vGSQrr8QAASE7ii7vR0dEfXbp0aTQhhLi7u1/09PS80KaKpXhxd+yhsSQ6LZq4GLtgaQYA\n6NTabVnmlStXbtq0adPK5h5rUcVSDPyYxQMATNFugd/JySkpKSnJSfQxe3v7hw8fPrRvdcVYqwcA\noMVkvlbPzz///PmuXbvmp6enW9rb2z+kHy8vL9ccMmTIjbZUDAAA8iF2xF9aWqpdXFzMXbVqVeim\nTZtW0p8ympqa5Xp6eoVtqhgjfgCAFmu3VI8stDXwYwonADARoxdpw0JsAACt02EDPxZiAwBonQ6b\n6sEUTgBgIkbn+AEAmIjROX4AAGgdBH4AAIZB4AcAYBiJVudUFJi7DwDQdh1qxI+5+wAAbSezwJ+V\nlWU6cuTIeFtb21Q7O7tHO3bs+KKtZWLuPgBA28lsOmdeXp5hXl6eoaOjY3JFRQXH2dn5/qlTpyZa\nW1v/QUjrpnNi7j4AMJ3MV+dsC0NDwzxDQ8M8QgjhcDgV1tbWf7x8+dKYDvyEEBIcHPzheD6fT/h8\nvtgy6S9RBwBgCoFAQAQCgVTLbJcbuIRCIW/EiBFXUlNTbTkcTgUhuIELAKA1OsQNXBUVFZzJkycf\nDwsLW0wHfQAAkB+ZBv6amhoVHx+fEzNnzjw4ceLEU7KsCwAAJCOzVA9FUaxZs2bt09PTK9y+ffvS\nf1SMVA8AQIsp9CJt169fHzp8+PCrDg4OKSwWiyKEkI0bN6728vKKIQSBHwCgNRQ68DdbsQSBH3fq\nAgD8XYe4uNsWuFMXAED6FDrw405dAADpU+hUD+7UBQD4u06f4wcAgL/r9Dl+AACQPgR+AACGQeAH\nAGAYBH4AAIZB4AcAYBgEfgAAhkHgBwBgGJl9A1drYX0eAADZUrgRP9bnAQCQLYUL/FifBwBAthRu\nyQaszwMA0DSs1QMAwDBYqwcAAFoMgR8AgGEQ+AEAGAaBHwCAYRD4AQAYBoEfAIBhEPgBABgGgR8A\ngGEQ+AEAGAaBHwCAYRD4AQAYRiHW48ca/AAA7UemI/45c+b82r1791f29vYPxR2HNfgBANqPTAN/\nQEBARExMjFdzx2ENfgCA9iPTwD9s2LBrXC63uLnjIn0iyRSbKSTWLxZpHgAAGZNrjj84OPjDz/P5\n8xH0AQCHNQn4AAAQuUlEQVQaEAgERCAQSLVMmX8Ri1Ao5Hl7e0c9fPjQ/m8V44tYAABaDF/EAgAA\nLYbADwDAMDIN/NOmTTs8ePDgm0+fPu1tamqaFRERESDL+gAAoHn4snUAgA4EOX4AAGgxBH4AAIZB\n4AcAYBgEfgAAhkHgBwBgGAR+AACGQeAHAGAYBH4AAIZB4AcAYBgEfgAAhkHgBwBgGAR+AACGQeAH\nAGAYBH4AAIZB4AcAYBgEfgAAhkHgBwBgGAR+AACGQeAHAGAYBH4AAIZB4AcAYBgEfgAAhkHgBwBg\nGAR+AACGQeAHAGAYBH4AAIZB4AcAYBgEfgUgEAjk3QSFgb74C/riL+gL6ZJp4I+JifHq27fvk169\nej3btGnTSlnW1ZHhl/ov6Iu/oC/+gr6QLpkF/rq6OvbChQt/iomJ8Xr8+LHN4cOHp/3xxx/WsqoP\nAAAkI7PAf+fOHVcrK6s0Ho8nVFFRqfH19T1y+vTpj0WPGXtoLCmpKpFVEwAAoDEURclkO3bs2OS5\nc+fupvcPHDgwc+HChTvpfUIIhQ0bNmzYWr61NT4rExlhsViUuOcpimLJqm4AAGiazFI9PXr0yMnK\nyjKl97OyskxNTEyyZVUfAABIRmaBf8CAAfeePXvWSygU8qqrq7v89ttv/zdhwoQzsqoPAAAkI7NU\nj7Kycu1PP/200NPT80JdXR37008/3WNtbf2HrOoDAAAJyerirrgtOjraq0+fPk+srKyehYaGrpRH\nG+S1ZWZmmvL5/HgbG5tUW1vbR2FhYV9QFEUKCwt1x4wZc7FXr15P3d3dY4uLi3Xk3db22mpra9mO\njo5J48ePj2JyXxQXF+v4+Pgc79u37x/W1taPb926NZCpfRESErLaxsYm1c7O7uG0adMiq6qqujKl\nLwICAn41MDB4ZWdn95B+TNy5h4SErLaysnrWp0+fJxcuXPCQpI52P6na2lq2paVlWkZGBq+6ulql\nX79+yY8fP7aWd2e315abm2uYlJTkSFEUKS8v5/Tu3fvPx48fW69YseKHTZs2fUVRFAkNDV25cuXK\nUHm3tb22rVu3Lps+ffohb2/vMxRFEab2hb+//749e/bMoSiK1NTUKJeUlGgzsS8yMjJ4FhYWz6uq\nqrpSFEWmTp362969e2cxpS+uXr06LDEx0Uk08Dd17qmpqTb9+vVLrq6uVsnIyOBZWlqm1dXVKTVX\nR7uf1M2bN908PT1j6P2NGzeu2rhx4yp5d7a8to8//vjUxYsXx/Tp0+dJXl5ed4p6/+HQp0+fJ/Ju\nW3tsWVlZJqNHj467fPnySHrEz8S+KCkp0bawsHje8HEm9kVhYaFu7969/ywqKuLW1NQojx8/Pio2\nNtadSX2RkZHBEw38TZ17SEjIatGsiaenZ0xCQsKg5spv97V6cnJyepiammbR+yYmJtk5OTk92rsd\nikAoFPKSkpKcBg4cePvVq1fdu3fv/ooQQrp37/7q1atX3eXdvvawdOnS7Zs3b16hpKRUTz/GxL7I\nyMiw0NfXzw8ICIjo379/4rx583a/efNGg4l9oaurW7R8+fKtZmZmmcbGxi91dHRK3N3dLzKxL2hN\nnfvLly+NRWdLShpP2z3wNze/nykqKio4Pj4+J8LCwhZramqWiz7HYrEoJvTT2bNnxxsYGLx2cnJK\nopq4r4MpfVFbW6ucmJjYf/78+bsSExP7a2hovAkNDV0legxT+iI9Pd3yxx9/XCIUCnkvX740rqio\n4Bw8eHCm6DFM6YvGNHfukvRLuwd+zO8npKamRsXHx+eEn5/fgYkTJ54i5P2neF5eniEhhOTm5hoZ\nGBi8lm8rZe/mzZuDz5w5M8HCwiJj2rRphy9fvjzKz8/vABP7wsTEJNvExCTbxcXlLiGETJ48+Xhi\nYmJ/Q0PDPKb1xb179wYMHjz4pp6eXqGysnLtJ5988ntCQoIbE/uC1tTfRMN4mp2dbdKjR4+c5spr\n98DP9Pn9FEWxPv300z02NjaPlyxZ8iP9+IQJE87s27dvFiGE7Nu3bxb9gdCZhYSEfJ2VlWWakZFh\nceTIEd9Ro0ZdPnDggB8T+8LQ0DDP1NQ06+nTp70JISQuLm6Mra1tqre3dxTT+qJv375Pbt26Nejt\n27dqFEWx4uLixtjY2DxmYl/QmvqbmDBhwpkjR474VldXd8nIyLB49uxZL1dX1zvNFiiPCxfnz5//\nqHfv3n9aWlqmhYSErJb3hZT23K5duzaUxWLV9+vXL9nR0THJ0dExKTo62quwsFB39OjRcZ19qlpT\nm0AgGEHP6mFqXyQnJ/cbMGDAXQcHhweTJk36vaSkRJupfbFp06av6Omc/v7++6qrq1WY0he+vr6H\njYyMXqqoqFSbmJhk/frrrwHizv3777//2tLSMq1Pnz5PYmJiPCWpg0VRjEyTAQAwFr6BCwCAYRD4\nAQAYBoEfAIBhEPgBABgGgb+TysvLM/T19T1iZWWVNmDAgHvjxo079+zZs17ybtfp06c/luS7lxse\nFxQUtO7SpUujpdGGcePGnSsrK9OS9HihUMizt7d/2Jq6rly5MiIhIcGtNa9tK4FAwPf29o4Sdwyf\nzxf07dv3ydmzZ8e3pGwOh1Mhur93797ZixYt2kkIIdu3b19qbm7+gt4HxSOzZZlBfiiKYk2aNOlk\nQEBAxJEjR3wJISQlJcXh1atX3Xv16vVMnm07efLkJG9v76jmluhueNy6deuCpNWGc+fOjZNWWc2J\nj48fqampWe7m5pbQXnW2BIvFoiIjI6f3798/saWva2p/6dKl23V1dYvu3bs3QFrtBOnCiL8Tio+P\nH9mlS5fqwMDAcPoxBweHlKFDh14nhJAVK1Zstre3f+jg4JBy9OjRqYS8Hx2OGDHiysSJE09ZWlqm\nr1q1KvTAgQN+rq6udxwcHFKeP3/ekxBCZs+evXf+/Pm73NzcEiwtLdMFAgF/1qxZ+2xsbB4HBARE\n0PWJjgiPHz8+OSAgICIhIcEtKirKe8WKFZv79++f+Pz58567d++e5+rqesfR0TF58uTJx9++fat2\n8+bNwQ2Pmz179t4TJ074EEIIj8cTBgcHBzs7O993cHBI+fPPP/sQQkh+fr6+u7v7RTs7u0fz5s3b\nzePxhEVFRboN+4d+XCgU8qytrf8IDAwMt7Oze+Tp6XmhqqpKlRBC7t+/79yvX78Hjo6Oybt27ZpP\nv1Z0ZEsIIePHjz975cqVEYQQEhMT4+Xs7Hzf0dEx2d3d/eKLFy/Mf/nll39t3759qZOTU9L169eH\nnj17dvygQYNu9e/fP9Hd3f3i69evDQghJDg4OHjOnDm/jhw5Mt7S0jJ9586di+g69u/f70+3xd/f\nfz99rpMnTz7u6up6x9XV9c7NmzcHt/b3hRJZLoPP5wuWLVu2zcXF5a61tfUfd+/edZk0adLJ3r17\nP127du16ScpobB8UjLxvVsAm/S0sLOyLpUuXbmvsuePHj/u4u7vH1tfXs169emVgZmb2Ijc31zA+\nPp6vo6NTnJeX1/3du3ddjI2Nc4KCgoLp8pYsWbKdoigya9asvdOmTYukKIqcPn16gqamZtmjR49s\n6+vrWc7OzvcePHjgQFEU4XA45aJ1zp49O4KiKDJ79uyIEydOfEI/V1hYqEv/vGbNmvU7d+5c2Nhx\novs8Hi/jp59+WkBRFNm1a9fnc+fO3U1RFFmwYMFP9EqFMTExniwWq160fHrj8XgZhYWFuhkZGTxl\nZeUaus1Tp0797eDBgzMoiiL29vYp165dG0pR75fEpVdKjIiImL1w4cKddFnjx4+PunLlyvDXr1/r\nm5qaZgqFQnOKer+2PkVRJDg4OGjr1q3L6ONFb7zZvXv33OXLl2+hKIoEBQUFDxky5Hp1dbVKQUGB\nnp6eXkFtbS370aNHtr179/6TPg/69dOmTYu8fv36EIqiyIsXL8ysra0fNzzP+Ph4Pr3iaVMbn8+P\nv3//fn/R/VWrVm2k33cjI6OX9O+EiYlJVlFREZeiKMJms2vpGxAdHR2TzMzMXixatGgHXc7evXtn\nifYTNsXakOrphMQt0nTjxo0h06dPj2SxWJSBgcHrESNGXLl7966LlpZWmYuLy116BUArK6s0T0/P\nC4QQYmdn9yg+Pn4kXTadN7azs3tkaGiYZ2trm0oIIba2tqlCoZDn4OCQIq59lMho8OHDh/Zr1qzZ\nUFpaql1RUcHx8vKKaey4hj755JPfCSGkf//+ib///vsn9LmdOnVqIiGEeHp6XuByucXN9ZWFhUUG\n3V5nZ+f7QqGQV1paql1aWqpN/4fk5+d3IDo6+iNx53Pr1q1Bw4cPv2pubv6CEEJ0dHRKGjuPrKws\n06lTpx7Ny8szrK6u7tKzZ8/nhLzv13Hjxp1TUVGp0dPTKzQwMHidl5dnePny5VFTp049qqurWyRa\nblxc3BjRayDl5eWalZWV6urq6pXNnXNz6CVU7OzsHtnZ2T2ifyd69uz5PCsry5TL5Rarqam9TUpK\ncqJfs2/fvllI7XQcSPV0Qra2tqn37993bur5hgGV/qDo2rXrO/oxJSWlenpfSUmpvra29sMgoUuX\nLtUNj2l4nOiHz9u3b9Uaq4+Q96mjXbt2zU9JSXEICgpaJ3qsuA8wul42m10n2jZxHxbiymmsrMbK\nVFZWrq2vr//wd0OnhiRdKXLRokU7v/jiix0pKSkOv/zyy79Ez5fuV9G2sFgsqrFzoiiKdfv27YFJ\nSUlOSUlJTllZWabSCPqE/NUn4t7fxtojjbqhfSDwd0KjRo26/O7du667d++eRz+WkpLicP369aHD\nhg279ttvv/1ffX29Un5+vv7Vq1eHu7q63pH2H2737t1fPXnypG99fb3SyZMnJ9GBUVNTs1x0Rk1F\nRQXH0NAwr6amRuXgwYMzmzpOEkOGDLlBX7OIjY31KC4u5ram7dra2qU6OjolN27cGEIIIYcOHZpB\nP8fj8YTJycmOFEWxsrKyTO/cuePKYrGoQYMG3bp69epwoVDII4QQ+tqCpqZmeXl5uSb9+rKyMi1j\nY+OXhLy/XkA/3lj/s1gsatSoUZePHTs2hS6PPicPD4/YHTt2fEEfm5yc7NiacwVmQuDvpE6ePDkp\nLi5ujJWVVZqdnd2jb7755nsjI6PcSZMmnXRwcEjp16/fg9GjR1/avHnzCgMDg9fi1vhu+FxTP4sK\nDQ1dNX78+LNDhgy5QQc6Qgjx9fU9snnz5hXOzs73nz9/3nP9+vVrBw4ceHvo0KHXRWf6NDyuqfMU\nbVtQUNC62NhYD3t7+4fHjx+fbGhomNfwuw6aaz+9HxEREbBgwYJ/Ozk5JYk+PnTo0OsWFhYZNjY2\njxcvXhzm7Ox8nxBCunXrVhAeHh74ySef/O7o6Jg8bdq0w4QQ4u3tHXXy5MlJ9MXd4ODg4ClTphwb\nMGDAPX19/Xy63Kb638bG5vE333zz/YgRI644OjomL1++fCshhOzYseOLe/fuDejXr98DW1vb1PDw\n8MDGzvPSpUujTU1Ns+jt9u3bA5vqS3F9K64PmzsWFA8WaYNOo7q6ugubza5js9l1CQkJbgsWLPh3\nYmJif3m3S5GNHDkyfsuWLV/SH2DSsnfv3tn37993Fp2dBIoDI37oNDIzM81cXFzuOjo6Ji9evDhM\nNNUFjdPV1S2aPXv23pbewCXO9u3bl4aGhq7S1tYulVaZIF0Y8QMAMAxG/AAADIPADwDAMAj8AAAM\ng8APAMAwCPwAAAyDwA8AwDD/DxR4tH4eP493AAAAAElFTkSuQmCC\n", + "text": [ + "<matplotlib.figure.Figure at 0x33b4a90>" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 10.7, Page number: 528" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "%matplotlib inline\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "R=12.5*10**-3 #ohm\n", + "L=1.2 #H\n", + "Vo=15 #volt\n", + "w=120*pi #angular freq(Hz)\n", + "Idc=35 #DC current(A)\n", + "\n", + "\n", + "#Calculations:\n", + "#for part (a):\n", + "theta=[0]*1301\n", + "t=[0]*1301\n", + "vL=[0]*1301\n", + "vs=[0]*1301\n", + "\n", + "Vdc_a=R*Idc #Dc voltage(V)\n", + "P=Vdc_a*Idc #Power\n", + "alpha_da = acos(pi*R*Idc/(2*Vo)) ; #delay angle\n", + "for n in range(1,1301,1): #loop for calculating load voltage\n", + " theta[n-1]=2*pi*(n-1)/1000\n", + " t[n-1]=theta[n-1]/w\n", + " vs[n-1]=Vo*sin(theta[n-1])\n", + " if theta[n-1]<alpha_da:\n", + " vL[n-1]=-vs[n-1]\n", + " elif (theta[n-1]<pi+alpha_da):\n", + " vL[n-1]=-vs[n-1]\n", + " elif theta[n-1]<2*pi+alpha_da:\n", + " vL[n-1]=vs[n-1]\n", + " elif theta[n-1]<3*pi+alpha_da:\n", + " vL[n-1]=vs[n-1]\n", + " elif theta[n-1]<4*pi+alpha_da:\n", + " vL[n-1]=-vs[n-1]\n", + " else:\n", + " vL[n-1]=vs[n-1]\n", + "\n", + "figure(1)\n", + "plot(1000*np.array(t),vL,'g.')\n", + "xlabel('time [msec]')\n", + "ylabel('Load voltage [V]')\n", + "grid()\n", + "show()\n", + "\n", + "\n", + "#part(b):\n", + "alpha_db=0.9*pi #delay angle\n", + "Vdc_b=(2*Vo/pi)*cos(alpha_db) #new dc voltage(V)\n", + "tau=L/R #time constant(s)\n", + "imo=Idc #Initial curent(A)\n", + "tzero=-tau*log((-Vdc_b/R)/(imo-Vdc_b/R))\n", + "for n in range(1,1301,1):\n", + " theta[n-1]=2*pi*(n-1)/1000\n", + " t[n-1]=theta[n-1]/w\n", + " vs[n-1]=Vo*sin(theta[n-1])\n", + " if theta< alpha_db:\n", + " vL[n-1]=-vs[n-1]\n", + " elif (theta[n-1]<pi+alpha_db):\n", + " vL[n-1]=vs[n-1]\n", + " elif theta[n-1]<2*pi+alpha_db:\n", + " vL[n-1]=-vs[n-1]\n", + " elif theta[n-1]<3*pi+alpha_db:\n", + " vL[n-1]=vs[n-1]\n", + " elif theta[n-1]<4*pi+alpha_db:\n", + " vL[n-1]=-vs[n-1]\n", + " else:\n", + " vL[n-1]=vs[n-1]\n", + "\n", + "#Results:\n", + "figure(2)\n", + "plot (1000*np.array(t), vL,'g.')\n", + "xlabel('time [msec] ')\n", + "ylabel('Load voltage [V]')\n", + "print \"part (a):\"\n", + "print \"\\n Vdc_a=\",round(1000*Vdc_a,2),\"mV\"\n", + "print \"\\n Power=\",round(P),\"W\" \n", + "print \"\\n alpha_d=\",round((180/pi)*alpha_da,1),\"degrees\"\n", + "print \"\\n part (b):\"\n", + "print \"\\n alpha_d=\",round((180/pi)*alpha_db,1),\"degrees\" \n", + "print \"\\n Vdc_b=\",round(Vdc_b,1),\"V\"\n", + "print \"\\n Current will reach zero at\",round(tzero,1),\"sec\"\n", + "grid()\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEMCAYAAAAxoErWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcVHX6OPDnMDBy1QGUOwmKNkIjF4lIQTHFwLzmZVUq\nJW3UbqZmtm79gq/l6palSZbrDdu01BSLFFYyKc2UlYuwkobKKCpOiGCIGLf5/cEOzBxmGJiZc/mc\n87xfL17LGYaZx89+mofzfG6URqMBhBBCyBAbrgNACCHEX5gkEEIIGYVJAiGEkFGYJBBCCBmFSQIh\nhJBRmCQQQggZxVmSeP7553d4enqqFQpFifaxlJSUFD8/v+vh4eGF4eHhhdnZ2QlcxYcQQojDJJGc\nnLyTngQoitIsW7bsw8LCwvDCwsLwhISEbK7iQwghxGGSiI2NPeHq6lpDf1yj0VBcxIMQQqgzW64D\noNu0adMrn3/++XORkZFn169fv1wmk9Xq/pyiKFwijhBCZjDnj3CKy205VCpVwMSJEzNLSkoUAAC/\n//67R79+/aoAAN5+++3VlZWV3tu3b5+v+zsURWlwK5E2KSkpkJKSwnUYvMBGW8jT5HCx+qLRn1NA\nwblF50DhqWA0DlOwX3TQbQvpaik0tTZZ/Jonk0/CiIdGWPw6bKMoyqwkwavZTR4eHr9TFKWhKEqz\nYMGCbXl5eVFcx8RnKpWK6xB4g+m2kK6WdpkgpDZSXiQIAOwXulQqFSgzlUClUlZJEAAAMTtj4NF/\nPgq1D2pNP1kAeFVuqqys9Pb29q4EAMjIyJiqO/MJIa7YpNqABgzfvWbNyYKEQTgJj68yLmTAHwV/\nGPyZnY0d5CvzjSb2EnUJRHwWAc3Q3OlnZyvPgsf7HlD2Shn0l/W3asx8w1mSmD179pc//vjjqNu3\nb/f19/evSE1NfSc3NzeuqKgojKIoTWBgYPmWLVsWchUfCebNm8d1CLzBRFsoM5WwrWCbwQSRPikd\n5obPtfp7WgP2izbyNDn8MaRzgrC1sYUCZYHJuz6FpwKa3mmCEnUJDPtsGDSB/p1IU2sTRG2NAvUK\ntVXj5htOxyTMgWMSiC2G7iD69OoD5xadE/xfj6QzNn60OXEzLI5abNZrZpdlQ+KeRL3H7G3toeFv\nDWa9HtsEMSaBeiY3N5frEHjD2m0hXS3tlCA+GPsB1L5Zy/sEIfZ+ocxUdiQIVcfj+6fvNztBAAAk\nDEqA4kXF7dcUUJC3IM/s1yMFJgmEaAzNgtmcuBmWj1jOUUSou5SZSthasLXT41lzsmB6yHSLX1/h\nqYDiRcXgYOvAm4kKTMNyE0I6ZGtlcPfPu3qPWVKiQOwyVCLEyQVtsNyEkIXkafJOCSLMIwwTBCFk\na2WdEsT+6fsxQVgIkwTBxF571mWNtqAPdDraOMLx5OMWvy7bxNgvDCX49Enp0LeqL0cRCQcmCYSg\n7a9QutJXSkFm3/lxxD/0BB/pFcnbKcqkwTEJJHqGxiFI3XpBjAxNNKhZWYMJngbHJBAyEz1BRPtE\nY4IghDxN3ilBnEw+iQnCijBJEEyMtWdjzG0LepmJAgqyns2yQkTcEUu/0FsP8T/pk9L1ErxY2oJJ\nmCSQaBka7Dy36Bz+FUqIHYU79K5lvWQ4DsEAHJNAokWl6pdnY/xi4MT8ExxFg3rC0LYbqiUq3q+G\n5xKOSSDUA/I0eafHMpMyOYgEmaPsTpnedYxfDCYIhmCSIBjWWzv0pC0M1bKFNNgp9H4hWyuDVk1r\n+7UN2BhN8EJvCzZgkkCi80XxF3rXbvZuOJuJIPRxpKJFRYJJ8HyEYxJIVAxtAIe1bHLQ17S42btB\n9cpqDiMiB45JINQN9LuIvg59MUEQQpmp7HQXUbCwgKNoxAOTBMGw3tqhO22hzFRCQ7P+ATFnlWcZ\niog7Qu0X9ATfncFqobYFmzBJINGgz6uPeygO7yIIQU/wFFA4G40lOCaBRMHQWATu70MOx/cc9ZKE\nh6OH4M+WtjYck0CoC/RSRdxDcZggCGGoTJj3gvCPDeULTBIEw3prh67agv4hYwM2kDE7g4WouCG0\nfmEowXe3TCi0tuACJgkkePQPmTGBY/AugiBiSvB8hGMSSNDoYxE2YAPVK6sxSRCCvi4CxyLMh2MS\nCBnQaV2EY19MEIQwtC4CxyLYh0mCYFhv7WCoLcQ64CmUfmHOugg6obQFlzBJIMGyZMATcQ/XRfAD\njkkgwdI9LwLHIshCPy8CxyIsh2MSCOmgnxeBYxFkoZ8XIYYyIV9xliSef/75HZ6enmqFQlGifezO\nnTtu8fHxOYMHD/5t3LhxR2tra/G/6i5gvbUDvS3E/CFDer+Qp8n1zouwZBNG0tuCDzhLEsnJyTuz\ns7MTdB9bu3btm/Hx8Tm//fbb4DFjxhxbu3btm1zFh8hlzQ8ZxD56ghfiJowk4XRMQqVSBUycODGz\npKREAQAgl8sv/Pjjj6M8PT3Vt27d8oqLi8u9cOGCXt0AxySQKZL/k+glCTwvghz0dS1uDm5Q/Qae\nF2EN5o5J2DIRjLnUarWnp6enGgDA09NTrVarPQ09b968eRAQEAAAADKZDMLCwiAuLg4AOm4v8Vq8\n163lrQABAAAALjddoLyoHPrH9edNfHht/PpA1gGABmj//2/QH4MgNzeXN/GRdJ2bmwvp6ekAAO2f\nl+bg1Z2Eq6trTU1Njav2525ubnfu3Lnjpvs7eCfRQfc/HrHTtgV9Vsz4oPFwOOkwh5Gxj+R+IUmV\nQCu03QU62zlDxbIKiyYckNwW1iaI2U3aMhMAQGVlpbeHh8fvXMeEyKJbz5aABHZP281hNKgn5Gny\n9gQBAOAsdcYZaTzAqyQxadKkb3ft2jUXAGDXrl1zp0yZcojrmPgM/0LqoL2L0B2LcHd0F+WHDKn9\ngj5gfXrBaYtfk9S24BPOksTs2bO/HD58+KmLFy8+7O/vX7Fz587kN998c21OTk784MGDf/vhhx+e\nePPNN9dyFR8ij5invZJOmanUS/BuDm442YAncMU1wbDe2mHCmglwuKlj7EHMs2JI7Bf0k+esNZZE\nYlswRRBjEgiZ65frv+hdR/tGcxQJMseD5gft3+NYEr/gnQQSBGvPikHsoc9Iiw+Mh6PPHeUwImHC\nOwkkWjgrhmz0GWn7Zu7jMBpEh0mCYNqFM2JXdqcMQNVxbY1ZMSQjqV/QB6xdHV2tmuBJagu+wiSB\niEb/kMF9msjy3W/f6V1H+URxFAkyBsckENHos2Jwnyay4FgSe3BMAomSboJwd3DHBEEQHEsiAyYJ\ngom93qp3sJAKwM7GjrNY+ISUfsHECms6UtqCzzBJIGKV15brXYt9wJo0uMKaDJgkCCbmlaTKTCU0\ntjS2X8fExOCHzP+Q0C/ox8sytfiRhLbgO0wSiEhfFH+hd+3u5M5RJMgcuFsvOTBJEEzM9VbdbRxs\nKVtY4LaAw2j4he/9gj5tmcndevneFiTAJIGIo8xUggY6pkHH+seCs9SZw4hQT9DvAnG3Xn7DdRKI\nOD7rfaDyXmX79eSHJ8OhWXj0CClsUm3ak3xfx75QtaKK44jEAddJINFQ31O3f+8idYH0KencBYN6\nhH4XGOEZwWE0qDswSRBMjPVW+gIsJzsnkNnLRNkWxvC5LeilJgepA6Pvx+e2IAUmCUQUXBtBNvqE\nA7wL5D8ck0BEoVI7SqrRvtHwy4Jfung24hM8N4JbOCaBBE+ZqdS7vnb3GkeRIHPo3gXiuRHkwCRB\nMLHVW3Xr2RRQcGr+qfZrsbVFV/jaFror5B/3f5yVzfz42hYkwSSBiKDMVOrv+OqIO76ShL4Nx5Wa\nKxxFgnoKxyQQEehrI8YHjYfDSYc5jAj1RK93e+ndSeC5H+zDMQkkaLprI5ztnHGvH4J02ozRDzdj\nJAkmCYKJqd6quzbCUerYqZ4tprYwhW9tQT+ilM3NGPnWFiTCJIF4j17PjvSO5CgSZA5cIU82HJNA\nvKdbz5aABG6vvI3HXBJEd22Lh5MHqF9Xd/FsxBQck0CCRK9nj3xoJCYIguBdIPkwSRBMDPVWej27\nt0Nvg88TQ1t0F5/agr6Aju0JB3xqC1LZch2AIQEBAarevXv/IZFIWuzs7Jry8vKiuI4JcQPr2eTC\nu0BhMJokDhw4MO1/9X+jNSwHB4eG8ePHH7F2UBRFaXJzc+Pc3NzuWPu1hUTo5/cqM5V6s5oc7ByM\nfsgIvS16gi9tQd/x1dhdIJP40hYkM5oklErlPydNmvStsZ9rNBrqxIkTsUwkCe3rM/G6iBz0UhPW\ns8mCO74Kg9EkkZCQkL1z587krn45KSmJkQIjRVGasWPHfi+RSFoWLly45YUXXtiq+/N58+ZBQEAA\nAADIZDIICwtr/4tBW4MUw7VuvZUP8Vj7Wn1PDaBq+/c5D2pbQGfs+drH+BQ/V9dFRUXw2muvcRrP\nov8uajtcSAUAADB69Gi9cz/YimfDhg2i/nxIT08HAGj/vDSH0SmwjY2NUqlU2mjwhwyrrKz09vb2\nrqyqquoXHx+fs2nTpldiY2NPAOAUWF25ubntnUNolJlK2FrQ8beBl5MXVL5eafT5Qm6LnuJDW/Bl\n2jIf2oIvrD4F1s/P7/qCBQu2HTt2bAzbpR9vb+9KAIB+/fpVTZ06NQMHrg0Tcuen7/hq6nAhIbdF\nT/GhLbjY8dUQPrQF6YwmidLS0uDIyMizq1evftvPz+/6kiVLNp4+fTqa6YDu37/vWFdX5wIAUF9f\n73T06NFxCoWihOn3RfyiW8/GHV/JQj/3A3d8JZvRJNG3b9/bixYt+iw3NzfuP//5z6OBgYHlS5cu\n/WjgwIGXV61atYapgNRqtWdsbOyJsLCwoscee+zMhAkTvhs3bhweX2WAbj1eSJSZyrZ69v9EeEaY\n/B2htoU5uG6Lrs79YBvXbSEE3Von4ePjc3P+/PnbXV1daz788MNl27ZtW7BmzZpVTAQUGBhYXlRU\nFMbEayMy0Gc1OUgdOIoEmQPvAoWlyxXXDQ0NDvv27Zv59NNPHwwKCrr0ww8/PLFu3bqVN2/e9GEr\nQGScUOut1Q3V7d/3lvbu1tRJobaFObhsC/pdYJQPt8OJ2C8sZ/ROYs6cOXtycnLiR40a9WNSUtLu\n3bt3Jzk4ODQYez5C1kBfpRvtG42rdAmiW2pysXPBcz8EwOidREJCQvaVK1cGfP3119OnTZt2ABME\n/wix3mpuqUmIbWEuLttCt9TkIDW+Qp4t2C8sZzRJuLq61ri4uNR19cvffffdBOuHhMQM92oiF73U\nFOaBQ4tCYHQxnVwuv7Bnz545Go2Goiiq05M0Gg01b9689JKSEgXjUerAxXTChmcPkIt+DvnkhyfD\noVmHOIwI6TJ3MZ3RMQkvL69by5cvX9/VLw8ePPi3nr4hQsbg2QNkw7tAYTKaJHJzc+NYjAOZQWhb\nDlhy9oDQ2sISXLQFfcdeJzsnzscjALBfWAMeOoR4Ac8eIFtPt1FB5MAzrhEvYD2bbDapNu2D1n0d\n+0LViiqOI0J0eMY1IhrWs8llzjYqiBwmk0R9fb3T6tWr39ae6VBWVjYIp77yg5DmgHf3BDpjhNQW\nlmK7Lfi8jQr2C8uZTBLJyck7pVJp46lTp4YDtO3j9Le//e095kNDYoGzmsiGd4HCZjJJXL58eeDK\nlSvXaQ8gcnJyqmc+LNQdQpm1YcmsJi2htIU1sNkWfJ3VpIX9wnImk0SvXr3+bGhoaL9/vHz58sBe\nvXr9yWxYSEyaWprav8dZTWTRLTXZgA3OahIgk0kiJSUlJSEhIfv69et+c+bM2fPEE0/8sG7dupVs\nBIe6JoR6qzxNrjfo2duht1mvI4S2sBY220K31DTcfzjvtgXHfmE5k+dJjBs37mhERESB9lS6jz/+\n+NW+ffveZj40JAa6pSZbyhbr2YTRLTVdqrnEYSSIKSbXSeTn5w/T7t2k3cepT58+d/v373/V1ta2\nmZUodeA6CWHR3aspxj8GTjx/gsNoUE/I0+Rwsfpi+/X4oPFwOOkwhxGhrlh97yatl1566ZP8/Pxh\nQ4cOLQYAKCkpUYSEhJy/e/dun08//XTxk08++W9zAkYIz0ImmzUmHCD+Mzkm4ePjc7OoqCgsPz9/\nWH5+/rCioqKwAQMGXMnJyYl/4403/sFGkMgw0uut1jwLmfS2sCY22oKUbVSwX1jOZJK4ePHiwyEh\nIee118HBwaUXLlyQDxw48LKhLcQR6i48C5lc9AV05k44QPxnstwUEhJyfvHixZ/OmjXrK41GQ+3b\nt29mcHBw6Z9//tnLzs6uydTvI+aQPAecPqvJ0rOQSW4La2OjLUhZQIf9wnImB67v37/vuHnz5hd/\n/vnnEQAAI0aM+PnFF1/cbG9v/6C+vt7J1Ol11oYD18LQ691e7eUKCUjg9srbvCxXIMPwcCjymDtw\njbvAEozkvfJ1dw0d/dBo+CH5B4tej+S2sDam20KZqYStBVvbr/k8qwn7RQfGZjf99ttvg1etWrWm\ntLQ0WLvymqIozZUrVwaYEyhC9F1DHaWOHEaDekp3woGLnQvOahK4bm3wt2jRos9sbW2bjx8/Pnru\n3Lm7kpKSsFfwAKl/IdEHPW0lJv9WMYnUtmAC022hO+HAQdrzHXvZhP3CciaTRENDg8PYsWO/12g0\nVEBAgColJSXl8OHDT7ERHBImUgY9UWf0CQe4Y6/wmUwS9vb2D1paWiRBQUGX0tLSXj548ODT9fX1\nTmwEh7pG4hxwpnYNJbEtmMJkW5C2gA77heVM3udv3Lhxyf379x0//vjjV99+++3Vf/zxR+9du3bN\nZSM4JDx4FjLZdBfQPe7/OK9LTcg6TN5JlJeXB7q4uNT5+/tXpKenzzt48ODT165de4jJoLKzsxPk\ncvmFQYMGleGOs8aRWG9lagEdiW3BFKbagsRtVLBfWM5kkvj73//+1+48Zi0tLS2Sl19+OS07Ozuh\ntLQ0+Msvv5z966+/DmHq/RC78CxkctHPjrBkGxVEDqPlpqysrMQjR46Mv3Hjhu+rr776sXZ+bV1d\nnQuTK63z8vKigoKCLgUEBKgAAGbNmvXVN998M3nIkCG/ap/T7/1+cPaFs6LfxoG0OeD0Y0qteRYy\naW3BJKbagu9nRxiC/cJyRpOEj4/PzWHDhuV/8803k4cNG5avTRK9e/f+46OPPlrKVEA3btzw9ff3\nr9Be+/n5XT9z5sxjus+5vec2BGUFwfLhy8GrrxeEhYW1dwTtQBVe8++6vLYcQAUAAGAb2HZ2hLVe\nX4tP/16urouKiqz++nvq9rRNOFABAABccb7Cm39vV9dFRUW8iofN69zcXEhPTwcAgICAADCXyRXX\nTU1Ndmzu0XTgwIFp2dnZCVu3bn0BAOCLL7545syZM49t2rTpFYC2hXyQ0vZcPq/0RProq3Stscoa\nscfxPUdoaG4AgLYJB+VLyom4k0AdrL7iWqFQlHTxZpri4uKhPX2z7vD19b1RUVHhr72uqKjw9/Pz\nu27ouQW3CpgIATEAdw0lG+7YK15Gk0RmZuZENgPRioyMPFtWVjZIpVIF+Pj43Ny7d+9fvvzyy9mG\nnlt9vxqu1l4VbYfNJajeyvQCOpLagmnWbgv6NiokTTjAfmE5o0lCO3AMAKBWqz3z8vKiKIrSREVF\n5Xl4ePzOWEC2ts1paWkvP/nkk/9uaWmRzJ8/f7vuoLWuptYmGL59ONxYfoOpcJCV6C6gc7Dj91YO\nSB/9LtCaEw4Q/5kck9i3b9/MFStWvD9q1KgfAQB++umnke+///6KGTNm7GclQhrdMQkAgHEDxsG/\nn8UTVPmMpF1DUWe627r3lvaGq0uvYpInEGO7wL777rtv/ec//3lUe/dQVVXVb8yYMce4ShIAAFIb\nKTS2tnXawluFUPugFjstj+GuoeSiH1Ma7RuN/62JjMnFdBqNhurXr1+V9trd3b3anGxkTU7Sjq2j\nqu5XwbxD87gLhkP06Z98xcauoaS0BRus2Rakl5qwX1jO5J1EQkJC9pNPPvnvOXPm7NFoNNTevXv/\nkpiYmMVGcMYM8xkG31/5vv26obGBw2hQV3DXULLhjr2oWyfTHThwYNrJkydjKIrSxMbGnpg6dWoG\nC7EZRFGUpqahBtzWubV/+PSS9IJbr9/C22AewmNKyYbHlAoHY2MS69evXz5r1qyvpk2bdsC80KxP\nZi8DNwc3qG6oBgCAP1v+hKQDSTgYyjP0evbIh0ZigiAIfRsVvAsUJ5NjEnV1dS7jxo07GhMTczIt\nLe1ltVrtyUZgpuQr8/Wuxbiwju/1VjYX0PG9LdhkrbYg7ewIQ7BfWM5kkkhJSUk5f/58yCeffPJS\nZWWl98iRI38aM2bMMTaC60p/WX+goOPOaagHIwvAkQW0d3oAbVMnsZ5NlqaWjt148C5QvEwmCS0P\nD4/fvby8brm7u1dXVVX1YzKo7urTq0/797mqXLhae5XDaNjH95Wkuh8yw7yHMfohw/e2YJM12oI+\n4YDUbVSwX1jOZJLYvHnzi3Fxcbljxow5dvv27b7btm1bwNS+TT0V6dtRI21sbYTh24dzGA3SRd/K\n4WL1RQ6jQT2lW2qypWzxLlDETCaJiooK/w0bNrxWWloanJqa+k5wcHApG4F1x37aer4/W/6E2ge1\nHEXDPj7XW+nHlDJ9QA2f24Jt1mgLvQV0fuQuoMN+YblunUwXFhZWxEYwPSWzl4GsV0fnrW6oFu3C\nOr7BXUPJReIxpYg53R6T4CvdkhOAuBbW8bXeSq9nR/lEMf6efG0LLljaFmzfBTIJ+4XliE8S9JJT\ncVUxR5EgLSFMnRQzvAtEuohPEjJ7GdjadKwJbGltEc24BF/rrVxMneRrW3DBkragTzhg4y6QSdgv\nLGc0STg7O99zcXGpM/TVu3fvP9gM0pQY/5j276vuV0HSgSQOoxE3+oeMo9SRw2hQT+GOvYjO6LYc\n9+7dcwYAeOutt9718fG5+cwzz3wBALB79+6kmzdv+rAVYHdkzMoA13Wu7ddiWX3Nx3orfZW1rcTk\nzi9Wwce24IolbcHGjr1swn5hOZMb/A0dOrSYvi7C0GNsoShKYyhmu9V20Nza3Pa9jR2UvVKGtVQO\nSFIl7afQuUhd4NrSa8R/0IgF/XCocYHj4N/P4YFeQmHuBn8mxyScnJzqv/jii2daWlokLS0tkt27\ndyc5OzvfMy9M5uiWnLTHmgod3+qtykyl3jGlTnZOrCUIvrUFl8xtC9LPjjAE+4XlTCaJPXv2zNm3\nb99MT09Ptaenp3rfvn0z9+zZM4eN4HoiY5b+7uViW1jHB/Spk6cXnOYwGtRTeHYEMqRb50nwibFy\nEwCA61pXqP2zIzFMfngyHJp1iK3QRM8m1aZ90LqvY1+oWlFl4jcQX9BLTV5OXlD5eiWHESFrY+w8\niYaGBoft27fPLy0tDX7w4IG99vEdO3Y839M3Y1qkbySeWMcR+qymCM8IDqNBPYV3gcgYk+WmZ599\n9l9qtdozOzs7YdSoUT9WVFT483FMAkB8C+v4VG/lup7Np7bgmjltIdQFdNgvLGcySVy6dClo9erV\nbzs7O9+bO3furiNHjow/c+bMY2wE11P0hXXV96tFt304V7CeTS68C0RdMZkkpFJpIwBAnz597paU\nlChqa2tlfDlPwhAxzXLiyxxwLmc1afGlLfigp23B9V0gk7BfWM5kknjhhRe23rlzx+3dd999a9Kk\nSd8GBweXvvHGG/9gIzhz4Cwn9mE9m2x4F4i60q0k4ebmdmfUqFE/lpeXB1ZVVfVbtGjRZ2wEZw4x\nbR/Ol3orH+rZfGkLPuhJW/DhLpBJ2C8sZzJJ1NbWypYuXfrRsGHD8ocNG5a/fPny9Xfv3u1j6ve4\nJObtw9mG9Wyy4V0gMsVkknj++ed39O7d+4/9+/fP2Ldv30wXF5e65OTknWwEZy6xzHLiQ72VL/Vs\nPrQFX/SkLfhwF8gk7BeWM5kkLl++PDA1NfWdAQMGXBk4cODllJSUlMuXLw9kIpiUlJQUPz+/6+Hh\n4YXh4eGF2dnZCea8Ds5yYg/Ws8mFd4GoO0wmCQcHh4YTJ07Eaq9PnjwZ4+joeJ+JYCiK0ixbtuzD\nwsLC8MLCwvCEhIRsc19LDLOcuK638qmezXVb8El324Ivd4FMwn5hOZMrrj/77LNFzz333OfacQhX\nV9eaXbt2zWUqIHOWjRtC3z5cO8tJSINyXMN6NtnwLhB1h8kkERYWVlRcXDxUmyT69Olzd8OGDa+F\nhoaeYyKgTZs2vfL5558/FxkZeXb9+vXLZTJZp/mr8+bNg4CAAAAAkMlkEBYW1l571P7lEBcXB7Je\nMqi92Pbr1QFts5xe83qt/ef055N2HRcXx+n7P2h+AKACAABwD26rZ/OpfcR8rWXs53vq9rTdBara\nnucU0nYXyJf4rXWtfYwv8bB5nZubC+np6QAA7Z+X5jBrgz9/f/+KiooKf3PeMD4+PufWrVte9Mff\ne++9v0VHR5/u169fFQDA22+/vbqystJ7+/bt8/UC7mKDv07v9a94vb2ccH9868GzB8jm+J4jNDS3\nzfqjgILyJeWCG7RG+hjb4M/acnJy4rvzvAULFmybOHFipiXvtX/Gfr2Sk9BmOen+hcQ2vtWzuWwL\nvulOWwh9VpMW9gvLmRy4ZlNlZaW39vuMjIypCoWixJLXw1lOzMF6NrnkaXK9WU1RPlEcRoP4zmi5\nydnZ+R5FUQZ/eP/+fceWlhaJtYN57rnnPi8qKgqjKEoTGBhYvmXLloWenp5q3ef0pNwEADA6fTTk\nXs1tv/Zx9oEby29YLWYxwrMHyNbr3V7Q2NIIAAASkMDtlbdxQocImFtuEtShQ4bUPqjVKzm5O7jD\npVcv4X8UFsB6Ntmo1I7PiRj/GDjx/AkOo0FsYeyMa9IJeS8n+kwWtvCxns1VW/BRV22hzFTqXV+p\nucJwNNzCfmE5wScJANzLyZpwlS7Z6GtbTs0/xWE0iASCLzcBdC45eTl7QeVyrKGbw2e9D1Te62g7\nPEecLHgOuXhhuakLOMvJenBWE7lwVhMyhyiSBEDnvZyit0VzGI11sF1vlafJebNXEx3WnjsYa4uy\nO2Xt30voC/D0AAAVcElEQVRAArun7WYpIu5gv7CcaJIE/cS6Ow/u4Il1PVReW653jXs1kaVV05Hg\nXR1deZPgEb+JJknI7GXgZu/Wft3Y0ghJB5I4jMhybK8k1c6tBwCI9o3mxawmLVxV28FQW8jT5HrX\nYik1Yb+wnGiSBABAwcIC/etbBUaeiejoUyev3b3GUSTIHLp3gWIpNSHrEFWS6C/rDxR0DO43tTQR\nXXJis97K96mTWHvuQG8LZaZS7y5w5EMjRVNqwn5hOVElCQCAPr06jueubqgmvuTEBmWmsn2FNQB/\nFtCh7tFN8AAAvR16cxQJIpEo1knoom8fjmsmTKOvjRgfNB4OJx3mMCLUE7prI2wpW6h6o0o0dxKo\nA66T6Kb9M/brlZxwzYRpumsjnO2csZ5NEPoK+Vj/WEwQqEdElyRk9jIY1X9U+zXJaybYqLfSz7F2\nlDry8kMGa88ddNtC7KUm7BeWE12SAOi8ZkL3Ly2kj364UKR3pJFnIj7S3YzRlrLFFfKox0Q3JqFl\nt9oOmlub2763sYOyV8pwMNYASaqk/U7C2c4ZKpZV8PJOAnUmT5PDxeqL7dfxgfFw9LmjHEaEuIRj\nEj0kxG06rI2+DYez1BkTBEHo23Dsm7mPw2gQqUSbJISwTQfT9VaStuHA2nMHbVvgNhzYL6xBtElC\niNt0WBuft+FAXRPrNhzI+kQ7JgEAcLX2KgRsDGi/9nDyAPXrauO/ICL0ejaeDU4Wyf9J2u8k8Bxr\nBIBjEmahb9NR+6CWuJITU+ilJr5tw4GMU2Yq9UpN7o7umCCQ2USdJAAAXO07TqwjreTEVL2VvtdP\njF8M70tNWHvusOubXXrXeS/kcRQJ97BfWE70SYK+M+z35d+L/m6CvgDL3cmdo0iQOXQTvLsD7rOF\nLCPqMQkt3TUTALg3EZXaUYKTUBK4/QbWs0lBH0vycvKCytdxbzKEYxIW0V0zASDucybo50a4O2A9\nmyQkTVtGZMAkAZ3XTJByzgQT9VZ6qYmUejbWnnXGklRt1ySMJTEN+4XlMElA25oJWa+Ov5bFes4E\n/dyIvo59Rf8hQxIcS0JMwDGJ/6GfMyGVSEH9ulpUpRbH9xz1koTYx2ZIg2NJqCs4JmEh+jkTpE2H\ntQbdBGEDNnhuBEHoK6xxLAlZCyaJ/6GfMwHA/wFsa9Zb6QPWfR37EvUhI/bas96AtYqcsSSmib1f\nWAMnSWL//v0zQkJCzkskkpaCgoII3Z/9/e9//+ugQYPK5HL5haNHj45jMy5SB7CtgdQBa9R58aOi\nnwLHkpDVcJIkFApFSUZGxtSRI0f+pPt4aWlp8N69e/9SWloanJ2dnfDiiy9ubm1tZS1G0gaw4+Li\nrPI6QhiwtlZbkIie4AdEDOAoEv4Rc7+wFk6ShFwuvzB48ODf6I9/8803k2fPnv2lnZ1dU0BAgCoo\nKOhSXl4eq9tXRvrqn7wmhhXY9A8Z3DGULLoJXkJJ8PQ5ZFW2XAeg6+bNmz7R0dHtq3/8/Pyu37hx\nw5f+vHnz5kFAQAAAAMhkMggLC2v/i0FbgzT3eonnEvj+h+8B2l4eGi83QsK7CXD63dNWeX1rXuvW\nWy15vYZLDe3/XkpFweLHF7e/Lp/+vV1dax/jSzxsXT+05CGAP6D9/z+Xmy6Q/lk6vPbaa7yIj+vr\nDRs2WPXzgaTr3NxcSE9PBwBo/7w0B2NTYOPj43Nu3brlRX98zZo1qyZOnJgJADB69Ojj69evXx4R\nEVEAAPDKK69sio6OPp2UlLQbAGDBggXbxo8ff+Tpp58+2B4wQ1NgdY1OHw25V3Pbr/m6hXhubm57\n5zAXfRsHD0cPUK/g37/VFGu0BYl0twQHAFAtUUF5Ubko28IQsfYLQ8ydAsvYnUROTk58T3/H19f3\nRkVFhb/2+vr1636+vr6sH2KQMSsDXNd17A5bVV8FV2uv8q5Ob43Or3vEJQC5A9Zi/CCQp8n1EkRf\nh7axpP5x/OqnXBJjv7A2zqfA6ma2SZMmffvVV1/NamxslJaXlweWlZUNioqKYv1Ti35qnQY0gjwD\n29iHDCIDPcGfVZ7lKBIkZJwkiYyMjKn+/v4Vp0+fjn7qqacOJyYmZgEABAcHl86cOXNfcHBwaWJi\nYtbmzZtfpCiKkyXh9C3E1fVquFp7lYtQjNKtx5tDSB8ylrYFaegHC7k5uLUneLG1RVewLSzHycD1\n1KlTM6ZOnZph6GerVq1as2rVqjVsx0TXX9Yf3Ozd4M6DOwDQcTchlG2X8S6CbPQZadG+wrvTRfyA\nezd1gX4GttRGCuoVwtjPydCAJyYJMigzlbC1YGv7NZ5hjboD925iQH9Zf7C16bjZamwVxn5OXZUq\nEP/R7yKeCHwCEwRiDCYJE+gHEmVdyuLN2IS59dYdhTv0roVQqhBL7Zm+Ot4GbGDfzH16zxFLW3QH\ntoXlMEmYkDErQ293WNJnOsnT5NCiadF7DHd7JQf9LoK0jRgReXBMohvoi+tIHpugj0WcTD4JIx4a\nwWFEqLvoYxEAOJaEug/HJBhEv5sgdWyCPhYhs5dhgiAI/S4i7qE4TBCIcZgkusHQWRN8GJvoab2V\nPhYx3G+4FaPhltBrz4bGIjJmG5xFLvi26AlsC8thkugm0scmcCyCbDgWgbiCYxI9QPLYBI5FkAvH\nIpA14JgECwyNTczcN5PDiLqHvroaxyLIQi8T4lgEYhMmiR4wNDaRU57D2dhEd+ut9D2ahDQWoSXU\n2rMyU9mpTGhsLEJLqG1hDmwLy2GS6CH63QQAwOBNg3l7ep1srUzvLkICEhyLIIihuwgSyptIOHBM\nwgwl6hIY+tlQvcfGB42Hw0mHOYrIOCpVP6EVLyoGhaeCo2hQT9APhAIAqFlZg0kCmQXHJFik8FTo\nnTcBAJBzJYd3dxOytfofJm72bpggCEJPECeTT2KCQKzDJGEm+nkTTa1NrA9id1VvlafJ4e6fd/Ue\no8csJEKrPdMTvC3YdnuygdDawhLYFpbDJGEm7XkTunLKc6BEXcJRRProf4XG+MXgjBhCGEzwi4Sb\n4BG/4ZiEBejnTQAAUEDBnZV3OC0LyNbKOn3IYC2bDIbWRET7RMMvL/zCUURIKHBMggP9Zf2heFGx\n3mMa0HC6dsLQX6FYyyYHfTaTDdhA1rNZHEWDECYJiyk8FeBq76r3GFtlJ0P1VnqZKdonWhQL54RQ\neza0dUrRoqIeJ3ghtIW1YFtYDpOEFRQuLOz0WOhnoazPdqIPdgIA/hVKCGWm0uA4Es5GQ1zDMQkr\nMbR2wt3BHS69eomVUo+hcQjcn4kcNqk2oIGOfm0DNlC9shrLhMhqcEyCY4bKTtUN1ayMTygzlZ0S\nhFjKTEIgWyvTSxAA5pWZEGICJgkrMlR2YnJ8Ijc31+BsGAoo0ZWZSK09G7oD3D99v0VlJlLbggnY\nFpbDJGFFhmY7AQAM/WwoY4liW8G2To+dW3QO/wolgKGZaJFekTA9ZDpHESHUGY5JMCB2RyycrDjZ\n6XFr7pukzFTCtoJtncoUWXOyIGFQglXeAzHH0B0EH9bYIOHCMQkeyZyTCe4O7p0eH/rZUPj52s8W\nv762xERPEOmT0jFBEMBQggDAO0DET5gkGCCzl8GlVy+BnY1dp5/F7IyxKFHI0+QdYxCqjsc3J26G\nueFzzX5d0pFSe5aulhpMECeTT1rtLpOUtmADtoXlMEkwRGYvg7JXyowmikf/+WiP11HI1sr059Lf\navufzYmbYXHUYkvCJV5RURHXIXRJmakEm1QbaGpt6vQza09V5ntbsAnbwnKcJIn9+/fPCAkJOS+R\nSFoKCgoitI+rVKoABweHhvDw8MLw8PDCF198cTMX8VlLf1l/+H3F7502AgQAOFt5FlzXuUJ2WbbJ\n15GnyYFKpTr/BfqgrcQk9gQBAFBby69t2nVJV0sNlgcB2saprD1Vmc9twTZsC8vZcvGmCoWiJCMj\nY+rChQu30H8WFBR0qbCwMJyLuJggs5fB5SWXYeqXUyH3Wm6nnyfuSQQAAAklgcKFhe0lB2MD07pm\nBM8QdYmJz4yNO2g52DrAry/9ijvzIt7jJEnI5fILXLwvV2T2MjiefByyy7LbkwJdi6al04rtrpxM\nPglb/99W008UCZVKxdl7G1qr0pUIrwg4NvcYY4PUXLYF32BbWIFGo+HsKy4u7nh+fn6E9rq8vDzA\nycnpXlhYWOGoUaNyT5w4EUP/HQDQ4Bd+4Rd+4VfPv8z5nGbsTiI+Pj7n1q1bXvTH16xZs2rixImZ\nhn7Hx8fnZkVFhb+rq2tNQUFBxJQpUw6dP38+xMXFpU77HHPm+SKEEDIPY0kiJycnvqe/I5VKG6VS\naSMAQERERMHAgQMvl5WVDYqIiMBjuRBCiAOcT4HVvTO4fft235aWFgkAwJUrVwaUlZUNGjBgwBXu\nokMIIXHjJElkZGRM9ff3rzh9+nT0U089dTgxMTELAODHH38cFRoaei48PLxwxowZ+7ds2bJQJpPh\nHDaEEOIKlwPXPf3KyspKePjhhy8EBQWVrV27diXX8XD91b9/f5VCoSgOCwsrfPTRR/O4joetr+Tk\n5B0eHh7qRx55pET7WHV1tdvYsWNzBg0a9Ft8fPzRmpoaGddxctUW77zzToqvr+/1sLCwwrCwsMKs\nrKwEruNk4+vatWv+cXFxx4ODg8+HhIT8d+PGja+KtW8Yawtz+gbn/5jufjU3N0sGDhx4qby8PKCx\nsdEuNDS0qLS0dAjXcXH5FRAQUF5dXe3GdRxsf/3000+xBQUF4bofjCtWrPjHunXr3tBoNLB27dqV\nK1euXMt1nFy1RUpKyjvr169fxnVsbH9VVlZ6FRYWhmk0Gqirq3MePHjwxdLS0iFi7BvG2sKcvsH5\nmER35eXlRQUFBV0KCAhQ2dnZNc2aNeurb775ZjLXcXFNI8LZXrGxsSdcXV1rdB/79ttvJ82dO3cX\nAMDcuXN3HTp0aAo30bHLUFsAiLNfeHl53QoLCysCAHB2dr43ZMiQX2/cuOErxr5hrC0Aet43iEkS\nN27c8PX396/QXvv5+V3X/qPFiqIozdixY7+PjIw8u3Xr1he4jodLarXa09PTUw0A4OnpqVar1Z5c\nx8SlTZs2vRIaGnpu/vz522tra0W3taxKpQooLCwMf+yxx86IvW9o2yI6Ovo0QM/7BjFJgqIoDdcx\n8M3PP/88orCwMDwrKyvxk08+eenEiROxXMfEBxRFacTcXxYvXvxpeXl5YFFRUZi3t3fl8uXL13Md\nE5vu3bvnPG3atAMbN25corvGCkB8fePevXvO06dP/3rjxo1LnJ2d75nTN4hJEr6+vjcqKir8tdcV\nFRX+fn5+17mMiWve3t6VAAD9+vWrmjp1akZeXl4U1zFxxdPTU61dvFlZWent4eHxO9cxccXDw+N3\n7YfhggULtompXzQ1NdlNmzbtwLPPPvuvKVOmHAIQb9/QtsUzzzzzhbYtzOkbxCSJyMjIs2VlZYNU\nKlVAY2OjdO/evX+ZNGnSt1zHxZX79+871tXVuQAA1NfXOx09enScQqFg5oxUAkyaNOnbXbt2zQUA\n2LVr11ztfxRiVFlZ6a39PiMjY6pY+oVGo6Hmz5+/PTg4uPS1117boH1cjH3DWFuY1Te4HoXvydeR\nI0cSBw8efHHgwIGX1qxZ81eu4+Hy68qVK4GhoaFFoaGhRSEhIf8VU3vMmjXrS29v75t2dnaNfn5+\nFTt27Eiurq52GzNmzPdimuZoqC22b9/+/LPPPvu5QqEoHjp06LnJkycfunXrlifXcbLxdeLEiRiK\nolpDQ0OLdKd4irFvGGqLI0eOJJrTN4g74xohhBB7iCk3IYQQYh8mCYQQQkZhkkAIIWQUJgmEEEJG\nYZJACCFkFCYJJFh3797t8+mnny7WXt+8edNnxowZ+639PikpKSl+fn7XU1JSUqz92qaMHj36uIuL\nS11+fv4wtt8biQMmCSRYNTU1rps3b35Re+3j43Nz//79M6z9PhRFaZYtW/YhF0ni+PHjoyMjI8+K\naasJxC5MEkiw3nzzzbWXL18eGB4eXrhy5cp1V69e7a9dYZqenj5vypQph8aNG3c0MDCwPC0t7eUP\nPvjg9YiIiILHH3/8l5qaGlcAgMuXLw9MTEzMioyMPDty5MifLl68+LCh99Lo7KyZkpKSMnfu3F0j\nR478KSAgQHXw4MGnX3/99Q+GDh1anJiYmNXc3GyrjS8kJOR8aGjouRUrVrwPAFBVVdVv+vTpX0dF\nReVFRUXlnTp1ajhA2x48ycnJO4cOHVocGhp67uDBg08z3X4IAQBZK67xC7968qVSqfrrnrNQXl4e\noL3euXPnvKCgoLJ79+45VVVV9e3du/fdLVu2KDUaDSxduvTDDRs2LNFoNPDEE08cKysrC9JoNHD6\n9OnHnnjiiWP090lJSXnngw8+WK69fuedd1JiY2N/am5ulpw7d26og4PD/ezs7Cc1Gg1MnTr14KFD\nhybfvn3b/eGHH76g/Z27d+/21mg0MHv27D0nT54codFo4OrVqw8NGTKkVKPRwBtvvLFu6dKlH2qf\nr7tqOC4u7nh+fn4E1+2NX8L8suU6SSHEFI2JffNHjx593MnJqd7JyaleJpPVTpw4MRMAQKFQlBQX\nFw+tr693OnXq1HDdcYzGxkapqfelKEqTmJiYJZFIWh555JH/tra22jz55JP/1r62SqUKmDBhwnf2\n9vYP5s+fv33ChAnfTZgw4TsAgO+//37sr7/+OkT7WnV1dS719fVOx44dG7N3796/aB/HY30RWzBJ\nINHq1avXn9rvbWxsWrXXNjY2rc3Nzbatra02rq6uNYWFheE9fW2pVNqofS07O7sm3fdpbm62lUgk\nLXl5eVHHjh0b8/XXX09PS0t7+dixY2M0Gg115syZx7S/r8tU0kOICTgmgQTLxcWlTrtTbk9oP4xd\nXFzqAgMDy7/++uvp2seLi4uHWiO2+vp6p9raWlliYmLWhx9+uOzcuXOhAADjxo07+vHHH7+qfZ72\n8fj4+JxPPvnkJe3jYjxICHEDkwQSLHd39+oRI0b8rFAoSlauXLlO98AZ+uEz9O+117t3707avn37\n/LCwsKJHHnnkv99+++2k7ry3sdfWXtfV1blMnDgxMzQ09FxsbOyJjz76aCkAwMcff/zq2bNnI0ND\nQ8+FhISc37Jly0IAgLfeeuvdmpoaV4VCURIWFlaUm5sbZ0HTINRtuAssQhZKTU19x9nZ+R5XJ8CN\nHj36+Pr165dHREQUcPH+SNjwTgIhCzk7O9/75z//qeRqMV15eXmg7rgHQtaEdxIIIYSMwjsJhBBC\nRmGSQAghZBQmCYQQQkZhkkAIIWQUJgmEEEJG/X/qpZ9Op7tT3QAAAABJRU5ErkJggg==\n", + "text": [ + "<matplotlib.figure.Figure at 0x2594cd0>" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "part (a):\n", + "\n", + " Vdc_a= 437.5 mV\n", + "\n", + " Power= 15.0 W\n", + "\n", + " alpha_d= 87.4 degrees\n", + "\n", + " part (b):\n", + "\n", + " alpha_d= 162.0 degrees\n", + "\n", + " Vdc_b= -9.1 V\n", + "\n", + " Current will reach zero at 4.5 sec\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEMCAYAAAAxoErWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVOX6APBn2GTVAygjCDIoKoHDJhmlKC4gmJrmcl0q\nIY2sm1mp2e3ePmF2u3rL0qTFqyZ01W6SYmFBojkmeY2fLEKRisoQKowIjNcFZJvfH3RmOcw4MHPm\nrM/385lP8x6Gmde3wzznvM+7SDQaDSCEEELG2LFdAYQQQtyFQQIhhJBJGCQQQgiZhEECIYSQSRgk\nEEIImYRBAiGEkEmsBYmnn376M6lUqpLL5RXksfT09HR/f/8rUVFRpVFRUaX5+flJbNUPIYQQi0Ei\nNTV1NzUISCQSzSuvvPJ+aWlpVGlpaVRSUlI+W/VDCCHEYpCIi4s76enp2Uw9rtFoJGzUByGEUE8O\nbFeAatu2bSs///zzp2JiYs5s3rx5NUEQav2fSyQSnCKOEEIWsOQiXMLmshxKpVI2c+bM3IqKCjkA\nwPXr130GDRrUAADwxhtvbKirq/PdtWvXMv3fkUgkGr4uJZKWmwY7S3aCBqyrvwQkcHbFWTjwyQFI\nT0+np3I8l56ejm3xB2wLHWwLHYlEYlGQ4NSdhI+Pz3Xy+fLly3fOnDkzl8360CkkIwTON56n5b00\noIHwT8NhavlUWt5PCJRKJdtV4AxsCx1sC+txKkjU1dX5+vr61gEA5OTkzNEf+cRnxEYCbt67afRn\nXi5eUJJWAoFEoNGf//T7TzB+93ijPztafRQe3vkw5D2RB4QzQVt9EUKIxFp306JFi744ceLExBs3\nbgyUSqWq9evXv6lQKOLLysoiJRKJJigoqHr79u3PSqVSlUGFedbdZCpAEM4ElD1bZjI4UBkNFkoA\nkAF4OXvBpVWXRB0oFAoFxMfHs10NTsC20MG20LG0u4nVnIQl+BQkTAWI7HnZMC9sXp/fT92qhpl7\nZ0LhlcIeP/N28YaLL14UdaBACJlmaZDAGdc2EpIRYjRAFKYWWhQgALrvPk4uOwmFqX8ECaXuZ40t\njTDnizkWva8QKBQKtqvAGdgWOtgW1sMgYQOmktTlK8ph3NBxVr//uKHjdIFCj+J3Bfz0+09Wvz9C\nCJGwu4lmablpsKNkR4/j5SvKQS6V0/pZFaoKCP80vMfxwtRCWoIRQkg4MCfBEQ5vOUCnptPgmC2/\ntE2NflKuUvY6KY4QEj7MSXAAsZHoESDyFufZLEAoFAqTXU8jt40EdavayG8JE/Y962Bb6GBbWA+D\nBE3SctN6JKqz52VD0gjbL2Q7bug4iB0Sa3CsrasNFuxfYPPPRggJG3Y30cBYHoLoR0Dzaz3WL7QZ\ndasafN71gfaudoPjtsiFIIT4B3MSLHL9uyu0dLQYHGMjJ1CjrgHZVpnBMTuwg8Z1jTh/AiGRw5wE\nS9Jy03oEiLzFeYwECGp/ayARCOMDDJPYXdAlim4n7HvWwbbQwbawHgYJK31W+plB2cvZi5E8hCm5\ni3PB28Xb4FhBdQHUqGtYqhFCiM+wu8kKxpbd4MLQU3WrGjw3eRocc7JzAtVaFXY7ISRS2N3EAmqA\nYKqbyRzCmejR7dTW1QZLDixhqUYIIb7CIGEhYqPhFTnRj2C8m+l+/a25i3PB0c7R4FjB5QLBzp3A\nvmcdbAsdbAvrYZCwgLE5EWUryliqjXGEMwFVK6sMjrV3tePdBEKoTzAnYQHq0hvj/cfDyWUnWayR\nad6bvKGptUlbloAEqldVc6JbDCHEHMxJMCQkI6TH0hu5S7i7y2rJsyUGZQ1oIHZnrIlXI4SQIQwS\nfVTVZNiFU5hayNqIod70twYSgRAfGG9wrKmlSXC5Cex71sG20MG2sB4GiT4IyQiBLk2Xtkw4E7xY\nkjtnYQ5IQHeXies6IYR6C3MSfWD/lr1BkJgePB2+XfItK3Xpq0mZk0BRozA4xoU5HQghZmBOwsao\ndxH2YA975+5lsUZ9Q72bAADMTSCEzMIg0UvUXETpilLWZy/3pb+VcCbg7IqzBseElJvAvmcdbAsd\nbAvrYZDohbTcNIO7CC8XL14uvy2XysHBzkFbxlnYCCFzMCfRC9R5EXzKRVBRcxM4bwIhccD9JGwk\nJCMEzjeeNzjWvK6Z9a4mS6lb1eC1yQs0oGvDwW6DoW5NHYu1QgjZGiaubYRL8yKoLOlvJZwJmBg4\n0eCYEHIT2Pesg22hg21hPQwS90HNRfBlXoQ5xuZNYG4CIWQMdjfdB3VbUj7nIqiouQkneydQrcH9\nJhASKuxuohl1W1K+zYswp8fdRCfeTSCEemItSDz99NOfSaVSlVwuryCPNTU1eSUkJBSMHDnyQmJi\n4hG1Ws3aZe2e8j0G5clBkzl3lW1Nf6ux3MTR6qO8zU1g37MOtoUOtoX1WAsSqampu/Pz8w126dm4\nceNrCQkJBRcuXBg5ZcqUYxs3bnyNrfrp30XYgR3sX7CfrarYDN5NIITMYTUnoVQqZTNnzsytqKiQ\nAwCEhIScO3HixESpVKqqr68fHB8frzh37lyI/u8wkZOgDnv1cfUB1VqVTT+TLdTchI+bD6jWCPPf\nipCYWZqTcDD/EuaoVCqpVCpVAQBIpVKVSqWSGntdSkoKyGQyAAAgCAIiIyMhPj4eAHS3l9aUL5Ve\nAhj6x4cpAT6c+6H2s+l4fy6VV/utBsUJBYCs+9/X9FsTHD5yGGYkzuBE/bCMZSxbVlYoFJCZmQkA\noP2+tASn7iQ8PT2bm5ubPcmfe3l5NTU1NXnp/46t7yTSctNgR8kObZnLu84pFArtyWEN6u51fBzF\nRVdbCAG2hQ62hY4gRjeR3UwAAHV1db4+Pj7Xma4DNWHt7ebNdBUYR929js8JbIQQvTgVJGbNmvVN\nVlbWUgCArKyspbNnzz7EdB0Mhr1K7CFzdibTVeg1uq6QAolAw4X/eJjAxqtFHWwLHWwL67EWJBYt\nWvTFI488cur8+fOjAgICanfv3p362muvbSwoKEgYOXLkhR9++GHya6+9tpHJOoVkGOTIwdvFm3PD\nXm1lfMB4g/KZujMs1QQhxCU441oPdec5ru/cRmd/q7pVDZ6btOkg3q0Oi33POtgWOtgWOoLISbCJ\nuk7TQJeBvPmCpAPhTICXs26MgAY08MiuR1isEUKIC/BO4g/UdZq4fhdhCzXqGpBtlWnL3i7ecPHF\ni6LpckNIyPBOwkr6AcLbxVt0AQKgO4FN9NMFhMaWRt4lsBFC9MIgAT0T1o52jizVpG/IiTN0ihkS\nY1DmSwLbFm3BV9gWOtgW1sMgAQDV6mqD8unlp1mqCfuy52cblNWtapwzgZCIiT4nwacZ1kwRwgxs\nhJAhzElYSIwzrM3BGdgIIZLogwSfZlhT2aq/lY8zsLHvWQfbQgfbwnqiDhJpuWkGZTHNsDaHOgO7\npL7ExCsRQkIm6pwEzo0wjToDG+dMIMRvmJPoI+oe1gNdxTXD2hzCmcA5Ewgh8QaJwxcOG5TH+o1l\nqSaWs3V/K3XOBJe7nLDvWQfbQgfbwnqiDRKq27otOt0d3WHv3L0s1oabsudnG+yB3Xi3EWrUNSzW\nCCHENNHmJCTrdV9+uK+zadQ9sP3c/eDq6qvsVQghZBHMSfQBdRmOGN8YE69EOQtzDMqjvEexVBOE\nEBtEGSSqmqq0z+3BnrddTUz0txLOBDhIdHMmFDUKTnY5Yd+zDraFDraF9UQXJKj7Rni74twIcwY4\nD9A+x30mEBIX0eUkcG5E3+E+EwjxH+Ykeqm1o1X7HOdG9I6xfSZSDqWwVyGEEGNEFSTSctNAA7q7\nkGhpNIu1sR6T/a3UORMtbS0mXskO7HvWwbbQwbawnqiCBHXFVxcnF5Zqwj/UfSYUvytwZViEREBU\nOQm79XbaOwkHiQM0vNqA/ep94LjBETq6OrTlx0Y9BocWHmKxRgih3sKchBkhGSEGXU2TZJMwQPQR\ndWVYrnU5IYToJ5ogob9FqT3Yw/4F+1msDT2Y7m/NWZhjsEzHid9PcKbLCfuedbAtdLAtrCeaINHW\n2aZ9/nDAw3gXYQHCmQAvFy9t+V7nPVwZFiGBE0VOgrqPNa4/ZDnqnInB7oOhbnUdexVCCPUK5iTu\nQ39UkwQkcGrZKRZrw2+BRKBBl1N7ZztnupwQQvQTRZDQn0Dn7eotmAl0bPW3DuinW6aDKxPrsO9Z\nB9tCB9vCeg7mX8I8mUym7N+////s7e07HR0d24uKiizeEYg6qomPmwtxTcyQGDh6+ai2jKOcEBIu\nkzmJAwcOzP2j/99kH5aLi0vL9OnTv6O7UkFBQdXFxcVjvLy8mqg/62tOwv4te+2CfvZgDzfW3cCk\ntZXUrWrw2uSlDb4SkED1qmrB3KEhJESW5iRM3kmkpaX9a9asWd+Y+rlGo5GcPHkyzhZBgnx/Ot5H\nf8VXT1dPDBA0IEc5NbY0AoBuZVgcDICQ8JgMEklJSfm7d+9Ovd8vL1myxCYbMUgkEs3UqVOP2tvb\ndz777LPbn3nmmR36P09JSQGZTAYAAARBQGRkJMTHxwOArg8yPj6+e3Mh5R+/JOvuatL/OfX1fCvr\n97cy/fnFacXdo5yU3Z8/auIoxv/9+mXyGJf+/7BVLisrg5deeokz9WGzvGXLFpPfD0IvKxQKyMzM\nBADQfl9awmR3U1tbm5OTk1Ob0R/aWF1dna+vr29dQ0PDoISEhIJt27atjIuLOwnQt+6mfm/3086P\nEGJXk0Kh0J4cbHB8yxE6NN3LdPSz7wf1a+pZa1+224JLsC10sC10aB8C6+/vf2X58uU7jx07NoWu\nrp/e8vX1rQMAGDRoUMOcOXNyLElcp+WmGUygmzB0gqACBACwfvLrb0bE9sQ6ttuCS/rSFiEZIUBs\nJGDQu4M4ueOgtfC8sJ7JIFFZWRkaExNzZsOGDW/4+/tfWbVq1dbTp0/H2rpCd+/edb1165YHAMCd\nO3fcjhw5kiiXyyv6+j6HLxw2KPd36U9TDRGpOK3YoFxSX8JSTZClLjdfhpv3bsKNuzdwx0FklMkg\nMXDgwBsrVqz4VKFQxP/f//3fg0FBQdUvv/zyB8OHD7/0+uuvv2OrCqlUKmlcXNzJyMjIsoceeujn\nGTNmHE5MTDzS5/e5rdI+93DygMzZmXRWkxP0++PZEEgEgoOdLq3VeLeRtatRttuCS/rSFu1d7drn\no7xH2aA27MLzwnq9mkzn5+d3bdmyZbtWrFjxqbu7++2dO3cut1WFgoKCqsvKyiLLysoif/nll9F/\n+ctf/mHJ+3SBblSTi6OL4LqauEJ/Zdj2rna8GuUZB4kuyJ+6cgpnz6Me7hskWlpaXPbv37/g8ccf\nPxgcHHzxhx9+mLxp06Z1165d82OqgpZIy00zKMf4xph4Jb9xob81Z2GOQXm0z2hW6sGFtuCKvrQF\nNa/EhdnzdMLzwnomh8AuXrx4X0FBQcLEiRNPLFmyZO/evXuXuLi48GJqrf5aTR6OHrB3rk1G6iLo\nnjPhZOcEbV3dgwRK60tB3arGOzee0A5l/gPOnkdUJu8kkpKS8i9fvjzsq6++mjd37twDfAkQAIZr\nNbk4CberiSv9rW5ObtrnDXcbWLka5UpbcEFf2oKaV+LSHiF0wPPCeiaDhKenZ7OHh8et+/3y4cOH\nZ9BfJetQ12oSalcTl4zxG2NQxqtRftFfsJHtocyIe0xOpgsJCTm3b9++xRqNRiKRSHq8SKPRSFJS\nUjIrKirkNq+lHnOT6YQ+gY6LqGs5sT2xDvUN7hEiDrSv3TR48OD61atXb77fL48cOfJCXz/Q1nAH\nOuZR13Iir0a/XfItyzVDvUHuEUIGeXKPEPzbQQD3CRIKhSKewXrQgjqq6XLzZZZqwgwuLTlATYAy\nPbGOS23BNkvaYkC/AaC+152LIPcIObTwkA1qxyw8L6wnqE2HcAc69uCOdfwWM8Qwd4d5JUQS1B7X\nduvttLfMA10HQsPaBiarJnqeGz21V6MAAI+NekwQV6NigHkl4RP9Hte4Ax378GqUv8i8EglHOSGS\n2SBx584dtw0bNrxB7ulQVVU1gotDX6vV1drn9mAvigl0XBsDnj0/26DLickx91xrCzZZ2hZCXLAR\nzwvrmQ0Sqampu52cnNpOnTr1CED3Ok5//etf/277qvWeGJYF5wO8GuU3zCshY8wGiUuXLg1ft27d\nJnIDIjc3tzu2r1bfiHVZcC6O2mDrapSLbcEWa9pCf2IdOcqJz/C8sJ7ZINGvX797LS0tLmT50qVL\nw/v163fPttXqG3J8PgBAf6f+glwWnC+oV6PhPuEs1gb1FTWv1NHZwVJNEFeYDRLp6enpSUlJ+Veu\nXPFfvHjxvsmTJ/+wadOmdUxUrrfaO3Vr4o/xHSOariau9rfqX40qlApG9pjgaluwwZq2oOaViq4V\n8brLCc8L65kNEomJiUcOHDgwd/fu3amLFy/eV1xcPGbSpEnHmahcb6TlphmMajrfeJ7F2iAAw6vR\ntq423GOCRwhnwuAii60FGxF3mJ0nUVxcPIZcu4lcx2nAgAE3AwMDaxwcHBi/F6XOk3D9uyu0dHQP\ntZSABKpXVUMgEch0tZAedasaPDd5asveLt5w8cWLornD47uEfyfA0ctHteXEoET4/qnvWawRooOl\n8yTMBonY2NjTxcXFY8LDw8sBACoqKuRhYWG/3rx5c8Ann3zy3LRp0xg9e6hBAifQcRNOrOMvapDH\nBf+EwWaT6fz8/K6VlZVFFhcXjykuLh5TVlYWOWzYsMsFBQUJr7766j8tqy49xD6Bjsv9rUxPrONy\nWzDN2rYgnAnO7F1uLTwvrGc2SJw/f35UWFjYr2Q5NDS08ty5cyHDhw+/ZGwJcSaJcQIdX2TPzzYo\nlzeUs1QTZAncuxyRzAaJsLCwX5977rlPTpw4MVGhUMQ///zzH4eGhlbeu3evn6OjY7u537clsS8L\nzuUx4ExfjXK5LZhGR1tQ9y6/13mPl6Oc8LywntkgkZmZmTJ8+PBLW7ZseWnr1q2rhg0bdjkrK2up\no6Nj+w8//DCZiUoaI7ZlwfkIr0b5i3AmgOinu+gSwsQ6ZBmzQcLV1fXumjVr3svJyZmTk5MzZ82a\nNe+5urretbOz6zK3vakt6c+ytgM7US4LzvX+VurV6Gif0Tb7LK63BZPoagshTKzD88J6ZoPEhQsX\nRs6bN++r0NDQyqCgoOqgoKDqYcOGsX7Zrrqt0j5/JOARHPbKQdSrUaYm1iF6UPNK+pNWkXj0aoG/\nFStWfOrg4NBx/PjxSUuXLs1asmQJqxnitNw06IIubVmsXU186G9lamIdH9qCKXS1BTWvxOSqvnTB\n88J6ZoNES0uLy9SpU49qNBqJTCZTpqenp3/77bePMlE5U3AHOv6gXo3yNQEqVvpLrOCqvuJkNkg4\nOzu3dnZ22gcHB1/MyMh44eDBg4/fuXPHjYnKmdLa0ap97u3qLdquJj70tzKVAOVDWzCFzrbg+x4T\neF5Yz2yQ2Lp166q7d++6fvjhhy+eOXMmZs+ePU9kZWUtZaJypuhPoIuWRrNYE9QbuGMdfwUSgYKZ\nWIcsYzZIVFdXB3l4eNwKCAiozczMTDl48ODjv//++1BbVio/Pz8pJCTk3IgRI6rMrTjr4uRyvx8L\nGl/6W5mYWMeXtmAC3W3B56HMeF5Yz2yQ+Mc//vGX3hyjS2dnp/0LL7yQkZ+fn1RZWRn6xRdfLPrt\nt98eMPZa3DuCH6gJ0M6uTsxL8AiTQ5kR95gMEnl5eckrV67cdvXq1SEvvvjihytXrty2cuXKbSkp\nKZm2nGldVFQ0Njg4+KJMJlM6Ojq2L1y48D9ff/31Y8ZeGzskVnSzrPXxqb9V/2q04W4D7QlQPrWF\nrdHdFoQzAU52TtpyaX0pb4I8nhfWczD1Az8/v2tjxowp/vrrrx8bM2ZMMbl6YP/+/f/3wQcfvGyr\nCl29enVIQEBALVn29/e/8vPPPz9k8KJDAEAA1FTUwJamLRAZGam9rSRPCixzq5yzMKd7ZVElAABA\niXsJre9P4sq/l81yWVkZ7e/v5uQGba1tAEqABujeY+LQwkOc+Pfer1xWVsap+jBZVigUkJmZCQAA\nMpkMLGV2qfD29nZHJtdoOnDgwNz8/PykHTt2PAMAsGfPnid+/vnnh7Zt27YSoHupcEgHCB0YCj8t\n+0nUdxJ847jBETq6umftOto5QtXKKtGOTOMb3GOC/yxdKtzknYRcLq+4z4dpysvLbbJ58ZAhQ67W\n1tYGkOXa2toAf3//K/qveTT4Udgzdw8GCJ4ZHzAeFDUKANAlQK+uvspupVCvZM/PBq9NXtqRheTE\nOvwbFD6TdxJKpVJ2v1+UyWRKG9QHOjo6HEaNGnX+2LFjU/z8/K6NHTu26Isvvlj0wAMP/AbQc9Mh\nMVMoFNrbTD6gbmYzKXAS/JDyAy3vzbe2sCVbtcXAfw6ExpZGbXl68HT4dsm3tH8OnfC80KH9TkI/\nCKhUKmlRUdFYiUSiGTt2bJGPj891C+tpvkIODh0ZGRkvTJs27fvOzk77ZcuW7SIDBOI3wpkAB4kD\ndGi6u5xOXTmFV6M8UpxWDLKtMm2ZbxPrkGXM5iT279+/YO3ate9OnDjxBADAjz/+OOHdd99dO38+\nZfA7Q/BOgt+oV6O4rSm/6G8XnDgsEb5/EvMSfGGzPa7Dw8PLjx49OpW8e2hoaBg0ZcqUY7bKSZiD\nQYLfatQ1BlejmADlF/29y53snODCygs4+IAnbLbHtUajkQwaNKiBLHt7ezda8kGIftThn3xAXeaB\nrpVF+dgWtmLLtmBqVV+64HlhPbNBIikpKX/atGnfZ2ZmpuzevTt1+vTp3yUnJ+cxUTkkTLiyKH/h\nqr7iY7a7CaB77kJhYeF4iUSiiYuLOzlnzpwcs79kI9jdxH/ULqfB7oOhbnUdexVCfaLf5QSAeSW+\noH10E2nz5s2rFy5c+J+5c+cesKxqCBkKJAJBAhJtArS9sx1HOfFIzJAYg4l1uKqvsJntbrp165ZH\nYmLikfHjxxdmZGS8oFKppExUDJnH5/5W/S4nOvaY4HNb0M3WbcHEqr50wfPCemaDRHp6evqvv/4a\n9tFHH/25rq7Od8KECT9OmTLlGBOVQ8JF3WOio7ODpZqgvsJVfcXFbJAg+fj4XB88eHC9t7d3Y0ND\nwyBbVgr1Dp9nkmbPzwYJ6LpHi64VWfVFw+e2oBsTbWHrVX3pgueF9cwGiY8//vj5+Ph4xZQpU47d\nuHFj4M6dO5ezNUcCCQfhTBjkIBruNthkW1NkG9Q9JnD2tXCZDRK1tbUBW7ZseamysjJ0/fr1b4aG\nhlYyUTFkHt/7W8f4jTEoW5MA5Xtb0ImJtqB2OXF1W1M8L6zXq53pIiMjy5ioDBIXPiVAUU983tYU\n9V6v5klwCc6TEBbcY4K/bLmqL6KfzZblQMiW8GqUv8hVfUnkqr5IWDBI8JgQ+lupCdDRPqMteh8h\ntAVdmGyLAc6GS6xwbfABnhfWMznj2t3d/bZEIjHaryORSDT/+9//+tuuWkgsCGcCiH6EdpkHhVIB\nNeoa7HLiCeoeEzj7WnjM5iT+9re/ve3n53ftiSee2AMAsHfv3iXXrl3z27BhwxuM1JACcxLCQ90/\n2c/dD7c15RH9vFI/+35Qv6Yel1jhIJvuJ0GdF2HsGFMwSAgPJkD5jY/bmoqRzRLXbm5ud/bs2fNE\nZ2enfWdnp/3evXuXuLu737asmohOQulvpSMBKpS2oAPTbVGcVmxQ5tLEOjwvrGc2SOzbt2/x/v37\nF0ilUpVUKlXt379/wb59+xYzUTkkHtQEKFeXeUA9kav6kshVfZEw4DwJxAm4xwS/4R4T3Gez/SRa\nWlpcdu3atayysjK0tbXVmTz+2WefPd3XD0PIFHJbUzIBSi7zgKOc+AH3mBAus91NTz755L9VKpU0\nPz8/aeLEiSdqa2sDMCfBDULrb7VmYp3Q2sIabLQFdVVfuvYutxaeF9YzGyQuXrwYvGHDhjfc3d1v\nL126NOu7776b/vPPPz/EROWQuFAn1o3yHsVSTVBfEc4EeLl4acuYVxIOs0HCycmpDQBgwIABNysq\nKuRqtZrA/SS4QWhr5VszyklobWENttqCi6Oc8Lywntkg8cwzz+xoamryevvtt/82a9asb0JDQytf\nffXVfzJROSQ+OMqJv3CUkzDh6CYeUygUgrtSsnSUkxDbwlJstgXXRjnheaFjs8l0arWaePnllz8Y\nM2ZM8ZgxY4pXr169+ebNmwPM/R5CliBHOZG4upkNMo66dzmOcuI/s3cSjz/++EG5XF6xdOnSLI1G\nI/n3v//9ZHl5efjBgwcfZ6iOBvBOQvgmZU4CRY1CW8a1nPhD3aoGr01eoIHuv1Fcy4k7bHYncenS\npeHr169/c9iwYZeHDx9+KT09Pf3SpUvDLavm/aWnp6f7+/tfiYqKKo2KiirNz89PssXnIG7DUU7M\nSMtNg/jMeJi+dzptuQMc5SQ8ZoOEi4tLy8mTJ+PIcmFh4XhXV9e7tqiMRCLRvPLKK++XlpZGlZaW\nRiUlJeXb4nOEQqhjwC0Z5STUtrBEb9vi8IXDcKLmBORdzIPUQ6m0fT6XRjnheWE9szOuP/300xVP\nPfXU52QewtPTszkrK2uprSpkye0QEp4BzgO0K4uSV6O4sii9VLdV2ud32+m77iNHOZFdTuQoJ+xy\n4iezQSIyMrKsvLw8nAwSAwYMuLlly5aXIiIiztqiQtu2bVv5+eefPxUTE3Nm8+bNqwmC6HEJmZKS\nAjKZDAAACIKAyMhI7QgG8spBDOX4+HhO1YfOsnYzGyUAAECJewmn6sf1MsnUz/fd2gdd0KVt31/c\nf6H18wf0G9A9ykkJ0AiNkHIoBQ4tPMR4e5DH2P7/wUZZoVBAZmYmAID2+9ISFg2BDQgIqK2trQ2w\n5AMTEhIK6uvrB1OP//3vf/9rbGzs6UGDBjUAALzxxhsb6urqfHft2rXMoMKYuBYN/c1sHO0coWpl\nFa7lRBPXv7tCS0f3yCMJSKB6VTWtbUvdSCoxKBG+f+p72t4f9Z3NNh0yxpog0VtKpVI2c+bM3IqK\nCrn+cQy5spEEAAAXe0lEQVQSOvpXSELUl1FOQm+LvuhNW9itt9N2Bw10HQgNaxtorQNXRjnheaFj\ns9FNTKqrq/Mln+fk5MyRy+UVbNYHsQtHOdlGSEaI9ssbAGCs31jaPwNHOQmHyTsJd3f32xKJxOgP\n796969rZ2WlPd2Weeuqpz8vKyiIlEokmKCioevv27c9KpVKV/mvwTkJcHN9yhA4N7p9Mp35v94O2\nzjYAALAHe7ix7oZN2hT3COEW2veTuH37trt1Veq7zz///CmmPxNxG45yoh8ZIAAAHg542GZBF/cI\nEQZOdTehvqGOZBGi3o65F0Nb9Nb92iItN82gfLn5sk3rYs0eIXTA88J6GCQQp+FaTvTaU75H+1wC\nEji17JRNPw/zSvyHq8AizsO1nOhj61FNxmBeiRsEMboJIWPwapQeTIxqMgb3COE3DBI8Jpb+Vupa\nTooaRY8uJ7G0RW+Yaouqpirtc3uwh71z9zJSH2pe6Wj1UcY2I8LzwnoYJBAv6F+NakDDeAJUCLo0\nXdrnnq6ejHX5UPNKbZ1tkHIohZHPRtbDIMFjYppJSr0avdd5z+BqVExtYY6xtgjJCDEoM9XVRNIf\n5QTA3GZEeF5YD4ME4oVAIhCIfror38aWRrwa7YNqdbX2OZNdTSRqXqm8oZzRz0eWwyDBY2Lrb73f\n1phia4v7obZFWm6awQS6CUMnMD66iHAmWBnKjOeF9TBIIN7Inp9tUFb8rmAsAcpn+nMjAAD6u/Rn\npR7UiXWxO2NZqQfqG5wngXhFf/lwAIDHRj0GhxYeYrFG3Kc/N8JB4gANrzawMk9B3aoGz02e2rKT\nvROo1qhwzgRDcJ4EEgW2EqB8lZabZjA3Ii4gjrUvZcKZAC9n3cqwbZ1tOGeCBzBI8JgY+1tzFuaA\nBHQXQwXVBVCjrhFlW5ii3xZc6WoilTxruPbWmbozNv08PC+sh0EC8Qp1nwKcM3F/rR2t2ucOEgfI\nnJ3JXmVAt/81Sd2qxrwSx2GQ4DGxjgGnzpkY5T1KtG1hDNkW1GU4JskmcaL/39NZl5ewdZcTnhfW\nwyCBeCeQCDS7TAfquQzH/gX7WayNDrXLicllOlDfYZDgMTH3t1KX6Rjz+hgWa8Mt5HnB1jIc5jC5\nTIeY/0bogkEC8RK1y6m9sx2vRvWwvQyHOThKjT9wngTiLc+NnqC+pwsM04On49amf7B/y157J2HL\nfawthXMmmIfzJJDoUJfpMLW1qdik5aYZdDV5u3pz7suXukwHrgzLXRgkeEzs/a0Gy3QoscuJlPV1\nlkG56Jkilmpyf0x0OYn9b4QOGCQQbxHORI+VYXEGLxgs5uft4g2BRCCLtTHN1MRIxC0YJHgMx4Dr\ndTnJuv8j9uGUIRkh2rYAAHC0c2StLuYYmxhJ96J/+DdiPQwSiNey52cbXI2KvW9bf98IAIDTy0+z\nVJPeoY5S05/8h7gBgwSPYX9r99XoxMCJAErdMbEOp9TuG6HsLo/3H8/ZriYSdc5EU0sTrV1O+Ddi\nPQwSiPeou56JtW+bupift5s3SzXpG9xngttwngQShIH/HAiNLY3a8mC3wVC3po7FGjFPsl7X7WYv\nsYcbr3JrboQp1DkTEpBA9apqzt8F8Q3Ok0CiRu3bbmppElUCmzrD2tuFe3MjTKHuM2GLBDayHAYJ\nHsP+Vp3qsmrDyVld4kpgGySsldydG2EKddE/uhLY+DdiPVaCRHZ29vywsLBf7e3tO0tKSqL1f/aP\nf/zjLyNGjKgKCQk5d+TIkUQ26of4SazrAWkT1n+QD5LzrqvG1glsZDlWgoRcLq/IycmZM2HChB/1\nj1dWVoZ++eWXf6qsrAzNz89Pev755z/u6urCux0TcAy4Tnx8vGgnZ1ET1sOih7FUE+vYIoGNfyPW\nY+ULOCQk5NzIkSMvUI9//fXXjy1atOgLR0fHdplMpgwODr5YVFTEreUrEWcxMTmLi1o6dHdM9hJ7\n1nefsxR1lJrqjkoUQZ7rHMy/hDnXrl3zi42N1c7+8ff3v3L16tUh1NelpKSATCYDAACCICAyMlJ7\nxUD2QYqhrN/fyoX6sFkmj30U+hEsPLBQO+v4RuUNOHzkMMxInMGp+tJVHrpqKMD/QPvv9bjmAZmf\nZsJLL73Eifr1pUw4E+BxzQNutd0CkHUH+ei/RMOBPx2w+P23bNki6u+HzMxMAADt96UlbDYENiEh\noaC+vn4w9fg777zz+syZM3MBACZNmnR88+bNq6Ojo0sAAFauXLktNjb29JIlS/YCACxfvnzn9OnT\nv3v88ccPaiuMQ2C1FAqF9uQQO/22cNzgCB1dHdqfCXkJcf0lwQEAlKuUUF1WzdvzokZdA7KtMm3Z\nyc4JVGstX0Ic/0Z0LB0Ca7M7iYKCgoS+/s6QIUOu1tbWBpDlK1eu+A8ZMuQqvTUTDjz5dfTbYnzA\neFDUKLRlcj0nvgwJ7a2QjBCDADHQZSAEEoEQGM+vpLU+MoFNBvm2ru49sC0N8vg3Yj3Wk8L6kW3W\nrFnf/Oc//1nY1tbmVF1dHVRVVTVi7Nix/BrLh1hHTWC3dbYJcnVY/T2sAQDOpJ1hqSb0oo5SE/ui\njWxjJUjk5OTMCQgIqD19+nTso48++m1ycnIeAEBoaGjlggUL9oeGhlYmJyfnffzxx89LJBLsWzJB\nvz9e7PTbQruek54zdcL4AiVRNxbycvHSDnvl+3lBZ5Dne1twAStBYs6cOTm1tbUBLS0tLvX19YPz\n8vKSyZ+9/vrr71y8eDH43LlzIdOmTfuejfoh/qOOlGm40yCokTLUYa+xQ4QziksMQZ5PcO0mJFje\nm7yhqbVJWxbKek5puWmwo2SHtszFPaythes50Q/XbkKIgrrUg1DG3VPvIiYHTRZUgADA9Zy4BIME\nj2F/q46xtggkAnt80Yzdwe+5mWm5aQaT5+zADvYv2G/wGqGcF9QgX3+nHipUFX16D6G0BZswSCBB\no37RXL97ndd3E9S7iIGuAwV3F0GiBnkAgAf/9SBLtREvzEkgwXPa4ATtXe3aMl9zE9RcBED35Dkh\n99NTJ9dhbsJymJNAyATqXhN8zU1Q7yLih8YL/ssykAgET2ddAhtzE8zDIMFj2N+qc7+2kEvlvM9N\nGMtF5CzKMfpaoZ0Xpc+WGpT7kpsQWluwAYMEEgW+5ybElIugwtwEuzAngUSDr7kJMeYiqDA3YT3M\nSSBkBjU3YcmQSjZ8VvqZQVkMuQgqY7mJkdtG4ppODMAgwWPY36rTm7ag5iYAuN9tkZabBp2aToNj\npnIRJKGeF9TcBLlC7P0ItS2YhEECiQo1N3Gv6x6n7yaM3UWIJRdBZSw3UXC5AO8mbAxzEkh0vDZ5\nQXNrs7ZsB3bQuK6Rc1++IRkhcL7xvMGx5nXNnKsnk6i5CQBhbypFJ8xJINRL1G6LLuiCBfsXsFQb\n06gBojC1UNQBAsD43UTexTxejVTjGwwSPIb9rTp9aYtAIrDHxjYF1QWc+qIhNhoGAwdwgHFDx/Xq\nd4V+XlC7DO8370XobcEEDBJIlHIX5/Y4xpXRMiEZIXDz3k2DYyUrSky8WnwCiUCID4w3OHb97nVO\n55b4DHMSSLTiPouDwtpCg2MJQQlw5KkjLNXI+JyIWL9Y+O8z/2WpRtykblWD1yYv0IDhd4HY5o/0\nhaU5CQwSSLTUrWrwedfHYIIdALtfNA5vORgMeeVqUp0LKlQVEP5puMExJzsnUK1VYXsZgYlrEcL+\nVh1L2oJwJqBqZVWP42x1O4VkhPSYE1G2oqzPX3hiOS/kUnmP3FJbV5vBIASxtIUtYZBAomYsiU39\nomFCWm5aj9FM4/3Hg1wqZ7QefJO7OBcc7RwNjnFtEALfYXcTEj1T3U7lK8oZ+5K2W29n0L+O3Uy9\nZ2zuBK7t1BN2NyFkIVPdTuGfhjNyRUpsJHokYC3pZhIrY3eDfFwOnqswSPAY9rfqWNsWxr5oAABG\nbBth0/wEsZHoMdw1e162VXcwYjwvjHU7Xb97HTK+zGCpRsKBQQKhP+QuzgVvF2+DY+1d7RD8YbBN\nAoWx+RAxg2NgXtg82j9L6EzdDa7MXwk//f4TCzUSDsxJIKTH1Ph7L2cvuLTqEm1dQMbuICQggaZ1\nTdjNZAVjw2IBupc06e2MdaHCnARCNCCcCTi74myP402tTeDzrg8tOQpjAQIA4OyKsxggrCSXyqEw\ntbDH8fG7x0N+VT4tn2G33g4k6yUgWS+h7T25DIMEj4mx79kUOttCLpVD+YryHsfbu9ohaGuQVYHC\naYOT0QBRmFpI20gqsZ8X44aOg9ghsd0Fpe548r5keHjnwxZ3HablpvUYhZa8L9mKmvIDBgkeKysr\nY7sKnEF3W5i6ItWABmRbZX3u5ya/YKjDbAHo7wrB8wIg74k8iB8aD1BvePz01dMW3RGGZITAjpId\nPboh8xbnWVlT7mMlSGRnZ88PCwv71d7evrOkpCSaPK5UKmUuLi4tUVFRpVFRUaXPP//8x2zUjy/U\navYXo+MKW7TFuKHjjN5RAHR3Xzi85dCrReWcNjgZ/YIB6J6LQXdfOZ4X3d2Gx1OPw5IRPXeua+9q\nB9lWGTz4rwfN3lWEZISAZL2kx0RHAID3pr4HSSOSaKszVzmw8aFyubwiJydnzrPPPrud+rPg4OCL\npaWlUWzUCyEqsuvJWDK0U9OpPU70I6BsRZl28papvAPJxcEFfvvzbzjZy8aCvYKhMLUQxu/uObz5\nTN0Z8NzUvW829W6O2q1E9XHyx/Dc2OforzAHsRIkQkJCzrHxuUKjVCrZrgJn2LIt5FI5KFcpIeZf\nMXCj5YbR16jvqXvM+jUlenA0HFt6zGZJajwvdJRKJYwbOs5koCDd72dU2fOyxTVMWaPRsPaIj48/\nXlxcHE2Wq6urZW5ubrcjIyNLJ06cqDh58uR46u8AgAYf+MAHPvDR94cl39M2u5NISEgoqK+vH0w9\n/s4777w+c+bMnju+AICfn9+12traAE9Pz+aSkpLo2bNnH/r111/DPDw8bpGvsWScL0IIIcvYLEgU\nFBQk9PV3nJyc2pycnNoAAKKjo0uGDx9+qaqqakR0dDRuy4UQQixgfQis/p3BjRs3BnZ2dtoDAFy+\nfHlYVVXViGHDhl1mr3YIISRurASJnJycOQEBAbWnT5+OffTRR79NTk7OAwA4ceLExIiIiLNRUVGl\n8+fPz96+ffuzBEHgeD6EEGILm4nrvj7y8vKSRo0adS44OLhq48aN69iuD9uPwMBApVwuL4+MjCx9\n8MEHi9iuD1OP1NTUz3x8fFSjR4+uII81NjZ6TZ06tWDEiBEXEhISjjQ3NxNs15OttnjzzTfThwwZ\nciUyMrI0MjKyNC8vL4ntejLx+P333wPi4+OPh4aG/hoWFvbL1q1bXxTruWGqLSw5N1j/x/T20dHR\nYT98+PCL1dXVsra2NseIiIiyysrKB9iuF5sPmUxW3djY6MV2PZh+/Pjjj3ElJSVR+l+Ma9eu/eem\nTZte1Wg0sHHjxnXr1q3byHY92WqL9PT0Nzdv3vwK23Vj+lFXVze4tLQ0UqPRwK1bt9xHjhx5vrKy\n8gExnhum2sKSc4P1nERvFRUVjQ0ODr4ok8mUjo6O7QsXLvzP119//Rjb9WKbRoSjveLi4k56eno2\n6x/75ptvZi1dujQLAGDp0qVZhw4dms1O7ZhlrC0AxHleDB48uD4yMrIMAMDd3f32Aw888NvVq1eH\niPHcMNUWAH0/N3gTJK5evTokICCgliz7+/tfIf/RYiWRSDRTp049GhMTc2bHjh3PsF0fNqlUKqlU\nKlUBAEilUpVKpZKyXSc2bdu2bWVERMTZZcuW7VKr1aJbWlapVMpKS0ujHnrooZ/Ffm6QbREbG3sa\noO/nBm+ChEQi0bBdB6756aefxpWWlkbl5eUlf/TRR38+efJkHNt14gKJRKIR8/ny3HPPfVJdXR1U\nVlYW6evrW7d69erNbNeJSbdv33afO3fuga1bt67Sn2MFIL5z4/bt2+7z5s37auvWravc3d1vW3Ju\n8CZIDBky5GptbW0AWa6trQ3w9/e/wmad2Obr61sHADBo0KCGOXPm5BQVFYl2U1+pVKoiJ2/W1dX5\n+vj4XGe7Tmzx8fG5Tn4ZLl++fKeYzov29nbHuXPnHnjyySf/PXv27EMA4j03yLZ44okn9pBtYcm5\nwZsgERMTc6aqqmqEUqmUtbW1OX355Zd/mjVr1jds14std+/edb1165YHAMCdO3fcjhw5kiiXy80v\nSSpQs2bN+iYrK2spAEBWVtZS8o9CjOrq6nzJ5zk5OXPEcl5oNBrJsmXLdoWGhla+9NJLW8jjYjw3\nTLWFRecG21n4vjy+++675JEjR54fPnz4xXfeeecvbNeHzcfly5eDIiIiyiIiIsrCwsJ+EVN7LFy4\n8AtfX99rjo6Obf7+/rWfffZZamNjo9eUKVOOimmYo7G22LVr19NPPvnk53K5vDw8PPzsY489dqi+\nvl7Kdj2ZeJw8eXK8RCLpioiIKNMf4inGc8NYW3z33XfJlpwbvNvjGiGEEHN4092EEEKIeRgkEEII\nmYRBAiGEkEkYJBBCCJmEQQIhhJBJGCSQYN28eXPAJ598ot2t/tq1a37z58/Ppvtz0tPT0/39/a+k\np6en0/3e5kyaNOm4h4fHreLi4jFMfzYSBwwSSLCam5s9P/744+fJsp+f37Xs7Oz5dH+ORCLRvPLK\nK++zESSOHz8+KSYm5oyYlppAzMIggQTrtdde23jp0qXhUVFRpevWrdtUU1MTSM4wzczMTJk9e/ah\nxMTEI0FBQdUZGRkvvPfee2uio6NLHn744f82Nzd7AgBcunRpeHJycl5MTMyZCRMm/Hj+/PlRxj5L\no7eyZnp6evrSpUuzJkyY8KNMJlMePHjw8TVr1rwXHh5enpycnNfR0eFA1i8sLOzXiIiIs2vXrn0X\nAKChoWHQvHnzvho7dmzR2LFji06dOvUIQPcaPKmpqbvDw8PLIyIizh48ePBxW7cfQgDArxnX+MBH\nXx5KpTJQf5+F6upqGVnevXt3SnBwcNXt27fdGhoaBvbv3//m9u3b0zQaDbz88svvb9myZZVGo4HJ\nkycfq6qqCtZoNHD69OmHJk+efIz6Oenp6W++9957q8nym2++mR4XF/djR0eH/dmzZ8NdXFzu5ufn\nT9NoNDBnzpyDhw4deuzGjRveo0aNOkf+zs2bN/trNBpYtGjRvsLCwnEajQZqamqGPvDAA5UajQZe\nffXVTS+//PL75Ov1Zw3Hx8cfLy4ujma7vfEhzIcD20EKIVvRmFk3f9KkScfd3NzuuLm53SEIQj1z\n5sxcAAC5XF5RXl4efufOHbdTp049op/HaGtrczL3uRKJRJOcnJxnb2/fOXr06F+6urrspk2b9j35\n3kqlUjZjxozDzs7OrcuWLds1Y8aMwzNmzDgMAHD06NGpv/322wPke926dcvjzp07bseOHZvy5Zdf\n/ok8jtv6IqZgkECi1a9fv3vkczs7uy6ybGdn19XR0eHQ1dVl5+np2VxaWhrV1/d2cnJqI9/L0dGx\nXf9zOjo6HOzt7TuLiorGHjt2bMpXX301LyMj44Vjx45N0Wg0kp9//vkh8vf1mQt6CNkC5iSQYHl4\neNwiV8rtC/LL2MPD41ZQUFD1V199NY88Xl5eHk5H3e7cueOmVquJ5OTkvPfff/+Vs2fPRgAAJCYm\nHvnwww9fJF9HHk9ISCj46KOP/kweF+NGQogdGCSQYHl7ezeOGzfuJ7lcXrFu3bpN+hvOUDefoT4n\ny3v37l2ya9euZZGRkWWjR4/+5ZtvvpnVm8829d5k+datWx4zZ87MjYiIOBsXF3fygw8+eBkA4MMP\nP3zxzJkzMREREWfDwsJ+3b59+7MAAH/729/ebm5u9pTL5RWRkZFlCoUi3oqmQajXcBVYhKy0fv36\nN93d3W+ztQPcpEmTjm/evHl1dHR0CRufj4QN7yQQspK7u/vtf/3rX2lsTaarrq4O0s97IEQnvJNA\nCCFkEt5JIIQQMgmDBEIIIZMwSCCEEDIJgwRCCCGTMEgghBAy6f8BJtZuNmMtR4gAAAAASUVORK5C\nYII=\n", + "text": [ + "<matplotlib.figure.Figure at 0x37f8250>" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 10.8, Page number: 533" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from sympy import *\n", + "import math\n", + "\n", + "#Variable declaration:\n", + "f=60 #Hz\n", + "Vrms=35 #rms voltage of waveform\n", + "Ra=3.5 #Armature resistance(ohm)\n", + "La=0.175 #H\n", + "no=8000 #No load speed(r/min)\n", + "Va=50 #armature voltage(V)\n", + "\n", + "#Calculations:\n", + "Edc,alphad=symbols('Edc alphad')\n", + "Vdc=Edc #at no load, Vdc=Edc\n", + "Edc=round(float(2*sqrt(2)*(Vrms/math.pi)),2)*cos(alphad)\n", + "n=Edc*float(no/50)\n", + "\n", + "#Results:\n", + "print \"Speed at no-load =\",n,\" r/min (where 0 <= alphad <= pi/2)\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Speed at no-load = 5041.6*cos(alphad) r/min (where 0 <= alphad <= pi/2)\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 10.9, Page number: 537" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "Vll_rms=460 #rms voltage,line-to-line(V)\n", + "R=68 #resistance of load\n", + "Im=2.5 #magnet current(A)\n", + "\n", + "#Calculations:\n", + "Vdc_max=3*sqrt(2)*Vll_rms/pi\n", + "Idc_max=Vdc_max/R\n", + "Vdc=Im*R\n", + "alpha=acos(pi*Vdc/(3*sqrt(3)*Vll_rms))\n", + "\n", + "#Results:\n", + "print \"(a) Maximum dc voltage:\",round(Vdc_max),\"V\"\n", + "print \"\\n Maximum dc current:\",round(Idc_max,1),\"V\"\n", + "print \"\\n(b) Delay angle alpha:\",round(math.degrees(round(alpha,1)),1),\"degrees\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) Maximum dc voltage: 621.0 V\n", + "\n", + " Maximum dc current: 9.1 V\n", + "\n", + "(b) Delay angle alpha: 74.5 degrees\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 10.10, Page number: 541" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "T=20*10**-3 #Time period(sec) \n", + "p=4 #no. of poles\n", + "delta=0.44 #ON- time fraction\n", + "Vo=125 #DC supply voltage(V)\n", + "\n", + "\n", + "#Calculation:\n", + "fc=1/T\n", + "ns=(120*fc/p)\n", + "Va_peak=(4*Vo*sin(delta*pi))/pi\n", + "Vll_rms=sqrt(3/2)*Va_peak\n", + "\n", + "#Results:\n", + "print \"(a) Frequency:\",fc,\"Hz\"\n", + "print \"\\n Synchronous speed:\",ns,\"r/min\"\n", + "print \"\\n(b) Rms amplitude of line-to-line voltage:\",round(Vll_rms,0),\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) Frequency: 50.0 Hz\n", + "\n", + " Synchronous speed: 1500.0 r/min\n", + "\n", + "(b) Rms amplitude of line-to-line voltage: 191.0 V\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 10.13, Page number: 547" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "Vo=48 #Load voltage(V)\n", + "R=3.7 #Resistance of load(ohm)\n", + "L=.32 #Inductance of laad(H)\n", + "D=0.8 #Duty cycle\n", + "f=1000 #Hz\n", + "\n", + "#Calculations:\n", + "iL_avg=(2*D-1)*Vo/R\n", + "T=1/f\n", + "tau=L/R\n", + "iL_min=((-Vo/R)*(1-2*exp(-T*(1-D)/tau)+exp(-T/tau)))/(1-exp(-T/tau))\n", + "iL_max=(Vo/R)*(1-2*exp(-D*T/tau)+exp(-T/tau))/(1-exp(-T/tau))\n", + "\n", + "#since T/tau << 1, so using 10.32 in e.g. given.\n", + "del_iL=(2*Vo)*T*D*(1-D)/(R*tau)\n", + "\n", + "\n", + "#Results:\n", + "print \"Avg load current:\",round(iL_avg,2),\"A\"\n", + "print \"Minimum load current:\",round(iL_min,2),\"A\"\n", + "print \"Maximum load current\",round(iL_max,2),\"A\"\n", + "print \"Current ripple:\",round(del_iL,2),\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Avg load current: 7.78 A\n", + "Minimum load current: 7.76 A\n", + "Maximum load current 7.81 A\n", + "Current ripple: 0.05 A\n" + ] + } + ], + "prompt_number": 9 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter11.ipynb b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter11.ipynb new file mode 100755 index 00000000..308afbf5 --- /dev/null +++ b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter11.ipynb @@ -0,0 +1,975 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:4aa0be3787a5262658b58d5130a82adad92353bb1944b3902dc15e9d5045fa75" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 11: Speed and Torque Control" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 11.1, Page number: 561" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "\n", + "#Variable declaration:\n", + "Vdc=240 #DC supply (V)\n", + "D=0.75 #Duty cycle\n", + "Rf=187 #field resistance(ohm)\n", + "Lf=4.2 #field winding inductance(H)\n", + "T=1 #switching period(msec)\n", + "\n", + "\n", + "\n", + "#Calculations:\n", + "If=D*(Vdc/Rf)\n", + "tau=Lf/Rf #time constant(msec)\n", + "del_if=(2*Vdc/Rf)*(T/tau)*D*(1-D)\n", + "\n", + "\n", + "#Results:\n", + "print \"Avg field current:\",round(If,2),\"A\"\n", + "print \"Magnitude of currnet ripple:\",round(del_if,1),\"mA\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Avg field current: 0.96 A\n", + "Magnitude of currnet ripple: 21.4 mA\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 11.2, Page number: 563" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from sympy import *\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "n1=1800 #r/min\n", + "n2=3600 #r/min\n", + "Va=240 #terminal voltage(V)\n", + "Ifo=0.34 #No-load field current(A)\n", + "Ra=0.05 #Armature resistance(ohm)\n", + "Rsh=187 #Shunt field resistance(ohm)\n", + "\n", + "#Calculations:\n", + "wm=symbols('wm')\n", + "wm1=float(2*pi*n1/60)\n", + "wm2=float(2*pi*n2/60)\n", + "def Pload(wm):\n", + " return (22.4*(120*pi)**-3)*(wm)**3\n", + "\n", + "T1=Pload(wm1)*1000/wm1\n", + "T2=Pload(wm2)*1000/wm2\n", + "\n", + "Kf=Va/(Ifo*wm2)\n", + "def If(T,wm):\n", + " return (Va/(2*Kf*wm))*(1+sqrt(1-(4*wm*T*Ra)/Va**2))\n", + "\n", + "Rf1tot=round(Va/float(If(T1,wm1)))\n", + "Rf2tot=round(Va/float(If(T2,wm2)))\n", + "Rrh1=Rf1tot-Rsh\n", + "Rrh2=Rf2tot-Rsh\n", + "\n", + "\n", + "#Results:\n", + "print \"----------------------------------------------------------------\"\n", + "print \"r/min Tload[N.m] If[A] R(f)tot[ohm] Rrheostat[ohm]\"\n", + "print \"----------------------------------------------------------------\"\n", + "print n1,\"\\t \",round(float(T1),1),\"\\t\\t \",round(float(If(T1,wm1)),3),\"\\t\",Rf1tot,\"\\t \",Rrh1\n", + "print n2,\"\\t \",round(float(T2),1),\"\\t\\t \",round(float(If(T2,wm2)),3),\"\\t\",Rf2tot,\"\\t \",Rrh2\n", + "print \"----------------------------------------------------------------\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "----------------------------------------------------------------\n", + "r/min Tload[N.m] If[A] R(f)tot[ohm] Rrheostat[ohm]\n", + "----------------------------------------------------------------\n", + "1800 \t 14.9 \t\t 0.678 \t354.0 \t 167.0\n", + "3600 \t 59.4 \t\t 0.333 \t720.0 \t 533.0\n", + "----------------------------------------------------------------\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 11.3, Page number: 567" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "%matplotlib inline\n", + "from math import *\n", + "from pylab import *\n", + "\n", + "#Variable declaration:\n", + "Rf=109 #Field resistance(ohm)\n", + "Vf=300 #Rated field voltage(V)\n", + "Ra=0.084 #Armature resistance(ohm)\n", + "Kf=0.694 #Geometric constant(A.rad/sec)\n", + "\n", + "\n", + "#Calculations:\n", + "If=Vf/Rf #Resulting field current(A)\n", + "w_rated=2500*(pi/30) #Rated speed(rad/sec)\n", + "P_rated=100*746 #Watts\n", + "T_rated=P_rated/w_rated #Nm\n", + "Va=[0]*102\n", + "NoLoadRPM=[0]*102\n", + "FullLoadRPM=[0]*102 \n", + "for n in range(1,102,1):\n", + " Va[n-1]=250*(1+(n-1)/100)\n", + " T=0 #Zero torque\n", + " w=(Va[n-1]-T*Ra/(Kf*If))/(Kf*If)\n", + " NoLoadRPM[n-1]=w*30/pi\n", + " T=T_rated\n", + " w=(Va[n-1]-T*Ra/(Kf*If))/(Kf*If)\n", + " FullLoadRPM[n-1]=w*30/pi\n", + "\n", + "print\"The plot is as shown:\"\n", + "plot(Va,NoLoadRPM)\n", + "plot(Va[20] ,NoLoadRPM[20] ,'r+')\n", + "plot (Va[50] , NoLoadRPM[50] , 'r+')\n", + "plot (Va[80] ,NoLoadRPM[80] , 'r+')\n", + "plot (Va, FullLoadRPM,'.')\n", + "plot (Va[20] ,FullLoadRPM[20] ,'o')\n", + "plot (Va[50] , FullLoadRPM[50] , ' o' )\n", + "plot (Va[80] , FullLoadRPM[80] ,'o' )\n", + "title('Speed vs Armature voltage')\n", + "xlabel('Armature voltage [V] ')\n", + "ylabel('Speed [r/min] ')\n", + "annotate('+ = Zero torque',xy=(270,2300))\n", + "annotate('o = Full load torque',xy=(270,2100))\n", + "ylim(1000,2500)\n", + "xlim(250,500)\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The plot is as shown:\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEXCAYAAACDChKsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdYU2f7B/BvgOBCBBdogqCAYiQMR0ArEgcWfStQKShU\ncL6+1VaxttTRIbbu1Yot/upbtwVFUdC+grhQahUq4kQFFJSEUQcKKLJyfn/EgxEZIRDm/bmuczV5\nznpyGnNzzv0MDsMwIIQQQmpLo7ErQAghpHmiAEIIIUQlFEAIIYSohAIIIYQQlVAAIYQQohIKIIQQ\nQlRCAYQ0C2KxOGb79u0zG7seBEhPTzfR0NCQyWQy+v1o5egLQKr1559/Dh82bNhfenp6z7p06fJk\n+PDhf16+fHlwQ9eDw+EwHA5H7Z2WCgoKdHR0dArGjx9/XN3nqsjExCT9zJkzoxr6vHVFwb31ogBC\nqpSXl6f7wQcf/OHn57c5NzdXXyqV8pYtW7a8TZs2RY1dN3UJCwtz79Wr18OYmBhxTk6OQVXblZaW\natX3uTkcDsMwDEfV/cvKyjTrsz7KaojATpoohmFooaXS5e+//x6sp6eXW9X6nTt3Ths2bNiFzz77\nbEunTp2eWVhY3D59+vQodv2zZ886zZgxY3uPHj0yeTye5JtvvvmhrKxMg12/ffv2Gf3790/S19d/\n+v7770c9ePCgF7suOjraqV+/fnc6der07LPPPtvi6OgY89tvv82sWAepVNqzXbt2L58+farPll25\ncsW2a9euj0pLSzVTUlLMRowYca5Tp07Punbt+mjSpEn7q/vMI0eOPLNx48aFY8aMOblhw4YvFNcZ\nGxunr1279iuhUHi9bdu2hampqaYcDke2c+fOaUZGRg87d+78ZOvWrZ/Ex8cPEQqF1/X09HI/++yz\nLez+qamppiNHjjzTpUuXx127dn308ccf73v27FknhmEwZcqUvRoaGmXt2rV7qaOjk79+/fovz549\nK+bz+RkV68Be42XLlgW4u7sfmjJlyl5dXd3n27dvn1HTNVf2upWVlWn88MMP3xgbG6d37949x9fX\nd/fz5891GYZBWlqaCYfDkZWWlmouXbp0paamZmnbtm0LdXR08ufNmxfIMAzmz5+/2cjI6KGuru7z\nQYMGXY6NjR3Onufly5ftfH19d+vr6z/t379/0tq1a79S/JxSqbTnxIkTw7p16/ZP79697wcGBs5r\n7H8LtFS+NHoFaGm6S15eXscuXbo8njp16q7IyEhnxR8bhpEHEC0trZKffvrJr7S0VPPAgQOenTp1\nepabm6vHMAzc3NyOfPLJJ1tfvnzZ7p9//ukmEonifv3119kMwyA8PNzVzMws5c6dO/3Kyso0VqxY\n8fWwYcMuMAyDR48ede3YsWNeWFjYxNLSUs0ff/xxgZaWVsn27dtnVFbPUaNGnf7vf/87i33/5Zdf\nrp8zZ04QwzCYPHlyyKpVq5YwDIOioiLtCxcuDKvq86anpxtramqWZmRk8Ldt2/ZvKyura4rrjY2N\n021tba9IJBLeq1ev2rA/pHPmzAkqKirSjo6OdtLW1i5yc3M78ujRo65SqbRn9+7dc86dOzeCYeQB\n5NSpU6OLi4u5jx496jpixIhzCxYs+JE9vomJSZpiAK4sgChus2zZsgAul1scERHhwjAMCgsL21Z3\nzWtz3bZv3z7DzMwsJS0tzaSgoKDDxIkTw3x8fPYwzJsAwgYmsVh8tuL/m3379n389OlT/bKyMo2N\nGzcuNDQ0zCoqKtJmGAaLFi1aIxaLzz579qyTRCLhCYXC60ZGRg8ZhkFZWZnGwIEDE3744YdvSkpK\ntO7fv9+7T58+906cODG2sf890PLu0ugVoKVpL7dv37aYNm3aTj6fn6GlpVXi4uISkZOT051h5AGk\nZ8+eUsXtRSJR3N69e6dkZ2cbtGnT5lVhYWFbdl1wcLDXyJEjzzAMA2dn50jFH52ysjKN9u3bv3jw\n4EGv3bt3+w4dOvQvxePy+fyMqgLIb7/9NnPUqFGnGYaBTCbjGBkZPWT/4vX19d09e/bsXyUSCa+m\nz/rDDz98w5738ePHXbS0tEoSExNt2PUmJiZpO3funMa+Z39IMzMze7BlXbp0eRwaGurBvnd3dz/0\n008/+VV2viNHjrjZ2tpeUTx+bQOIo6NjDLuupmtem+s2atSo01u3bv2E3fbu3bt9uVxucVlZmUZl\nAaSyu0PFRV9f/+n169eFDMOgT58+96Kjo50U68F+zkuXLtn16tXrgeK+q1atWjJ9+vQdjf1vgZZ3\nF8qBkGpZWFjc2blz5/SMjAyjmzdvWmZmZvZcsGDBT+x6Ho8nVdze2Nj4QWZmZs+HDx/2Kikp4fbo\n0SNLX18/V19fP/eTTz75v0ePHnUDgAcPHhj7+fltZtd16dLlCQBIpVJeVlZWDz6fL1E8rpGRUUZV\ndZw4ceLhixcvDs3OzjY8f/78CA0NDdnw4cP/BIB169Z9xTAMRyQSxVtaWt7cuXPn9KqOs2fPHl8P\nD4+DANClS5cnYrE4Zvfu3VNrqoeBgUEO+7pdu3aFFd8XFBToAEBOTo7B5MmT9/P5fEmnTp2e+/j4\n7H3y5EmXquqjDMXr9ODBA+PqrnlF1V23rKysHsbGxg/YbXv16vWwtLRUq6q8UMU8yIYNG74UCARJ\nenp6z/T19XOfP3/e6fHjx10BIDMzs6fidaz4GTIzM3uy9dfX189dvXr1kn/++ae7qteIqE+9JwJJ\ny9WvX7+7U6dO3b1t27bZbJlUKuUpbvPgwQNjV1fXCCMjo4w2bdoUPXnypIuGhoas4rF69er18Ntv\nv/3By8srpOK6lJQU84yMDCP2PcMwHMX3Fenr6+eOHTs2+sCBA5OSkpIEisc0MDDIYet74cKF98aM\nGXPK0dHxXJ8+fe4rHuOvv/4alpqaarZixYpv1q1b9xUA5Ofnd7x+/brVxo0bv2A/gyoJY3afpUuX\nrtLU1Cy7efOmpZ6e3rPw8HC3efPmbam4HatDhw4vXr582Z59X1ZWplkxGCjuU9M1r6i669azZ8/M\n9PR0E/b9w4cPe2lpaZUaGBjkPHz4sFdVdQCA2NhYh/Xr1/ufOXNm1IABA24BQOfOnZ8yrxsI9OjR\nIysjI8PIwsLiDgAo/r81MjLK6N27d1pycnLfmupPGh/dgZAq3b17t9+mTZsWskEiIyPDKCQkxGvo\n0KEX2W3++eef7oGBgfNLSkq4Bw8e9Lhz547F+PHjjxsaGmaPHTs2euHChZvy8/M7ymQyjXv37pme\nP39+BAB88skn/7dq1aqlSUlJAgB4/vx5p4MHD3oAwPjx44/funVrwJEjRz4sLS3VCgwMnJ+dnW1Y\nXV29vb2Dd+/ePTUsLMzd29s7mC0/ePCgh0Qi4QOAnp7eMw6Hw1T247p79+6pY8eOjb59+3b/a9eu\nWV+7ds365s2bloWFhe2OHz8+XtVryCi0qiooKNDp0KHDC11d3TypVMpbv369v+K2BgYGOffu3TNl\n3/ft2zf51atXbY8fPz6+pKSEu2LFim+KioraVHWuHj16ZFV3zStT1XXz8vIK+fHHHz9PT083KSgo\n0Fm6dOmqyZMn76/s2lWsd35+fkctLa3Srl27Pi4uLtb+/vvvv8vLy9Nl13t6eoauXr16ybNnz/Sk\nUinv559//owNQiKRKL5jx47569at+6qwsLBdWVmZ5s2bNy0bo+k4qRkFEFKljh075sfFxdnZ2dnF\n6ejoFAwdOvSilZXV9Y0bN37BbmNnZxeXkpJi3q1bt0fffvvtD2FhYe76+vq5gPyRUHFxsbZAIEjq\n3LnzUw8Pj4NsIHBzcwtftGjR2smTJ+/v1KnTc6FQeOPEiRPvA0DXrl0fHzx40GPx4sVrunbt+jg1\nNdWMfbRSFRcXl6OpqalmPXr0yBIKhTfY8suXLw+2t7e/1LFjx3xXV9eIwMDA+SYmJumK+7569art\nwYMHPebNm7ele/fu/7CLiYlJuo+Pz949e/b4VnXemu5IFNcvW7Zs+ZUrVwZ26tTp+YQJE465u7uH\nKa5fsmTJ6hUrVnyjr6+fu2nTpoWdOnV6HhQUNHfWrFm/8fl8iY6OToHio5/K+sZUd81rc91mzJix\nw8fHZ++IESPO9+nT53779u1fbtmyZV5ln8vPz2/zoUOHPurcufPTBQsW/OTs7Bzl7Owc1bdv32QT\nE5P0du3aFfbq1eshu/133333PZ/Pl/Tu3Ttt7Nix0R4eHge1tbWLAUBTU7Psjz/++ODq1as2ffr0\nud+tW7dHs2fP3qYYgEjTwWEYasJNVLNr165p27dvnxkbG+vQ2HUhzdfWrVvnhIaGep49e3ZkY9eF\n1A7dgRBCGlR2drbhhQsX3pPJZBrsY9IPP/zwSGPXi9QeJdGJyhpqeBHSshQXF2t/8skn/5eWltZb\nT0/vmZeXV8jcuXODGrtepPboERYhhBCVtIg7EPormBBCVMPUYfy1FpMDaewemU1lWbZsWaPXoaks\ndC3oWtC1eHdJS2MAsEvdtJgAQgghpGovXgBmZkDv3vL3CQl1PyYFEEIIacEYBvDxAXR0gHv3gOBg\nednAgXU/NgWQFkYsFjd2FZoMuhZv0LV4ozVdiy1bAA0NYN8+4Isv5IHDy6v+jt8iWmG9noinsatB\nCCFNwtmzwKjXc1u+9x5w5gygrf3udhwOB0wdkugtohUWIYQQIC0N6NNH/lpTE8jMBLqrcRxjeoRF\nCCHNHJsgZ4PHlStAaal6gwdAAYQQQpothgGmTHmTIA8JkZfZ2ta87+xjs2veqAYUQAghpBliE+S/\n/w58+aU8cEyerPz+yU+S61wHyoEQQkgzopggHz5cniDncpXbd/ax2Uh+koz23Pbgaiq5UzUogBBC\nSDNQHwny5CfJOPfgHADAtZ9rneuktkdYGRkZRiNHjjw7YMCAW5aWljcDAwPnK65npwl9+vRpZ7Zs\n9erVS8zNzVMsLCzuREdHj2XLExISBgmFwhvm5uYpfn5+m9VVZ0IIaWpevABMTd8Ej4QE5RPks4/N\nhniXGON/H49nr56hPVc+Q/KQnkOwy21X3SunrvFWsrKyDBMTE20YhkF+fr5O37597yYlJfVnGAYP\nHz40ev/996NMTEzSnjx50plhGNy6dUtgbW19tbi4mJuWlmZiamqaKpPJOAzDYMiQIfFxcXEihmEw\nbty445GRkc6K55J/DEIIaTlkMob5+GOGkWc3GCY4uPbHcNzpyCAADALAeIR6MLmFueX/ZRiGef3b\nqfLvvNoeYRkaGmYbGhpmA4COjk5B//79b2dmZvbs37//7YULF25at27dV66urhHs9hEREa5eXl4h\nXC63xMTEJN3MzCw1Li7OztjY+EF+fn5HkUgUDwC+vr57wsPD3ZydnaMUzxcQEFD+WiwWt6repoSQ\nlmXLFmD+62c2X34JrF+v/L6V5TmG9ByCbRO24eqlqxDcEuCnWz/VSz0bJAeSnp5ukpiYaGtnZxcX\nERHhyufzJVZWVtcVt8nMzOxpb29/iX3P5/MlUqmUx+VyS/h8voQt5/F4UqlUyqt4DsUAQgghzdGZ\nM8Do0fLXDg7A6dPKJcgVg0ZeUR4uZFwAIM9zeAg8sG3CNui11Xvnj+vly5fXqb5qDyAFBQU6H330\n0aHNmzf7aWhoyFatWrX05MmTTux6pg7d6AkhpCWoa4JcMTlu2MEQwJs8h15bvfqubjm19gMpKSnh\nuru7h02ZMmWfm5tb+L1790zT09NNrK2tr/Xu3TtNIpHwBw0alJCTk2PA4/GkGRkZRuy+EomEz+fz\nJTweTyqRSPiK5TweT6rOehNCSEN48UIeOGrbg7y65PilWZfgIfBAtE+0WoMHAPUl0WUyGcfHx2fP\nggULfqxqm8qS6EVFRdr379/v3adPn3tsEl0kEsVdunTJTiaTcSiJTghp7iomyENCard/TclxZaGp\nJtEvXLjw3r59+6ZYWVldt7W1TQSAVatWLR03blwku43iVLQCgSDJ09MzVCAQJGlpaZUGBQXNZdcH\nBQXNnTZt2q7CwsJ248ePP14xgU4IIc1FYCDg5yd/7e8PrFun3H7VJcf12uoh1CNUTTWuGg3nTggh\nDUDVBDlLvEv8VidAbU3t8uChKhrOnRBCmjDFBLmWljxB3q2bcvtWddeh7uS4smgwxSbkyJEjsLW1\nfWvR1NTEiRMn6vU8z58/x9atW+v1mISQt1XsQX7lClBSonzwAN60ropMjUQHboeGS44riR5h1UFM\nTAx2796NnTt3quX427ZtQ0hICM6ePavU9uw14HCqvyNNT0/HhAkTcOPGDaXrUlpaCi0tumElpCbs\nEOvBwfL3+/cDkyYpt6/iHUewezC8w7wRmRqJIT2HqCVw1PURFt2B1EFNP9R1kZycjB9++AF79+4t\nL1u/fj1EIhGsra3LO06mp6ejX79+mDp1KoRCITIyMuDv7w+hUAgrKyuEhr6bWFu8eDHu3bsHW1tb\nLFq0CAAq3ScmJgYODg5wdXWFpaUlAOCzzz6DhYUFnJyc8K9//QthYWEAABMTEzx9+hQAcPnyZYwc\nORIA8OLFC8yYMQN2dnYYOHAgjh49qp4LRkgTEBgoH2I9OBj46it5MFE2eABv33HMPjYbwe7BTe6u\nQxH9SVkHytz1BAcHY30l4xCYm5tX+uMOACUlJfD29samTZvA58u7wERHRyM1NRXx8fGQyWRwdXVF\nbGwsjIyMkJqair1790IkEiEsLAzXrl3D9evX8ejRIwwZMgQjRoyAoaFh+fHXrl2LW7duITExEQCq\n3AcAEhMTcevWLRgbG+Pw4cNITk7G7du3kZ2dDYFAgJkzZwKoOpiuXLkSo0ePxo4dO/Ds2TPY2dlh\nzJgxaN++fY3XjpDmoi4J8qbYukpZFEBUYG9vj6KiIhQUFODp06ewfT3917p16+Dk5PTWtt7e3vD2\n9q7V8b/99lsIhUJ4eHiUl0VHRyM6Orr8XC9evEBqaiqMjIxgbGwMkUgEALhw4QK8vb3B4XDQvXt3\nODo64u+//8aECRPKj1Ux8FW1j66uLkQiEYyNjQEAsbGx5dv16NEDo9hJCaoRHR2NY8eOYcOGDQCA\noqIiZGRkoF+/frW6JoQ0RXVJkLMqDrGuOPRIU0cBRAWXLsmH7Dp37hx27dpVbQ7k999/L//xVGRm\nZoaDBw++Ux4TE4MjR47gypUr76xbsmQJZs9+exrK9PR0dOjQ4a2yigFCmUdtVe1T3bEVX2tpaUEm\nkwEAXr169dY+hw8fhrm5eY11IKS5ePECEArlAQSQJ8iVmUaW1dRbVymLciB1oMwjrI8//hiJiYnv\nLJUFj9zcXEyfPh179ux554f7/fffx44dO/DixQsAgFQqxaNHj945hoODAw4cOACZTIZHjx7h/Pnz\n5XcnrI4dOyI/P7/GfSp+vhEjRpRvl5WVhZiYmPJ1JiYmuHz5MgCU50XYegcGBpa/Zx+bEdIcMQzw\n8cfyOcjT0pSfg7zi0CNNvXWVsugOpA44HE69JtL/7//+D48ePcInn3zyVvnSpUvh4eGB27dvY+jQ\noQDkQWDfvn3v1OHDDz/ExYsXYW1tDQ6Hg/Xr16N7hYF1unTpgvfeew9CoRDjx4/H2rVrK93n9u3b\n7xz7zJkzEAgE6NWrF4YOHVoeZJYtW4aZM2dCV1cXYrG4fL9vv/0WCxYsgJWVFWQyGfr06UOJdNIs\nqdqDHHj7MdXsY7PfmdipuQUOFjXjJSqbPn06PvjgA7i7uzd2VQhRm/oYYr1EVoJT90+VN8dl1zd2\nroN6opNGpc6mzIQ0promyGtKjjfl1lXKogBCVKauDpSENKaCAsDKqvYJ8oqdAFvKY6rqUBKdEEIg\nT4Z7ewMdO8qDx/79yiXIWc2tE2B9oBwIIaR1iYkBFKZ1BepniPWKeY7mEDQoB0IIIbWhEEDqOsR6\nc+4EWB8ogBBCWp2WPMR6Q6JHWISQli8mBoiJQXExoL16OQKwDAAw5b9imM0S1+pQ6pjYqbHQIyxC\nCKkB4yjGx9vECAkBlgHovz9A5SHWW0PrKmVRACGEtGiKCfKvvgIC2gFQYYh1AOWtq5pCJ8CmgAII\nIaRFqjJBHiOucd/mPMR6Q1JbP5CMjAyjkSNHnh0wYMAtS0vLm4GBgfMBwN/ff33//v1vW1tbX5s4\nceLh58+fd2L3Wb169RJzc/MUCwuLO9HR0WPZ8oSEhEFCofCGubl5ip+f32Z11ZkQ0vylpQEcjjx4\naGsD//wDnD+v0LqqQhNeluKAh0mPklrEYIdqxzCMWpasrCzDxMREG4ZhkJ+fr9O3b9+7SUlJ/aOj\no53Kyso0GIbBokWL1ixatGgNwzC4deuWwNra+mpxcTE3LS3NxNTUNFUmk3EYhsGQIUPi4+LiRAzD\nYNy4cccjIyOdFc8l/xiEkNYsP59hevdmGHn3P4ZJTKzd/o47HRkEgEEAGMP1hgwCwAzZNoTJLcxV\nT4WbgNe/nSr/zqvtEZahoWG2oaFhNgDo6OgU9O/f/3ZmZmZPJyenk+w2dnZ2cWFhYe4AEBER4erl\n5RXC5XJLTExM0s3MzFLj4uLsjI2NH+Tn53cUiUTxAODr67snPDzczdnZOUpddSeENB/sEOshIfL3\nVc1BfuZ/ZxAeGA6NIg3I2siQYZeB3D65lSbHD3ochP9Jf8pz1KBBciDp6ekmiYmJtnZ2dnGK5Tt2\n7Jjh5eUVAgCZmZk97e3tL7Hr+Hy+RCqV8rhcbgmfz5ew5TweTyqVSnkVz8HOEQ4AYrEY4ipuUwkh\nLYdignzRImDNmsq3O/O/MwjxC8HH9z4uL1t3dR3ix8SjsG9hpcnxlpjniImJeWsen7pSewApKCjQ\n+eijjw5t3rzZT0dHp4AtX7ly5dfa2trF3t7ewfVxHsUAQghp2RQT5CNGAKdOVd+DPDww/K3gAQBf\n/fMV7sffh65Yt0UHDUUV/7hevnx5nY6n1gBSUlLCdXd3D5syZco+Nze3cLZ8165d044fPz7+9OnT\no9kyHo8nzcjIMGLfSyQSPp/Pl/B4PKlEIuErlvN4PKk6600IaZoUe5BrawMSiXI9yDWKKm8v1Eu7\nF0J9QukxlYrU1gqLYRjOzJkztwsEgqQFCxb8xJZHRUU5r1+/3j8iIsK1bdu25ZNnu7i4HN2/f//k\n4uJi7bS0tN4pKSnmIpEo3tDQMFtXVzcvLi7OjmEYzt69e30UgxEhpOUrKAB6934TPBITgaIi5YLH\n7GOzEfckrtJ1AiMBBY86UFsAuXDhwnv79u2bcvbs2ZG2traJtra2iZGRkePmzZu3paCgQMfJyemk\nra1t4ty5c4MAQCAQJHl6eoYKBIKkcePGRQYFBc3lcDgMAAQFBc2dNWvWb+bm5ilmZmaplEAnpHVQ\nHGI9Pf3NEOs2NsofI/lJMq5ZXcNy/bcf1+wz3QeXeS71W+FWhsbCIoQ0SZs3AwsWyF9/9RWwdq1y\n+1UcesQ7zBuRqZGwemyF4XeHg1vMBdoCLvNcMOpfo9T3AZoBGguLENKinD4NjBkjf+3oCJw8qfoQ\n6zT0iHrRHQghpEm4fx8wNZW/5nIBqVS1Idab48ROjaWudyA0pW0Tlp6ejnbt2sHW1ha2trYYOHAg\nSkpKqtw+ICAAGzduBABMmzYNYWFh72xTVbkqdRMKhe+UP3jwACFsjy5ClFBQAJiYvAkeiYlAcbHy\nwQN4ezpZGnqk4dAjrCbOzMwMiYmJSm3L4XDA4XDeeV3VNuqQlpaG4OBgeHl5Kb1PaWkptLToq9ja\nyGTyHuT798vfV9WDvCo0sVPjozsQFWzatAlCoRBCoRCbNzf82I46Ojrlrw8dOoTp06eXv1d8lFfV\nYz22/PTp0xg4cCCsrKwwc+ZMFBcXAwB++OEHiEQiCIVC/Oc//ynfLyEhAdbW1rCxsUFQUFClx168\neDFiY2Nha2uLzZs3o6ioCNOnT4eVlRUGDhxY3gt2165dcHFxwejRo+Hk5IRXr15h8uTJEAgEmDhx\nIuzt7XHlypVqP++jR4/w0UcfQSQSQSQS4a+//lL6GpLG9dNPgKamPGgsWiRvWVVT8FAc7PDZq2d0\n19EE0J99tZSQkIBdu3YhPj4eMpkMdnZ2cHR0hE2FdoWTJ0/G3bt339n/iy++wJQpU5Q+371792Br\nawsAGD58OLZs2fLWHYQqdxMcDgevXr3C9OnTcebMGZiZmWHq1KnYunUr/Pz88Nlnn+Hbb78FAPj6\n+uKPP/7ABx98gOnTpyMoKAjDhw/HV199Vemx165diw0bNuDYsWMAgI0bN0JTUxPXr1/H3bt3MXbs\nWCQnJwMAEhMTcePGDejp6WHTpk3Q0dFBUlISbty4gYEDB1b6GRVf+/n54fPPP8d7772Hhw8fwtnZ\nGUlJSbW+HqTh1CVBXjE5ThM7NT4KILX0559/YuLEiWjXrh0AYOLEiYiNjX0ngOxn78vryNTUVOlH\nWMpiGAZ3795F7969YWZmBgCYOnUqfvnlF/j5+eHMmTNYv349Xr58iadPn8LS0hLDhw/H8+fPMXz4\ncACAj48PIiMjKz22ogsXLmD+/PkAgH79+sHY2BjJycngcDhwcnKCnp78H31sbCz8Xg9qJBQKYWVl\nVePnOHXqFG7fvl3+Pj8/Hy9fvkT79u1VuCpEnRQT5LXpQV7dvBzsempd1XgogNTS61YL5e8Zhqn0\nLmDSpEnlf2krWrhwIXx8fOpcB1ZhYWGV65Q9BvDmh7+oqAhz587FlStXwOPxsHz5crx69arK7ZVR\n1bYdOnRQaruqPi/DMIiLi4O2trbSdSENq6AAsLQEHjyQv09MrH0nQMX5xz0EHm8FjJY+dlVTRzmQ\nWnJwcEB4eDgKCwvx4sULhIeHw8HB4Z3tDhw4gMTExHeWugYPADAwMMCdO3cgk8lw5MiR8nJ2jP6a\ncDgc9OvXD+np6bh37x4AYO/evRCLxeXBokuXLigoKMDBgwcBAJ06dYKenh4uXLgAAPj9998rPbau\nri7y8/PL3zs4OJRvm5ycjIcPH8LCwuKdeo4YMQLBwfJxNW/evInr169X+XnZgDJ27FgEBgaWb3f1\n6tUaPzut79A+AAAgAElEQVRpGAwDeHnJe5A/eAAcOKB8D3LFXEfF5HioB41b1ZRQAKklW1tbTJs2\nDSKRCPb29vj3v/8Na2trtZ2vsjuKNWvW4IMPPsB7772Hnj17Vtnyqrq7kTZt2mDnzp3w8PCAlZUV\ntLS08Mknn6BTp07497//DUtLSzg7O8POzq58n507d+LTTz8tz8lUdnwrKytoamrCxsYGmzdvxty5\ncyGTyWBlZYXJkydj9+7d4HK579R1zpw5KCgogEAgwLJlyzBo0KAqPy8rMDAQly9fhrW1NQYMGIBt\n27Ypc0mJmm3eDGhoyBPkixfLA4enp/L7U3K8+aCOhKRJGjlyJDZu3PhWMp00bYoJcrEYiI5WLkFe\n1dAj1BFQ/WgoE0JIo1JMkLdtC2RkAF27Kr8/DT3SfNEdCCFEJRUT5FevAso+zaWhR5oGGsqEENKg\nFIdYV0yQ1yYVSHmOloEeYRFClPbTT8Dnn8tfVzcHeWVo6JGWhx5hEUJqVNch1gFAvEv8Vp8ObU1t\nynM0MkqiE0LURtUe5MC7rato6JGWh+5ACCHvUDVBrhg08orycCFD3vGU7UFOraualrregVAAIYSU\nk8nkCfIDB+TvQ0MBDw/l91d8TGXYwRDZL7KpdVUTRo+wCCH1QjFBvngxsHq1cvtVlRw/6HEQ/if9\n6Y6jBaM7EEJauVOnACcn+eva9CBnUXK8+Wqy/UAyMjKMRo4ceXbAgAG3LC0tbwYGBs4HgKdPn3Z2\ncnI62bdv3+SxY8dGP3v2rPxbtnr16iXm5uYpFhYWd6Kjo8ey5QkJCYOEQuENc3PzFD8/v4afwYmQ\nFuj+fYDDkQcPbW3g0SPg7Nmag0fFiZ0qJsdpwMNWhB3Btb6XrKwsw8TERBuGYZCfn6/Tt2/fu0lJ\nSf39/f3XrV279iuGYbBmzZpFixYtWsMwDG7duiWwtra+WlxczE1LSzMxNTVNlclkHIZhMGTIkPi4\nuDgRwzAYN27c8cjISGfFc8k/BiFEGfn5DNOrF8PIu/8xzNWrtdvfcacjgwAwCADjEerB5Bbmlv+X\nNC+vfztV/p1X2x2IoaFhto2NzVUA0NHRKejfv/9tqVTKO3r0qMvUqVN3A8DUqVN3h4eHuwFARESE\nq5eXVwiXyy0xMTFJNzMzS42Li7PLysrqkZ+f31EkEsUDgK+v7x52H0KI8mQyYPJkeQ/yhw/lCXJl\ne5BXNcQ6+6iK7jpapwZJoqenp5skJiba2tnZxeXk5BgYGBjkAICBgUFOTk6OAQBkZmb2tLe3v8Tu\nw+fzJVKplMflckv4fL6ELefxeFKpVMqreI6AgIDy12KxGGKxWI2fiJDm5ccfgYUL5a9rkyBn1TSx\nE2keYmJiEBMTU2/HU3sAKSgo0HF3dw/bvHmzX8eOHfMV13E4HIbD4dRL9lsxgBBC5FRNkFMnwJap\n4h/Xy5cvr9Px1BpASkpKuO7u7mE+Pj573dzcwgH5XUd2drahoaFhdlZWVo/u3bv/A8jvLDIyMozY\nfSUSCZ/P50t4PJ5UIpHwFct5PJ5UnfUmpLmjIdZJQ1BbDoRhGM7MmTO3CwSCpAULFvzElru4uBzd\nvXv3VADYvXv3VDawuLi4HN2/f//k4uJi7bS0tN4pKSnmIpEo3tDQMFtXVzcvLi7OjmEYzt69e33Y\nfQghbysoAIyN3wSPq1eBwkLlggflOUit1SUDX90SGxs7nMPhyKytra/a2Ngk2tjYJEZGRjo/efKk\n8+jRo0+Zm5snOzk5Refm5uqx+6xcuXKpqalpar9+/e5ERUW9z5Zfvnx5kKWl5Q1TU9PUefPmBVY8\nF6gVFmnlysoYZtKkNy2rQkNrfwzF1lWuIa7UsqoVQB1bYVXZkXDChAnHago+nTt3fsreTTQm6khI\nWjPFBPmSJcCqVcrvSxM7tW5qG8rkzp07Fr/99tusyg7++geb8+mnn/6i6okJIXWjmCAfOVKeINeq\nIatZMTlOratIXVT5dVuxYsU3jo6O56rb+bvvvvu+/qtECKnOvXuAmZn8dbt28j4dyibIKybHqXUV\nqQsaC4uQZqKgABAI5C2qANWGWK/4mIpdT3cdrZPah3O/e/duvw0bNnyZnp5uUlpaqvX6pMyZM2dG\nqXrS+kYBhLRkFYdYP3gQ+Ogj5fenwQ5JVdQeQKysrK7PmTNn68CBA69oamqWvT4pM2jQoARVT1rf\nKICQlkrVBDklx4ky1B5ABg0alJCQkDBI1RM0BAogpKWpmCA/cYKGWCf1T+0TSk2YMOHYL7/88unE\niRMPt2nTpogt79y581NVT0oIqZxigrw2Pchp6BHSGGq8AzExMUmvbLyqtLS03mqrVS3RHQhp7lRN\nkLMU7zho/nGiLJoTHRRASPNVlwQ55TlIXaktgJw+fXr06NGjT4eFhblXdgcyceLEw6qetL5RACHN\nUV16kAOU5yB1p7YcyPnz50eMHj369LFjxyY09QBCSJMWEyMfS/01VXqQsxTvOhQHPKQ8B2kM9AiL\nEHULCAACAurUg5xFdx2kPqm9FVZubq7+nj17fCt2JAwMDJyv6kkJaU2KigHzXm8S5NeuAVZWyu1L\nratIU1ZjABk/fvzxoUOHXrSysrquoaEhYxiGU1+zCBLSYsXEgDkbg0NhgMet5ZgBwNMDEMwVA1Zi\npQ9DEzuRpqzGR1gDBw68cuXKlYENVB+V0CMs0tRs2gR88YX89SmHAIw+H6D0vtS6ijQUtTfj3bBh\nw5e6urp5EyZMONZUOxJSACFNxcmTwNix8tejRsl7kGutCJDnQaqhGDTyivJwIeMCAMpzEPVSew6k\nbdu2r/z9/devXLnyaw0NDdnrkzL379/vo+pJCWlpqk2QK7TAqorioyrDDoYAKM9Bmr4aA8jGjRu/\nuHfvnmnXrl0fN0SFCGlO8vOBAQNqSJBXEkCqS44f9DgI/5P+dNdBmjyNmjYwNzdPadeuXWFDVIaQ\n5kImAyZPBnR15cHj0CH5bOTKtq5i7zgiUyPLk+MeAg9E+0TDWM8YoR6hFDxIk1fjHUj79u1f2tjY\nXB05cuRZNgdCzXhJa6aYIF+6FFi5svLt/nfmDALDw1GkoYE2Mhk4PTLwqkfuO50A2TuNUI/QBvoE\nhNSPGpPou3btmla+8eu50DkcDjN16tTd6q6csiiJThpCpQnyKv4E+9+ZM/ALCcG9jz8uL2u7dR1e\n6cYA/EJKjpMmoa5JdDAMU+ny73//e9vhw4c/zMvL61jVNtUt06dP39G9e/ccS0vLG2xZXFycaMiQ\nIfE2NjaJgwcP/js+Pn4Iu27VqlVLzMzMUvr163fnxIkTY9nyy5cvD7K0tLxhZmaWMn/+/M2VnUv+\nMQhRj9RUhpE/oGKYtm0Z5tGjmvcZO28eg7Nn313+1Y8Zsm0Ik1uYq/6KE1KD17+dtf59Z5cqV1y8\neNH+u+++Wz58+PDYkSNHnlmzZs2iq1evWit74PPnzztcuXLFVjGAODo6xkRFRb3PMAyOHz8+TiwW\nn2UYBrdu3RJYW1tfLS4u5qalpZmYmpqmymQyDsMwGDJkSHxcXJyIYRiMGzfueGRkpPM7H4ICCFGD\nvDyGMTJ6EzyuXVN+X0c/v0oDSDdvJwoepMmoawCpMolub29/afny5ctiY2MdQkNDPY2MjDI2btz4\nhY2NzdXp06fvDA0N9azuzsbBwSFWX18/V7GsR48eWc+fP+8EAM+ePdPj8XhSAIiIiHD18vIK4XK5\nJSYmJulmZmapcXFxdllZWT3y8/M7ikSieADw9fXdEx4e7qby7RYhSpDJgEmT3iTIDx5UPkE++9hs\niHeJcVN6udL1A7sJ6JEVaTGqTaLLZDKNQ4cOfeTp6Rnq7e0d7O3tHcwwDCchIWHQiRMn3q/tydas\nWbN4+PDhf3755ZcbZDKZxsWLF4cCQGZmZk97e/tL7HZ8Pl8ilUp5XC63hM/nS9hyHo8nlUqlvMqO\nHaDQUUssFkOsRNt7QipSNkFelfL+HHrt0OHXjXjxny/K15nu24d53t71WFtCaicmJgYxMTH1drxq\nA4iGhoZs7dq1izw9Pcubh3A4HGbw4MGXBw8eXPmfWNWYOXPm9sDAwPkffvjhkYMHD3rMmDFjx8mT\nJ51UqXhFATX09CWkOooJ8tGjgaioOg6xLrLEF71mY2d4OF4BaAtgnrc3/jVqlFrqT4gyKv5xvXz5\n8jodr8Z/Ik5OTic3bNjw5aRJkw506NDhBVuuylAm8fHxolOnTo0BgI8++ujQrFmzfgPkdxYZGRlG\n7HYSiYTP5/MlPB5PKpFI+Irl7GMvQupDxR7kGRlAly61O4ZiL3LXfq7lU8rqtdXDpPcn1HONCWk6\nagwg+/fvn8zhcJhffvnlU7ZM1aFMzMzMUs+dO+fo6Oh47syZM6P69u2bDAAuLi5Hvb29gxcuXLhJ\nKpXyUlJSzEUiUTyHw2F0dXXz4uLi7EQiUfzevXt95s+fH1jb8xJSkVI9yKtBEzsRokQASU9PN1Hl\nwF5eXiHnzp1zfPz4cVcjI6OM77///rtt27bN/vTTT38pKipq065du8Jt27bNBgCBQJDk6ekZKhAI\nkrS0tEqDgoLmskPGBwUFzZ02bdquwsLCduPHjz/u7OwcpUp9CAHe9CA/eFD+Xtk5yCsOPVLdXQch\nrUWVHQmvXLkycODAgVeq21mZbRoCdSQkyqhLglxxJkAPgQcKigsQmRpJw6yTZk1tw7lbWVldj4mJ\nEVe1I8MwnDFjxpxKTEy0VfXk9YUCCKmOqgny6ublYNfTXQdpztQWQExMTNJrmnmwW7duj+Lj40Wq\nnry+UAAhlVFMkHfoADx4ULsEOc0/Tlo6tc0Homrug5DGlp8PCASA5HUPouvXAaFQuX0pOU6I8moc\nzp2Q5kImAzw85D3IJZI3Q6wrGzyAt4dZ78DtUD7EOgUPQt6lZFcpQpq2jRuBL7+Uv/76a2DFCuX2\nq25iJ7rrIKR6FEBIs1aXHuTA250A2YmdKDlOiHKqTKInJCQMUpz/o+L6ptB8l0VJ9NYnNRUwN5e/\nbt9ePge5sgny6lpXUdAgrYnaWmGJxeIYDofDFBYWtktISBhkZWV1HQCuX79uNXjw4MvsQIhNAQWQ\n1qMuCXIWta4iRK6uAaTKJHpMTIz47NmzI3v27Jl55cqVgQkJCYMSEhIGJSYm2vbs2TNT1RMSogqZ\nDPD0fJMgZ4dYVyZ4sEOsj/99PJ69evZOnoPmHydENTW2wrpz546FUCi8wb63tLS8efv27f7qrRYh\nb2zcCGhqyoPG11/LA4cyw4+wFFtWsXkOal1FSN3VOCf65MmT9+vo6BRMmTJlH8MwnODgYO+CggKd\nkJAQrwaqY43oEVbLFB0NvP961pma5iCviPIchNRMbTkQVmFhYbutW7fOiY2NdQCAESNGnJ8zZ87W\ntm3bvlL1pPWNAkjLomqCXDFo5BXl4ULGBQCU5yCkKmoPIADw8uXL9g8fPuxlYWFxR9UTqRMFkJYh\nPx/o3x+Qvp7xpbYJcsXkuGEHQ2S/yKa7DkKqobYkOuvo0aMutra2ieww6omJibYuLi5HVT0hIRUp\n9iCXSpXvQV5dcvzSrEuU5yBE3RiGqXaxtbW9kpubq2djY5PIlg0YMOBmTfs15CL/GKQ52rCBYeTh\ngmG++aZ2+zrudGQQAAYBYDxCPZjcwtzy/xJCavb6t1Pl394aU5JcLrdET0/vmWKZhoaGTE3xjLQS\nignyMWOAyMjaD7GuONghm98I9QhVY60JIYpq/Cc7YMCAW7///vvHpaWlWikpKeaBgYHzhw0b9ldD\nVI60PIoJclWGWKeZAAlpOmpMor948aLDypUrv46Ojh4LAO+///6Jb7/99gdqhUVqoy4JcmqSS4h6\nNEgrLEAeSDp06PBC1ROpEwWQpovtQR4WJn8fFgZMnFi7Y9DQI4Soh9pbYf3111/DBAJBEtuE99q1\na9Zz584NUvWEpPVge5CHhQHffCNPlSsTPGjoEUKahxpzIAsWLPgpKirK2dXVNQIArK2tr507d85R\n/VUjzZVigtzJCTh+nIZYJ6QlUmpGwl69ej1UfK+lpVVa0z4zZszYYWBgkKM4jhYAbNmyZV7//v1v\nW1pa3ly0aNFatnz16tVLzM3NUywsLO6w+RZAPqy8UCi8YW5unuLn57dZmfqSxpGaCnA48uDRvj3w\n+LE8mCjbuoq966iqdRUFD0KalhoDSK9evR5euHDhPQAoLi7W3rBhw5f9+/e/XdN+06dP3xkVFeWs\nWHb27NmRR48edbl+/brVzZs3Lb/88ssNAJCUlCQ4cODApKSkJEFUVJTz3Llzg9jncnPmzNm6ffv2\nmSkpKeYpKSnmFY9JGl9+PsDnv2lddf068OKFaq2raCpZQpqPGgPI1q1b5/zyyy+fSqVSHo/HkyYm\nJtr+8ssvn9a0n4ODQ6y+vn5uxWMtWbJkNZfLLQGAbt26PQKAiIgIVy8vrxAul1tiYmKSbmZmlhoX\nF2eXlZXVIz8/v6NIJIoHAF9f3z3h4eFuqn1UUt8q9iAPC6vdHORV3XVQnoOQ5qHGhwvdunV7FBwc\n7F0fJ0tJSTE/f/78iKVLl65q27btqw0bNnw5ePDgy5mZmT3t7e0vsdvx+XyJVCrlcbncEj6fL2HL\neTyeVCqV8io7dkBAQPlrsVgMsVhcH1UmVVCcg/ybb4Affqh5n4rzj1OfDkIaVkxMDGJiYurteDUG\nkHv37pkuWLDgp4sXLw7lcDjMsGHD/vrxxx8/79Onz/3anqy0tFQrNzdX/9KlS/Z///33EE9Pz9D7\n9+/3Ua3qb1MMIER9VO1BDrybHK/YuooCByHqVfGP6+XLl9fpeDX+0/f29g7+7LPPfj58+PBEADhw\n4MAkLy+vkLi4OLvanozP50smTpx4GACGDBnyt4aGhuzx48ddeTyeNCMjw4jdTiKR8Pl8voTH40kl\nEglfsZzH40lre15Sd6r2IK9u6BF2Pd11ENI81ZgDKSwsbOfj47OXy+WWcLnckilTpux79epVW1VO\n5ubmFn7mzJlRAJCcnNy3uLhYu2vXro9dXFyO7t+/f3JxcbF2Wlpa75SUFHORSBRvaGiYraurmxcX\nF2fHMAxn7969Pm5ubuGqnJuoprIEeUGB8gny6pLj1LqKkOatxjuQcePGRa5evXqJl5dXCCC/Axk3\nblzk06dPOwNA586dn1a2n5eXV8i5c+ccnzx50sXIyCjj+++//27GjBk7ZsyYsUMoFN7Q1tYu3rNn\njy8ACASCJE9Pz1CBQJCkpaVVGhQUNJfD4TAAEBQUNHfatGm7CgsL240fP/44O6w8Ua+69CCv6q6D\nHlMR0rLUOJSJiYlJOvtj/s7OHA5TXzmMuqChTOrXhg2Av7/8tbIJckU09AghzUNdhzKp8Q4kPT3d\nRNWDk+blxAnA+XUvm9Gjgaio2g+xHuweTMlxQlqJKnMg8fHxoqysrB7s+927d091cXE5On/+/ED2\n8RVpGVJS5D3InZ0BHR15D/JTp2rfuioyNbJ86BHqCEhIy1flIyxbW9vE06dPj+7cufPT8+fPj5g0\nadKBn3/++bPExETbO3fuWBw6dOijBq5rlegRlmry8wELCyAzU/7+xg3A0lK5fWmIdUKaP7WNxiuT\nyTTYBPmBAwcm/ec///nV3d09bMWKFd+kpKSYq3pC0vhkMuCjj+Q9yDMzgcOH5T3IlQ0eAA09Qgip\nJgdSVlamWVJSwuVyuSWnTp0as23bttnsutLS0lqMrUqakrokyKl1FSFEUZWBwMvLK8TR0fFc165d\nH7dv3/6lg4NDLCAfjqTiHOmkCYmJASoZxkUxQa7KEOsATSdLCHlblT8hX3/99cpRo0adyc7ONhw7\ndmy0hoaGDAAYhuFs2bJlXsNVkdRKhQCSkgL07St/3bEjkJ4OdFayCQS1riKEVKfav0GHDh16sWJZ\n3759k9VXHVJf8vLkc5DXNkGuGDTyivJwIeNCeTlN7EQIUUS5jJYgJka+AMDy5TgQCty+DZhDjJ8P\ni/Hhh8ofSvExlWEHQwDvTuxECCEABZCWQSwGxGKsXw+8ALD8dgC+/RaI+V653atKjh/0OAj/k/50\nx0EIqRQFkBZAMUG+pw9Qclf1OcgrJsfpjoMQUhUKIM2Y4hDrOjryIdY7XxfX+H+VkuOEkPpQ42CK\nzUFr64meny9PkEtfz4xSmx7kwNuDHbJ3G5QcJ6T1qWtPdAogzUjFIdYPH4bSCXIaeoQQUpHahjIh\nTcv69YCmpjx4fPutfOgRVVpX0dAjhJD6QjmQJk4xQT52LPC//1WeID//v/8hOjAQWkVFKG3TBmPn\nz8c+WQQNPUIIURt6hNVEKfYgL0+QV9GD/Pz//ocTfn5Yee9eednXpqY4M6EtLundAkATOxFC3kU5\nELSsAJKXJx9iPStL/l6ZBPk377+PFdHR75SPE3ZFlPtjynUQQipFOZAWQiYD3N2BTp3kwaM2Q6xr\nFRVVWj5Irx/lOgghakMBpAlgE+SHD9c+QT772Gz89eR6pes47XUQ6hFKwYMQohZqCyAzZszYYWBg\nkCMUCm9UXLdx48YvNDQ0ZIpT465evXqJubl5ioWFxZ3o6OixbHlCQsIgoVB4w9zcPMXPz2+zuurb\nGE6ckE8l+9VX8gR5SQnwfQ3Dj8w+NhviXWKM/308nr16huQnybholYtJ+m9vt9TUFE7zaNBkQoj6\nqK0V1vTp03fOmzdvi6+v7x7F8oyMDKOTJ086GRsbP2DLkpKSBAcOHJiUlJQkkEqlvDFjxpxKSUkx\n53A4zJw5c7Zu3759pkgkih8/fvzxqKgoZ2dn5yh11bsh1GWIdcVhR2Yfm4323PYo6AukdjbH4ru9\n0La4FGVt28J53jyM+Ne/1PMBCCEEagwgDg4Osenp6SYVyxcuXLhp3bp1X7m6ukawZREREa5eXl4h\nXC63xMTEJN3MzCw1Li7OztjY+EF+fn5HkUgUDwC+vr57wsPD3ZprAFElQQ5UPdjhtgnbytdT6ypC\nSENr0H4gERERrnw+X2JlZfXWQ/vMzMye9vb2l9j3fD5fIpVKeVwut4TP50vYch6PJ5VKpbzKjh0Q\nEFD+WiwWQ1zJrHyNhZ2D/MgR+fva9CAHap4JkAY8JIQoIyYmBjHs1A/1oMECyMuXL9uvWrVq6cmT\nJ53Ysro0H6tIMYA0JevWAYsWyV9/9x2wfLly+9H844SQ+lbxj+vlyv4gVaHBAsi9e/dM09PTTayt\nra8BgEQi4Q8aNCghLi7OjsfjSTMyMozYbSUSCZ/P50t4PJ5UIpHwFct5PJ60oepcF4o9yN9/H/jj\nj/obYp0QQpqCBgsgQqHwRk5OjgH7vnfv3mkJCQmDOnfu/NTFxeWot7d38MKFCzdJpVJeSkqKuUgk\niudwOIyurm5eXFycnUgkit+7d6/P/PnzAxuqzqpQNUFOQ6wTQpobtTXj9fLyChk2bNhfycnJfY2M\njDJ27tw5XXE9h8Mp7zouEAiSPD09QwUCQdK4ceMig4KC5rLrg4KC5s6aNes3c3PzFDMzs9SmmkDP\nywN69nwTPG7elJfVtnVVZGpk+fzj1AmQENKU0VAmdVQxQX7kCODmpty+NMQ6IaQx0VAmjYjtQX7k\nCLBsmbwHubLBA6Ah1gkhzRsN566CuiTIqXUVIaSloEdYtaCYIO/UCbh/X/kcB0txOlkaYp0Q0pjq\n+giL7kCUULEH+c2bwIAByu1LrasIIS0V3YFUQyYDPDzkPccB5RPkikEjrygPFzIuAEB5Xw4aeoQQ\n0hTQhFJQTwBZv14+Si4gT5DXpqO74mMqww6GyH6RTa2rCCFNDj3CqmdRUcC4cfLX1c1BXlFVyfGD\nHgfhf9Kf7jgIIS0O3YG8lpwM9Osnf62rC6Sl1S5BTslxQkhzQ3cgdaRqgpyS44SQ1q7VdiSUyYCJ\nE9/MQX7kiLwjoLKtq2joEUJIa9cqH2EpDrFemwQ5DT1CCGlJqBUWlA8giglyVYZYpzwHIaQloRyI\nEhQT5LXtQU5DjxBCSOVa9B1IXp586JGcHPn72vQgZ9FdByGkpaI7kErIZIC7OxAeLn+v6hDr1LqK\nEEKq1uJaYa1dKx9iPTy87kOsU+sqQgipWot5hBUZyZQnyJ2d5QlyTU3l9qfWVYSQ1ohaYYGdHpeB\nnp48Qa6vX7v9Kc9BCGmNKAfyWm0T5NS6ihBC6qbF3IHU9DkqJsfd9rvRXQchpFWjOxAlsclxQB5M\nqHUVIYTUjdpaYc2YMWOHgYFBjlAovMGW+fv7r+/fv/9ta2vraxMnTjz8/PnzTuy61atXLzE3N0+x\nsLC4Ex0dPZYtT0hIGCQUCm+Ym5un+Pn5ba5NHWYfmw3xLjHG/z7+rcdU2yZso9ZVhBBSVwzDqGU5\nf/68w5UrV2wtLS1vsGXR0dFOZWVlGgzDYNGiRWsWLVq0hmEY3Lp1S2BtbX21uLiYm5aWZmJqapoq\nk8k4DMNgyJAh8XFxcSKGYTBu3LjjkZGRzhXPJf8Y73Lc6cggAAwCwLiGuDIeoR5MbmFupdsSQkhr\n8/q3U+XfebU9wnJwcIhNT083USxzcnI6yb62s7OLCwsLcweAiIgIVy8vrxAul1tiYmKSbmZmlhoX\nF2dnbGz8ID8/v6NIJIoHAF9f3z3h4eFuzs7OUVWdl5LjhBDSMBotB7Jjx44ZXl5eIQCQmZnZ097e\n/hK7js/nS6RSKY/L5Zbw+XwJW87j8aRSqZRX2fECXg+pG301Gg/0HwAm8uQ4Ow85BQ9CSGsXExOD\nmJiYejteowSQlStXfq2trV3s7e0dXF/HjDePR7B7MOLD4vEg9QHddRBCSAVisRhisbj8/fLly+t0\nvAYfymTXrl3Tjh8/Pv7333//mC3j8XjSjIwMI/a9RCLh8/l8CY/Hk0okEr5iOY/Hk1Z2XBp6hBBC\nGlaDBpCoqCjn9evX+0dERLi2bdv2FVvu4uJydP/+/ZOLi4u109LSeqekpJiLRKJ4Q0PDbF1d3by4\nuDl7idEAAA/sSURBVDg7hmE4e/fu9XFzcwuv7Nhs6yq9tnoI9Qil4EEIIWqmtkdYXl5eIefOnXN8\n/PhxVyMjo4zly5cvW7169ZLi4mJtNpk+dOjQi0FBQXMFAkGSp6dnqEAgSNLS0ioNCgqaKx+eBAgK\nCpo7bdq0XYWFhe3Gjx9/vKoEOt1xEEJIw2o1PdEJIYS8ra490VvccO6EEEIaBgUQQgghKqEAQggh\nRCUUQAghhKiEAgghhBCVUAAhhBCiEgoghBBCVEIBhBBCiEoogBBCCFEJBRBCCCEqoQBCCCFEJRRA\nCCGEqIQCCCGEEJVQACGEEKISCiCEEEJUQgGEEEKISiiAEEIIUQkFEEIIISqhAEIIIUQlFEAIIYSo\nhAJICxMTE9PYVWgy6Fq8QdfiDboW9UdtAWTGjBk7DAwMcoRC4Q227OnTp52dnJxO9u3bN3ns2LHR\nz54902PXrV69eom5uXmKhYXFnejo6LFseUJCwiChUHjD3Nw8xc/Pb7O66ttS0D+ON+havEHX4g26\nFvVHbQFk+vTpO6OiopwVy9asWbPYycnpZHJyct/Ro0efXrNmzWIASEpKEhw4cGBSUlKSICoqynnu\n3LlBDMNwAGDOnDlbt2/fPjMlJcU8JSXFvOIxCSGENA61BRAHB4dYfX39XMWyo0ePukydOnU3AEyd\nOnV3eHi4GwBERES4enl5hXC53BITE5N0MzOz1Li4OLusrKwe+fn5HUUiUTwA+Pr67mH3IYQQ0ri0\nGvJkOTk5BgYGBjkAYGBgkJOTk2MAAJmZmT3t7e0vsdvx+XyJVCrlcbncEj6fL2HLeTyeVCqV8io7\nNofDUXf1m43ly5c3dhWaDLoWb9C1eIOuRf1o0ACiiMPhMBwOh6mPY7GPuwghhDScBm2FZWBgkJOd\nnW0IAFlZWT26d+/+DyC/s8jIyDBit5NIJHw+ny/h8XhSiUTCVyzn8XjShqwzIYSQyjVoAHFxcTm6\ne/fuqQCwe/fuqW5ubuFs+f79+ycXFxdrp6Wl9U5JSTEXiUTxhoaG2bq6unlxcXF2DMNw9u7d68Pu\nQwghpJExDKOWZfLkySE9evTI5HK5xXw+P2PHjh3Tnzx50nn06NGnzM3Nk52cnKJzc3P12O1Xrly5\n1NTUNLVfv353oqKi3mfLL1++PMjS0vKGqalp6rx58wLVVV9aaKGFFlpqtzR6BZRZHj58aCQWi88K\nBIJbAwYMuLl58+b5DMNg2bJlATweT2JjY5NoY2OTePz48XHsPqtWrVpiZmaW0q9fvzsnTpwY29if\nob6WwsLCtiKRKM7a2vpq//79kxYvXryaYRg8efKk85gxY05WFpxb27Vojd8LdiktLdW0sbFJ/OCD\nD4611u9FVdeitX4vjI2N04VC4XUbG5vEIUOGxNfn96LRP5wyS1ZWlmFiYqINwzDIz8/X6du3792k\npKT+AQEByzZu3Liw4va3bt0SWFtbXy0uLuampaWZmJqappaVlWk09ueor+XFixftGYZBSUmJlp2d\n3aXY2Njh/v7+69auXfsVwzBYs2bNokWLFq1prdeitX4vGIbBxo0bF3p7e/8+YcKEowzDoLV+Lyq7\nFq31e2FiYpL25MmTzopl9fW9aBZDmRgaGmbb2NhcBQAdHZ2C/v3732ab8zKVtMCqrF9JfHy8qKHr\nrS7t27d/CQDFxcXaZWVlmvr6+rm16WPT0q8F0Dq/FxKJhH/8+PHxs2bN+o39/K31e1HZtWAYhtMa\nvxfAu/8e6ut70SwCiKL09HSTxMREW7bfyJYtW+ZZW1tfmzlz5nZ2aJTMzMyeiv1H2H4ljVXn+iaT\nyTRsbGyuGhgY5IwcOfLsgAEDblXXx6a1XQugdX4vPv/88x/Xr1/vr6GhIWPLWuv3orJrweFwmNb4\nveBwOMyYMWNODR48+PJ///vffwP1971oVgGkoKBA56OPPjq0efNmPx0dnYI5c+ZsTUtL63316lWb\nHj16ZH3xxRcbq9q3vvqcNAUaGhqyq1ev2kgkEv758+dHnD17dqTi+pr62LTkaxETEyNujd+LP/74\n44Pu3bv/Y2trm1jZX9lA6/leVHUtWuP3AgAuXLjwXmJiom1kZOS4X3755dPY2FgHxfV1+V40mwBS\nUlLCdXd3D5syZco+tilv9+7d/2E//KxZs35jb7Uq61fSEvuPdOrU6fm//vWv/yUkJAyqTR+blnwt\nLl++PLg1fi/++uuvYUePHnXp3bt3mpeXV8iZM2dG+fj47G2N34vKroWvr++e1vi9AIAePXpkAUC3\nbt0effjhh0fi4+NF9fa9aOwEjzKLTCbj+Pj47FmwYMGPiuWZmZk92NebNm363MvLK1gxEVRUVKR9\n//793n369Lknk8k4jf056mN59OhRV7bFxMuXL9s5ODicP3Xq1Gh/f/91a9asWcQwDFavXr24YlKs\nNV2LrKwsw9b2vVBcYmJiHNmWR63xe1HVtWiNvxcvXrxon5eX15FhGBQUFHQYNmzYhRMnToytr+9F\no39AZZbY2NjhHA5HZm1tfVWxCZ6Pj88eoVB43crK6pqrq2t4dna2AbtPVf1Kmvty/fp1oa2t7RVr\na+urQqHw+rp16/wZRt4sr7Z9bJr7UtW1aI3fC8UlJibGkW151Bq/F4rL2bNnxey1mDJlyt7W9r24\nf/9+b2tr66vW1tZXBwwYcHPVqlVL6vN7wWGYFvOojxBCSANqNjkQQgghTQsFEEIIISqhAEIIIUQl\nFEAIIYSohAIIabLCw8PdNDQ0ZHfv3u2nrnOcO3fO8eLFi0PVdfzaSE9PNxEKhTcA4Nq1a9aRkZHj\n1H1OsVgcY2FhcefYsWMT9uzZ4+vt7R2suP7x48ddu3fv/k9xcbH2xx9//HuXLl2ehIWFuau7XqR5\noABCmqyQkBCvDz744I+QkBCvytaXlpbWeUbNs2fPjvzrr7+G1Waf+jhvTRITE22PHz8+Xt3n4XA4\nTHBwsPeECROOffjhh0dOnjzpVFhY2I5df+jQoY9cXFyOamtrF//+++8fu7i4HG1JvbRJ3VAAIU1S\nQUGBTlxcnN3PP//82YEDByax5TExMWIHB4dYV1fXiAEDBtw6d+6co6Oj4zk3N7dwU1PTe4sXL16z\nd+9eH5FIFG9lZXX9/v37fQDg2LFjE+zt7S8NHDjwipOT08l//vmne3p6usmvv/76nx9//PHzgQMH\nXvnzzz+HT5s2bZfiX9g6OjoFFc9raWl5UyaTafj7+68XiUTx1tbW17Zt2za74mdYsmTJ6qCgoLns\n+4CAgICNGzd+AQD+/v7rhULhDSsrq+uhoaGeivuVlJRwv/vuu+8PHDgwydbWNjE0NNTz77//HjJs\n2LC/Bg4ceOW99967kJyc3BcAXr582d7T0zN0wIABtyZOnHjY3t7+UkJCwiAAiI6OHjts2LC/Bg0a\nlODp6Rn64sWLDpVda+b1cB8dO3bMd3R0PHfs2LEJ7Lr9+/dP9vLyCqlse0IavaMLLbRUtuzbt+/j\n//znP//HMAwcHBzOJyQkDGQYecewDh06FKSnpxuz7/X09HKzs7MNioqKtHv27CldtmxZAMMw2Lx5\n83x29ALFjlL//e9/Z33xxRcbGObdIb6nTZu289ChQ+7sex0dnfzKzvvrr7/OXrFixdcMw+DVq1dt\nBg8e/HdaWpqJ4mdITEy0cXR0jGHfCwSCWxKJhHfo0CF3JyenaJlMxsnJyeneq1evB9nZ2QZpaWkm\nlpaWNxiGwa5du6YqTqCWl5fXsbS0VJNhGJw8eXKMu7v7IYZhsH79+i8/+eSTrQzD/H97dxfS1hUH\nAPx/s7SSOe0UlTZ1M1rXh8SPNK1B/GzQzFJ0EJMYY0HyoA+GCXXYQh8CwT4MpuhgRR+2h1CY1+it\ngVbKqishakpws2ubNA9pnFmdiyTDdUljqWlz9yAHQrA2TRn04/+DC/fjfOU85J9zz8254HK5RFwu\nN7q8vCwJBoM5dXV1tq2tLR7L7izZPTAwYEjs55MnT1pJ37IsCwzDKBUKxTTLsrC+vs7n8/nr8f9E\nTuwf3N7v7X8fiiOUCpqmtX19fSMAAGq1eoqmaa1EIrkNACCVSpcKCgr+IGkrKip+ISuLFhcXe5ua\nmm4AAJSUlLjIQpNra2uftLW1TW5sbBzc3t7eX1RU9DvJzyb5izq+3tnZ2c+dTmcpwzAqAIBQKJTp\n9XqLBQKBj6QXi8V3AoFAnt/vPxQIBPKysrL+OXz48Pri4mJNR0fHOEVRbF5eXqC+vt62tLQkJfMf\npE3x7Xr06NHHnZ2dl71ebzFFUSy5jWa326vPnj37LQCASCS6X1ZWdg8AwOFwVLrdbmFVVdUtgJ3l\n7sn+Xk6fPn1dr9ePhsPhjMnJyTaVSsXgLSv0IhhA0Btnc3Mz22q1ylwuVwlFUezz588/oCiKHRwc\nPAcAkJ6eHolPn5aW9pTsczicGDnmcDgx8kXb29v7XX9//1Bzc/OMzWarNxqNxt3q5nK5z2KxGAdg\nZ6n47e3t/eRaYr2XLl36Ui6Xz+31WdRq9RTDMKqNjY2D7e3tEwA78w6JQetlX9IGg+FiQ0PDTYvF\novD5fAKZTGYl1xLLIsdyuXxufHy8Y69yE/F4vCenTp36aXp6utVsNmtGRkb6XiU/er/gHAh64zAM\no+rs7Lzs8/kEq6urhQ8fPvy0sLBwNXEZ6lcRCoUy+Xz+XwAAJpNJR85nZGSEw+FwBjkWCAQ+Modw\n9erVL6LR6L7dymtqaroxOjqqJwHK4/Ec3dra+jAxnUajMdM0rWUYRqVWq6cAAGpraxfMZrMmFotx\ngsFg7vz8fJ1UKl2Kz5eZmRmKb9eL2l9dXW0ncyhut1vodDpLKYpiKysrHXa7vXplZeUIAEAkEkl/\n8ODBZ8n0lVarpYeHh78KBAJ55L07CO0GAwh640xMTLQrFApL/DmlUnmFpmlt4rsL9nqXQfw1o9Fo\nVKvVUydOnPg1Nzc3SM63tLRcs1gsimPHjv1mt9uru7u7v7fZbPVisfiOw+GoJJPopDyy39XV9YNQ\nKHRLJJLbpaWlzp6enrHdns4SCoXux48ff5Sfn/8nuc2mUCgsZWVl98rLy+82NDTcHBwcPEeW0yZ1\nyGQyq9vtFpJJ9PPnz39z4cKFryUSyW0yIgMA0Ov1o8FgMFckEt03GAwXRSLR/QMHDvybk5Pzt8lk\n0mm1Wrq8vPxuVVXVrWQfh25sbPzZ7/cf0mg05mTSo/cXLqaI0FssFotxotHovrS0tKcrKytH5HL5\nnMfjOcrlcp8lk18mk1mHhob6jx8/vpxMep1OZ2ppabmmVCqvvF7L0bsARyAIvcUikUh6TU3Nolgs\nvtPa2jo9NjbWk2zwAADIzs7e1Ol0ppmZmeaXpT1z5syPCwsLtTwe78nrtRq9K3AEghBCKCU4AkEI\nIZQSDCAIIYRSggEEIYRQSjCAIIQQSgkGEIQQQinBAIIQQigl/wFG1ZEINLtYhQAAAABJRU5ErkJg\ngg==\n", + "text": [ + "<matplotlib.figure.Figure at 0x2718810>" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 11.4, Page number: 571" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from sympy import *\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "Rf=109 #Field resistance(ohm)\n", + "Vf=300 #Rated field voltage(V)\n", + "n1=2000 #rpm\n", + "T_rated=285 #Rated torque(Nm)\n", + "n2=1975 #Dropped rpm\n", + "Kf=0.694 #Geometric constant(A.rad/sec\n", + "Ra=0.084 #Armature resistance(ohm)\n", + "\n", + "#Calculations:\n", + "If=Vf/Rf #Resulting field current(A)\n", + "wm1=2*pi*n1/60\n", + "w_ref=wm1\n", + "Vao=Kf*If*wm1\n", + "Ia=T_rated/(Kf*If)\n", + "wm2=2*pi*n2/60\n", + "Ea=Kf*If*wm2\n", + "Va=Ea+Ia*Ra\n", + "G=symbols('G')\n", + "x=solve(Vao-round(Va)+G*(w_ref-wm2),G)\n", + "\n", + "\n", + "#Results:\n", + "print \"Armature voltage,Vao:\",round(Va,0),\"V\"\n", + "print \"Multiplicative constant,G:\",float(round(x[0],2)),\"A.sec/rad\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Armature voltage,Vao: 408.0 V\n", + "Multiplicative constant,G: 3.04 A.sec/rad\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 11.5, Page number: 573" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import *\n", + "from sympy import *\n", + "\n", + "#Variable Declaration:\n", + "Km=0.22 #torque constant(V/(rad/sec))\n", + "Ra=1.03 #ohm\n", + "Pl=100 #Power load(W)\n", + "Va1=40 #Armature voltage(V)\n", + "Va2=50 # \" \" \"\n", + "\n", + "\n", + "#Calculations:\n", + "wm1=(Va1/(2*Km))*(1+sqrt(1-(4*Pl*Ra/Va1**2)))\n", + "wm2=(Va2/(2*Km))*(1+sqrt(1-(4*Pl*Ra/Va2**2)))\n", + "\n", + "#Results:\n", + "print \"for Va=40 V, wm=\",round(wm1,1),\"rad/sec\"\n", + "print \"for Va=50 V, wm=\",round(wm2,1),\"rad/sec\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "for Va=40 V, wm= 169.2 rad/sec\n", + "for Va=50 V, wm= 217.5 rad/sec\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 11.6, Page number: 575" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "\n", + "Rf=109 #Field resistance(ohm)\n", + "Vf=300 #Rated field voltage(V)\n", + "Ra=0.084 #Armature resistance(ohm)\n", + "Kf=0.694 #Geometric constant(A.rad/sec)\n", + "Tfl=285 #Full load torque(Nm)\n", + "nf=2500 #Speed at full load(r/min)\n", + "#wm=2500 #rated r/min\n", + "\n", + "#for part (1):\n", + "n1=2000 #r/min\n", + "n2=2500 #r/min\n", + "\n", + "\n", + "#Calculations:\n", + "#part (a):\n", + "If=Vf/Rf\n", + "w1=n1*2*pi/60\n", + "w2=n2*2*pi/60\n", + "Ea1=Kf*If*w1 #Avg Amature voltage(V)\n", + "Ea2=Kf*If*w2\n", + "Ia1=n1*Tfl/(nf*Kf*If)\n", + "Ia2=n2*Tfl/(nf*Kf*If)\n", + "Va1 = Ea1 + Ia1*Ra\n", + "Va2 = Ea2 + Ia2*Ra\n", + "Tl1=(n1/nf)*Tfl\n", + "Tl2=(n2/nf)*Tfl\n", + "\n", + "#part (b):\n", + "\n", + "# The dynamic equation governing the speed of the motor is\n", + "\n", + "# J*(dwm/dt)=Tmech-Tload\n", + "# wm=(pi/30)*n & wr=(pi/30)*nf\n", + "# Tload= (Tfl/wf)*wm\n", + "# Tmech = Kf*If*Ia=Kf*If*(Va-Ea)/Ra #Under armature-voltage control\n", + "\n", + "# Thus the governing differential equation is\n", + "# d(wm)/dt + 48.4*wm - 24.7*Va = 0\n", + " \n", + "# wm = wf + (wi-wf)*exp(-t/tau) #tau=1/48.4=20.7 msec\n", + "# n = 2500- 50*exp( -t/tau )\n", + "\n", + "# The armature current will decrease exponentially with the \n", + "# same 20.7 msec time constant from an initial value of \n", + "# (Vf - Vi)/Ra = 1190 A to its final value of 149 A.\n", + "\n", + "# Ia = 149 + 1041*exp(-t/tau)\n", + "\n", + "#part (c):\n", + "# J*d(wm)/dt = Tmech-Tload = Tf-(Tf/wm)*wm\n", + "# or d(wm)/dt + 1.18*wm - 310 = 0\n", + "\n", + "#In this case, the speed will rise exponentially to wm=wf=262 rad/sec as\n", + "# wm = 262-53*exp(-t/tau) #tau=1/1.18=845 msec\n", + "\n", + "#Results:\n", + "print \"part(a):\\n\"\n", + "print \"-------------------------------------------------\"\n", + "print \"r/min\\tw[rad/s]\\tVa(V)\\tIa(A)\\tTload[Nm]\"\n", + "print \"-------------------------------------------------\"\n", + "print n1,\"\\t\",round(w1),\"\\t\\t\",round(Va1),\"\\t\",round(Ia1),\"\\t\",Tl1,\"Nm\"\n", + "print n2,\"\\t\",round(w2),\"\\t\\t\",round(Va2),\"\\t\",round(Ia2),\"\\t\",Tl2,\"Nm\"\n", + "print \"-------------------------------------------------\"\n", + "print \"\\npart (b):\"\n", + "print \" The resultant motor speed, n = 2500 - 50*exp(-t/tau) where tau=20.7 msec\"\n", + "\n", + "print \"\\npart (c):\"\n", + "print \" The resultant motor speed, wm = 262 - 53*exp(-t/tau) where tau=845 msec\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "part(a):\n", + "\n", + "-------------------------------------------------\n", + "r/min\tw[rad/s]\tVa(V)\tIa(A)\tTload[Nm]\n", + "-------------------------------------------------\n", + "2000 \t209.0 \t\t410.0 \t119.0 \t228.0 Nm\n", + "2500 \t262.0 \t\t513.0 \t149.0 \t285.0 Nm\n", + "-------------------------------------------------\n", + "\n", + "part (b):\n", + " The resultant motor speed, n = 2500 - 50*exp(-t/tau) where tau=20.7 msec\n", + "\n", + "part (c):\n", + " The resultant motor speed, wm = 262 - 53*exp(-t/tau) where tau=845 msec\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 11.7, Page number: 581" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import math\n", + "\n", + "\n", + "#Variable Calculations:\n", + "f1=60 #Initial frequency(Hz)\n", + "f2=50 #Changed frequency(Hz)\n", + "Xs=0.836 #Saturated synch reactance(ohm)\n", + "Va=1+0j #Armature voltage(V p.u)\n", + "Ia=1+0j #Armature current(A p.u)\n", + "If_rated=2.84 #Rated field current(A)\n", + "p=6 #No. of poles\n", + "\n", + "\n", + "#Calculations:\n", + "#for part (a):\n", + "ns1=120*f1/p\n", + "ns2=120*f2/p\n", + "Eaf=Va-1j*Xs*Ia*exp(1j*0) #field voltage(V)\n", + "Ifo=abs(Eaf)*If_rated #motor field current(A)\n", + "\n", + "#for part(b):\n", + "#Eaf= (wm/wmo)*(If/Ifo)*Eafo\n", + "If=Ifo\n", + "\n", + "#Results:\n", + "print \"part(a):\"\n", + "print \"(i) The motor speed:\",ns1,\"r/min\"\n", + "print \"(ii) The motor field current:\",round(Ifo,2),\"A\"\n", + "print \"part(b):\"\n", + "print \"(i) The changed speed:\",ns2,\"A\"\n", + "print \"(ii) The mototr field current:\",round(If,2),\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "part(a):\n", + "(i) The motor speed: 1200.0 r/min\n", + "(ii) The motor field current: 3.7 A\n", + "part(b):\n", + "(i) The changed speed: 1000.0 A\n", + "(ii) The mototr field current: 3.7 A\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 11.8, Page number: 588" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import *\n", + "from sympy import *\n", + "\n", + "#Variable declaration:\n", + "iF=2.84 #rated field current(A)\n", + "Vbase=220 #base voltage(V)\n", + "Eaf=220/sqrt(3) #Rms voltage line-to-neutral(V)\n", + "f=60 #Hz\n", + "p=6 #poles\n", + "P_rated=45*10**3 #rated power(W)\n", + "Xs_pu=0.836 #per unit synchronous reactance(ohm)\n", + "\n", + "#Calculations:\n", + "we=2*pi*f\n", + "Laf=sqrt(2)*Eaf/(we*iF) #Armature field reactance(H)\n", + "T_rated=P_rated/(we*2/p)\n", + "#setting rated values to reference values.\n", + "Tref=T_rated\n", + "iFref=iF\n", + "iQ=round((2/3)*(2/p)*Tref/(Laf*iFref),2)\n", + "iD=0\n", + "\n", + "#since theta_me=wc*t, iD=0,we have,\n", + "t=symbols('t')\n", + "wc=120*pi\n", + "def ia(t):\n", + " return iD*cos(wc*t)-iQ*sin(wc*t)\n", + "def ib(t):\n", + " return iD*cos(wc*t-2*pi/3)-iQ*sin(wc*t-2*pi/3)\n", + "def ic(t):\n", + " return iD*cos(wc*t+2*pi/3)-iQ*sin(wc*t+2*pi/3)\n", + "Ibase=P_rated/(sqrt(3)*Eaf)\n", + "Imax=round(ia((pi/(2*wc))))\n", + "Ia=1j*abs(round(Imax/sqrt(2)))\n", + "Eaf=1j*we*Laf*iF/sqrt(2)\n", + "Zbase=Vbase**2/P_rated\n", + "Xs=Xs_pu*Zbase\n", + "Va=1j*Xs*Ia+Eaf #line-to-neutral voltage\n", + "Vt=abs(sqrt(3)*Va)/Vbase #p.u terminal voltage(line-to-line)(V)\n", + "\n", + "#Results:\n", + "print \"part(a):\"\n", + "print \"\\tia(t)=\",ia(t),\"A\"\n", + "print \"\\tib(t)=\",ib(t),\"A\"\n", + "print \"\\tic(t)=\",ic(t),\"A\"\n", + "print \"part(b):\"\n", + "print \"\\tTerminal voltage:\",round(float(Vt),2),\"per unit\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "part(a):\n", + "\tia(t)= -167.01*sin(120*pi*t) A\n", + "\tib(t)= 167.01*sin(120*pi*t + pi/3) A\n", + "\tic(t)= -167.01*cos(120*pi*t + pi/6) A\n", + "part(b):\n", + "\tTerminal voltage: 1.3 per unit\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 11.9, Page number: 591" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "iF=2.84 #rated field current(A)\n", + "Vrated=220 #rated terminal voltage,l-l(V)\n", + "Ibase=118 #base current(A)\n", + "Eaf=220/sqrt(3) #Rms voltage, line-to-neutral(V)\n", + "f=60 #Hz\n", + "p=6 #poles\n", + "P_rated=45*10**3 #rated power(W)\n", + "Xs=0.899 #Synchronous reactance(ohm)\n", + "Xs_pu=0.836 #per unit synchronous reactance(ohm)\n", + "Tref=358 #Reference torque(Nm) (from Ex11.8)\n", + "\n", + "#Calculations:\n", + "Va=Vrated/sqrt(3) #base voltage, line to neutral(V)\n", + "we=2*pi*f\n", + "wm=(2/p)*we\n", + "Laf=sqrt(2)*Eaf/(we*iF) #Armature field reactance(H)\n", + "Ia=Tref*wm/(3*Va)\n", + "Ls=Xs/we #Synchronous inductance(mH)\n", + "delta=-atan(we*Ls*Ia/Va)\n", + "iQ_ref=sqrt(2)*Ia*cos(delta)\n", + "iD_ref=sqrt(2)*Ia*sin(delta)\n", + "iF_ref=(2./3)*(2/p)*Tref/(Laf*iQ_ref)\n", + "\n", + "#since motor is running at rated voltage, base voltage and rated voltage \n", + "# are assumed to be same.\n", + "Va_pu=Va/Va \n", + "Ia_pu=Ia/Ibase\n", + "\n", + "\n", + "#Results:\n", + "print \"The reqd motor field current:\",round(iF_ref,2),\"A\"\n", + "print \"Per unit voltage:\",Va_pu,\"p.u\"\n", + "print \"Per unit current:\",round(Ia_pu),\"p.u\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " The reqd motor field current: 3.7 A\n", + "Per unit voltage: 1.0 p.u\n", + "Per unit current: 1.0 p.u\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 11.10, Page number: 593" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "ns=4000 #rated speed(rpm)\n", + "Va=220 #rated voltage(V)\n", + "Ls=1.75*10**-3 #synchronous inductance(H)\n", + "Prated=25000 #Watts\n", + "n=3200 #rated OC speed(rpm)\n", + "p=2 #No. of poles\n", + "\n", + "#Calculations:\n", + "#for part(a):\n", + "Eaf=Va/sqrt(3)\n", + "wm=ns*pi/30 #rad/sec\n", + "Trated=Prated/wm\n", + "we=(p/2)*n*pi/30\n", + "lambdaPM=sqrt(2)*Eaf/we #flux linked wth permanent magnet(Wb) \n", + "Tref=Trated*0.65 #since motor is operated at 65% of Trated\n", + "iQref=(2./3)*(2/p)*(Tref/lambdaPM)\n", + "\n", + "#for part(b:)\n", + "lambdaD=lambdaPM #since iD=0\n", + "lambdaQ=Ls*iQref\n", + "lambdaa=sqrt((lambdaD**2+lambdaQ**2)/2) #rms line-to-neutral armature flux(Wb)\n", + "lambdaa_base=Eaf/wm\n", + "lambda_pu=lambdaa/lambdaa_base\n", + "\n", + "#for part(c)\n", + "lambdaD=sqrt(2*(lambdaa_base)**2-lambdaQ**2)\n", + "iDref=(lambdaD-lambdaPM)/Ls\n", + "Ia=sqrt((iDref**2+iQref**2)/2) #rms armature current(A)\n", + "Ibase=Prated/(sqrt(3)*Va)\n", + "I_pu=Ia/Ibase\n", + "\n", + "#Results:\n", + "print \"(a) Required quadrature-axis current:\",round(iQref,1),\"A\"\n", + "print \"(b) Resultant armature flux linkage\",round(lambda_pu,2),\"p.u\"\n", + "print \"(c) iD:\",round(iDref,1),\"A\"\n", + "print \" Rms value of armature current:\",round(Ia),\"A\"\n", + "print \" Per unit value of armature current:\",round(I_pu,2),\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) Required quadrature-axis current: 48.2 A\n", + "(b) Resultant armature flux linkage 1.27 p.u\n", + "(c) iD: -66.1 A\n", + " Rms value of armature current: 58.0 A\n", + " Per unit value of armature current: 0.88 A\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 11.11, Page number: 600" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "V10=230/sqrt(3)\n", + "Nph=3\n", + "p=4\n", + "fe0=60\n", + "R1=0.095 #Armature resistance(ohm)\n", + "R2=0.2 #Rotor resistance(ohm)\n", + "X10=0.680 #Armature leakage reactance(ohm)\n", + "X20=0.672 #Rotor leakage reactance(ohm)\n", + "Xm0=18.7 #Inductice reactance(ohm)\n", + "\n", + "\n", + "#Calculations:\n", + "#taking two frequency values:\n", + "fe1=40\n", + "fe2=60\n", + "\n", + "for m in range(1,3,1):\n", + " if m==1:\n", + " fe=fe1\n", + " else:\n", + " fe=fe2\n", + " X1=X10*(fe/fe0)\n", + " X2=X20*(fe/fe0)\n", + " Xm=Xm0*(fe/fe0)\n", + " V1=V10*(fe/fe0)\n", + " \n", + " ws=4*pi*fe/p\n", + " ns=120*fe/p\n", + " V1eq=abs(V1*1j*Xm/(R1+1j*(X1+Xm)))\n", + " Z1eq=1j*Xm*(R1+1j*X1)/(R1+1j*(X1+Xm))\n", + " R1eq=Z1eq.real\n", + " X1eq=Z1eq.imag\n", + " \n", + "#Search over the slip until the Pload = Pmech \n", + " s=0 #slip initialised to 0\n", + " error=1\n", + " \n", + " while error >=0:\n", + " s=s+0.00001\n", + " rpm=ns*(1-s)\n", + " wm=ws*(1-s)\n", + " Tmech=(1/ws)*Nph*V1eq**2*(R2/s)\n", + " Tmech = Tmech/((R1+R2/s)**2 + (X1+X2)**2)\n", + " Pmech=Tmech*wm\n", + " Pload=10.5*10**3*(rpm/1800)**3\n", + " error=Pload-Pmech\n", + " \n", + " print \"\\nFor fe =\",fe,\"Hz :\"\n", + " print \"\\tTerminal voltage=\",round(V1*sqrt(3)),\"V l-l\"\n", + " print \"\\trpm =\",round(rpm)\n", + " print \"\\tslip =\",round(100*s,1),\"%\"\n", + " print \"\\tPload =\",round(Pload/1000,2),\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "For fe = 40 Hz :\n", + "\tTerminal voltage= 153.0 V l-l\n", + "\trpm = 1166.0\n", + "\tslip = 2.8 %\n", + "\tPload = 2.86 kW\n", + "\n", + "For fe = 60 Hz :\n", + "\tTerminal voltage= 230.0 V l-l\n", + "\trpm = 1721.0\n", + "\tslip = 4.4 %\n", + "\tPload = 9.17 kW\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 11.12, Page number: 608" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "V10=230/sqrt(3)\n", + "Nph=3\n", + "p=4\n", + "fe0=60\n", + "R1=0.095 #Armature resistance(ohm)\n", + "R2=0.2 #Rotor resistance(ohm)\n", + "X10=0.680 #Armature leakage reactance(ohm)\n", + "X20=0.672 #Rotor leakage reactance(ohm)\n", + "Xm0=18.7 #Inductice reactance(ohm)\n", + "n=1680 #rpm\n", + "Pmech=9.7*10**3 #Electromagnetic power(W)\n", + "\n", + "\n", + "#Calculations:\n", + "we0=2*pi*fe0\n", + "Lm=Xm0/we0\n", + "LS=Lm+X10/we0\n", + "LR=Lm+X20/we0\n", + "Ra=R1\n", + "RaR=R2\n", + "lambda_rated=sqrt(2)*V10/we0\n", + "lambdaDR=lambda_rated\n", + "#for specified operating condition\n", + "wm=n*(pi/30)\n", + "Tmech=Pmech/wm\n", + "iQ=(2/3)*(2/p)*(LR/Lm)*(Tmech/lambdaDR)\n", + "iD=lambdaDR/Lm\n", + "Ia=sqrt((iD**2+iQ**2)/2)\n", + "wme=(p/2)*wm\n", + "we=wme+(RaR/LR)*(iQ/iD)\n", + "fe=we/(2*pi)\n", + "Va=sqrt(((Ra*iD-we*(LS-Lm**2/LR)*iQ)**2 + (Ra*iQ+we*LS*iD)**2)/2)\n", + "\n", + "\n", + "\n", + "#Results:\n", + "print \"Rms amplitude of the armature current:\",round(Ia,1),\"A\"\n", + "print \"The electrical frequency:\",round(fe,1),\"Hz\"\n", + "print \"Rms terminal voltage:\",round(sqrt(3)*Va,1),\"V line-line\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Rms amplitude of the armature current: 27.9 A\n", + "The electrical frequency: 58.4 Hz\n", + "Rms terminal voltage: 243.6 V line-line\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 11.13, Page number: 610" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "%matplotlib inline\n", + "from math import *\n", + "from pylab import *\n", + "\n", + "#Variable declaration:\n", + "P_rated = 12*10**3 #Watts\n", + "V_rated = 230 #Rated line-line voltage(v)\n", + "Va_rated = 230/sqrt(3) #Rated line to neutral(V)\n", + "fe_rated = 60 #Hz\n", + "we_rated = 2*pi*fe_rated #rad/sec\n", + "lambda_rated = sqrt(2)*Va_rated/we_rated #Wb\n", + "I_rated = P_rated/(sqrt(3)*V_rated) #A\n", + "Ipeak_base = sqrt(2)*I_rated #A\n", + "p = 4 #poles\n", + "\n", + "V10=V_rated/sqrt(3)\n", + "R1=0.095 #Armature resistance(ohm)\n", + "R2=0.2 #Rotor resistance(ohm)\n", + "X10=0.680 #Armature leakage reactance(ohm)\n", + "X20=0.672 #Rotor leakage reactance(ohm)\n", + "Xm0=18.7 #Inductice reactance(ohm)\n", + "\n", + "#Calculations:\n", + "Lm = Xm0/we_rated;\n", + "LS = Lm + X10/we_rated;\n", + "LR = Lm + X20/we_rated;\n", + "Ra = R1\n", + "RaR = R2\n", + "#operating point:\n", + "n = 1680 #rpm\n", + "lambdaDR=lambda_rated\n", + "wm = n*pi/30\n", + "wme = (p/2)*wm\n", + "Pmech = 9.7*10**3\n", + "Tmech = Pmech/wm\n", + "lambda_DRpu=[0]*42\n", + "iDpu=[0]*42\n", + "Iapu=[0]*42\n", + "fe=[0]*42\n", + "Vapu=[0]*42\n", + "\n", + "for n in range(1,43,1):\n", + " lambdaDR = (0.8+(n-1)*0.4/40)*lambda_rated\n", + " lambda_DRpu[n-1]=lambdaDR/lambda_rated\n", + " iQ=(2/3)*(2/p)*(LR/Lm)*(Tmech/lambdaDR)\n", + " iD=(lambdaDR/Lm)\n", + " iDpu[n-1]=iD/Ipeak_base\n", + " iQR=-(Lm/LR)**iQ\n", + " Ia=sqrt((iD**2+iQ**2)/2)\n", + " Iapu[n-1]=Ia/I_rated\n", + " we=wme-(RaR/LR)*(iQ/iD)\n", + " fe[n-1]=we/(2*pi)\n", + " Va_rms=sqrt(((Ra*iD-we*(LS-Lm**2/LR)*iQ)**2 +(Ra*iQ+ we*LS*iD)**2)/2)\n", + " Vapu[n-1]=Va_rms/Va_rated\n", + "\n", + "#Results:\n", + "print \"The required plot is as shown:\"\n", + "plot(iDpu,Iapu)\n", + "plot(iDpu,Vapu,':')\n", + "xlabel('i_D [per unit] ')\n", + "ylabel('per unit')\n", + "annotate('Ia',xy=(0.21,1.05))\n", + "annotate('Va',xy=(0.21,0.85))\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The required plot is as shown:\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAENCAYAAAD34uk0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYlPXaB/DvMIyKLAKKiAw5CAgoMIAIapK4oZKiqKWo\naaJGdazs1RY7502xsigtLc/JJdfUpExFC9BMR3FFBJVECITBAUUB2RFme94/nsaXOCKMzPAMw/25\nrueKmWeZ+5c6N7+dxzAMCCGEEG2YcB0AIYSQjoeSByGEEK1R8iCEEKI1Sh6EEEK0RsmDEEKI1ih5\nEEII0ZrekkdUVNR2e3v7e97e3hmPO7937945YrH4mo+Pz/Vnn3323PXr130055KSkiZ4eHhkubm5\n5cTGxr6nrxgJIYQ8JYZh9HKcOXMmOC0tzc/LyyvjcefPnz8/rKKiogfDMEhMTJwQFBR0kWEYKJVK\nvouLS25+fr5ILpcLxGLx1czMTE99xUkHHXTQQYf2h95qHsHBwck2NjblzZ0fNmzYhR49elQCQFBQ\n0KXCwkIhAKSkpAS6urrmikQiqUAgUMyaNWt/fHz8FH3FSQghRHumXAcAANu2bVsYFhaWAABFRUWO\nTk5OMs05oVBYeOnSpaCm9/B4PJoaTwghT4FhGF5bn8F5h/mpU6dGbd++PUrTt6FNUuC62qbPY+XK\nlZzHQOWj8nW2snWG8ukKpzWP69ev+yxevHhrUlLSBE0Tl6OjY5FMJnPSXCOTyZyEQmEhd1ESQghp\nirOax+3bt5+ZNm3awT179sx1dXXN1bwfEBCQmpOT4yaVSkVyubxLXFzczPDw8CNcxUkIIeS/6a3m\nERkZ+cPp06dHlpaW9nJycpLFxMSsVCgUAgCIjo7evHr16g/Ly8ttXnvttW8BQCAQKFJSUgJNTU2V\nGzduXDJ+/PhjKpWKv3Dhwm2enp439RWnoQoJCeE6BL2i8nVcxlw2wPjLpys8XbaBtScej8d01NgJ\nIYQrPB4PjDF0mBNCCOl4KHkQQgjRGiUPQgghWqPkQQghRGuUPAghhGiNkgchhBCtUfIghBCiNUoe\nhBBCtEbJgxBCiNYoeRBCiA6o1CooVAquw2g3lDwIIUQHPpR8iB1Xd3AdRruhta0IIUQHqhuqYd7F\nHCY8w/6dnNa2IoQQDjEMgyUJS1BYxW43ZNnV0uAThy51npISQogO8Xg8TBowCbZmtlyHwglqtiKE\nkFZSqBT4Le83hLmFcR3KUzP4ZquoqKjt9vb297y9vTMedz4rK8tj2LBhF7p161a/bt26ZY3PiUQi\nqY+Pz3U/P7/0wMDAFH3FSAgh2qiWV+NA5gEo1UquQ+Gc3moeycnJwRYWFjXz5s3bnZGR4d30fElJ\niV1BQUG/w4cPT7WxsSlftmzZOs05Z2fn/CtXrgy2tbV90GzgVPMghLQDhmFQLa+GVVcrrkPRCYOv\neQQHByfb2NiUN3fezs6uJCAgIFUgEDx2YLQuCkcIIW11OOswlh1f1vKFnYze9jBvCx6Px4wdO/YE\nn89XRUdHb168ePHWx123atWqRz+HhITQ3sOEEJ2b4jGlQ/dxSCQSSCQSnT/XIJPHuXPnnnVwcLhb\nUlJiN27cuN88PDyygoODk5te1zh5EEKIrnya/CnEfcQIcwuDCc8EXU27ch3SU2v6i3VMTIxOnmuQ\nQ3UdHBzuAmzTVkRExKGUlJRArmMihHQezw94HkOFQ7kOw6Bxnjya9m3U1dV1r66utgSA2tpa8+PH\nj4c2N2KLEEJ0Qc2o8f217x+tTeVj79Np52+0lt6arSIjI384ffr0yNLS0l5OTk6ymJiYlQqFQgAA\n0dHRm4uLi/sMGTLkclVVlZWJiYl6w4YNb2VmZg68f/9+72nTph0EAKVSaTpnzpy9oaGhx/UVJyGE\n8MDDjZIbKK8vR2/z3lyH0yHQJEFCSKdVXFOMPhZ9uA6jXRn8UF1CCDFkeeV5mP7jdNAvoU+Hah7N\nuHABOHIEWLMG4NGME0KMkkqtAt+Ez3UY7YpqHnrm4QH89huwbBnQQfMrIaSJn278hBjJ/w9V7WyJ\nQ5eo5vEE5eXAuHHAc88B69ZRDYSQjq6srgwNqgb0tezLdSicoZpHO7CxYWsfZ85QDYSQjmrP9T0o\nqCgAAPTs3rNTJw5douTRAkoghHRsakaNh8qHXIdhdKjZqpWoCYuQjuPPsj8xoOcArsMwSNRs1c6o\nBkJIx9CgbEBUfBQq6iu4DsWoUc1DS+XlQGgoMGwYsGED1UAIMRRqRv1oD3GGYcCjf5yPRTUPjmhq\nIJcvA6+9BqjVXEdECLlafBVT9k959JoSh/5RzeMpVVcDzz8PuLgA330H8Gm4OCGcYRgGRdVFEFoJ\nuQ7F4Omq5kHJow1qa4HwcKBPH2DXLsDUIHdHIcQ4JeQkQM2oMWnAJK5D6VCo2coAmJsDv/wClJUB\ns2cDisduqEsI0Yde3XvRCrgcopqHDtTXAy+8wDZdxcUBXTvupmOEGLTLRZch7iNGF34XrkPpsKjm\nYUC6dQN+/plNHhERwEOaj0SIXmxN24rs0myuwyCgmodOKRTAggVAYSFw9Chgacl1RIR0fA3Khg69\nh7ihMfiaR1RU1HZ7e/t7zW0hm5WV5TFs2LAL3bp1q1+3bt2yxueSkpImeHh4ZLm5ueXExsa+p68Y\ndU0gAHbvZlfkHTsWePCA64gI6dgq6yvhv8UfDcoGrkMhTeit5pGcnBxsYWFRM2/evN0ZGRneTc+X\nlJTYFRQU9Dt8+PBUGxub8mXLlq0DAJVKxXd3d88+ceLEWEdHx6IhQ4Zc/uGHHyI9PT1v/i1wA6x5\naDAM8M47wPHj7JwQe3uuIyKk46qsr0SPbj24DsNoGHzNIzg4ONnGxqa8ufN2dnYlAQEBqQKB4G9j\nlFJSUgJdXV1zRSKRVCAQKGbNmrU/Pj5+SnPPMUQ8HvDFF8CMGUBwMHD7NtcREdJxXC66jNWnVz96\nTYnDMBnczISioiJHJycnmea1UCgsvHTpUtDjrl21atWjn0NCQhASEqL3+FqLxwM+/JDt93juOeDE\nCcDVleuoCDF8rrauGCUaxXUYRkMikUAikej8uQaXPHg8XqvbohonD0P19ttsAhk5EkhKArz/qwGP\nEJJ6JxW2Zrbob9MfNmY2CO4XzHVIRqPpL9YxMTHNX6wFgxuq6+joWCSTyZw0r2UymZNQKCzkMqa2\nWrQI+PJLthP9wgWuoyHE8KTdTcOtB7e4DoNogfPk0bTjJiAgIDUnJ8dNKpWK5HJ5l7i4uJnh4eFH\nuIpPV2bOZJcwmTKFrYEQ0tmV1ZU9+vmVwa9gnMs4DqMh2tLbaKvIyMgfTp8+PbK0tLSXvb39vZiY\nmJUKhUIAANHR0ZuLi4v7DBky5HJVVZWViYmJ2tLSsjozM3OghYVFTWJi4sSlS5euV6lU/IULF25b\nsWLFp/8VuAGPtnqS8+fZiYTr1wORkVxHQwg3GIbB0G1DETcjDiJrEdfhdCq0MGIHTR4AkJEBTJwI\nfPAB8PrrXEdDCDcUKgUEfAHXYXQ6Bj9UlzTP2xtITmb7QVavpl0JSecgq5Rhyv4pUDPsJjiUODo2\nqnlwqLgYmDCBHcq7fj1gQqmcGDGGYXC1+Cr8HPy4DqVTo2YrI0geAFBRwXaiOziwHeq0Ii8xJteK\nr+FO9R1MdJvIdSjkL9RsZSSsrYFjx9hFFcPCgKoqriMiRHfkKjlq5DVch0H0gGoeBkKlAt58Ezh3\nDkhMZGsihHREBRUFsLewRzfTblyHQh6Dah5Ghs8HNm5kN5UaPhzIpi0LSAe15uwaXCy8yHUYRM+o\n5mGAtm8H/vlP4PBhIOixq3oRYljUjBomPPZ3UYZhwOO1+RdboidU8zBiUVHAd98BkycDCQlcR0PI\nkzUoGxCwJQCV9ZUAQImjk6CahwG7eJGdjR4TA7zyCtfRENK8oqoiOFo5ch0GaQWqeXQCQ4eykwm/\n+IKdja5Wcx0RIaw/y/7Ep8n/v2oQJY7Oh5KHgXN1ZVfilUiAl14CGmg3TmIA7M3t4dbTjeswCIeo\n2aqDePgQmDOH3Rf90CHAxobriEhnk1eeB4Zh4GLrwnUopA2o2aqTMTMDfvoJ8PMDnn0WKCjQ7fMt\nLCx0+0BidH7P+x2pd1K5DoMYCKp5dEDr17P9IPHxQECAbp5paWmJ6upq3TyMGI3qhmpYdrXkOgyi\nQ1Tz6MSWLmUnFE6cyM4F0aWamhqMHTsWgwcPho+PD44c6fD7cJE2mPTDJNy4f4PrMIgBoppHB5aa\nCkydyiaTZcuAtgyv19Q8VCoV6urqYGlpidLSUgwbNgw5OTm6C5p0KA8VD2EmMOM6DKJDBl/ziIqK\n2m5vb3/P29s7o7lr3nzzza/d3NxyxGLxtfT09EfrNItEIqmPj891Pz+/9MDAwBR9xdjRBQSwI7G+\n/x549VV2ccW2UqvVWLFiBcRiMcaNG4c7d+7g/v37bX8w6RBKaksw48cZUKqVAECJgzRLb8ljwYIF\nO5KSkiY0dz4hISEsNzfXNScnx23Lli2vvPbaa99qzvF4PEYikYSkp6f7paSkBOorRmPg5AScPQsU\nFrKr8lZUtO15e/fuRWlpKdLS0pCeno7evXujvr5eN8ESg9erey8sHboUpiamXIdCDJzekkdwcHCy\njY1NeXPnjxw5Ej5//vxdABAUFHSpoqLC+t69e/aa87qoVnUWlpZs57mnJzsSKz//6Z9VVVWF3r17\ng8/n49SpUyjQ9bAuYnD+LPsTiTmJANgmjRHPjOA4ItIRcPbrRVFRkaOTk5NM81ooFBYWFRU52tvb\n3+PxeMzYsWNP8Pl8VXR09ObFixdvfdwzVq1a9ejnkJAQhISE6D1uQ2VqCnz9NduRPnw4O6x3hBbf\nAZr1iObMmYPJkyfDx8cHAQEB8PT01FPExFDUymtxt+Yu12EQPZFIJJBIJDp/Lqd10+ZqF2fPnh3R\nt2/fOyUlJXbjxo37zcPDIys4ODi56XWNkwdhLVkCuLkB06YBn38OvPxy6+6r+msXqp49e+L8+fP6\nC5AYhLvVd9GjWw90F3SHn4MfbQ1rxJr+Yh0TE6OT53I2VNfR0bFIJpM5aV4XFhYKHR0diwCgb9++\ndwDAzs6uJCIi4hD1e2hn/HjgzBngk0+A5cvZjaYIaezj5I8hkUq4DoN0YJwlj/Dw8CO7d++eBwAX\nL14cam1tXWFvb3+vrq6ue3V1tSUA1NbWmh8/fjz0SSO2yON5eACXLgHp6ewe6bS9LVEz/7+y5saJ\nGxHmFsZhNKSj01uzVWRk5A+nT58eWVpa2svJyUkWExOzUqFQCAAgOjp6c1hYWEJCQkKYq6trrrm5\nee2OHTsWAEBxcXGfadOmHQQApVJpOmfOnL2hoaHH9RWnMbO1BZKS2O1thw8HjhwB+vfnOirCBYVK\ngWHbhiFpbhJ6de9Fe26QNqNJgp3Ev/8NfPQRsH8/0InHFXRqskoZnHo4tXwhMWoGP0mQGJZ//APY\nsweYNYtNJJR3jd+tB7fw8ZmPH72mxEF0iZJHJzJ2LHDuHLBpE7B4Me0NYux6m/eGmy3tuUH0g5qt\nOqGaGmD+fODuXeDnnwEHB64jIrqSV54HpVqJAT0HcB0KMVDUbEWemoUFO4lw4kQgMBBIodXDjMaZ\ngjO05wZpF1Tz6OTi49kmrLVrgXnzuI6GPI3K+kr06NaD6zBIB0E1D6ITU6aw+6N//DE7pFcXK/OS\n9hURF4GMezQVirQvqnkQAOxqvPPmAeXlbJNWnz5cR0Raq0HZgK6mXbkOg3QQVPMgOmVtze5KGBr6\n//uEEMN0v/Y+nt/3/KM9NyhxEC5QzYP8l4QEYMECYNUqdpMpmoxsWBiGwZW7VxDQV0cb2JNORVc1\nD0oe5LFyc9mVeQcPBv7zH8CMNpTj1B/3/0Dug1xM9ZjKdSikg6NmK6JXrq5s01VDA7vBVF4e1xF1\nbgzD4KHiIddhEPII1TzIEzEMu8HUxx8D330HTJ7MdUSdx60Ht2BvYQ+LLhZch0KMCNU8SLvg8YA3\n3mDng/zjH8CKFYBSyXVUncM3Kd8gpYhmcBLDRDUP0molJcCcOWzy+OEHwN6+5XuIduQqObrwu3Ad\nBjFi7VbzGDNmzO+teY8YPzs7IDERCA5mO9LPnuU6IuPSoGyA/2Z/VNRXcB0KIS1qdjOohw8fmtXV\n1XUvKSmxe/Dgga3m/aqqKquioiLH9gmPGBo+H4iJAYYOBWbMAP7nf9itbk2oAbTNupp2xZkFZ2Dd\nzZrrUAhpUbP/5Ddv3hwdEBCQmp2d7T548OArmiM8PPzIkiVLNrb04KioqO329vb3nrSF7Jtvvvm1\nm5tbjlgsvpaenu6neT8pKWmCh4dHlpubW05sbOx72heL6NvEieyCiocPA+HhQFkZ1xF1TBn3MvDu\nb+8+em1rZvuEqwkxIAzDPPH4+uuv32jpmscdZ86cCU5LS/Pz8vLKeNz5X3/9NWzixIkJDMPg4sWL\nQUFBQRcZhoFSqeS7uLjk5ufni+RyuUAsFl/NzMz0bHo/GzrhmlzOMO+8wzDPPMMw589zHU3HU9NQ\nw5zMO8l1GKQT+eu7U+vv9KZHs81WJ0+eHD169OiTffv2vXPw4MFpTc9r9hlvTnBwcLJUKhU1d/7I\nkSPh8+fP3wUAQUFBlyoqKqyLi4v75OfnO7u6uuaKRCIpAMyaNWt/fHz8FE9Pz5utyoakXQkEwOef\ns/0gU6cC77zDNmVRM1bzLhZehEUXC3j19oJ5F3OMch7FdUiEaK3Z5HH69OmRo0ePPnn06NHJPB7v\nv4Y1tZQ8WlJUVOTo5OQk07wWCoWFRUVFjnfu3Onb9P1Lly4FPe4Zq1atevRzSEgIQmhzbs5Mnsw2\nY82cCZw+DezcCfTsyXVUhklaIYWtmS28entxHQrpBCQSCSQSic6f22zyiImJWQkAO3fufFnnn/oX\npo3DxRonD8K9fv2AM2fYuSD+/uye6cHBXEdlGKQVUvTr0Q88Hg+zvGZxHQ7pRJr+Yh0TE6OT5zab\nPDTq6+u7/fzzz9OlUqlIqVSaAuwciw8//HB1Wz7Y0dGxSCaTOWleFxYWCoVCYaFCoRA0fl8mkzkJ\nhcLCtnwWaT9dugDr1gGjRwMvvMBOLPzgA3aUVmfFMAyi4qPwXfh36G/Tn+twCNGJFlump0yZEn/k\nyJFwgUCgsLCwqLGwsKgxNzevbesHh4eHH9m9e/c8ALh48eJQa2vrCnt7+3sBAQGpOTk5blKpVCSX\ny7vExcXNDA8PP9LWzyPt6/nngStXgJMngbFjgaIiriNqf2pGDYCdlPX7vN8pcRCj0mLNo6ioyPHY\nsWPjtX1wZGTkD6dPnx5ZWlray8nJSRYTE7NSoVAIACA6OnpzWFhYQkJCQpirq2uuubl57Y4dOxYA\ngKmpqXLjxo1Lxo8ff0ylUvEXLly4jTrLOyZHR+DECeDTT9lJhd99B0yaxHVU7UNaIcXcg3ORvCAZ\nPB4PPFrXnhiZFpcneeWVV7YsWbJko4+Pz/V2iqlVaHmSjuXsWXZpk4gIIDYW6NoJ9i8qrCqE0ErI\ndRiE/E277efh6el5Mzc319XZ2Tm/a9euDX99OHP9+nWftn54W1Dy6HgePAAWLQLy84F9+wBPT64j\n0q1jucdwr/Ye5onncR0KIc3SVfJosdkqMTFxYls/hBAAsLUFfv4Z2LqVHYX10UfGtVNhP+t+NEOc\ndBot1jxu3779zOPef+aZZ27rJaJWoppHx5aVxTZjCYXAtm1Ar15cR/R0juUewzCnYbDqasV1KIS0\nSrvVPMLCwhI0kwTr6+u75efnO7u7u2ffuHFjUFs/nHReHh7sToX/+hcgFrOTCseN4zoq7Z0vPA9H\nK0ea8Ec6Ha3380hLS/P/97///Y9t27Yt1FNMrUI1D+Px++/A/Pns7PRPPgG6deM6oie7W30XDpYO\nXIdByFPhbCdBf3//tOaWCyHkaYwZA1y7BhQUAIGBwHWDGtf3dxX1FQjbF4YGZQPXoRDCqRZrHuvW\nrVum+VmtVpukpaX5P3jwwPZp5n7oEtU8jA/DALt3s/uDvPsuu8CiocxMZxjm0VwNlVoFvomBBEaI\nltqt5lFdXW1ZU1NjUVNTYyGXy7tMmjTpl/j4+Clt/WBCmuLx2Oary5eBo0fZJU4KCriOCkjMScTr\nCa8/ek2JgxDaw5wYKJWKXSPriy/Y/770EndDeh8qHqKivoL6OYhRaLdJgoaKkkfncPUqMHcu4O4O\nbNrE7qPeHjambMRwp+Hwd/Bvnw8kpJ1w1mFOSHvy9QVSUwFXV8DHBzh0qH0+172nO3qa0YYkhDTn\niclDpVLxv/rqq7fbKxhCHqdbN3Y9rAMH2I70l14Cyst1+xlqRo34rHjNFscY5zIO/az76fZDCDEi\nT0wefD5ftW/fvtntFQwhT/Lss2wzlrU1Wws5dkx3z1aqlTj651FUNVTp7qGEGLEW+zzefvvtrxQK\nhWDmzJlxjffx8Pf3T9N7dE9AfR6d2++/A1FRwIQJwNq1gKWl9s9gGAb3au+hj0Uf3QdIiIFqtw7z\nkJAQyeP2MD916tSotn54W1DyIJWVwLJl7J4hW7dqv7zJ2dtnseHSBvz0wk/6CZAQA0SjrSh5kL8c\nOwa88gowfjw7tLdHj+av1fydoQl/pLNqt9FWxcXFfRYuXLhtwoQJSQCQmZk5sLXrWiUlJU3w8PDI\ncnNzy4mNjX2v6fny8nKbiIiIQ2Kx+FpQUNClxostikQiqY+Pz3U/P7/0wMDAFG0KRTqX8eOBjAx2\nHoi3N5CU1Py1q06vwu5rux+9psRByFNiGOaJx/jx45P2798/09vb+zrDMJDL5YJBgwb90dJ9SqWS\n7+Likpufny+Sy+UCsVh8NTMz07PxNcuXL/9i9erV/8swDLKystzHjBlzQnNOJBLll5WV2Tb3fDZ0\nQv7u+HGG6dePYaKiGKa8/L/P36m6w9Qr6ts9LkIMxV/fnS1+97d0tFjzKC0t7TVz5sw4Pp+vAgCB\nQKAwNTVVtnRfSkpKoKura65IJJIKBALFrFmz9jdd1uTmzZueo0aNOgUA7u7u2VKpVFRSUvJoGhij\ng6oV6VzGjWNrIV26AF5ewKF4Fd5MfBMV9RUAAAdLB3Q17QR74BKiZy3u52FhYVFTVlb2aLbUxYsX\nh/bo0aOypfuKioocnZycZJrXQqGwsOlqvGKx+NrBgwenjRgx4mxKSkpgQUFBv8LCQqGdnV0Jj8dj\nxo4de4LP56uio6M3L168eGvTz1i1atWjn0NCQhASEtJSWKQTsLQEvv0WmDULWLSIj94hz6HCpwus\nHbmOjJD2J5FIIJFIdP7cFpPHunXrlk2ePPloXl5e/+HDh58vKSmxO3DgwIyW7nvcCK2m3n///c/e\neuutDX5+fune3t4Zfn5+6ZoaztmzZ0f07dv3TklJid24ceN+8/DwyAoODk5ufH/j5EGIRmV9Jc7J\nziFsZBiuXwdWrZqBIH92SO/cucaz7S0hrdH0F+uYmBidPLfF5DF48OArZ86ceS47O9udYRieu7t7\ntkAgULR0n6OjY5FMJnPSvJbJZE5CobCw8TWWlpbV27dvj9K8dnZ2zu/fv38eAPTt2/cOANjZ2ZVE\nREQcSklJCWyaPAh5nIr6CkikEoS5hcHMjJ2d/uKLwMKFwL59wObNwDOP3VyZENJaLfZ5PHz40GzD\nhg1v/etf//r4ww8/XL1x48Yl9fX1Le71FhAQkJqTk+MmlUpFcrm8S1xc3Mzw8PAjja+prKzsIZfL\nuwDA1q1bF48cOfK0hYVFTV1dXffq6mpLAKitrTU/fvx4qLe3d8bTFpIYv+qGajx4+AAA0M+6Hz4f\n9/nfzg8ezC71HhzM/vz11+zKvYSQp9PiPI8XXnjhJysrq6q5c+fuYRiGt2/fvtmVlZU9fvrppxda\nenhiYuLEpUuXrlepVPyFCxduW7FixaebN2+OBoDo6OjNFy5cGPbyyy/v5PF4jJeX1x/btm1b2KNH\nj8r8/HzniIiIQwCgVCpN58yZs3fFihWf/i1wmudBGvnkzCfo1b0XogOiW7w2O5udF/LwITu5UCxu\nhwAJMRDtNklw4MCBmZmZmQNbeq+9UfIgjSf4MY12+msNtRrYsQNYsYJd5uTDD4Hu3fUVKSGGo90m\nCfr7+6dduHBhmOb1xYsXhw4ePPhKWz+YkLZgGAYjd45EXnkeAGiVOADAxITtA8nIAG7fZicXHj+u\nj0gJMU4t1jw8PDyy/vzzzwFOTk4yHo/H3L59+xl3d/dsU1NTJY/HY65fv+7TTrH+DdU8SHFNsc4W\nNUxMBF57jV2598svAXt7nTyWEIPTbs1WUqlU9KTzIpFI2tYgngYlj86noKIAn5//HBsnbtS6ptEa\ntbXA6tXA9u3ARx+x/SImtF0aMTK0MCIlj05HoVLgRN4JTHSbqNfPychgayFKJbv1ra+vXj+OkHZF\nyYOSR6eQeicVcpUcw52Gt+vnajrUP/gAmD2brZE8zZ4hhBga2sOcdAqldaWP5m+0J02H+h9/ABUV\nwMCBwE8/AfT7CiEsqnkQg/PH/T/g2cvToJZLT04GXn8d6NMH+OYbwMOD64gIeTpU8yBGK+Z0DHIe\n5HAdxt8EBwNpacDzzwMjRrDzQ2prW76PEGNFNQ9iEOoUdegu6Biz9O7eBd55BzhzBvjqK2DaNFps\nkXQcVPMgRuN25W0E7wiGmlFzHUqrODgAe/YA338PrFwJTJgAZGVxHRUh7YtqHsQg1MhrYNHFgusw\ntKZQABs3Ap98Arz8MrvMiZUV11ER0jyqeZAObe/1vfji3BePXnfExAEAAgHw9tvAjRvAgwdsR/qu\nXexQX0KMGdU8CCfuVt8FwG4La0xSUoAlSwA+nx2VFRDAdUSE/B3VPEiHsyZ5DYprigGwScPYEgcA\nBAYCFy+yS5tMnszOFSku5joqQnSPkgdpNyJrEUx4xv9XzsQEWLCA7US3tQW8vNjdDBsauI6MEN3R\n67/kpKSkCR4eHllubm45sbGx7zU9X15ebhMREXFILBZfCwoKunTjxo1Brb2XGL56ZT0ScxIfvZ7t\nPRu9zXsa1XhuAAAbz0lEQVRzGFH76tED+OIL4MIF9hg4EDh0iGapEyPBMIxeDqVSyXdxccnNz88X\nyeVygVgsvpqZmenZ+Jrly5d/sXr16v9lGAZZWVnuY8aMOdHae9nQiSG7X3OfWXRkEaNSq7gOxSCc\nOMEwXl4MM2oUw1y9ynU0pLP667uzzd/xeqt5pKSkBLq6uuaKRCKpQCBQzJo1a398fPyUxtfcvHnT\nc9SoUacAwN3dPVsqlYru37/fuzX3EsNUr6zH/dr7AAA7cztsnby1UzRVtcaYMUB6OvDii8D48cCi\nReyEQ0I6IlN9PbioqMjRyclJpnktFAoLL126FNT4GrFYfO3gwYPTRowYcTYlJSWwoKCgX2FhobA1\n9wLAqlWrHv0cEhKCkJAQvZSFtN729O2orK/EiuAVXIdikExNgVdfBWbNAtasYftDli4Fli2jbXCJ\nfkgkEkgkEp0/V2/Jg8fjtdiy+/7773/21ltvbfDz80v39vbO8PPzS+fz+arW3Av8PXkQ7ijVSpia\nsH+VXg14lWoarWBtDXz+ObtvyIoVgLs7O9Fw7lzagIroVtNfrGNiYnTyXL39NXV0dCySyWROmtcy\nmcxJKBQWNr7G0tKyevv27VHp6el+u3fvnldSUmLn4uJyqzX3EsMxYc8EZNzLAABKHFpydgb27wd+\n/BH49ltgyBDg1CmuoyKkFXTRcfK4Q6FQmPbv3/9Wfn6+qKGhocvjOr0rKip6NDQ0dGEYBlu2bFk8\nf/78na29F9RhbjDu19znOgSjoFYzzP79DOPszDBhYQyTkcF1RMQYwdA7zE1NTZUbN25cMn78+GMD\nBw7MnDlzZpynp+fNzZs3R2/evDkaADIzMwd6e3tneHh4ZB07dmz8hg0b3nrSvfqKlWinsKoQs3+e\n/WghQztzO44jMg48HjBzJnDzJhAaynawL1wIFBVxHRkh/42WJyFaUzNqnLt9DsH9grkOxahVVrKT\nCzdvZjvZ332XnTtCSFvQ8iSkXUmkEiTlJgFg+zUocehfjx7siKxr19ghvQMGAOvX00x1YhgoeZBW\n6crviq78rlyH0SkJhcD27cCJE8DJk+zIrF27AJWK68hIZ0bNVqRZx3KPYZTzKHThd+E6FNLI2bPA\n++8DFRVszWTyZNrJkLQeNVsRvWIYBr/k/AJZpazli0m7GjECSE4GPvsM+Oc/2f3Vk5O5jop0NlTz\nII8wDIPblbfRz7of16GQVlKpgL172e1wPTyAjz8GBg/mOipiyKjmQXTuVvktLIhfAErKHQefD8yb\nB2Rns81X4eHAjBlAZibXkRFjRzWPTo5hGCjUikf9GgzDgEcN6B1WXR3w73+zS8FPnMjWSPr35zoq\nYkio5kF04vNzn2PDxQ2PXlPi6Ni6dwfeeQfIzWWXPgkMZOeIyKjriugY1Tw6ueqGapgJzB4tbEiM\nS1kZsHYtsGULEBnJLsLo6Mh1VIRLVPMgT4VhGEzZP+XRKCrLrpaUOIxYz57Ap5+yS5506wZ4e7NL\nwNO+6qStKHl0MjweDytHroSjFf362Zn07s3WQG7cYF8PHAgsXw7cu8dtXKTjouTRCeSV5+HT5E8f\nvfZ38Kel0zspBwd2iZOMDHaZE09PdiMqqokQbdE3SCfQq3sviKxFT7xm9OjROH78+N/eW79+PV5/\n/XU9Rka44ugIfPMNm0QUCrYm8vbbtC0uaT1KHkbq7O2zuFnCrmJv1dUKkd6RT7w+MjIS+/fv/9t7\ncXFxmD17tt5iJNxzdAS+/hr44w+AYYBBg4C33gLu3OE6MmLoKHkYqYKKAhTXtL4tYvr06fj111+h\nVCoBAFKpFHfu3MG+ffswZMgQeHl50ba/RqxvX7Y568YNduKhlxfw+uuAVMp1ZMRQUfIwIql3Uh/9\nPMdnDkY5j2r1vba2tggMDERCQgIAYP/+/Zg5cybWrFmDy5cv49q1azh9+jQyMjJ0HjcxHA4OwJdf\nAllZ7JLwgwcDUVFATg7XkRFDo9fkkZSUNMHDwyPLzc0tJzY29r2m50tLS3tNmDAhydfX96qXl9cf\nO3fufFlzTiQSSX18fK77+fmlBwYGpugzTmOgUCmwUrISZXVlT/2Mxk1XcXFxj14PHjwY/v7+uHHj\nBjJp3YtOoXdvdohvbi4gEgHDhwOzZ7PNW4QA0N8e5kqlku/i4pKbn58vksvlgsftQ75y5cpV77//\n/qcMw6CkpKSXra1tmUKhMGUYBiKRKL+srMy2ueeD9jBn1Go1U1JborPnVVdXM71792bS0tKYAQMG\nMPn5+YyrqytTUVHBMAzDvPzyy8zOnTt19nmk46iqYpjYWIaxt2eYKVMY5uJFriMiTwuGvod5SkpK\noKura65IJJIKBALFrFmz9sfHx09pfI2Dg8PdqqoqKwCoqqqy6tmzZ5mpqamyUWKjtTKe4GT+SbyZ\n+KbOnmdhYYFRo0ZhwYIFmD17NqqqqmBubg4rKyvcu3cPiYmJtHxJJ2VpyW6Dm58PjBvH7rU+ejTw\n229sRzvpfPQ2tbioqMjRycnp0Yo6QqGw8NKlS0GNr1m8ePHW0aNHn+zbt++d6upqyx9//PFFzTke\nj8eMHTv2BJ/PV0VHR29evHjx1qaf0bgDNyQkBCEhIXopiyFRqVUw4ZmAx+NhtPNojBSN1OnzIyMj\nMW3aNPz4448YMGAA/Pz84OHhAScnJ4wYMUKnn0U6HjMz4B//AF55BfjhB3Zklrk5u+zJ1KmACfWi\nGhyJRAKJRKL7B+ui+vK448CBA9MXLVq0VfP6+++/n7tkyZJvGl/z0Ucf/eutt95azzAMcnNzXZyd\nnfOqqqosGYbBnTt3HBiGwf379+3EYvHVM2fOBDe+F5202WrxkcVMfFY812EQwjAMw6hUDHPoEMME\nBjKMuzvDfPcdw9TXcx0VeRIYerOVo6NjkUwmc9K8lslkTkKhsLDxNefPnx/+wgsv/AQALi4ut5yd\nnfOzs7PdAbZJCwDs7OxKIiIiDqWkpATqK9aO5JPRn2DSgElch0EIALamMXUqcPEi8O23wIED7BLw\nn38OVFZyHR3RJ70lj4CAgNScnBw3qVQqksvlXeLi4maGh4cfaXyNh4dH1okTJ8YCwL179+yzs7Pd\n+/fvn1dXV9e9urraEgBqa2vNjx8/Hurt7d0px4hWNVQhbG8Y6pX1AAA7cztaWoQYHB4PGDUKSEwE\nEhKA69fZJPLuu0BREdfREX3QW5+HqampcuPGjUvGjx9/TKVS8RcuXLjN09Pz5ubNm6MBIDo6evMH\nH3ywZsGCBTvEYvE1tVpt8vnnn79ra2v7IC8vr/+0adMOAoBSqTSdM2fO3tDQ0ONP/kTjZNXVCqtC\nVqGbaTeuQyGkVcRiYM8eoKAA+OordiXfKVPYNbS8vLiOjugK7edhgM4UnEHug1xE+UVxHQohbfbg\nAbBpE7uWlljMJpGxY9naCml/utrPg5KHAcopy0FxTTGC+wVzHQohOtPQAOzbxy4Nb2rKJpFZs4Au\nXbiOrHOh5GFkyWN7+nZEeETAxsyG61AI0SuGAY4dY5PIzZvs0N/oaHbjKqJ/tJOgkamR16CygYan\nEOPH4wETJgAnTrCd6zk5gKsru9f6zZtcR0dai2oeHKlX1uOC7IJWixcSYqyKi9l+kU2bAD8/dm+R\nceOoX0QfqObRwZXVlWFPxh505ARIiK706QOsWsUuAf/CC+wWuYMGscmktpbr6MjjUM2jHT14+AAq\ntQp25nZch0KIQWMY4PRpdqOqM2eAl19m+0acnbmOrOOjmkcHtCl1E37N+ZXrMAgxeDweEBICHDwI\npKayM9mHDGFns588SYsxGgKqeehZ+cPyRyOoGIahVWkJeUq1tcDevWxtRK1mayLz5rEr/pLWo5pH\nB6BUK/HczudQUlsCAJQ4CGkDc3N2Nd+MDHYdLYkE6NcPWLKERmlxgWoeeqBUK2Fqwq78IlfJ0YVP\ns6AI0YfCQmDLFvYYOJCtjYSHAwIB15EZLpokaKDJ40TeCey4ugN7p+3lOhRCOg25HPj5Z+A//wHy\n8oBFi4DFiwGhkOvIDA8lDwNNHkq1EtUN1TRTnBCOZGSwQ3x/+AEYORJ47TV2LS3aqIpFycOAkkf0\nL9GY7TVb57v6EUKeXk0N28H+7bfsz6+8wg757d2b68i4RcnDgJJHTlkORNYiCPjU0EqIoWEY4NIl\ntl/k0CEgNJRNJKNGdc7aCI224tC9mnuYf3g+VGoVAMCtpxslDkIMFI8HDB0KbN8O5OcDzz3HLn/i\n7s7ueHj/PtcRdkyUPJ5Cb/PemOM9h3b0I6SDsbZmR2RduwZ8/z07xHfAAGDGDCApCVCpuI6w49Dr\nt19SUtIEDw+PLDc3t5zY2Nj3mp4vLS3tNWHChCRfX9+rXl5ef+zcufPl1t7b3o5mH8XR7KMA2Gpf\nqEsozdsgpIPS1EZ27GB3PBw3Dvjf/2WXP1m1in2PtIBhGL0cSqWS7+Likpufny+Sy+UCsVh8NTMz\n07PxNStXrlz1/vvvf8owDEpKSnrZ2tqWKRQK09bcy4beflIKU5jUotR2/UxCSPtKT2eYJUsYxtaW\nYUJDGSYujmHq67mOSrf++u5s83e83moeKSkpga6urrkikUgqEAgUs2bN2h8fHz+l8TUODg53q6qq\nrACgqqrKqmfPnmWmpqbK1tyrbyq1CuvOr0ODsgEAMMRxCAb3HdyeIRBC2pmvL7tdbmEhu/TJli3s\nXJE33gDS07mOzrCY6uvBRUVFjk5OTjLNa6FQWHjp0qWgxtcsXrx46+jRo0/27dv3TnV1teWPP/74\nYmvvBYBVq1Y9+jkkJAQhISE6i9+EZwI1o0adog5dTbvq7LmEEMNnZgbMmcMeUimwaxcQEQHY2AAL\nFrDvd5SdDyUSCSQSic6fq7fkwePxWhxHu2bNmg98fX2vSiSSkFu3brmMGzfut2vXrolb+xmNk4eu\n8Xg8vPPsO3p7PiGkYxCJgJUr2T6RU6fYfpIPPwTGjAHmzwcmTjTs5VCa/mIdExOjk+fqrdnK0dGx\nSCaTOWley2QyJ6FQWNj4mvPnzw9/4YUXfgIAFxeXW87OzvnZ2dnuQqGwsKV7CSGkPZmYsAljzx62\nQ33iROCLL9hmraVL2WYtA5l61i70ljwCAgJSc3Jy3KRSqUgul3eJi4ubGR4efqTxNR4eHlknTpwY\nCwD37t2zz87Odu/fv39ea+4lhBCu9OjBrp+VnAycOwdYWbHNWmIxcOEC19G1E130ujd3JCQkTBww\nYEC2i4tL7po1a1YwDINNmzZFb9q0KZr5a4TVpEmTjvr4+Fzz8vLK2Lt37+wn3dv4QDuPtiKEkCdR\nqRjm1CmGKSzkOpIng45GW9HyJIQQ0onQ8iSEEEI4Q8mDEEKI1ih5EEII0RolD0IIIVqj5EEIIURr\nlDwIIYRojZIHIYQQrVHyIIQQojVKHoQQQrRGyYMQQojWKHkQQgjRGiUPQgghWqPkQQghRGuUPAgh\nhGiNkgchhBCtUfIwUPrYsN6QUPk6LmMuG2D85dMVvSaPpKSkCR4eHllubm45sbGx7zU9v3bt2uV+\nfn7pfn5+6d7e3hmmpqbKiooKawAQiURSHx+f635+fumBgYEp+ozTEBn7X2AqX8dlzGUDjL98umKq\nrwerVCr+kiVLNp44cWKso6Nj0ZAhQy6Hh4cf8fT0vKm5Zvny5WuXL1++FgB++eWXSevXr19qbW1d\nAbA7BUokkhBbW9sH+oqREELI09FbzSMlJSXQ1dU1VyQSSQUCgWLWrFn74+PjpzR3/b59+2ZHRkb+\n0Pg9XWyVSAghRA90sRH6446ffvppxqJFi7ZqXn///fdzlyxZ8s3jrq2tre1ua2tbVl5ebq15z9nZ\nOc/X1zd98ODBqVu2bFnc9B4ADB100EEHHdofuviO11uzFY/HY1p77dGjRyePGDHirKbJCgDOnTv3\nrIODw92SkhK7cePG/ebh4ZEVHBycrDlPtRJCCOGO3pqtHB0di2QymZPmtUwmcxIKhYWPu3b//v2z\nmjZZOTg43AUAOzu7koiIiEMpKSmB+oqVEEKIdvSWPAICAlJzcnLcpFKpSC6Xd4mLi5sZHh5+pOl1\nlZWVPc6cOfPclClT4jXv1dXVda+urrYEgNraWvPjx4+Hent7Z+grVkIIIdrRW7OVqampcuPGjUvG\njx9/TKVS8RcuXLjN09Pz5ubNm6MBIDo6ejMAHD58eOr48eOPmZmZPdTce+/ePfuIiIhDAKBUKk3n\nzJmzNzQ09Li+YiWEEKIlfXWYt+VITEyc4O7unuXq6prz2Wefvdf0/M2bNz2GDh16oWvXrvVr165d\n1vjcmjVrVgwcOPCGl5dXRmRk5L76+vquXJdH2/Lt2bNnjo+PzzVvb+/rw4cPP3ft2jWf1t5rCMfT\nlu/27dtOISEhpwYOHHhj0KBBf2zYsOFNrsui6z8/hmGgVCr5vr6+6ZMmTTrKdVl0Wbby8nLr6dOn\nH/Dw8Ljp6emZeeHChaFcl0eX5TOG75bDhw9P8fHxuebr65vu7+9/5ffffx/d2nubHpwXtumhVCr5\nLi4uufn5+SK5XC4Qi8VXMzMzPRtfc//+fbvLly8H/POf//y4cfLIz88XOTs752n+UF988cW4nTt3\nzue6TNqW7/z588MqKip6aP5Ag4KCLrb2Xq6PtpTv7t27fdLT030ZhkF1dbXFgAEDso2pfJpj3bp1\n/zN79uy9kydPPsJ1eXRZtnnz5u3atm1bFMMwUCgUpprrDOVoS/mM5bulpqbGXPPz9evXvV1cXHJb\ne2/Tw+CWJ2nN/BA7O7uSgICAVIFAoGj8vpWVVZVAIFDU1dV1VyqVpnV1dd0dHR2L2rcET9aa8g0b\nNuxCjx49KgEgKCjoUmFhobC193KtLeXr06dPsa+v71UAsLCwqPH09Lx5586dvu1fiua1pXwAUFhY\nKExISAhbtGjRd4yBjRhsS9kqKyt7JCcnB0dFRW0H2GZrzXWGoi3lM5bvFnNz81rNzzU1NRa9evUq\nbe29TRlc8igqKnJ0cnKSaV4LhcLCoqIix9bca2tr+2DZsmXrnnnmmdt9+/a9Y21tXTF27NgT+otW\ne9qWb9u2bQvDwsISnuZeLrSlfI1JpVJRenq6X1BQ0CV9xfo02lq+t99++6svvvjiHRMTE7W+Y9VW\nW8qWn5/vbGdnV7JgwYId/v7+aYsXL95aV1fXvT3ibq22lM+YvlsOHz481dPT8+bEiRMTv/766ze1\nubcxg0se2swPaerWrVsu69evXyqVSkV37tzpW1NTY7F37945uoyvrbQp36lTp0Zt3749SrMuWFv+\n37SXtpRPo6amxmLGjBkHNmzY8JaFhUWN7qN8em0p3y+//DKpd+/e9/38/NINrdYBtK1sSqXSNC0t\nzf/111//T1pamr+5uXntZ5999r7+otVeW8pnTN8tU6dOPXzz5k3Po0ePTn7ppZe+f9q/iwaXPLSZ\nH9JUampqwPDhw8/37NmzzNTUVDlt2rSD58+fH66/aLXX2vJdv37dZ/HixVuPHDkSbmNjU67NvVxq\nS/kAQKFQCKZPn/7z3Llz90ydOvVwe8XdWm0p3/nz54cfOXIk3NnZOT8yMvKHkydPjp43b97u9oz/\nSdpSNqFQWCgUCguHDBlyGQBmzJhxIC0tzb/9om9ZW8pnTN8tGsHBwclKpdL0wYMHtkKhsFDr7xau\nO3maHgqFwrR///638vPzRQ0NDV2e1HGzcuXKVY07zK9evSoeNGjQH3V1dWZqtZo3b968XRs3bvwH\n12XStnwFBQXPuLi45DYdraLN/5uOWD61Ws176aWXdi9duvQrrsuhj/I1PiQSyUhDG23V1rIFBwef\nyc7OHsAw7L/Nd999N5brMumqfMby3ZKbm+uiVqt5DMPgypUr/v3797/V2nubHpwX+HFHQkLCxAED\nBmS7uLjkrlmzZgXDMNi0aVP0pk2bohmGHZUjFAplVlZWldbW1uVOTk63q6urLRiGQWxs7Lua4XTz\n5s3bJZfLBVyXR9vyLVy48DtbW9syX1/fdF9f3/QhQ4akPOleQzuetnzJyckjeDyeWiwWX9WcS0xM\nnMB1eXT556c5JBLJSEMbbdXWsl29elUcEBBw2cfH51pERMRBQxtt1dbyGcN3S2xs7LuDBg36w9fX\nN33EiBHJKSkpQ55075MOHsMYfDM6IYQQA2NwfR6EEEIMHyUPQgghWqPkQQghRGuUPAghhGiNkgch\nhBCtUfIgRuvZZ58919w5qVQqMjMze+jv7582cODAzKCgoEu7du2a/7hrd+7c+bKdnV3JK6+8skV/\n0Wrn+eef/7WqqsqqsrKyx7fffvua5v28vLz+vr6+Vy0tLau5jI90AlyPS6aDDi6O/Px8kZeXV4bm\ndV5enrOvr2/6jh07Xm567c6dO+e/8cYbX+vqs1UqlYm+yqE5LCwsqrn+f0yHcR9U8yBGS5t1sZyd\nnfO//PLL/9EsFNcU02j9n507d748ZcqU+FGjRp0aMGDAn6tXr/5Qc27Pnj1zg4KCLvn5+aW/+uqr\nm9RqtYkmluXLl6/19fW9evHixaGNnx0SEiK5cuXKYAAoLS3t5ezsnK/5nGnTph2cOHFi4oABA/58\n7733YjX3iEQiaVlZWc/333//s1u3brn4+fmlv/vuu5+3tryEtJXedhIkhGvaLiTp5+eXnpWV5dGa\nay9fvjzkxo0bg8zMzB4OGTLk8vPPP/9r9+7d63788ccXz58/P5zP56tef/31/+zdu3fOSy+99H1d\nXV33oUOHXly7du3yx8XZXKzXrl0TX7161bdLly5yd3f37DfffPNrR0fHIs09sbGx7924cWNQenq6\nnzZlJaStKHkQ8hdGi9VFQ0NDj2sWzZs2bdrBs2fPjuDz+aorV64MDggISAWAhw8fmvXp06cYAPh8\nvmr69Ok/axvTmDFjftf0XwwcODCzoKCgX+N9JLSJmRBdouRByF/S09P9Bg4cmNnSdU1rCQzD8DTv\nzZ8/f9eaNWs+aHpPt27d6purXZiamio1zVv19fXdGp/r2rVrg+ZnPp+vUiqV9G+WGATq8yAE7Oir\nd95554s33njjm5auZRiG99tvv40rLy+3efjwoVl8fPyUESNGnB0zZszvBw4cmFFSUmIHAA8ePLC9\nffv2My09TyQSSVNTUwMA4MCBAzO0idvS0rK6urraUpt7CNEFSh7EaLXU53Hr1i0XzVDdmTNnxr31\n1lsb5s+fv6s1zw0MDEyZPn36z2Kx+NqMGTMO+Pv7p3l6et78+OOP/xUaGnpcLBZfCw0NPV5cXNyn\npViWL1++9ttvv33N398/raysrKfm2if1hWj07Nmz7Nlnnz3n7e2d0bhDnRB9o1V1CWnBrl275qem\npgZ88803bwDsKKgrV64M1rw2RFQjIfpGNQ9CWmBmZvYwMTFxomaSYGtqBFzRTBLUdNQToi9U8yBG\nLSMjw7vpVq/dunWrv3DhwjCuYiLEGFDyIIQQojVqtiKEEKI1Sh6EEEK0RsmDEEKI1ih5EEII0Rol\nD0IIIVr7PxA8wzUjE2EJAAAAAElFTkSuQmCC\n", + "text": [ + "<matplotlib.figure.Figure at 0x27d0450>" + ] + } + ], + "prompt_number": 6 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter2.ipynb b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter2.ipynb new file mode 100755 index 00000000..855c3bd6 --- /dev/null +++ b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter2.ipynb @@ -0,0 +1,761 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 2: Transformers" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 2.1, Page number: 63" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import math\n", + "\n", + "#Variable declaration\n", + "Pc=16 #Core loss at Bmax=1.5 T\n", + "VIrms=20 #Voltamperess for the core\n", + "Vrms=194 #Rms induced voltage(V)\n", + "\n", + "\n", + "#Calculation:\n", + "pf=Pc/VIrms\n", + "a=math.acos(pf)\n", + "I=VIrms/Vrms\n", + "Ic=I*pf\n", + "Im=I*math.fabs(math.sin(a))\n", + "\n", + "#Results:\n", + "print \"Power factor = \", round(pf,1),\"lagging\"\n", + "print \"The core-loss current,Ic =\", round(Ic,3), \"A rms\"\n", + "print \"The magnetising current,Im =\", round(Im,2),\"A rms\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Power factor = 0.8 lagging\n", + "The core-loss current,Ic = 0.082 A rms\n", + "The magnetising current,Im = 0.06 A rms\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 2.2, Page number: 67" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "\n", + "#Variable declarations:\n", + "k=5 #turns ratio,N1/N2\n", + "Z2=1+4j #Impedance of secondary side(ohm)\n", + "Vp=120 #primary voltage(V)\n", + "\n", + "#Calculations:\n", + "Z2p=k**2*(Z2)\n", + "I=Vp/Z2p\n", + "Is=k*I\n", + "\n", + "#Results:\n", + "print \"Primary current:\",complex(round(I.real,2),round(I.imag,2)), \"A rms\"\n", + "print \"Current in the short:\",round(Is.real,2)+1j*round(Is.imag,2),\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Primary current: (0.28-1.13j) A rms\n", + "Current in the short: (1.41-5.65j) A\n" + ] + } + ], + "prompt_number": 53 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 2.4, Page number: 74" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import cmath\n", + "\n", + "#Variable declaration:\n", + "R1=0.72 #Resistance at high voltage side(ohm)\n", + "R2=0.70 #Resistance at low voltage side(ohm)\n", + "X1=0.92 #Reactance at high voltage side(ohm)\n", + "X2=0.90 #Reactance at low voltage side(ohm)\n", + "Zq=632+4370j #Impedance of exciting circuit(ohm)\n", + "\n", + "#Calculations:\n", + "Req=R1+R2\n", + "Xeq=X1+X2 \n", + "Vcd=2400*Zq/(Zq+complex(R1,X1))\n", + "V=complex(round(Vcd.real,2),round(Vcd.imag,3))\n", + "\n", + "#Results:\n", + "print \"Req:\",Req,\"ohm\",\" and Xeq:\",Xeq,\"ohm\"\n", + "print \"Voltage at low voltage terminal:\",V,\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Req: 1.42 ohm and Xeq: 1.82 ohm\n", + "Voltage at low voltage terminal: (2399.45+0.316j) V\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 2.5, Page number: 76" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import math\n", + "\n", + "#Variable declaration:\n", + "Zf=0.30+.160j #Impedance of feeder(ohm)\n", + "Zeq=1.42+3.42j #Equiv.impedance of transformer refd. to primary(ohm)\n", + "k=2400/240 #turns ratio\n", + "P=50000 #power rating of the transformer(VA)\n", + "Vs=2400 #sending end vltage of feeder(V)\n", + "\n", + "\n", + "\n", + "#Calculations:\n", + "I=P/2400 #Rated current(A)\n", + "theta=math.acos(0.80)\n", + "Zt=Zf+Zeq #combned impedance of feeder & transformer(ohm)\n", + "R=Zt.real\n", + "X=Zt.imag\n", + "bc=I*X*math.cos(theta)-I*R*math.sin(theta)\n", + "ab=I*R*math.cos(theta)+I*X*math.sin(theta)\n", + "Ob=(Vs**2-bc**2)**0.5\n", + "V2=Ob-ab\n", + "\n", + "\n", + "#Results:\n", + "print \"The voltage at the secondary terminals:\",round(V2/10,0),\"V\\n\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The voltage at the secondary terminals: 233.0 V\n", + "\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 2.6, Page number: 80" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import cmath\n", + "import math\n", + "\n", + "#Variable declaration:\n", + "#short ckt test readings:\n", + "Vsc=48 #voltage(V)\n", + "Isc=20.8 #current(A)\n", + "Psc=617 #power(W)\n", + " \n", + "#Open ckt test readings:\n", + "Vs=240 #Voltage(V)\n", + "I=5.41 #current(A)\n", + "P=186 #power(W)\n", + "V2ph=2400 #voltage at full load at high voltage side(V)\n", + "pf=0.8 #lagging power factor at full load\n", + "\n", + "\n", + "\n", + "#Calculations:\n", + "theta=math.acos(pf)\n", + "Zeqh=Vsc/Isc #subscript h refers to high voltage side\n", + "Reqh=Psc/Isc**2\n", + "Xeqh=math.sqrt(Zeqh**2-Reqh**2)\n", + "Ih=50000/V2ph\n", + "Pout=50000*pf\n", + "Pwind=Ih**2*Reqh\n", + "Ptloss=P+Pwind\n", + "e=(1-Ptloss/(Ptloss+Pout))*100\n", + "Iph=(50000/2400)*complex(math.cos(theta),math.sin(-theta))\n", + "V1ph=V2ph+Iph*complex(Reqh,Xeqh)\n", + "r=(round(abs(V1ph),2)-2400)*100/V2ph\n", + "\n", + "\n", + "#Results:\n", + "print \"The efficiency of the transformer:\",round(e,0),\"%\"\n", + "print \"Volatge Regulation:\",round(r,2),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The efficiency of the transformer: 98.0 %\n", + "Volatge Regulation: 1.94 %\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 2.7, Page number: 82" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "\n", + "#Varaible declaration:\n", + "Vx=2400 #Voltage at low voltage side(V)\n", + "Vbc=2400 #Voltage across branch bc(V)\n", + "Vab=240 #Voltage induced in winding ab(V)\n", + "Pl=803 #transformer losses(W)\n", + "pf=0.8 #Power factor of the transformer\n", + "\n", + "#Calculations:\n", + "Vh=Vab+Vbc\n", + "Ih=50000/Vab\n", + "KVA=Vh*Ih/1000 #Kva rating\n", + "P=pf*550000\n", + "e=(1-Pl/(P+Pl))*100\n", + "\n", + "\n", + "#Results:\n", + "print \"Voltage ratings, Vh:\",Vh,\"V \", \"& Vx:\",Vx,\"V\"\n", + "print \"KVA rating as an autotransformer:\",KVA,\"KVA\"\n", + "print \"full-load efficiency:\", round(e,2),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Voltage ratings, Vh: 2640 V & Vx: 2400 V\n", + "KVA rating as an autotransformer: 550.0 KVA\n", + "full-load efficiency: 99.82 %\n" + ] + } + ], + "prompt_number": 24 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 2.8, Page number: 87" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import math\n", + "\n", + "#Variable declaration:\n", + "Vl1=4160 #line-to-line voltage at feeder's sending end(V)\n", + "Zf=0.30+.160j #Impedance of feeder(ohm)\n", + "Zeq=1.42+3.42j #Equiv.impedance of transformer refd. to primary(ohm)\n", + "k=2400/240 #turns ratio\n", + "P=50000 #power rating of the transformer(VA)\n", + "Vs=2400 #sending end vltage of feeder(V)\n", + "\n", + "\n", + "\n", + "#Calculation:\n", + "#this problem can be treated on a single phase basis,\n", + "#and whole problem is similar to Ex 2.5.\n", + "\n", + "I=P/2400 #Rated current(A)\n", + "theta=math.acos(0.80)\n", + "Zt=Zf+Zeq #combned impedance of feeder & transformer(ohm)\n", + "R=Zt.real\n", + "X=Zt.imag\n", + "bc=I*X*math.cos(theta)-I*R*math.sin(theta)\n", + "ab=I*R*math.cos(theta)+I*X*math.sin(theta)\n", + "Ob=(Vs**2-bc**2)**0.5\n", + "V2=Ob-ab\n", + "Vload=V2/k\n", + "\n", + "#Results:\n", + "print \"The line to line voltage:\",round(Vload,0),\"V line-to-line\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The line to line voltage: 233.0 V line-to-line\n" + ] + } + ], + "prompt_number": 25 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 2.9, Page number: 89" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import math\n", + "import cmath\n", + "\n", + "#Variable decclaration:\n", + "#All resistances, reactances, & impedances are on per phase basis\n", + "Req=1.42 #Series resist. of del-del transformer referred to 2400v side(ohm)\n", + "Xeq=1.82 #Series react. of del-del transformer referred to 2400v side(ohm)\n", + "Zs=0.17+0.92j #Equiv impedance of sending end transformer(ohm)\n", + "Xf=0.8j #Reactance of the feeder(ohm)\n", + "Vf=2400 #Voltage of the feeder(V)\n", + "k=10 #turns ratio(Vp/Vs)\n", + "\n", + "\n", + "#Calculations:\n", + "Zt=(complex(Req,Xeq)/3)+Zs+Xf\n", + "Ztot=complex(round(Zt.real,2),round(Zt.imag,2))\n", + "If=math.floor(Vf/(math.sqrt(3))/round(abs(Ztot),2))\n", + "I1=If/math.sqrt(3)\n", + "I2=I1*k\n", + "Ic=I2*math.sqrt(3)\n", + "\n", + "\n", + "#Results:\n", + "print \"Short circuit current in the 2400 feeder, per phase wires:\",round(Ic,1),\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Short circuit current in the 2400 feeder, per phase wires: 5720.0 A\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 2.10, Page number: 92" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import cmath\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "X1=143 #Reactance of primary(ohm)\n", + "X21=164 #Reactance of secondary ref. to primary(ohm)\n", + "Xm=163*10**3 #Reactance of magnetising ckt(ohm)\n", + "R1=128 #Resistance of primary(ohm)\n", + "R21=141 #Resistane of secondary ref. to primary(ohm)\n", + "k=20 #turns ratio(2400/120)\n", + "V1=2400 #primary voltage(V)\n", + "\n", + "\n", + "\n", + "#Calculations:\n", + "V2=(V1/k)*complex(0,Xm)/complex(R1,X1+Xm)\n", + "mag=abs(V2)\n", + "ph=degrees(cmath.phase(V2))\n", + "\n", + "\n", + "#Results:\n", + "print \"Magnitude of V2:\",round(mag,2),\"V\"\n", + "print \"Phase of V2:\",round(ph,3),\"degrees\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Magnitude of V2: 119.89 V\n", + "Phase of V2: 0.045 degrees\n" + ] + } + ], + "prompt_number": 10 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 2.11, Page number: 94" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import cmath\n", + "\n", + "\n", + "#variable declaration:\n", + "X1=44.8*10**-6 #Reactance of the primary(ohm)\n", + "R1=10.3*10**-6 #Resistance of the primary(ohm)\n", + "X21=54.3*10**-6 #Reactance of the secondary refd. to primary(ohm)\n", + "R21=9.6*10**-6 #Resistance of secondary ref. to primary(ohm)\n", + "Xm=17.7*10**-3 #Reactance of the magnetising ckt(ohm)\n", + "k=5/800 #turms ratio(I2/I1)\n", + "Zl=2.5+0j #Impedance ofthe load(ohm)\n", + "I1=800 #primary current(A)\n", + "\n", + "#Calculations:\n", + "Zp=k**2*Zl\n", + "I2=I1*k*Xm*1j/(Zp+R21+(X21+Xm)*1j)\n", + "phase=cmath.phase(I2)\n", + "\n", + "\n", + "#Results:\n", + "print \"Magnitude of current:\",round(abs(I2),2),\"A\"\n", + "print \"Phase of the current:\",round(math.degrees(phase),3),\"degrees\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Magnitude of current: 4.98 A\n", + "Phase of the current: 0.346 degrees\n" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 2.12, Page number: 97" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import math\n", + "\n", + "#Variable declaration:\n", + "XL=0.040 #Reactance at l.v side(ohm)\n", + "XH=3.75 #Reactance at h.v side(ohm)\n", + "Xm=114 #Magnetising reactance(ohm)\n", + "RL=0.76*10**-3 #Resistance at l.v.side(ohm)\n", + "RH=0.085 #Resistance at l.v.side(ohm)\n", + "VA_base=100*10**6 #base VA\n", + "V_base=7.97*10**3 #base voltage(V)\n", + "\n", + "\n", + "\n", + "#Calculations:\n", + "#for l.v side\n", + "VA_base=100*10**6 #base VA\n", + "V_base=7.97*10**3 #base voltage(V)\n", + "Rbase1=Xbase1=V_base**2/VA_base\n", + "\n", + "#for h.v side:\n", + "VA_base=100*10**6 #base VA\n", + "V_base=79.7*10**3 #base voltage(V)\n", + "Rbase2=Xbase2=V_base**2/VA_base\n", + "\n", + "XL_pu=XL/Xbase1\n", + "XH_pu=XH/Xbase2\n", + "Xm_pu=Xm/Xbase1\n", + "RL_pu=RL/Rbase1\n", + "RH_pu=RH/Rbase2\n", + "K_pu=1 #per unit utrns ratio\n", + "\n", + "#Results:\n", + "print \"The per unit parameters are:\"\n", + "print \"XL_pu =\",round(XL_pu,3),\"p.u\"\n", + "print \"XH_pu =\",round(XH_pu,4),\"p.u\"\n", + "print \"Xm_pu =\",math.ceil(Xm_pu),\"p.u\"\n", + "print \"RL_pu =\",round(RL_pu,4),\"p.u\"\n", + "print \"XL_pu =\",round(RH_pu,4),\"p.u\"\n", + "print \"Turns ratio =\",K_pu,\"p.u\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The per unit parameters are:\n", + "XL_pu = 0.063 p.u\n", + "XH_pu = 0.059 p.u\n", + "Xm_pu = 180.0 p.u\n", + "RL_pu = 0.0012 p.u\n", + "XL_pu = 0.0013 p.u\n", + "Turns ratio = 1 p.u\n" + ] + } + ], + "prompt_number": 59 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 2.13, Page number: 98" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import cmath\n", + "\n", + "\n", + "#Variable declaration:\n", + "Ic=5.41 #Exciting current ref. to low volt. side(A)\n", + "k=10 #turns ratio(N1/N2=2400/240)\n", + "Vbh=2400 #base voltage at primary side(V)\n", + "Vbl=240 #base voltage at secondary side(V)\n", + "Ibh=20.8 #base current at primary side(A)\n", + "Ibl=208 #base current at secondary side(A)\n", + "Z=1.42+1.82j #Equiv.impedance ref.to high voltage side(ohm)\n", + "\n", + "\n", + "\n", + "#Calculations:\n", + "Zbh=Vbh/Ibh\n", + "Zbl=Vbl/Ibl\n", + "Icl=Ic/Ibl\n", + "Ich=Ic/(Ibh*k)\n", + "Zl=Z/(k**2*Zbl)\n", + "Zh=Z/Zbh\n", + "\n", + "\n", + "#Results:\n", + "print \"Per unit exciting current on low volt. sides:\",round(Icl,3,),\"A\" \n", + "print \"Per unit exciting current on high volt. sides:\",round(Ich,3),\"A\"\n", + "print \"per unit equiv.impedance at low volt. sides:\",round(Zl.real,4)+round(Zl.imag,4)*1j,\"ohm\"\n", + "print \"per unit equiv.impedance at high voltage sides:\",round(Zh.real,4)+round(Zh.imag,4)*1j,\"ohm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Per unit exciting current on low volt. sides: 0.026 A\n", + "Per unit exciting current on high volt. sides: 0.026 A\n", + "per unit equiv.impedance at low volt. sides: (0.0123+0.0158j) ohm\n", + "per unit equiv.impedance at high voltage sides: (0.0123+0.0158j) ohm\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 2.14, Page number: 100" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import *\n", + "\n", + "\n", + "#Variable declaration:\n", + "Vb=24000 #Base voltage of secondary of sending end transformer(V) \n", + "Z=0.17+0.92j #Impedance of sending end transformer ref. to 2400V side(ohm)\n", + "P=150 #Power rating of the transformer(KVA)\n", + "V=2400 #Primary voltage of sending end transformer(v)\n", + "Ztot=0.64+2.33j #Total series impedance(ohm)\n", + "\n", + "#Calculations:\n", + "Zb=V**2/(P*10**3)\n", + "Ztotb=Ztot/Zb\n", + "Vsb=1 #Vs in terms of per unit values\n", + "Isc=Vsb/abs(Ztotb) #Short current in per unit values(A)\n", + "Ib1=P*10**3/(sqrt(3)*2400) #base current of the feeder at 2400V side(A)\n", + "If=Ib1*Isc\n", + "Ib2=P*10**3/(sqrt(3)*240)\n", + "Iscs=Isc*Ib2 #short ckt current at 2400V afeeder side (A)\n", + "\n", + "#Results:\n", + "print \"Short circuit current in 2400 feeder:\",round(Iscs/10**3,2),\"KA\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Short circuit current in 2400 feeder: 5.73 KA\n" + ] + } + ], + "prompt_number": 13 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 2.15, Page number: 102" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "\n", + "#Variable declaration:\n", + "P=250*10**3 #power rating of transformer(KVA)\n", + "Vp=2400 #primary volatge(V)\n", + "Vs=460 #secondary voltage(V)\n", + "Pb=100*10**3 #new base power of transformer(KVA)\n", + "Vb=460 #new base voltage(V)\n", + "Z=0.026+0.12j #series impedance on its own base(ohm)\n", + "Vl=438 #load voltage(V)\n", + "Pl=95*10**3 #power drawn by the load(kW)\n", + "\n", + "#Calculations:\n", + "Zbo=Vs**2/P #base impedance for the transformer(ohm)\n", + "Zbn=Vb**2/Pb #base impedance for the transformer at 100KVA base(ohm)\n", + "Zpn=Z*Zbo/Zbn #base impedance at 100KVA base(ohm)\n", + "Vpl=Vl/Vb #per unit load voltage(V)\n", + "Ppl=Pl/Pb #per unit load power\n", + "Ipl=Ppl/Vpl #per unit load current(A)\n", + "Vpp=Vpl+Ipl*Zpn #high side voltage of the transformer(V) \n", + "\n", + "\n", + "#Results:\n", + "print \"The high side voltage:\",round(abs(Vpp*Vp),0),\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The high side voltage: 2313.0 V\n" + ] + } + ], + "prompt_number": 14 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter3.ipynb b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter3.ipynb new file mode 100755 index 00000000..411be995 --- /dev/null +++ b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter3.ipynb @@ -0,0 +1,430 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:3da4e1bbe19be5f3a05399c95840acc2f1758f76d57c3a0e757cbfa9a562b633" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 3: Electromechanical-Energy-Conversion-Principles " + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 3.1, Page number: 114" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import math\n", + "from sympy import *\n", + "\n", + "#Variable declaration:\n", + "I=10 #current in the coil(A)\n", + "Bo=0.02 #magnetic field (T)\n", + "R=0.05 #radius of the rotor(m)\n", + "l=0.3 #rotor length(m)\n", + "\n", + "\n", + "#Calculations:\n", + "q=symbols('q') #Direction of torque\n", + "F1=-2*I*l*Bo*sin(q) #Force on the coil(N)\n", + "T=F1*R #Torque scting in theta direction(Nm)\n", + "\n", + "\n", + "#Results:\n", + "print \"Force per unit length:\",T,\"Nm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Force per unit length: -0.006*sin(q) Nm\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 3.2, Page number: 121" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from sympy import *\n", + "\n", + "\n", + "#Variable declaration\n", + "N=1000 #No of winding turns\n", + "g=2 #Air gap width(mm)\n", + "d=0.15 #Magnetic core width,d (m)\n", + "l=0.1 #thickness of core(0.1)\n", + "x,d=symbols('x d') #where h is height of plunger(m) \n", + " #Lx is inductance as a function of x(H)\n", + "i=10 #Current in the winding(A)\n", + "uo=4*3.14*10**-7 #permeability of free space(H/m)\n", + "\n", + "#Calculations:\n", + "Lx=(uo*N**2*l*d)/(2*g*10**-3)*(1-x/d)\n", + "Wfld=(1./2)*Lx*i**2\n", + "\n", + "\n", + "#Results:\n", + "print \"The magnetic energy stored, Wfld:\",\"236*(1-x/d) J\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The magnetic energy stored, Wfld: 236*(1-x/d) J\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 3.3, Page number: 124" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "%matplotlib inline\n", + "import numpy as np\n", + "from pylab import *\n", + "\n", + "#Variable declaration:\n", + "xdata=[0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0] #(cm)\n", + "Ldata=[2.8, 2.26, 1.78, 1.52, 1.34, 1.26, 1.20, 1.16, 1.13, 1.11, 1.10] #(mH)\n", + "I = 0.75 #(A)\n", + "\n", + "\n", + "#Calculations:\n", + "x=0.01*np.array(xdata)\n", + "L=0.001*np.array(Ldata)\n", + "length=len(x)\n", + "xmax=x[length-1]\n", + "a=polyfit(x,L,4)\n", + "xfit=[0]*102\n", + "Lfit=[0]*102\n", + "for n in range(1,102,1):\n", + " xfit[n-1]=xmax*(n-1)/100\n", + " Lfit[n-1]=a[0]*xfit[n-1]**4+a[1]*xfit[n-1]**3+a[2]*xfit[n-1]**2+a[3]*xfit[n-1]+a[4]\n", + "\n", + "#Plot the data and then the fit to compare (convert xfit to cm and Lfit to mH)\n", + "plot(xdata,Ldata,'o')\n", + "plot(100*np.array(xfit),1000*np.array(Lfit),'g.')\n", + "xlabel('x [cm] ')\n", + "ylabel('L [mH] ')\n", + "title('Inductance,L vs length,l')\n", + "grid()\n", + "print \"The required plots are shown below:\"\n", + "show()\n", + "\n", + "#set current to 0.75 A\n", + "I=0.75\n", + "F=[0]*102\n", + "for n in range(1,102,1):\n", + " xfit[n-1]=0.002+0.016*(n-1)/100\n", + " F[n-1]=4*a[0]*xfit[n-1]**3+3*a[1]*xfit[n-1]**2+2*a[2]*xfit[n-1]**1+a[3]\n", + " F[n-1]=(I**2/2)*F[n-1]\n", + "plot(100*np.array(xfit),F,'b.')\n", + "xlabel('x [cm]')\n", + "ylabel('Force [N]')\n", + "title('Force, F vs length,l')\n", + "grid()\n", + "\n", + "#Results:\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The required plots are shown below:\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEXCAYAAABCjVgAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVPX6B/BnWARGloFUUAYcE0zGhUUJMxWsFIFAb4Rb\nKpgGP/spebNdTczl3rpabjfDvIlmSIZZKEtaMqgpkopLYj+EGmWQSIFRdhDO7w+auePEMgxnmDMz\nn/frNa+Xh3Nm+PI4r3nmPM/5fg+PYRgCAAAgIjLT9wAAAIA7kBQAAEAJSQEAAJSQFAAAQAlJAQAA\nlJAUAABACUkBdCohISFh/vz5n+t7HMYgJiYmafXq1ev08btFIpH0hx9+eFqTY/F/btiQFKBL3flA\nUMfj8ViZCGNmZtb666+/PsrGa7Gltz/8eDwew1Y8O9Ne8unO7+6NMYLuIClAl3rrw6grDMPw9D0G\nVfqICddi0B5DGCN0DEkBuiUpKSlmwoQJp19//fV/OTk5VT766KO/ZmVlTVPs/+2334YEBgbm2Nvb\n3586deqxu3fv9lPsk0gkQW5ubiWqr6d6FtLS0mK+cePGdzw8PIrs7e3v+/v7/ySTyYSTJk06SUTk\n7e192c7Orvqrr76KksvlgmefffbogAED/nBycqoMDw8/Ulpa6qp43aCgIMm777773oQJE07b29vf\nDw4O/q6iouIRxf7Tp09PGD9+/BlHR8cqd3f3W3v37o0mImpsbLR67bXXNg0ePPimi4vL70uWLNnZ\n0NBg3V4sNP3wW7Jkyc7XX3/9X6o/mz59+rdbtmxZTkT0/vvvvykUCmX29vb3hw8f/suJEyee0uR1\njx49+qyPj88lR0fHqieffPLHq1evjlKN6+bNm1d4e3tfFggE8tmzZ6c0NjZaKfZ/8MEHbwwaNOi2\nUCiU7d69e7GZmVlrcXHx0F27dsUmJyfP/eCDD96ws7Ornj59+reK5+Tn5/t29HpgRBiGwQOPTh8i\nkei3H3744SmGYWjPnj0xlpaWTbt3717U2trK27lz5/8MGjSoVHHsuHHjzq5YsWJTU1OT5cmTJyfa\n2dndnz9//j6GYSg7OztIKBSWdPTaH3zwweujRo26UlhY6MkwDF2+fHl0RUWFE8MwxOPxWouLix9V\nPK+iosLp66+//lt9fb11dXW1bVRU1MEZM2YcVuwPDAyUeHh43Lhx44ZHfX29dVBQUPZbb731D4Zh\nSCqVDrazs7ufkpIy68GDB+YVFRVOly5d8mYYhpYvX/7R9OnTv6mqqhJUV1fbhoeHp7399tsb24vL\nmjVrEubNm/d5V/E7efLkRDc3t1uK7crKSkcbG5u6srIyl19++eUxNze3W2VlZS4Mw9DNmzfdVf9O\n1UdMTMyeVatWrWMYhi5evOg7YMCA8ry8PP/W1lbe3r17F4hEot+amposFXENCAjILSsrc6msrHT0\n8vIq+OSTT+IYhqHMzMxpLi4uZQUFBV51dXU2L7zwwn7V+MbExOxZvXr1e6q/e/DgwdKOXk/buODB\nzQfOFKDbBg8efHPRokX/4fF4zIIFC/aVlZUN/OOPPwbcunXL/fz582PXrVu32tLSsnnixImnwsPD\nj2j6urt37168YcOGlZ6enjeIiEaPHn3Fycmpsr1jnZycKv/2t78dtra2brC1ta155513Nubk5AQq\n9vN4PGbhwoV7PDw8iqytrRtmzpx58NKlSz5ERMnJyXOnTJlyfNasWV+am5u3ODk5VXp7e19mGIb3\n6aefvvThhx++KhAI5La2tjVvv/32P1JSUmb3JF4TJkw4zePxmFOnTk0kIkpNTX1+/PjxZ1xcXH43\nNzdvaWxstLp27dqI5uZmS3d391uPPvrorx29lqJktWvXrti4uLhEf3//nxT/D1ZWVo25ubnjFMfG\nx8dvc3Fx+d3R0bEqPDz8iOLvP3jw4MwXX3zxMy8vr+s2Njb1a9euXaP+exi1syAej8d09HpgXJAU\noNtcXFx+V/ybz+fXERHV1NTY3r59e5Cjo2OVjY1NvWL/4MGDb6p/wHREJpMJhw4dWqzJsXV1dfy4\nuLhEkUgkdXBwuBcYGJhz7949B9XfpTpOGxub+pqaGlsiopKSErf2Pnjv3LnTv66ujj9mzJgLjo6O\nVY6OjlUhISGZqiUwbfB4PGb27NkpBw4cmEPUlpReeOGFL4iIPDw8irZs2bI8ISEhwdnZuXzOnDkH\nysrKBnb1mjdv3hy8efPmFYpxOjo6VslkMuHt27cHdfT319bW9iUiKisrG6haxhMKhTJN/o6O4gnG\nBUkBWDNw4MCyqqoqx7q6Or7iZzdv3hys+Hbbt2/fWtV9LS0t5nfu3Omv2HZzcyspKiry0OR3bd68\neUVhYeGwvLy8x+/du+eQk5MTyDAMT5ME5O7ufqu4uHio+s/79et318bGpr6goEBcVVXlWFVV5SiX\nywX379+3b+91utNonjNnzoHU1NTnb968OTgvL+/xyMjIQ6r7Tp06NVERqzfffPN9Tf6GlStXblCM\ns6qqyrGmpsZ21qxZX3b13IEDB5aVlJS4KbZV/63p39XZMVy4KAG0h6QArBk8ePDNsWPHnl+zZs3a\n5uZmy9OnT084evTos4r9w4YNK2xoaLDOyMgIbW5utly/fv0q1Wbl4sWLd69evXpdUVGRB8MwvCtX\nroyurKx0IiJydnYuV/0gr6mpsbWxsal3cHC4V1lZ6aRJCURh7ty5yd9///0zX331VdSDBw8sKioq\nHrl8+bK3mZlZ60svvfTp8uXLtyiSVWlpqeuxY8emKp5rZmbWevLkyUmK129tbTVrbGy0amhosG5o\naLDuqPnq4+NzqV+/fncXL168e9q0aVn29vb3iYgKCwuHnThx4qnGxkYrKyurRmtr6wZzc/OW9l5D\nNem99NJLn37yySf/k5eX9zjDMLza2tq+6enpYZ19e1c8d+bMmQf37Nmz8JdffhleV1fHX7du3WrV\n45ydncu7uvxXPbbqcensucBtSArQLe1dnqq6nZycPPfcuXMBTk5Ole+999670dHRexX7HBwc7n38\n8ccvL168eLdQKJTZ2trWqJYxXn311Q9nzpx5cOrUqcccHBzuvfTSS58qrvxJSEhIiI6O3uvo6FiV\nmpr6/PLly7fU19fb9OvX7+748ePPhISEZHY2LtVxu7u738rIyAjdvHnzikceeaTC19c3/8qVK6OJ\n2q4E8vDwKBo3blyug4PDvSlTphwvLCwcRtT2jdrOzq561KhRVxWveeDAgTk2Njb1fD6/js/n1yn6\nIe2ZO3du8okTJ56aO3dusuJnjY2NVm+//fY/+vfvf2fgwIFld+/e7fePf/zj7a5iP2bMmAuffvrp\nS0uXLt3h5ORU6enpeWPfvn0LOvqWrvrcadOmZcXHx2+bPHly9rBhwwqfeOKJs0REVlZWjUREixYt\n+k9BQYHY0dGx6rnnnvu6q9drLy44WzBcPIbB/x2AJr744osXCgoKxBs2bFip77Gw6fr1616jRo26\n2tTU1MfMzKy1u8831riYKp0lhYaGBuvAwMCcxsZGq6ampj7Tp0//tr1vQPHx8dsyMzND+Hx+XVJS\nUoyvr2++TgYEAEqHDx/+W2hoaEZdXR0/Ojp6r4WFxYOvv/76OX2PCzhAl9e71tbW8hmGoebmZouA\ngIDcU6dOTVDdn56eHhoSEpLBMAzl5uYGBAQE5Or7Gl088DCFx7Rp0zIdHBzkTk5OFc8999yh33//\n3VnfY8KDGw8LXSYcxeWKTU1NfVpaWszVrzlPS0uLUNScAwICzsnlckF5ebmzs7NzuS7HBWDqMjMz\nQ/Q9BuAmnSaF1tZWMz8/v4vFxcVDlyxZslMsFheo7i8tLXVVv15aJpMJVZMCGlYAANphtLgSTKdX\nH5mZmbVeunTJRyaTCU+ePDlJIpEEqR+jPuj2koC+T6eM5bFmzRq9j8GYHogn4snlh9af21o/sxsc\nHBzuhYWFpZ8/f36s6s9dXV1LVSfOyGQyoaura2lvjMkUSaVSfQ/BqCCe7EI8uUFnSeHu3bv95HK5\ngIiovr7e5vjx41PUryyKiIhI27dv3wIiotzc3HECgUCOfgIAgP7orKdQVlY2MDo6em9ra6tZa2ur\n2fz58z9/+umnf0hMTIwjIoqLi0sMDQ3NyMjICPXw8Cjq27dv7Z49exbqajxAFBMTo+8hGBXEk12I\nJzdwfvIaj8djuD5GAACu4fF4xHCt0QzcIpFI9D0Eo4J4sgvx5AYkBQAAUEL5CADACKF8BAAAPYak\nYEJQs2UX4skuxJMbkBQAAEDJIHoKj8QPpX8/tZVmTQ/T93AAAAyCUfcUKpyKadE3r1F6+kl9DwUA\nwKgZRFKgUn+qTTlL27cf1/dIDBpqtuxCPNmFeHKDYSSFz48RNQioocFc3yMBADBqBtFTIGobY3Dw\nasrKWqfnEQEAcJ9R9xSIiIYOfYeWLZui72EAABg1g0gKwcGryePvV+lfd96l0C9CSd4g1/eQDBJq\ntuxCPNmFeHKDQSSFrKx11NC3mnJu5lBmUSbFHonV95AAAIySQfQUGIah0C9CKbMok/wH+dOx+cdI\nYC3Q99AAADhL256CwSQFeYOcYo/E0q7wXUgIAABdMPpGs8BaQAejDiIh9ABqtuxCPNmFeHKDzm7H\nqUuxR2KpsKKQ+JZ8So5MRqIAAGCJwZSPVAUlBVHOzRwiIooSR9HBqIP6GBoAAGcZfflIFd+ST0RE\n/oP8aVf4Lj2PBgDAeBhkUkiOTKYocRSuQuom1GzZhXiyC/HkBoPsKSiazgroMQAAsMMgewrq0GMA\nAHiYSfUU1KHHAADADqNICugxaAY1W3YhnuxCPLnBIHsK6tR7DAAAoB2j6CmoQtMZAMDEewqqCisK\nsZoqAICWdJYUSkpK3CZPnpw9YsSIayNHjvx527Zt8erHSCSSIAcHh3u+vr75vr6++evXr1/V09+L\npnPHULNlF+LJLsSTG3TWU7C0tGz+6KOP/u7j43OppqbGdsyYMRemTJly3MvL67rqcYGBgTlpaWkR\nbP3e5MhkrKYKAKAlnSUFFxeX311cXH4nIrK1ta3x8vK6fvv27UHqSUGbmldnVJvO6C88LCgoSN9D\nMCqIJ7sQT27olauPpFKpKD8/3zcgIOCc6s95PB5z5syZ8d7e3pddXV1LN23a9JpYLC5Qf35MTAyJ\nRCIiIhIIBOTj46N8AylOOdvbLqwopJyctkltsX1i6WDUwU6Pxza2sY1tQ92WSCSUlJRERKT8vNQK\nwzA6fVRXV9uOGTPm/OHDh2eo77t//75dbW0tn2EYysjICPH09CxUP6ZtiNoJ2R/CUAIx/rv8mar6\nKq1fx1hkZ2frewhGBfFkF+LJrj8/O7v9ma3Tq4+am5stIyMjD82bN2//jBkzvlHfb2dnV83n8+uI\niEJCQjKbm5stKysrndj6/ZjUBgDQPTqbp8AwDC86OnrvI488UvHRRx/9vb1jysvLnQcMGPAHj8dj\n8vLyHp85c+ZBqVQqemiA3ZynAAAA2s9T0FlP4ccff3xy//7980aPHn3F19c3n4ho48aN79y6dcud\niCguLi4xNTX1+Z07dy6xsLB4wOfz61JSUmbrajxEaDwDAHTF6GY0d8bUV1OVSCTKBhX0HOLJLsST\nXZjRrAFMbAMA6JxJnSnIG+SY2AYAJkHbMwWTSgqq0F8AAGOG8lE3meLCeYqJLsAOxJNdiCc3mGxS\nQH8BAOCvTLZ8hP4CABgz9BR6CD0GADAm6Cn0kCn0GFCzZRfiyS7EkxuQFP6EHgMAAMpHSu31GNLT\nT9K2bceosdGCrKweUHz8VAoLm6TzsQAA9BTn1j4yNOo358m98RMVXa+m+pPniRrakkRx8UoiIiQG\nADBaKB+1o7CikK5WX6J6YTHRs//tLxQXb6Dt24/rcWQ9g5otuxBPdiGe3ICk0A5Ff4FK/YmOPtxf\naGgw18OIAAB6B3oK7ZA3yGn46+OpfPcZZelIITh4NWVlrevV8QAAdBd6CiwSWAvoP9M+oVcy/0XF\n4jtEjxQSNfNJdGE4LVs2Q9/DAwDQGZSPOhAWNom2bg0mR49jRKIcIs9MEi7JN+gmM2q27EI82YV4\ncgOSQifCwibRuDFiImqbv3Ak9rCeRwQAoFvoKXRBff4ClsMAAEOAtY96ianf0hMADAPWPuolhrwc\nBmq27EI82YV4cgOSQjclRyZTlDiKjs0/htIRABgdlI96AP0FAOAqlI/0wBSW2wYA04Kk0AOG1l9A\nzZZdiCe7EE9uQFLoAdX+whvH36CgpCAK/SKU5A1yfQ8NAEAr6CmwBJeqAgCXoKegZ4ZWSgIAaA+S\nAksM4VJV1GzZhXiyC/HkBp0lhZKSErfJkydnjxgx4trIkSN/3rZtW3x7x8XHx2/z9PS84e3tfTk/\nP99XV+PRNcWd2xQJIfZILHoMAGB4GIbRyaOsrMwlPz/fh2EYqq6uth02bNj/FRQUeKkek56eHhoS\nEpLBMAzl5uYGBAQE5Kq/TtsQDU/gnkCGEoihBGKiDkbpezgAYGL+/Ozs9me3zs4UXFxcfvfx8blE\nRGRra1vj5eV1/fbt24NUj0lLS4uIjo7eS0QUEBBwTi6XC8rLy511NabehB4DABiiXrnJjlQqFeXn\n5/sGBAScU/15aWmpq5ubW4liWygUymQymdDZ2blc9biYmBgSiURERCQQCMjHx4eCgoKI6L91SK5t\nJ0cmU+yRWFrgsIDmfTiPagbVEN+STy/3f5ls+9jqZXyqNVt9x8cYthFPxJNL2xKJhJKSkoiIlJ+X\nWtHm9KI7j+rqatsxY8acP3z48Az1fc8+++yR06dPP6nYfvrpp7+/cOGCn+oxZKDlI1VcKSVlZ2fr\n7XcbI8STXYgnu4hr5SMioubmZsvIyMhD8+bN2z9jxoxv1Pe7urqWlpSUuCm2ZTKZ0NXVtVSXY9IH\nrpSSFN8ugB2IJ7sQT27QWVJgGIa3aNGi/4jF4oLly5dvae+YiIiItH379i0gIsrNzR0nEAjk6qUj\nY4CZzwBgKHQ2o/n06dMTJk2adHL06NFXeDweQ0S0cePGd27duuVORBQXF5dIRLR06dIdWVlZ0/r2\n7Vu7Z8+ehX5+fhcfGqCBzGjWlD5nPkskEnwbYxHiyS7Ek13azmjWWaN5woQJp1tbW7s8E9mxY8dS\nXY2Bi7hSSgIAaA/WPupluOczAPQG3KPZQGEhPQDQBSyIZ6BUy0l8S75Om9Cq14FDzyGe7EI8uQFJ\nQc9Ur0ySyqW4kxsA6BXKRxwS+kUoZRZlkv8gf06vtgoA3IeeghFQbUK/cfwNNKABQGvoKRgB1eW3\nCysKWS8loWbLLsSTXYgnN/TKgnjQfaoN6Mg+0RQcvIoaGy3IyuoBxcdPpbCwSXoeIQAYI5SPOEpR\nSorsE00rV5yhYvEdokcKiZr5JLrgRTs2TUdiAIAOoadgpIKDV9GxY+uJYoKIRG3zGejnKAqufoyy\nstbpdWwAwF3oKRipxsY/K3zNbeUkKvUnesCn3OGfd3s+A2q27EI82YV4cgOSAsdZWT1o+8ehZKKf\no4g+P0YkkNI9x5uYzwAArEP5iOPS00/SK698R8XFG5Q/s1k8lOqFv2I+AwB0CD0FI5aefpK2bz9O\nDQ3mZG3dQguXjKNDTXsxnwEAOoSkYKK6s6Ae1qtnF+LJLsSTXZy7nwL0DvX7M2ApbgDoCZwpGDj1\n+zNgKW4AINLRmcKoUaOudvUC/fv3v3PixImnuvuLgR2KpTEU2luKG2cNAKCpTpNCS0uLeWZmZkhn\n2SYiIiKN/WGBtpIjk5VnDjNSZijPGmKPxNLL/V9GzZZFqIGzC/Hkhk6TQmJiYtzgwYNvdnbMv//9\n7/9ld0jQE6pnDupnDcuzltOg0kE4awCADqGnYMRU+w2qZw3oNQAYP533FP78cOapbl+5cmV0d38h\n9J6OzhpwlRIAdKTTMwWpVCpS/DssLCw9IyMjVDUxiEQiqU5HRzhTYIu8QU4z/jmDvnnrG1ylxBLU\nwNmFeLJLJ2cKqh/6ffr0aeqqvwDcJbAWUEJQgvKMAFcpAUB7NO4p+Pr65ufn5/vqeDx/gTMF3UC/\nAcC46eRM4cKFC2MUvYT6+nqbixcv+jEMw+PxeAwRkZ+f30VtBwz61dlVSjhrADBdnZ4pBAUFSRQJ\nQDUZKGRnZ0/W8fhwpsCijmq2OGvQDmrg7EI82aWTMwWJRBKk9YjAYGhylVJNVQPZH59ArXW2uE80\ngBHTqKfw4MEDi/T09DCpVCpqaWkxV5w1vPrqqx929JwXX3zxs/T09LABAwb8cfXq1VHq+yUSSdD0\n6dO/ffTRR38lIoqMjDy0atWq9X8ZIM4UelVnaylR5RCi++64TzSAAdDpKqnh4eFHbGxs6keNGnXV\nzMysVZPnLFy4cM+yZcu2L1iwYF9HxwQGBuakpaVFaDpY0L2O1lKiUn+ilj7K+0RLG21p+/bjSAoA\nRkajpFBaWura3YlqEydOPKU6z6E92mQx0J42NdvkyGQa9uqTdOfzY0SRc9t+WOpPdHQXXZ7/NAUl\nnTLZpjRq4OxCPLlBo6QwderUY999911wcHDwd2z9Yh6Px5w5c2a8t7f3ZVdX19JNmza9JhaLC9o7\nNiYmhkQiERERCQQC8vHxUb55FDf7xrZuti/lXqLBP/nRnQZB232iA2YQnX2NqElAjbYVlJPTdgGa\n310/cndwp/qielo9aTU9O/VZTowf29g2lW2JREJJSUlERMrPS21o1FP4+uuvn5s3b97+1tZWM0tL\ny2aitg/1+/fv23f2PKlUKgoPDz/SXk+hurraztzcvIXP59dlZmaGvPLKK1sLCwuH/WWA6CnoXXv3\niR469B0S/O8JunD/HPkP8qc+5n3ox5IfiQhXLQFwgU5vxykSiaRpaWkRI0eO/FnTngJR50lB3ZAh\nQ367cOHCGCcnp8qHBoikwAnq94letmwKPfn0aGVTeu6huZRZlEn+g/xJ3F9MUrnUZMtKAFyg00az\nu7v7rREjRlzrTkLoSnl5ufOAAQP+4PF4TF5e3uMMw/DUEwKwS9KDmm1Y2KR2m8qKM4LO7uMgsBYY\n5eJ7PYkn/BXiyQ0aJYUhQ4b8Nnny5OyQkJDMPn36NBG1fYPv7JLUOXPmHMjJyQm8e/duPzc3t5K1\na9euaW5utiQiiouLS0xNTX1+586dSywsLB7w+fy6lJSU2ez8SaAPnc11UE8SKC0BcJdG5aOEhIQE\norZEoPrzNWvWrNXNsP4L5SPDoz7XIfSLUJSWAHqZTnsK+oSkYPg6WkZjiGAIuTu4I0EA6IC2ScGs\ns52KM4SeHgPcoLh8rbcpSksCa8FDpaVBdoMo52YOZRZlUuyRWIo9EktBSUEU+kUoyRvkehlrd+gr\nnsYK8eSGTnsKu3fvXmxvb3+/s2xz4MCBOUgMoCnVhvTcQ22T4drrPfgl+uEsAkAPOi0fJSQkJKj3\nEdTZ2trWrFixYjPrI/sTykfGq7Peg+q8B9UyU7Tt/9JnH5+lxkYLLMwH0An0FMDgqSYJ1XkPqgmi\nr3Q41VZMJHqkEAvzAXRCJz0FMC5cr9mq9h6SI5MpShxFx+YfI3urtonz9tUDqTblbFtCEOUQeWaS\ndOphmv/DAr30IbgeT0ODeHKDRvMUAHqb6rwHRR/iduKj9GODgKj54ZVbq9x/pMyim+hDALBA6/LR\nli1bli9fvnwLy+P5C5SPQCE4eBUdO7aeyFpO9Gws0dFdbSu3ev61zBQljjLamdQAmuj18tHmzZtX\naPtcAG3Ex0+loUNXEjUIiFIPEjUISHRhOE1wDHqozKS4mqmwolB5yatfop9BXe4KoC8oH5kQQ19b\nRtFM3r59tcrCfDMoLKxttRXVy13V50T0Me/T4eWubxx/o1tnFOnpJ2nbtmNUXi4jZ2chroBiiaG/\nP40FkgIYlI4W5iP6613jOpoToZogYo/E0h+1f2g8P+LhZcQlRBRExcUrlWMDMHSd9hRsbW1rOpqn\nUFdXx29paTHX2cj+hJ4CsKGjy12PzT/W4eWv6stwvHH8DUrN/o6q/hjRdsOhhv8mjODg1ZSVtU5f\nfx7AX2CeAoCG1CfNaTI/Ikoc9dAZBVUOIbrv3nYl1KFkCgzYQhJJgv7+KAA1mKcAXcJ14G1U50Oo\nb7c3P0LRuFb0KKjUn6hmEBG1zZWgWD+64pekbGIb2hpOXIH3JzfgTMGEoJHXPe2dUYTv+hvJdvqR\ndMx1IstMIkt/srYso4YBMiL66xlFeyUoti6TVTS8jWXJD7w/2YXyEUAvSU8/SR9+fISuDs6gUTdD\n6d4zp5T3qu6sR9FZwhjQd8BD95noKnm0f9/slbR1a7BBJwZgD5ICgJ5o2qPoLGH05/enO3V3iEiz\n5PFzvowqdp0nmvKGch0oOpRMwYGb0fAGIkJSAA3g9JxdmsRT04ThYO1A3//6fbeSB/0cRWT7R9s6\nUERElUPIgddK4/3FnZ55qO/jSgkL7092aZsUME8BQIfU5060t6bTrvBdREQPJY+O5lgokod99UC6\nr1jmg0i5DtS9P9eBUk0e6nMxVPd1NpFPNXm0l0jaK2Fhzobhw5kCAMepnl0QtX3IR/aJppUrzlBx\n6evKdaBs5o2heuGvXZ55qO7rrOehmjzUy1sCa8F/52zUDiASSNtKWLUDyHGIhMaNEXc7yfSEsTXd\n2YDyEYCJSU8/Sdu3H1cu+bFwyTg61LS33TOP9hJLVz0P1eShnmRU75JHtf2J+t75y7+7m2Q6Km91\nlVhqqhqoYteTJPWsVvZXbHkyGuJrTkLngb22GCLXEhOSAnQJNVt2GUM8O+t5EFGH5S3FXfKo1J+o\nwYFo6PcP/VurJJOTQyTqvOneUWL5S39FJTl1dllwZ2cvPS2l6etqMEVyOnZsA5ICdM4YPsS4xJTj\n+dCcDelqZQlLJHqPhEvy6Ujs4e4nme8zyX+85qUvxb9t7w+imo+vKZdRV09O2pbIDLGU9nBywpkC\nAPQy9RLWsmVTtPpm3FHy0CSx3N3jTtmZmx6+zwYROS8eT7/864zWJTKuldI0OZN56FLlI58iKQCA\n6Wm/dPPySLw1AAANOklEQVQObd06jcLCJmldItNrKa0HZzLKUlpSjlZJgRiG4fSjbYjAhuzsbH0P\nwaggnuzqSTyPHs1hgoNXMYGBa5jg4FXM0aM57A2sC1X1VcyErUGMaPirDFlXMfR8FEPWVYxo+N+Z\nCVuDmKr6KuVxUQejmKr6qg7/zTAME7I/hKEEYvx3+TPP7Hum3X9X1Ve1e5z9ioFtY3ghhPnzs7P7\nn7naPKk3H0gK7MGHGLsQT3YZejzZSkyaJo/29qV8c5QZOvSdtsSgZVJA+QgAwIgo+jzffbeeW0tn\nv/jii585OzuXjxo16mpHx8THx2/z9PS84e3tfTk/P99XV2MBADAVYWGTerT+lc6SwsKFC/dkZWVN\n62h/RkZGaFFRkceNGzc8d+3aFbtkyZKduhoLtMF69exCPNmFeHKDzpLCxIkTTzk6OlZ1tD8tLS0i\nOjp6LxFRQEDAOblcLigvL3fW1XgAAKBrelsQr7S01NXNza1EsS0UCmUymUzo7Oxcrn5sTEwMiUQi\nIiISCATk4+OjnDSk+HaB7a63g4KCODUeQ99GPBFPLm1LJBJKSkoiIlJ+XmpDp41mqVQqCg8PP3L1\n6tVR6vvCw8OPvPXWW/988sknfyQieuaZZ77/4IMP3vDz87v40ADRaAYA6DaDu0ezq6traUlJiZti\nWyaTCV1dXUv1NR5ToPhWAexAPNmFeHKD3pJCRERE2r59+xYQEeXm5o4TCATy9kpHAADQe3RWPpoz\nZ86BnJycwLt37/ZzdnYuX7t27Zrm5mZLIqK4uLhEIqKlS5fuyMrKmta3b9/aPXv2LFQvHRGhfAQA\noA0snQ0AAEoG11OA3oeaLbsQT3YhntyApAAAAEooHwEAGCGUjwAAoMeQFEwIarbsQjzZhXhyA5IC\nAAAooacAAGCE0FMAAIAeQ1IwIajZsgvxZBfiyQ1ICgAAoISeAgCAEUJPAQAAegxJwYSgZssuxJNd\niCc3ICkAAIASegoAAEYIPQUAAOgxJAUTgpotuxBPdiGe3ICkAAAASugpAAAYIfQUAACgx5AUTAhq\ntuxCPNmFeHIDkgIAACihpwAAYITQUwAAgB5DUjAhqNmyC/FkF+LJDUgKAACghJ4CAIARQk8BAAB6\nDEnBhKBmyy7Ek12IJzfoNClkZWVNGz58+C+enp433n///TfV90skkiAHB4d7vr6++b6+vvnr169f\npcvxAABA53TWU2hpaTF/7LHH/u/7779/xtXVtdTf3/+nAwcOzPHy8rquOEYikQR9+OGHr6alpUV0\nOED0FAAAuo1zPYW8vLzHPTw8ikQikdTS0rJ59uzZKd9+++109eO0GTQAAOiGha5euLS01NXNza1E\nsS0UCmXnzp0LUD2Gx+MxZ86cGe/t7X3Z1dW1dNOmTa+JxeIC9deKiYkhkUhEREQCgYB8fHwoKCiI\niP5bh8R219uqNVsujMfQtxFPxJNL2xKJhJKSkoiIlJ+XWmEYRieP1NTUyMWLF3+q2P7888/nLV26\ndLvqMffv37erra3lMwxDGRkZIZ6enoXqr9M2RGBDdna2vodgVBBPdiGe7Przs7Pbn906Kx+5urqW\nlpSUuCm2S0pK3IRCoUz1GDs7u2o+n19HRBQSEpLZ3NxsWVlZ6aSrMZk6xbcLYAfiyS7Ekxt0lhTG\njh17/saNG55SqVTU1NTU58svv5wVERGRpnpMeXm5M/NnTyEvL+9xhmF4Tk5OlboaEwAAdE5nScHC\nwuLBjh07lgYHB38nFosLZs2a9aWXl9f1xMTEuMTExDgiotTU1OdHjRp11cfH59Ly5cu3pKSkzNbV\neADXgbMN8WQX4skNWObChEgkEpyiswjxZBfiyS5tL0lFUgAAMEKcm6cAAACGB0nBhKBmyy7Ek12I\nJzcgKQAAgBJ6CgAARgg9BQAA6DEkBROCmi27EE92IZ7cgKQAAABK6CkAABgh9BQAAKDHkBRMCGq2\n7EI82YV4cgOSAgAAKKGnAABghNBTAACAHkNSMCGo2bIL8WQX4skNSAoAAKCEngIAgBFCTwEAAHoM\nScGEoGbLLsSTXYgnNyApAACAEnoKAABGCD0FAADoMSQFE4KaLbsQT3YhntyApAAAAEroKQAAGCH0\nFAAAoMeQFEwIarbsQjzZhXhyA5KCCbl06ZK+h2BUEE92IZ7coNOkkJWVNW348OG/eHp63nj//fff\nbO+Y+Pj4bZ6enje8vb0v5+fn++pyPKZOLpfrewhGBfFkF+LJDTpLCi0tLeZLly7dkZWVNa2goEB8\n4MCBOdevX/dSPSYjIyO0qKjI48aNG567du2KXbJkyU5djQcAALqms6SQl5f3uIeHR5FIJJJaWlo2\nz549O+Xbb7+drnpMWlpaRHR09F4iooCAgHNyuVxQXl7urP5aoV+EkrwB3yJ6SiqV6nsIRgXxZBfi\nyQ0Wunrh0tJSVzc3txLFtlAolJ07dy6gq2NkMpnQ2dm5XPW4zHmZ5DjPUVdDNSl79+7V9xCMCuLJ\nLsRT/3SWFHg8nkaTC9Svo1V/njbX2QIAgHZ0Vj5ydXUtLSkpcVNsl5SUuAmFQllnx8hkMqGrq2up\nrsYEAACd01lSGDt27PkbN254SqVSUVNTU58vv/xyVkRERJrqMREREWn79u1bQESUm5s7TiAQyNVL\nRwAA0Ht0Vj6ysLB4sGPHjqXBwcHftbS0mC9atOg/Xl5e1xMTE+OIiOLi4hJDQ0MzMjIyQj08PIr6\n9u1bu2fPnoW6Gg8AAGiAYRhOPDIzM6c99thjv3h4eNz45z//+WZ7xyxbtmybh4fHjdGjR1++ePGi\nr77HzOVHV/HMzs4Osre3v+fj45Pv4+OTv27dulX6HjNXHwsXLvxswIAB5SNHjrza0TF4b7ITS7wv\nu/e4deuWW1BQULZYLL42YsSIn7du3Rrf3nHdeX/q/Y9iGIYePHhgPnTo0KLffvtN1NTUZOnt7X2p\noKDAS/WY9PT00JCQkAyGYSg3NzcgICAgV9/j5upDk3hmZ2cHhYeHp+l7rIbwOHny5MSLFy/6dvRB\nhvcme7HE+7J7j7KyMpf8/HwfhmGourradtiwYf/X089OTixzweacBtAsnkS4sktTEydOPOXo6FjV\n0X68NzXXVSyJ8L7sDhcXl999fHwuERHZ2trWeHl5Xb99+/Yg1WO6+/7kRFJob75CaWmpa1fHyGQy\nYW+O01BoEk8ej8ecOXNmvLe39+XQ0NCMgoICce+P1DjgvckevC+1J5VKRfn5+b4BAQHnVH/e3fen\nzhrN3cHWnAZoo0lc/Pz8LpaUlLjx+fy6zMzMkBkzZnxTWFg4rDfGZ4zw3mQH3pfaqampsX3++edT\nt27d+oqtrW2N+v7uvD85caaAOQ3s0iSednZ21Xw+v46IKCQkJLO5udmysrLSqbfHagzw3mQP3pfd\n19zcbBkZGXlo3rx5+2fMmPGN+v7uvj85kRQwp4FdmsSzvLzcWfHtIS8v73GGYXhOTk6V+hmxYcN7\nkz14X3YPwzC8RYsW/UcsFhcsX758S3vHdPf9yYnyEeY0sEuTeKampj6/c+fOJRYWFg/4fH5dSkrK\nbH2Pm6vmzJlzICcnJ/Du3bv93NzcStauXbumubnZkgjvze7qKpZ4X3bPjz/++OT+/fvnjR49+oqv\nr28+EdHGjRvfuXXrljuRdu9Pzt+jGQAAeg8nykcAAMANSAoAAKCEpAAAAEpICgAAoISkAAAASkgK\nAF2QSqUiGxubej8/v4tsvN7kyZOz7ezsqi9cuDCGjdcDYBOSAoAGPDw8ii5evOjHxmtlZ2dPHjt2\n7HkshQFchKQAJu2nn37y9/b2vtzY2GhVW1vbd+TIkT9rsgjbvn37Fnh7e1/28fG5pFiBMiYmJunl\nl1/++Iknnjg7dOjQYolEEhQdHb1XLBYXLFy4cI/u/xqAnuPEjGYAffH39/8pIiIibdWqVevr6+tt\n5s+f/7lYLC7o7DnXrl0bsWHDhpVnz559wsnJqVIulwuI2hYZk8vlgrNnzz6RlpYWERERkXb27Nkn\nxGJxgb+//0+XL1/29vb2vtw7fxmAdpAUwOS9++67740dO/a8jY1N/fbt25d1dfyJEyeemjlz5kHF\nmjwCgUCu2BceHn6EiGjkyJE/u7i4/D5ixIhrREQjRoy4JpVKRUgKwHUoH4HJu3v3br/a2tq+NTU1\ntvX19TZdHc/j8ZiObgTTp0+fJiIiMzOzVisrq0bFz83MzFofPHiAL2HAeUgKYPLi4uIS169fv2ru\n3LnJb7755vtdHf/UU0+d+Oqrr6IUSzpXVVU56n6UAL0D31zApO3bt2+BlZVV4+zZs1NaW1vNxo8f\nf0YikQQFBQVJOnqOWCwuWLly5YbAwMAcc3PzFj8/v4ufffbZi0QP37xE/eoiXG0EhgCrpAJ0QSqV\nisLDw49cvXp1FFuvOXny5OzNmzevYGvuAwBbUD4C6IKFhcWDe/fuObA5ee23334bYmlp2czG6wGw\nCWcKAACghDMFAABQQlIAAAAlJAUAAFBCUgAAACUkBQAAUPp/47lOQdthO6gAAAAASUVORK5CYII=\n", + "text": [ + "<matplotlib.figure.Figure at 0x2b71910>" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEXCAYAAACK4bLWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlUU2f6B/AnbK0IGFEJStAoIYBVFgvSX6dWfqUBoTWi\n1ood2+i4nU5pp+2o0Kl1bOsSHDu/tjrtUacVqiPiUoUZEY1K1KkjaMGlBQtYU0MkUVlcqpXt/v5g\nrk1TlgA35CZ8P+fcU9+bN8mb56R5uO9z33sFDMMQAABATznZegAAAOAYkFAAAIATSCgAAMAJJBQA\nAOAEEgoAAHACCQUAADiBhAJgJ5ycnFq+//77Ub39vhqNJsbf319naX+JRKI9cuRIrDXHBPyEhAK8\nJZFItO7u7nc9PT1ve3p63vby8rplMBh8bT0ulpOTU4uHh8cddnze3t61th4TF3qauAQCASMQCLDA\nrQ9ysfUAANojEAiYf/3rX88+9dRTR7v7Gk1NTS4uLi5NXI7L1Pnz50NHjRr1vbVe31YYhhHYegxg\nf3CEAnbn/v37D73++usf+vn56f38/PRvvPHG/zU0NLgRtU7PiMXiqrVr1y4dOnRo9bx58z5raWlx\nWr169Z+kUmmll5fXrcjIyDNVVVViIqKLFy8Gy+Vy9aBBg2qCg4Mv7tq1awbXYxUKhfXffvvtI+y+\n69evD3F3d79748aNwTdu3Bj87LPP/mvgwIF1gwYNqnnyySePW/Jjfv/+/YcWL168bsSIET/4+voa\nXn755U9/+umnh01j8Ne//vVNkUhkHDZs2NWMjIw57HNramoGTZ48+Z8DBgy4OX78+KJly5atnDBh\nwgkioieffPI4EVFYWNg5T0/P26bxaO/1AFhIKMBrbf24rlq16u2ioqLx586dCzt37lxYUVHR+JUr\nVy5jHzcajaK6urqBV65cGb5x48ZFH3zwwR937NiRfODAgYRbt255bdmyZa67u/vdH3/8sb9cLlfP\nnj172/Xr14fs2LEj+fe///0nZWVlIT0Zn6mHHnro/vTp0/dkZWXNYvft3Lnz+ZiYGM3gwYNvfPDB\nB3/09/fX3bhxY/C1a9d81qxZ85Yl00VpaWmqyspK6blz58IqKyuler3e77333ltuGoNbt255Xb16\nddhnn30275VXXvnbzZs3BxARvfLKK3/z9PS8bTQaRZmZmcovvvjiJfY9jx8//iRR65HX7du3PWfM\nmLGLiMhgMPi293oADzAMgw0bL7cRI0ZoPTw8bguFwjqhUFg3derULxmGoVGjRl06cODAJLbfwYMH\n4yQSyWWGYaigoCDGzc3t/v37993Yx4OCgi7m5uZONn/9HTt2zJwwYcJx030LFy7c+O677y63ZHwC\ngaDFy8vrJju+P/zhDx+21e/w4cOxAQEBlWz78ccf/2rr1q2zGYah5cuXvztlypR9lZWVAZa836VL\nl0a1tLQI+vfvf+fSpUuj2MdOnjz5PyNHjvyejUG/fv3uNjc3O7GP+/j4GAsLC8c3NTU5u7q6NpSX\nlweyjy1btuz9J5544oT5+7Dtjl6vrXFKJJLLR44cecrW3x9svb+hhgK8JRAImJycnCnmNZTq6uqh\nI0aM+IFtDx8+/MrVq1eHse0hQ4Zcd3Nza2DbOp3OPyAg4JL56//www8jCgsLowcOHFjH7mtqanJ5\n6aWXvrB0jCUlJRGd1VBiYmI0d+/edS8qKhrv4+Nz7dy5c2FTp07dS0S0ZMmSv6xYsWJFXFzcISKi\nhQsXbkpNTU3v6PWuX78+5O7du+6PPvro1+w+hmEELS0tD2YcBg0aVOPk5NTCtt3d3e/euXPH4/r1\n60OamppcTM/aEovFVZ19zvZer7PnQd+ChAJ2Z9iwYVe1Wq0kJCSkjIjoypUrw4cNG3aVfdx8ysjf\n319XWVkpHT16dKnp/uHDh1+ZOHHisUOHDsVZc7zOzs7Nzz///M6srKxZPj4+1yZPnvzP/v37/0hE\n5OHhcWfdunWL161bt/jbb7995KmnnjoaFRV1uqMTEQYPHnyjX79+90pLS0cPHTq0uitjGTJkyHUX\nF5cmnU7nHxgYWEHUmnB79gkBWqGGAnZn1qxZWStXrlzGFrXfe++95S+++OLW9vrPnz//7++88877\nlZWVUoZhBOfPnw+tra31fvbZZ/9VXl4u27Zt2+zGxkbXxsZG19OnT0ddvHgxmIgoIyNjzsiRIy9z\nMeYXXnhh+44dO5K3b9/+wgsvvLCd3b9///5n2HF5eXndcnZ2bnZ2dm7u6LWcnJxaFixYsPn111//\n8Pr160OIiPR6vZ8lidHZ2bl52rRpX65YsWLFvXv3+l28eDF469atL5omYZFIZLx06VKApZ+NyziB\nfUNCAbuzbNmylZGRkWdCQ0PPh4aGno+MjDyzbNmylezj5kcob7755l+ff/75nXFxcYcGDBhwc8GC\nBZt/+umnhz08PO4cOnQobseOHcl+fn76oUOHVr/11ltr2DPGdDqd/xNPPPHv9sbRlbUW48ePL/Lw\n8LhTXV09NCEh4QC7v6KiIlAul6s9PT1vP/744ydfeeWVv02cOPFYZ++Xnp6eKpVKKx977LFTAwYM\nuCmXy9Xl5eUyS8a2YcOGlJs3bw7w9fU1KJXKzFmzZmWZThGuWLFihVKpzBw4cGDd7t27n+tsXUln\ncYK+Q8AwWH8E0Jb4+PiDH3/88WtBQUHf2Xos1pSampp+7do1ny1btsztzvP7SpzAArY8I+DAgQOT\ngoKCLkql0gqVSpXaVp9XX331Y6lUWhEaGnquuLg4gt0/d+7cz318fIxjxoy5YOszG7Bhs6ft4sWL\nQefOnQttaWkRFBYWjh88ePD1nJwcha3Hhc3+N5u9cVNTk3NAQEDl5cuXJQ0NDa5hYWFnS0tLQ0z7\n7N+/PzEhISGPYRg6depUdHR09Cn2sePHj08oLi6OQELBhq1r2+nTpyOlUmmFu7v7jyNHjvy+vT/m\nsGHr6mazs7yKiorGS6XSSolEoiUiSk5O3pGTkzOFPXOHiCg3N1ehVCoziYiio6ML6+vrhQaDwdfX\n19cwYcKEE1qtVmKb0QPYr8jIyDMVFRWBth4HOB6bJRS9Xu9nfi58YWFhdGd99Hq9n6+vr6Gz18fF\n6QAAuofp5rXcbHaWl6U/+OYfrCuJwtaHf460/fnPf7b5GBxpQzwRS75uPWGzhOLn56c3XVCl0+n8\nzVfsmvepqqoS+/n56XtznNBKq9XaeggOBfHkDmLJHzZLKOw8rlarlTQ0NLhlZ2fPVCgUuaZ9FApF\n7hdffPESEdGpU6ceEwqF9SKRyGibEQMAQEdsllBcXFyaNmzYkBIfH39w9OjRpTNnzswOCQkp27hx\n46KNGzcuIiJKTEzMGzVq1PdSqbRy0aJFGz/55JPfs8+fNWtW1uOPP36yvLxc5u/vr+vuOfRgmTlz\n5th6CA4F8eQOYskfDruwUSAQMI762QAArEUgEBBjb0V5sC8ajcbWQ3AoiCd3EEv+QEIBAABOYMoL\nAAAewJQXAADYHBIKWATz1NxCPLmDWPIHEgoAAHACNRQAAHgANRQAALA5JBSwCOapuYV4cgex5A8k\nFAAA4ARqKAAA8ABqKAAAYHNIKGARzFNzC/HkDmLJH0goAADACdRQAADgAdRQAADA5myaUPLz8ycF\nBwdfDAwMrEhPT09tq89rr732cWBgYEVYWNi5kpKSiK48F7iDeWpuIZ7cQSz5w2YJpbm52TklJWVD\nfn7+pNLS0tFZWVmzysrKQkz75OXlJVZWVkorKioCN23atPDll1/+1NLnEhElJhLV1/fWJwIA6Ntc\nbPXGRUVF46VSaaVEItESESUnJ+/IycmZEhISUsb2yc3NVSiVykwioujo6ML6+nqhwWDwvXz58sjO\nnktEdODAHPrNbyQ0YwaRUCik8PBwiomJIaKf/6pB27I2u48v47H3NruPL+Ox53ZMTAyvxmNvbY1G\nQxkZGUREJJFIqEcYhrHJtmvXrufmz5+/mW1v3bp1dkpKynrTPs8+++w/v/rqq8fZdmxs7OEzZ848\nunv37umdPZeImKgohqmrYwAAwEKtaaF7v+s2m/ISCAQWnYLFdPNsAyKiQ4eIhMLuPhtMsX/RADcQ\nT+4glvxhsykvPz8/vU6n82fbOp3OXywWV3XUp6qqSiwWi6saGxtdO3suEZIJAECv6u6hTU+3xsZG\nl1GjRl26fPmy5P79+25hYWFnS0tLQ0z77N+/PzEhISGPYRj6z3/+81h0dPQpS5/b+tEAAKArqAdT\nXjY7QnFxcWnasGFDSnx8/MHm5mbnefPmfRYSElK2cePGRUREixYt2piYmJiXl5eXKJVKK/v37//j\nli1b5nb0XFt9FgAAwEp5sJDpGUnQc4gnd8xjuXAhUXk5kbs7kY8PkVZLdOkS0YgRRF5eP++z1ePb\nt/N7Or4nK+VtdoQCANAZNjl09IN99ixRTc3Pj9+6RfTVV63PHzKE6Pr11n9XVf16ny0eHzeOaPhw\n+004HcERCgD0KkuSBPtv0+TAau8Hm+XrS2QwEEVFEQ0YQHT4cOt/b9785T5bPe7m1nbCY82YQbRz\npzUib5meHKHYrChv7Y1QlAewiQULGGbiRIYRixnmN79hmIQEhlEqW/clJLTuI/rlNmRI2//29W39\n74ABrf+NimKYp5/+9b9NH9dqGWbGjNY1aHV1rf9ua5+tHk9I6Hj8tl47Rz0oytv8h99aGxIKtwoK\nCmw9BIfiCPFkE0dXE4alScI0OXT0gz1xYsEvHue7zhKOrfUkoWDKCyyCIjK37C2ebRW6L1wgqq1t\nfdx06oadcmpvGmjXLqIlS4j+8pfW/27a9PN7mP/bklqCvcWS73oy5YWEAgC/0FaNo71CN1HXE4a9\nFpz7CiSUNiChAFjO9AikrUJ4W4XuiIjWhLNly8+vgYRh/5BQ2oCEwi1MK3CLD/FsL4m0NWXFHnXw\n8WiDD7F0JFiHAgAd6qwG4uvb+t/2pqyEwl+eymrL01qBv3CEAuCg2jsCaasGYnoEwoejDrAdTHm1\nAQkF+io2kZgfgXRUA0ESAVZPEopN7ykP9gP3nOAW1/FcuJAoJqb1ttelpUTHjv2cTKKiiE6dal2B\nfehQ69HIjBlER48S7d1r/8kE303+QA0FwE51VFQn+vURCGogYG2Y8gKwM51NaaEeAj2BGkobkFDA\nkXS0TgRJBLhkdzWU2tpab7lcrpbJZOVxcXGH6uvr2/xfID8/f1JwcPDFwMDAivT09FR2/65du2Y8\n8sgj3zo7OzcXFxeP672R912Yp+aWJfFsqy5y4EDrCnai1imtpKTWusiIEa3TWH0xmeC7yR82SSgq\nlSpNLpery8vLZbGxsUdUKlWaeZ/m5mbnlJSUDfn5+ZNKS0tHZ2VlzSorKwshIho7duyFvXv3Tn3y\nySeP9/7oAayLTSR79vw6iZgW2B2lqA4OpLtXlezJFhQUdNFgMIgYhqHq6mrfoKCgi+Z9Tp48+T/x\n8fH5bHvNmjVpa9asSTPtExMTU/D111+Pa+s9CFcbBjtieuVe86v1ml+SHcCayN7uKW80GkUikchI\nRCQSiYxGo1Fk3kev1/v5+/vr2LZYLK4qLCyM7sr7zJkzhyQSCRERCYVCCg8Pf3CJBvYwGW20bdVe\nt47ozp0Ycncn0uk09M03REQx/z1LS0NSKdGYMTG0ZQvR2bMa+v3viYRC/owfbcdoazQaysjIICJ6\n8HvZbd3NRJ1tTz/9tHrMmDEXzLecnByFUCisM+07cODAWvPn7969e/r8+fM3s+2tW7fOTklJWW/a\nJwZHKL3GEe7fwRcLFjBMWFgB4+3981EIe48QHI10Hb6b3CI+HqGo1Wp5e4+JRCKjwWDw9fX1NVRX\nVw/18fG5Zt7Hz89Pr9Pp/Nm2TqfzF4vFVdYaL0BvKS8nOnfu53ZbZ2lhnQjYI5sU5RUKRW5mZqaS\niCgzM1OZlJS0z7xPZGTkmYqKikCtVitpaGhwy87OnqlQKHLN+zHdvfcxdAl7qAzdY3rGlqsrEVEM\nztLiCL6bPNLdQ5uebDU1Nd6xsbGHAwMDy+Vy+aG6ujohwzCk1+uHJSYm7mf75eXlJchksu8CAgIq\nV69e/Ra7/8svv5wqFot1Dz/88D2RSGSYNGnSAfP3IEx5gY21V2ifMgVTWsBfhFsA/xoWNnJLg3tO\nWKSze4xERbUekZw9i3hyBd9NbtndwkYAR1Ve3vHakUOHMK0FjgtHKAAcYI9Mvv2W6MYNXA4F7Beu\n5dUGJBSwtvamt8Ti1gs3IomAPcKUF1gduxAKftbe9JYlyQTx5A5iyR9IKABd8OvTf1EjAWBhygug\nC2JiWo9KiIimTCFyc0ONBBxLT6a8cMdGAAuYFt2JWo9KMjKQSABMYcoLLNIX56nbuh/JjRutRfee\nTm31xXhaC2LJHzhCAWgHW3Qn+vk+7ezCRByZAPwaaigAJkxPBW5sJDp8GGtKoG/BOpQ2IKFAd6Do\nDn0d1qGA1Tn6PDVbLzEvulvrCsCOHs/ehFjyB2ooAPTLegkXRXeAvghTXtBntVcvQTKBvgw1lDYg\noUBnUC8B+DXUUMDqHGWeur1Lp1izXtIWR4knHyCW/GGThFJbW+stl8vVMpmsPC4u7lB9fX2b/xvn\n5+dPCg4OvhgYGFiRnp6eyu5fsmTJX0JCQsrCwsLOTZs27cubN28O6L3Rgz1iE8mePT9f0LF/f1x/\nC4BLNpnyWrp06drBgwffWLp06dr09PTUurq6gSqVKs20T3Nzs3NQUNB3hw8fftrPz08fFRV1Oisr\na1ZISEiZWq2Wx8bGHnFycmpJS0tTERGZPx9TXmDKdHqLCLUSgPbY3ZRXbm6uQqlUZhIRKZXKzH37\n9iWZ9ykqKhovlUorJRKJ1tXVtTE5OXlHTk7OFCIiuVyudnJyaiEiio6OLqyqqhL37icAe+Pu3vrf\niAiipCQkEwBrsMlpw0ajUSQSiYxERCKRyGg0GkXmffR6vZ+/v7+ObYvF4qrCwsJo836ff/7572bN\nmpXV1vvMmTOHJBIJEREJhUIKDw9/cO9pdt4VbcvaH374od3Fb906ojt3YsjdnUip1NDdu0T79sWQ\nUGj78dljPPnaNq2h8GE89tbWaDSUkZFBRPTg97K7rDblJZfL1QaDwdd8/6pVq95WKpWZdXV1A9l9\n3t7etbW1td6m/fbs2TM9Pz9/0ubNmxcQEW3btm12YWFh9Pr16181fa3i4uJxe/bsmW7+Ppjy4pZG\no3nwZbQXptNcM2a0Ft35wh7jyVeIJbd4efl6tVotb+8xkUhkNBgMvr6+vobq6uqhPj4+18z7+Pn5\n6XU6nT/b1ul0/mKxuIptZ2RkzMnLy0s8cuRILPejB3P28j+s6doS07O4Nm2y7bjM2Us87QFiyR82\nqaEoFIrczMxMJRFRZmamMikpaZ95n8jIyDMVFRWBWq1W0tDQ4JadnT1ToVDkErWe/fWXv/xlSU5O\nzpSHH374p94eP/CX6W15cRYXQC9jGKbXt5qaGu/Y2NjDgYGB5XK5/FBdXZ2QYRjS6/XDEhMT97P9\n8vLyEmQy2XcBAQGVq1evfovdL5VKK4YPH/5DeHh4SXh4eMnLL7/8ifl7tH404EpBQYGth9ChBQsY\nZuJEhhk8mGGIGCYqimHq6mw9qvbxPZ72BLHk1n9/O7v1246V8mARvs9Tm9ZLxGKiCxf4fVTC93ja\nE8SSW7j0ShuQUBwfrsUFwD0klDYgoTg+XIsLgHt2t7AR7I/puf62xJdrcfUUX+LpCBBL/kBCAbuC\ns7gA+AtTXmBXEhNbkwlqJQDWgRpKG5BQHAtbgHd1JfLwINqyBckEwBpQQwGrs/U8NTvVdfhwa1Kx\n92Ri63g6EsSSP3BPeeAte7mMCgC0wpQX8BZOCwbofby8OCRAT7H3MGFPC0YiAeA31FDAIr01T226\nzuTTTx33tGDM+3MHseSPDo9QXn311fWdvcCAAQNurly5chl3Q4K+jC2+ExEtWcKve5gAQMc6rKGM\nGDHih/fee285wzACgUDwq44MwwhUKlXaxYsXg606ym5ADcW+sAX4b78lunED60wAbMVqNZTXX3/9\nQ/be7+0xvfMiQHeZHpmIxUgmAPaowxrKG2+88X+dvYAlfcD+WXue2rQAz/dLz3MB8/7cQSz5o8Mj\nlHfffffP7T0mEAiY5cuXv8f9kKCvMF1n8umnrTUTnBYMYL86PELp37//jx4eHndMN4FAwHz++ee/\nS09PT+3um9bW1nrL5XK1TCYrj4uLO1RfX9/mT0h+fv6k4ODgi4GBgRWm7/fOO++8HxYWdi48PPxs\nbGzsEdN7z4N1WOMGRqYXemQL8H0lmeCGUNxBLHnE0ls73rx50+v9999fJpFILi9dujTdaDT6dPc2\nkUuWLFmbnp6+lGEYUqlUqampqSrzPk1NTc4BAQGVly9fljQ0NLiGhYWdLS0tDWEYhm7duuXJ9vv4\n449fnTdv3t/Nn0+4BTDvJSTYx+16AfoS6sEtgDtdh1JTUzNo2bJlK8PCws41Nja6FhcXj0tPT0/1\n8fG51t0klpubq2CL/UqlMnPfvn1J5n2KiorGS6XSSolEonV1dW1MTk7ekZOTM4WIyNPT8zbb786d\nOx6DBw++0d2xgGW4mqfuK+tMOoN5f+4glvzRYQ1l8eLF6/bu3Tt14cKFm86fPx9q+kPeE0ajUSQS\niYxERCKRyGg0GkXmffR6vZ+/v7+ObYvF4qrCwsJotv3222+v2rp164vu7u53T5069Vhb7zNnzhyS\nSCRERCQUCik8PPzB4TH7JUTbsvbZs2c5eb3y8pj/ns2lIaWSSKPhx+ez13iijXZP2xqNhjIyMoiI\nHvxedleH61CcnJxa3NzcGlxdXRt/9USBgLl165ZXe8+Vy+Vqg8Hga75/1apVbyuVykzT0429vb1r\na2trvU377dmzZ3p+fv6kzZs3LyAi2rZt2+zCwsLo9evXv2raT6VSpX333XdBW7ZsmWs+vo4+G/Qu\nrDMBsA9WW4fS0tLS7UuzqNVqeXuPiUQio8Fg8PX19TVUV1cPbWv6zM/PT29abNfpdP5isbjKvN8L\nL7ywPTExMa+744TegXUmAI7PJtfyUigUuZmZmUoioszMTGVSUtI+8z6RkZFnKioqArVaraShocEt\nOzt7pkKhyCUiqqioCGT75eTkTImIiCjpvdH3Tewhcnf1tXUmnelpPOFniCV/dJhQxo0bV9zZC1jS\nx1xaWppKrVbLZTJZ+dGjR59KS0tTERFdvXp12DPPPLOfiMjFxaVpw4YNKfHx8QdHjx5dOnPmzOyQ\nkJAyIqK33nprzdixYy+Eh4ef1Wg0MR988MEfuzoGsD4U4AH6lg5rKP369bsnlUorO3qBmzdvDrhy\n5cpwzkfWQ6ih2J7p/UxmzMCFHgHsgdVqKGVlZSGdvoCLS1N33hgcn+k0F+6yCOD4cMdGsIhGo3lw\nymFHcDkVy1gaT+gcYskt3LEReAP3MwHou3CEApxKTGy9NhfWmQDYp54coVh82rBWq5UcPnz4aSKi\nu3fvune0qBH6HvaMrsZGoqQkJBOAvsiihLJp06aFM2bM2LVo0aKNRERVVVXiqVOn7rXu0IBPOjvX\nn53qOnyYyNUVyaQzWDvBHcSSPyxKKH/7299e+fe///2El5fXLSIimUxWfu3aNR/rDg3sCc7oAgCL\nivIPPfTQ/Yceeug+225qanJp6x7z4LjaOosGZ3R1H85K4g5iyR8WJZSJEyceW7Vq1dt37951V6vV\n8k8++eT3kydP/qe1Bwf8hjO6AMCURVNeKpUqbciQIdfHjh17YePGjYsSExPzVq5cuczagwP+aGue\nGtNc3Yd5f+4glvxh0RHKTz/99PC8efM+W7hw4SYioubmZud79+71c3d3v2vd4QGfbd/eOu2FaS4A\nILJwHUp0dHThkSNHYj08PO4QEd2+fdszPj7+4MmTJx+3+gi7CetQrMO0brJ9OxIJgKOx+jqU+/fv\nP8QmE6LWW/DevXvXvTtvCPaNrZscONCaXAAAWBYlFHd397tff/31o2z7zJkzkf369btnvWEB37Dz\n1KibcAPz/txBLPnDohrKRx999Ifnn39+59ChQ6uJiKqrq4dmZ2fPtO7QgC8WLiQqKiIaNgynBwNA\n+zqtoTQ3Nzt//PHHr73yyit/++6774KIiIKCgr5zc3Nr6JURdhNqKNzBfU0A+g6r1lCcnZ2bt2/f\n/oKbm1vD2LFjL4wdO/ZCT5NJbW2tt1wuV8tksvK4uLhD9fX1bf6tm5+fPyk4OPhiYGBgRXp6eqr5\n4x988MEfnZycWmpra717Mh7oGKa5AMASFtVQnnjiiX+npKRsOHHixITi4uJxX3/99aPFxcXjuvum\nKpUqTS6Xq8vLy2WxsbFHVCpVmnmf5uZm55SUlA35+fmTSktLR2dlZc0yveGXTqfzV6vV8hEjRvzQ\n3XFAx0wv+PjEExpc8JFDmPfnDmLJHxbVUEpKSiIEAgGzfPny90z3FxQU/G933jQ3N1dx7NixiURE\nSqUyMyYmRmOeVIqKisZLpdJKiUSiJSJKTk7ekZOTM4W9r/ybb77517Vr1y6dMmVKTnfGAJ0zXQk/\ncSKSCQB0zKKEotFoYrh8U6PRKBKJREYiIpFIZDQajSLzPnq93s/f31/HtsVicVVhYWE0EVFOTs4U\nsVhcFRoaer6j95kzZw5JJBIiIhIKhRQeHv7guj/sXzVot9++d4+IKIaioogWL/7lnfH4MD57brP7\n+DIee27HxMTwajz21tZoNJSRkUFE9OD3srssWthYX18vfPfdd/98/PjxJ/87CM3y5cvfGzBgwM32\nniOXy9UGg8HXfP+qVaveViqVmXV1dQPZfd7e3rXmdZA9e/ZMz8/Pn7R58+YFRETbtm2bXVhYGL12\n7dqlMTExGrVaLffy8ro1cuTIy2fOnIkcNGhQzS8+GIryPVZfj5XwAH2N1W8B/Lvf/e7zsWPHXti1\na9cMhmEEW7dufXHu3Llbvvzyy2ntPUetVsvbe0wkEhkNBoOvr6+vobq6eqiPj8818z5+fn56nU7n\nz7Z1Op1ImJkOAAAVeElEQVS/WCyuunTpUoBWq5WEhYWdI2q9N8ujjz76dVFR0fi2Xge6xnwlPHtG\nl+lf09BziCd3EEseYRim0y00NPScJfss3ZYsWbJWpVKlMgxDa9asSUtNTVWZ92lsbHQZNWrUpcuX\nL0vu37/vFhYWdra0tDTEvJ9EIrlcU1Pjbb6/9aNBV02cyDBErduMGT/vLygosNWQHBLiyR3Eklv/\n/e3s1m+7RWd59evX796JEycmsO1///vfT/TkwpBpaWkqtVotl8lk5UePHn0qLS1NRUR09erVYc88\n88x+IiIXF5emDRs2pMTHxx8cPXp06cyZM7PZgrwp3JeFW+2dIoy/ALmFeHIHseQPi2ooZ8+eDX/p\npZe+uHnz5gAiooEDB9ZlZmYq2WknPkINxXK4URYAsHpSQ+kwoVy5cmX48OHDr7BtNqF0VIznCyQU\ny1myEh7z1NxCPLmDWHLLaivlTdd4TJ8+fc+AAQNu2kMyga7BSngA4IJFNRQiou+//36UNQcCtrN9\ne+uRSUcr4fEXILcQT+4glvxh0WnD4JhwsywA4FKHRyjnz58P9fT0vO3p6Xn7woULY9l/e3p63vby\n8rrVW4ME6+jKzbLYlbXADcSTO4glf3R4hNLc3OzcWwOB3ofaCQBwyaLThu0RzvJqG04RBoCOWP3S\nK+A4TK8gvGQJbpYFANyx+CwvcAzdnebCPDW3EE/uIJb8gYTSx1hyijAAQHeghtIH4PRgALCUVe8p\nD/avK6cHAwB0FxJKH8DF6cGYp+YW4skdxJI/kFD6ANRNAKA3oIbiwFA7AYCuQg0F2oTaCQD0Jpsk\nlNraWm+5XK6WyWTlcXFxh+rr69v82zk/P39ScHDwxcDAwIr09PRUdv+KFStWiMXiqoiIiJKIiIiS\n/Pz8Sb03evvB5aVVME/NLcSTO4glf9gkoahUqjS5XK4uLy+XxcbGHlGpVGnmfZqbm51TUlI25Ofn\nTyotLR2dlZU1q6ysLISodTrrzTff/GtJSUlESUlJxKRJk/J7/1PwH2onANCbbHLpldzcXMWxY8cm\nEhEplcrMmJgYjXlSKSoqGi+VSislEomWiCg5OXlHTk7OFPa+8pbM8c2ZM4ckEgkREQmFQgoPD39w\n7wT2rxpHa2/fHkPl5UT37mnonXeIdu7k5vXZfbb+fI7SZvfxZTz23I6JieHVeOytrdFoKCMjg4jo\nwe9ld9mkKD9w4MC6urq6gUSticHb27uWbbN279793MGDB+M3b968gIho27ZtswsLC6PXr1//6rvv\nvvvnLVu2zB0wYMDNyMjIMx988MEfhUJhvenz+2pR3pLb+QIAtIeXRXm5XK4eO3bsBfMtNzdXYdpP\nIBAwAoHgV7/8be1jvfzyy59evnx55NmzZ8OHDh1a/cc//vEDa3wGe2StS9Kzf9EANxBP7iCW/GG1\nKS+1Wi1v7zGRSGQ0GAy+vr6+hurq6qE+Pj7XzPv4+fnpdTqdP9vW6XT+YrG4iojItP/8+fP/Pnny\n5H9yPX57tX176xlduCQ9APQ2mxTlFQpFbmZmppKIKDMzU5mUlLTPvE9kZOSZioqKQK1WK2loaHDL\nzs6eqVAocomIqqurh7L99u7dO3Xs2LEXem/0/LNwYetUV2Jia3vnTu6TiencP/Qc4skdxJJHGIbp\n9a2mpsY7Njb2cGBgYLlcLj9UV1cnZBiG9Hr9sMTExP1sv7y8vASZTPZdQEBA5erVq99i97/44otf\njB079nxoaOi5KVOm7DMYDCLz92j9aH3DxIkMQ9S6zZhh69EAgD37729nt37bsVLeASQmti5ejIqy\n3inCpmckQc8hntxBLLnFy6I89B6sNwEAPsARih3DtboAgGs4QumjcK0uAOATJBQ7Zq01J23Buf7c\nQjy5g1jyBxKKHUPtBAD4BDUUO4O6CQBYE2oofQjqJgDAV0godqY36yamME/NLcSTO4glfyCh2BnU\nTQCAr1BDAQCAB1BDcXCmF3+sr++0OwCATSCh2AE+FOIxT80txJM7iCV/IKHYAVsV4gEAugI1FDtQ\nX4+bZgFA7+hJDcVqd2yEnsMiRgCwJzaZ8qqtrfWWy+VqmUxWHhcXd6i+vr7Nn8r8/PxJwcHBFwMD\nAyvS09NTTR9bv379qyEhIWVjxoz5JjU1Nb13Rt67+FA7YWGemluIJ3cQS/6wSUJRqVRpcrlcXV5e\nLouNjT2iUqnSzPs0Nzc7p6SkbMjPz59UWlo6Oisra1ZZWVkIEVFBQcH/5ubmKs6fPx/6zTffjFm8\nePG63v8U1ofaCQDYle7e6rEnW1BQ0EX2tr3V1dW+QUFBF837nDx58n/i4+Pz2faaNWvS1qxZk8Yw\nDM2YMWPnkSNHnuroPcgBbgFcV9d6S9+6OluPBAD6CurBLYBtUkMxGo0ikUhkJCISiURGo9EoMu+j\n1+v9/P39dWxbLBZXFRYWRhMRVVRUBB4/fvzJP/3pT6sffvjhn9atW7c4MjLyjPlrzJkzhyQSCRER\nCYVCCg8Pf3CrUPYwmW/t7dtjqLyc6N49Db3zDtHOnfwaH9poo+1YbY1GQxkZGURED34vu627maiz\n7emnn1aPGTPmgvmWk5OjEAqFdaZ9Bw4cWGv+/N27d0+fP3/+Zra9devW2SkpKesZhqExY8ZceO21\n1z5iGIaKioqiRo4c+b3588lOj1AmTmQYotZtxgxbj+ZnBQUFth6CQ0E8uYNYcov4eISiVqvl7T0m\nEomMBoPB19fX11BdXT3Ux8fnmnkfPz8/vU6n82fbOp3OXywWVxG1Hq1MmzbtSyKiqKio005OTi01\nNTWDBg0aVGONz9KbUDcBAHtlk6K8QqHIzczMVBIRZWZmKpOSkvaZ94mMjDxTUVERqNVqJQ0NDW7Z\n2dkzFQpFLhFRUlLSvqNHjz5FRFReXi5raGhwc4RkQsTfiz+yh8rADcSTO4glj3T30KYnW01NjXds\nbOzhwMDAcrlcfqiurk7IMAzp9fphiYmJ+9l+eXl5CTKZ7LuAgIDK1atXv8Xub2hocJ09e/bWMWPG\nXBg3btzXBQUFMebvQXY65QUAYEvUgykvrJTnAXtYwKjRaPCXIIcQT+4gltzC1YbtHJ8WMAIAdBeO\nUHggMbE1mURF8a92AgB9S0+OUJBQeAAXfwQAvsCUl50TCol27uR3MmEXQgE3EE/uIJb8gYRiQ7gT\nIwA4Ekx52VBMTGsxnqh17cnOnTYdDgAAprzsFVbFA4AjQUKxIb6uim8L5qm5hXhyB7HkD9yxsZeZ\nL2LENBcAOArUUHoZ6iYAwGeoodgR1E0AwFEhofQye6qbmMI8NbcQT+4glvyBGkovYxcxAgA4GtRQ\neoE9XE0YAIAINRTew9WEAaAvQELpBY5QiMc8NbcQT+4glvxhk4RSW1vrLZfL1TKZrDwuLu5QfX19\nm5NA+fn5k4KDgy8GBgZWpKenp7L7k5OTd0RERJRERESUjBw58nJERERJ742+6+y1EA8A0BU2qaEs\nXbp07eDBg28sXbp0bXp6empdXd1AlUqVZtqnubnZOSgo6LvDhw8/7efnp4+KijqdlZU1KyQkpMy0\n3+LFi9cJhcL6ZcuWrTTdz6caCgCAvbC7Gkpubq5CqVRmEhEplcrMffv2JZn3KSoqGi+VSislEonW\n1dW1MTk5eUdOTs4U0z4Mwwh27tz5/KxZs7J6a+xdgasJA0BfYpPTho1Go0gkEhmJiEQikdFoNIrM\n++j1ej9/f38d2xaLxVWFhYXRpn1OnDgxQSQSGQMCAi619T5z5swhiURCRERCoZDCw8Mf3HuanXe1\nZruoiOjcudZ2UpKGVqyw7vtZs/3hhx/2evwcuY14ctc2raHwYTz21tZoNJSRkUFE9OD3srusNuUl\nl8vVBoPB13z/qlWr3lYqlZl1dXUD2X3e3t61tbW13qb99uzZMz0/P3/S5s2bFxARbdu2bXZhYWH0\n+vXrX2X7vPzyy5/KZLLyN9544//M34cPU16OdGtfjUbz4MsIPYd4cgex5FZPprysdoSiVqvl7T0m\nEomMBoPB19fX11BdXT3Ux8fnmnkfPz8/vU6n82fbOp3OXywWV7HtpqYml717904tLi4ex/3oubF9\nu+Pc2hf/w3IL8eQOYskfNqmhKBSK3MzMTCURUWZmpjIpKWmfeZ/IyMgzFRUVgVqtVtLQ0OCWnZ09\nU6FQ5LKPHz58+OmQkJCyYcOGXe3NsXeFPdzaFwCAKzZJKGlpaSq1Wi2XyWTlR48efSotLU1FRHT1\n6tVhzzzzzH4iIhcXl6YNGzakxMfHHxw9enTpzJkzs03P8MrOzp7J12K8IzKdp4aeQzy5g1jyBy69\nAhbBPDW3EE/uIJbc6kkNBQkFAAAesLt1KAAA4HiQUMAimKfmFuLJHcSSP5BQAACAE6ihAADAA6ih\nAACAzSGhgEUwT80txJM7iCV/IKEAAAAnUEMBAIAHUEMBAACbQ0IBi2CemluIJ3cQS/5AQgEAAE6g\nhgIAAA+ghgIAADaHhAIWwTw1txBP7iCW/IGEAhY5e/asrYfgUBBP7iCW/GGThFJbW+stl8vVMpms\nPC4u7lB9fX2bN8nNz8+fFBwcfDEwMLAiPT09ld1fVFQ0fvz48UURERElUVFRp0+fPh3Ve6Pvm+rr\n6209BIeCeHIHseQPmyQUlUqVJpfL1eXl5bLY2NgjKpUqzbxPc3Ozc0pKyob8/PxJpaWlo7OysmaV\nlZWFEBEtXbp07fvvv/9OSUlJxHvvvbd86dKla3v/UwAAgCmbJJTc3FyFUqnMJCJSKpWZ+/btSzLv\nU1RUNF4qlVZKJBKtq6trY3Jy8o6cnJwpRERDhw6tvnnz5gAiovr6eqGfn5++dz9B36PVam09BIeC\neHIHseQRhmF6fRMKhXXsv1taWgSmbXbbtWvXc/Pnz9/Mtrdu3To7JSVlPcMwpNVqR4jFYp2/v/8V\nPz+/qitXrvibP5+IGGzYsGHD1vWtu7/tLmQlcrlcbTAYfM33r1q16m3TtkAgYAQCAWPer619rHnz\n5n328ccfvzZ16tS9u3btmvG73/3uc7VaLTft093zqAEAoHusllDMf+BNiUQio8Fg8PX19TVUV1cP\n9fHxuWbex8/PT6/T6fzZtk6n8xeLxVVErdNhhw8ffpqI6Lnnnts9f/78v1vjMwAAgOVsUkNRKBS5\nmZmZSiKizMxMZVJS0j7zPpGRkWcqKioCtVqtpKGhwS07O3umQqHIJSKSSqWVx44dm0hEdPTo0adk\nMll5734CAAD4FVvUUGpqarxjY2MPBwYGlsvl8kN1dXVChmFIr9cPS0xM3M/2y8vLS5DJZN8FBARU\nrl69+i12/+nTpyPHjx9fGBYWdvaxxx77T3FxcYQtPgc2bNiwYft5s/kAerodOHBgUlBQ0EWpVFqh\nUqlS2+rz6quvfiyVSitCQ0PPIfn0LJ4FBQUxXl5eN8PDw0vCw8NL3n///WW2HjNft7lz537u4+Nj\nHDNmzIX2+uC7yV088d20fLty5Yp/TExMwejRo7995JFHvvnoo49ea6tfV7+fNv9gPdmampqcAwIC\nKi9fvixpaGhwDQsLO1taWhpi2mf//v2JCQkJeQzD0KlTp6Kjo6NP2XrcfN0siWdBQUHM5MmTc209\nVnvYjh8/PqG4uDiivR9AfDe5jSe+m5Zv1dXVviUlJeEMw9Dt27c9ZDLZd1z8dtr1pVc6WqvCMl3z\nEh0dXVhfXy80Go0i24yY3yyJJxHOoLPUhAkTTgwcOLCuvcfx3eyazuJJhO+mpXx9fQ3h4eFniYg8\nPDzuhISElF29enWYaZ/ufD/tOqHo9Xo/f39/HdsWi8VVer3er7M+VVVV4t4cp72wJJ4CgYA5efLk\n42FhYecSExPzSktLR/f+SB0Dvpvcwneze7RaraSkpCQiOjq60HR/d76fVjttuDd0tFbFlPlfLZY+\nr6+xJC7jxo0r1ul0/u7u7ncPHDiQkJSUtK+8vFzWG+NzRPhucgffza67c+eOx3PPPbf7o48++oOH\nh8cd88e7+v206yOUjtaqtNenqqpKjEu1tM2SeHp6et52d3e/S0SUkJBwoLGx0bW2tta7t8fqCPDd\n5Ba+m13T2NjoOn369D2zZ8/e1tbSje58P+06oXS0VoWlUChyv/jii5eIiE6dOvWYUCisF4lERtuM\nmN8siafRaBSxf7UUFRWNZxhG4O3tXWubEds3fDe5he+m5RiGEcybN++z0aNHl77++usfttWnO99P\nu57ycnFxadqwYUNKfHz8webmZud58+Z9FhISUrZx48ZFRESLFi3amJiYmJeXl5colUor+/fv/+OW\nLVvm2nrcfGVJPHfv3v3cp59++rKLi0uTu7v73R07diTbetx8NWvWrKxjx45NvHHjxmB/f3/du+++\n++fGxkZXInw3u6OzeOK7abmvvvrqN9u2bZsdGhp6PiIiooSIaPXq1X+6cuXKcKLufz8d9p7yAADQ\nu+x6ygsAAPgDCQUAADiBhAIAAJxAQgEAAE4goQAAACeQUAB6gbOzc/O4ceOKq6urh/b0tX7729/+\nY9CgQTV79uyZzsXYALhi1+tQAOyFu7v73eLi4nFcvNY//vGP386dO3cLLtMCfIMjFIAuOn36dFRY\nWNi5+/fvP/Tjjz/2HzNmzDddvRBhfn7+pEcfffTr8PDws3K5XE1EtGLFihVKpTLzySefPC6RSLRf\nfvnltMWLF68LDQ09n5CQcKCpqekXfwDiyrrANzhCAeiiqKio0wqFInfZsmUr79271+/FF1/cOnr0\n6FJLn3/9+vUhCxcu3HTixIkJI0aM+KG+vl7IPnb58uWRBQUF//vtt98+8thjj53au3fv1HXr1i2e\nNm3al/v3739mypQpOdb5VAA9h4QC0A3Lly9/LzIy8ky/fv3urV+//tWuPPfUqVOPTZw48diIESN+\nICISCoX1RK1Xck1ISDjg7OzcPGbMmG9aWlqc4uPjDxIRjR079oJWq5Vw/kEAOIQpL4BuuHHjxuAf\nf/yx/507dzzu3bvXryvPFQgETHvTVW5ubg1ERE5OTi2urq6N7H4nJ6cW8ykvAL5BQgHohkWLFm1c\nuXLlshdeeGF7ampqeleeGx0dXXj8+PEn2SMOXGIdHAX+4gHooi+++OKlhx566H5ycvKOlpYWp8cf\nf/ykRqOJiYmJ0Vjy/CFDhlzftGnTwmnTpn3Z0tLiJBKJjAcPHown+uUNjMzP4sJZXcB3uNowQC/w\n9PS8ffv2bU+uXm/OnDkZkydP/uf06dP3cPWaAD2FKS+AXuDl5XWLy4WNJ06cmNCvX797XIwNgCs4\nQgEAAE7gCAUAADiBhAIAAJxAQgEAAE4goQAAACeQUAAAgBP/Dy3G3mtzwdUhAAAAAElFTkSuQmCC\n", + "text": [ + "<matplotlib.figure.Figure at 0x3d76250>" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 3.4, Page number: 128" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from sympy import *\n", + "\n", + "#Variable declaration:\n", + "Lo=10.6*10**-3 #Initial inductance(H)\n", + "L2=2.7*10**-3 #H\n", + "\n", + "\n", + "#Calculations:\n", + "theta,i=symbols('theta i')\n", + "L=Lo+L2*cos(2*theta)\n", + "i=2 #Coil current,A\n", + "def T(theta):\n", + " return i**2*diff(L,theta)/2\n", + " \n", + "\n", + "#Results:\n", + "print \"Torque,Tfld =\",T(theta),\" N.m\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Torque,Tfld = -0.0108*sin(2*theta) N.m\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 3.6, Page number: 134" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "\n", + "#Variable declaration:\n", + "r1=2.5*10**-2 #radius of rotor(m)\n", + "h=1.8*10**-2 #Axial length(m)\n", + "g=3*10**-3 #Air gap length(m)\n", + "Bag=1.65 #Magnetic field(T)\n", + "uo=4*pi*10**-7 #permeability of free space(H/m)\n", + "\n", + "#Calculations:\n", + "H=Bag/uo\n", + "Ni=2*g*H\n", + "T=uo*(Ni)**2*h*(r1+0.5*g)/(4*g)\n", + "\n", + "#Results:\n", + "print \"The maximum torque:\", round(T,2),\"Nm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The maximum torque: 3.1 Nm\n" + ] + } + ], + "prompt_number": 29 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 3.7, Page number: 140" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "%matplotlib inline\n", + "from matplotlib import *\n", + "\n", + "#Variable declaration:\n", + "i1=0.8\n", + "i2=0.01\n", + "\n", + "\n", + "#Calculations & Results:\n", + "def df(f,x,h=0.1e-10):\n", + " return ( f(x+h/2) - f(x-h/2) )/h\n", + "\n", + "\n", + "\n", + "def l11(x):\n", + " return (3+cos(2*x))/1000.0\n", + "\n", + "def l12(x):\n", + " return (0.3*cos(x))\n", + "\n", + "def l22(x):\n", + " return (30+10*cos(2*x))\n", + "\n", + "def g(x):\n", + " return ((i1**2)/2)*df(l11,x) + ((i2**2)/2)*df(l22,x) + (i1*i2)*df(l12,x)\n", + "\n", + "def r(x):\n", + " return ((i1**2)/2)*df(l11,x) + ((i2**2)/2)*df(l22,x)\n", + "def s(x):\n", + " return (i1*i2)*df(l12,x)\n", + "\n", + "x=linspace(-pi,pi,100000)\n", + "\n", + "\n", + "plot(x,r(x))\n", + "plot(x,s(x))\n", + "plot(x,g(x))\n", + "grid()\n", + "annotate(\"Total torque\",xy=(-0.5,0.003))\n", + "annotate(\"Reluctance torque\",xy=(-2,-0.0015))\n", + "annotate(\"Mutual Interaction torque\",xy=(1.6,-0.0026))\n", + "xlabel(\"Theta [radians]\")\n", + "ylabel(\"Torque [N.m]\")\n", + "xlim(-pi,pi)\n", + "\n", + "\n", + "#Results\n", + "print \"Tfld = -1.64*10**-3*sin(2*x)- 2.4*10**-3*sin(x)\"\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Tfld = -1.64*10**-3*sin(2*x)- 2.4*10**-3*sin(x)\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAcAAAAEMCAYAAABTD2a8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXdUFNcXx7+IGo2N2EABRUHBQlexxaDIT1TEqLHEhgW7\nxsQSY2Jijd1YY7Ci2Asq2BtgB6VYIqCgoHQVQXrZ3fv747kEcWEpuzvLMJ9z5hxm95V7md29M+/d\nokFEEBAQEBAQqGxU4VoAAQEBAQEBLhAMoICAgIBApUQwgAICAgIClRLBAAoICAgIVEoEAyggICAg\nUCkRDKCAgICAQKWEUwN46dIlBxMTk7BWrVqFr1mzZoGsNj/88MOWVq1ahZubmz8KDg62LGnfDRs2\nzK1SpYrk/fv39ZWpg4CAgIBABYWIODlEIpGmoaFhRGRkpEFubm41c3PzhyEhIW0Ktjl//ny/vn37\nXiAi+Pn52djY2PiVpO/r16/1+/Tpc8nAwCAyKSmpPlc6CodwCIdwCIf6Hpw9Ad6/f7+TkZFRhIGB\nQVS1atXyRowYcdTT03NgwTZeXl5Ozs7O+wHAxsbGPyUlRSshIUFHXt85c+b8tXbt2p9VrZOAgICA\nQMWhKlcTx8bG6urr60dLz/X09GL8/f1t5LWJjY3VjYuLa1pUX09Pz4F6enoxZmZmj4uaW0NDQ0h/\nIyAgIFBKiEiDaxkUCWdPgCU1QqX5h2dlZdVcuXLlr0uXLl0sr39Rj8SLFy/m/LFc0QcfdeKrXoJO\nFefgo17F6cRHOHsC1NXVjY2OjtaXnkdHR+vr6enFFNcmJiZGT09PLyYvL6+arL4vXrwwjIqKMjA3\nN38kbW9tbR14//79To0bN35TErmioqLKrZu6wUedAH7qJehUceCjXnzUqTg4ewLs0KFDQHh4eKuo\nqCiD3Nzc6seOHRvu5OTkVbCNk5OTl7u7+1gA8PPz66ylpZWira2dWFTf9u3b/5uYmKgdGRnZIjIy\nsoWenl5MUFCQVUmNn4CAgIBA5YGzJ8CqVauKtm3bNrNPnz6XxWKx5sSJE/e0adMmdMeOHVMAYMqU\nKTv69et34cKFC/2MjIwiatWqleHm5ja+uL6F5yjLXt+4cePKrZu6wUedAH7qJehUceCjXnzUqTg0\n+Lq2WxwaGhpUGfUWEBAQKCsaGhogwQmG3/j6+nItgsLho04AP/USdKo48FEvPupUHIIBFBAQEBCo\nlAhLoAICAgICchGWQAUEBAQEBHiCYAALwcc1cD7qBPBTL0GnigMf9eKjTsUhGEABAQEBgUqJsAco\nICAgICAXYQ9QQEBdSEsDXr8GsrK4lkRAQKCCIhjAQvBxDZwXOmVlAYcOAcOGAU2bAtra8LW2Br76\nCqhXDzA2Bvr0ATZvBlJSuJa2zPDiWhWCjzoB/NSLjzoVh2AABdSb5GTg118BfX3g4EHAwQG4exfI\nyABOnGCG8dUrwNMTmDYNePAAaNUKWL4cSE3lWnoBAQE1RtgDFFBPiIDdu4HffgMGDmRGsEWLkvWN\niACWLgUuXwYWLQJmzQI0eLV1ISCgcvi4BygYQAH1IzYWmDgRePsW2LcPMDUt2zihoYCzM9CyJbB3\nL/DllwoVU0CgMsFHAygsgRaCj2vgFUqne/eAjh2BLl0AP79ijZ9cvdq0AW7cAKpVA7p3Z04zak6F\nulYlhI86AfzUi486FYdgAAXUB3d3tty5ezeweDEzXOWlZk027ujRQOfOwJ075R9TQECAFwhLoALq\nwZYtwMaNwPnzQNu2ypnj0iVg7Fjg7FnAxkY5cwgI8BRhCVRAQBls386Mn6+v8owfwDxI9+0DnJyA\nJ09K1TUpKQmWlpawtLREkyZNoKenB0tLS1hZWUEkEn3SdtOmTcgqQXyira0tAgMDP3u9pP0FBATK\nh2AAC8HHNXC11mnnTmDNGsDbG2jevFRdy6RXv34sVtDBgTnblJAGDRogODgYwcHBmDp1KubMmYPg\n4GAEBQWhatWqn7TdvHkzMjMz5Y6poaEBjULeqb6+viXuXxCJRFKq9qpErT9/5YCPevFRp+IQDKAA\ndxw8yOL1rl8veYiDIhgxApg+Hfj+e6DQ01tJISJcv34dlpaWMDMzw8SJE5Gbm4stW7YgLi4OPXv2\nhJ2dHQBg2rRp6NixI9q3b48lS5YUO66Hh8dn/Y8cOQIzMzOYmpril19+yW9bu3ZtzJs3DxYWFrh3\n7x7c3NxgbGwMGxsbTJo0CbNmzQIAjBs3Dh4eHp/0k7Ju3Tp06tQJ5ubmcmUTEOAdRFTpDqa2AKd4\nexM1bkz077/czC8SEfXuTfT776XuumTJElqxYgXp6+tTeHg4ERGNHTuWNm3aREREBgYGlJSUlN/+\n/fv3H6cUka2tLT1+/JiIiGxtbSkwMPCz8Qv2j42NpWbNmtG7d+9IJBJRr1696MyZM0REpKGhQSdO\nnCAiori4uPx2ubm51K1bN5o1axYREY0bN45OnjyZP37t2rWJiOjy5cs0efJkIiISi8Xk6OhIN2/e\nLPX/Q6By8PF3k/Pfb0UenD4BXrp0ycHExCSsVatW4WvWrFkgq80PP/ywpVWrVuHm5uaPgoODLeX1\n/f3335ebm5s/srCweGhnZ3c9OjpaXxW6CJSC8HD2FHbkCNCuHTcyaGqyJ9A9e4Br10rdXSwWo2XL\nljAyMgIAODs74+bNmzLbHjt2DNbW1rCyssLTp08RGhpa4nkePHiAnj17okGDBtDU1MSoUaPy59HU\n1MSQIUMAAP7+/vntqlWrhuHDh0tv9orkypUruHLlCiwtLWFtbY1nz54hIiKixLIJCFR0ODOAYrFY\nc+bMmdsuXbrkEBIS0vbIkSPfh4aGtinY5sKFC/0iIiKMwsPDW+3cuXPytGnT/pHX9+eff1776NEj\n84cPH1p8++23Z5YuXbq4NHLxcQ1crXTKzAQGDwaWLAF69SrXUOXWS1ubhUiMHQskJJS6e0EDQ0Sf\n7ecBQGRkJDZs2ABvb288evQI/fv3R3Z2dpFjFtbpo+edzHlq1KiR/7esdlKqVq2av0cokUiQm5ub\n/97ChQvz9zafP3+O8ePHl0T1UqFWnz8Fwke9+KhTcXBmAO/fv9/JyMgowsDAIKpatWp5I0aMOOrp\n6TmwYBsvLy8nZ2fn/QBgY2Pjn5KSopWQkKBTXN86deqkSfunp6fXbtiw4TvVaiZQLLNns+D2qVO5\nloRhZwdMmsTiBMXiEnfT1NREVFQUXrx4AQA4cOAAvvnmGwBAnTp1kPoxD2lqaipq1aqFunXrIjEx\nERcvXpQ7dsH+HTt2xI0bN5CUlASxWIyjR4/mz1OQTp064caNG3j//j3y8vJw4sSJfONoYGCQ723q\n5eWFvLw8AECfPn2wd+9eZGRkAABiY2Px9u3bEv8PBAQqOlXlN1EOsbGxuvr6+tHScz09vRh/f38b\neW1iY2N14+LimhbX97fffvvzwIEDY7788stMPz+/zrLmHzduHAwMDAAAWlpasLCwgK2tLWxtbfPv\ngmxtbQGgwp9LX+Ncnrg44MYN+G7aBNy4wb080vNvvgE8PWG7di2wcKHc9lFRUahZsybc3NwwdOhQ\nfPjwASYmJpj60aj37NkTPXr0QKtWrXD9+nU0adIEzZs3R+vWrdG9e3eEhoZ+cqddcHxbW9vP+o8d\nOxadOnXCl19+CUdHR9SpUwe+vr75Bk7af8mSJejSpQs0NTVhaGiY/xTYtm1bLFq0CJcuXYKDgwNq\n1qwJX19f2NvbIzQ0FGZmZgAAHR0dHDx4EE+fPlXo/1f6mtpcb+G8yHPbAr9/0veioqLAW7jafDx5\n8uQQFxeXXdLzAwcOjJ45c+bWgm0cHR3P3r59u5v03M7O7lpAQIB1SfoSEVatWvXLuHHj3Aq/DsEJ\nRvU8e0bUsCFRcDDXksjm1SuiBg2IXr7kWhKFsG/fPpo5cybXYgjwCAhOMIpDV1c3tqCDSnR0tL6e\nnl5McW1iYmL09PT0YkrSFwBGjhx5+MGDBx1LI1fBux++wLlO2dmsjt/y5YCFhcKGVahezZoBc+aw\ng0MUqZOsPUku4PzzpyT4qBcfdSoOzgxghw4dAsLDw1tFRUUZ5ObmVj927NhwJycnr4JtnJycvNzd\n3ccCgJ+fX2ctLa0UbW3txOL6hoeHt5L29/T0HGhpaRmsWs0EPuOnn1jB2ilTuJakeObOZRliLl3i\nWpJy4+zsjC1btnAthoCAesPl4+eFCxf6tm7d+pmhoWHEypUrFxIRXF1dp7i6uk6RtpkxY8Y2Q0PD\nCDMzs0eBgYFWxfUlIgwZMuRk+/btn5ibmz8cPHiwR2JiYuPC80JYAlUdZ88StWhB9OED15KUjHPn\niFq1IsrO5loSAQG1AjxcAhWSYQsoj+Rk5vF58CBQwCFC7RkwgJVPWiAzNFVAoFIiJMOuBPBxDZwz\nnebMYeWNlGT8lKbXpk3AunVAzGfbykpH+PxVHPioFx91Kg7BAAooh4sXWXWHNWu4lqT0GBoC06YB\n8+dzLYmAgIASEZZABRRPairQvj3g5sYCzSsimZmAiQlw9CjQtSvX0ggIcA4fl0AFAyigeGbOZKEP\nu3dzLUn52LuXpUrz8QHUJKRAQIAr+GgAhSXQQvBxDVylOt2/D3h4AGvXKn0qpes1diwQH1+mZNll\nRfj8VRz4qBcfdSoOwQAKKA6RiMX6rV8P1K/PtTTlp2pVFrz/66+AsGIgIMA7hCVQAcWxeTPg5cWe\nmPiyZCiRAJaWwIoVLDxCQKCSwsclUMEACiiGhAQW83frFnMe4RMeHsCqVcCDB/wx7AICpYSPBlBY\nAi0EH9fAVaLTL78AEyao1Pip7FoNGgTk5ACXLyt9KuHzV3Hgo1581Kk4OCuHJMAj/PyAq1eBsDCu\nJVEOVaqwfcAVKwAHB66lERAQUBDCEqhAmcgT5yE+PR4iUS6a2g/Gh0nOkIweiQZfNkB1zepci6d4\nRCL2dLtvH0uTJiBQyeDjEqhgAAWKJD03Hf4x/niR/AKvPrxCVEoUXqW8wqsPr5CYnojGtRpj1IMc\nDPNLw7AfmiBdnIn3We/xheYXaK7VHK0btEbrBq3RpmEbdNbrjNYNWqOKRgVedd+5kzn5nDvHtSQC\nAipHMIA8oTgDWLByNV8oqU654lzciLqBqy+v4sarG3j65iksdCxg0tAEzes1R3Ot5mherzkMtAyg\nW1cXVVPT2VPR+fOAtTUAVl0kNScVrz68wvOk53ie9BxP3jyBX4wfPmR/QPdm3eHY2hEDWg9AkzpN\nVKKXwsjOBlq0YMu97dsrZYrK/PmraPBRr+J04qMBFPYAKzkiiQhXX1zF4X8P49zzczBuYIy+Rn2x\npvca2OjaoGa1mkV3XraMhQZ8NH4A+5LUq1EPZjXMYKZt9knz+LR4+Eb54uzzs1hwbQFaN2iNgcYD\nMdJ0JAy0DJSkoQKpUYNludmwgaV5ExAQqNAIT4CVlJjUGOwK2oXdQbuhX1cfo0xHYUjbIWhap2nJ\nBnj+nOXIfPoU0NYu9fy54lzcenULp8JO4di/x9BJtxOmdpiKfq36oWoVNb4vS0oCjIyAkBCgSfme\nYAUEKhJ8fAIUDGAl41HCI6y+sxqXIy5jpOlITO0wFe0bl2E5b+BAZgAVUDMvKy8Lx58eh2ugK2JT\nY/GDzQ+YYj0Fdb6oU+6xlcLUqYCODrBkCdeSCAioDD4awArskaAc+BgH4+vrixfvX2Ckx0j0OdgH\nHZp0QNSPUdjWb1vZjJ+3N/DkCTB7tkLkq1mtJpwtnHFv4j2cHn4aAXEBMNpqhDW31yA9N73Ifpxd\nq5kzgR07gNxchQ/N188fH+GjXnzUqTgEA8hzEtMTsdlvMzrt7gSThiYInxWOuV3nou4Xdcs2oEQC\nzJsHrF7N9sQUjHVTaxz97ih8nH0QlBAEoy1G2P5gO0QSkcLnKjPt2wNt2gAnT3ItiYCAQHkgIs6O\nixcvOhgbG4cZGRmFr169eoGsNrNmzdpiZGQUbmZm9igoKMhSXt958+atMzExCTUzM3s0aNCgUykp\nKfUKj8nU5jcfsj/Q796/U/019Wn2xdn0Jv2NYgZ2dyfq3JlIIlHMeHJ4GP+QbPfZktk/ZuQT6aOS\nOUvEqVPs/yAgUEn4+LvJqc1Q9MHZxCKRSNPQ0DAiMjLSIDc3t5q5ufnDkJCQNgXbnD9/vl/fvn0v\nEBH8/PxsbGxs/OT1vXLlir1YLK5CRFiwYMHqBQsWrP5MaR4bQIlEQu4P3UlnvQ6NOTWGIpMjFTd4\nZiZRs2ZEt28rbswSIJFI6MTTE9RsYzP67vh3FJUcpdL5ZZKXx/4XDx5wLYmAgErgowHkbAn0/v37\nnYyMjCIMDAyiqlWrljdixIijnp6eAwu28fLycnJ2dt4PADY2Nv4pKSlaCQkJOsX1tbe3v1qlShWJ\ntE9MTIxeaeSqyGvgkcmR6HOwD/7y+wteI7zgPsgdBloGitNpyxYW8tCtm2LGKyEaGhr4ru13CJ0R\nivaN2sN6pzU23tsIb29vlcrxCVWrAtOnA1u3KnTYivz5Kwo+6gTwUy8+6lQcnPmbx8bG6urr60dL\nz/X09GL8/f1t5LWJjY3VjYuLayqvLwDs3bt3wvfff39E1vzjxo2DgYEBAEBLSwsWFhb5AaDSD0FF\nOffx8cGliEvYm7IX87vOh3WONTLCMwBdpuvDhw/LP9+HD7Bdtw64e5dTfRfbLoZhqiHWea4DEeFi\nh4sIDwrnRh4XF8DICL5nzgBaWmrzeVC3c4V8/tTwXIq6yKMM/Xx9fREVFQXewtWj58mTJ4e4uLjs\nkp4fOHBg9MyZM7cWbOPo6Hj29u3b3aTndnZ21wICAqxL0nfFihW/DR482EPW3ODREuj7zPc09PhQ\nar+9PT1JfKK8iX74gWj6dOWNX0rEEjEtv7GcdNbr0OWIy9wJMnEi0Z9/cje/gICKgLAEqjh0dXVj\no6Oj9aXn0dHR+np6ejHFtYmJidHT09OLkdd337594y5cuNDv0KFDo5StB5f4RvnC3NUcTeo0wYNJ\nD8oW0lASIiKAQ4eAxYuVM34ZqKJRBYt6LMLhwYcx3nM8/vD5A2KJWPWCzJoF/PMPkJen+rkFBATK\nB1eWNy8vr2rLli1fREZGGuTk5FSX5wRz7969zlInmOL6Xrx40aFt27ZP375927CouVHME6CPj0+R\n76kLeeI8WnhtITVZ34QuPL8gt325dRo6lGjFivKNoQSkesWnxVPPfT2p576eFJ8Wr3pBunVjXqEK\noCJ8/koLH3Ui4qdexekEHj4BcrYHWLVqVdG2bdtm9unT57JYLNacOHHinjZt2oTu2LFjCgBMmTJl\nR79+/S5cuHChn5GRUUStWrUy3NzcxhfXFwBmzZq1NTc3t7q9vf1VAOjSpcu97du3T+dKT0WTmJ6I\n4SeHo0bVGng49SEa12qs3An9/IB791gZIDVFp7YOro65imU3l8F6pzUODjqIni16qk6AKVNYYPyg\nQaqbU0BAoNwIqdAqEA9iH2Dw8cGYYDkBf/T4A5pVNJU7IRHw9dfAxInA+PHKnUtBXH1xFWPPjMWM\njjPw69e/qqb8UnY2oK8P3L/PqkUICPAQIRWaAGcceXIE/Q/3x9a+W7HUdqnyjR8AnDkDpKYCY8cq\nfy4FYW9oj8DJgbjy4gr6HuqLtxlvlT9pjRrAqFHAnj3Kn0tAQEBhCAawEIVdnNWBjfc2YsG1BfB2\n9sa3Jt+Wun+ZdMrLY4mu160DNFVgbMtAUXo1rdMU3s7esG5ijQ67OuBx4mPlCzNpEiuRJCpfyjZ1\n/PyVFz7qBPBTLz7qVByCAVRjiAgLri3AzqCduD3htvK8PGWxcyfQvDnwv/+pbk4FUrVKVay0W4k1\nvdegt3tvXIq4pNwJ27Vj/68LF5Q7j4CAgMIQ9gDVFJFEhElnJyH0bSjOjzyPBl82UN3kqalA69bA\npUuAhYXq5lUSd17fwZDjQ7C853JMsp6kvIn27AG8vABPT+XNISDAEXzcAxQMoBqSmZeJ4SeHQyQR\n4eTQk6hVvZZqBVi0CIiOBvbvV+28SuR50nM4HHTAFOspWNC9/DUMZZKWBjRrJhTLFeAlfDSAwhJo\nIbheA3+f9R7/O/A/aNXQgtcIL4UYv1LpFBvLArtXrCj3vMqmKL1yc4HLl4GffwZ69wYMDIBOhq3x\nZs0tLDq5D/rjfsMPswkHDwLv3ilQoDp1WCjEwYNlHoLrz58y4KNOQNn1CgsD1q8HhgxhK+fa2kDt\n2kDDhux82DD2/vPnipW3JPD1WhWFYADViJjUGPRw6wEbPRvs/3Y/qmlWU70Qv/8OTJ7M3PorGGFh\nwLRprFj70qXsR2XOHFa/NyoKiA3Vxf3pN1Gj/QUEN/4RHqckMDQEnJxYG4UsCkyYAOzdq6DBBPhC\nRgbLm96+PWBnB7x4AXz3HXD4MPDoERAfzxYODh8Gvv2WvW9rC7RtC2zcyHYlBJQA15H4XBxQw1yg\noW9DqfnG5rTm9hqSqKjW3mc8ekTUuDFRSgo385eRyEii778natSIaPFiopiY4tsnZyVT1z1dafyZ\n8ZTyQUS7dhG1bk3UtSvRw4flFEYiIWrViujevXIOJMAH8vKINm9mX6vBg4l8fIjE4pL1FYuJbt0i\nGjGCqGFDog0biHJzlSpusYCHmWA4F4ATpdXMAPpF+5H2Om3aG7SXW0H69CHasoVbGUqBSES0Zg1R\ngwZES5cSpaWVvG96TjrZ7bejoceHUo4oh0Qiot272Q/NsmXl/KFZvpxo6tRyDCDAB/z9iczMiHr1\nInr8uHxjhYayr2ebNkR37ypGvtIiGECeHMUZQFXn97v24ho1XNuQvMK8lDZHiXS6coXIyIgoJ0dp\nciiSqCgiU1Mf6tmT6MWLso2RlZdFTkecqP+h/pSZm0lERNHR7IfGyoroSVmLa0RFEdWvT5SdXequ\nlS2/ZEWmKL3EYqLVq9lT3+HDbFFAEUgkRCdPspWO7dsVN25BKlsuUGEPkEOuvbyGER4j4DHMAwOM\nB3AniFgMzJ8PrFoFVK/OnRwl5OpVwMYG6NKF/d2yZdnGqVG1Bk4OPYm6X9SF4xFHZOZlQk8PuHiR\n7SX27Mn2X6i023nNmwPm5sDZs2UTTKDCkpwM9OvHLv2DB8D33wMaCvKb1NBgjjN37wLbt7PshFlZ\nihm70sK1BebigBosgV5/eZ0arm1IN6JucC0K0f79RF26KOeWUsEcOsTurH19FTemSCyiMafGUG/3\n3vlPgkTsQc7cnMjFpQxLovv2ETk6Kk5IAbXnxQsiExOiH39ke3/KJD2d7Q1aWrI9cFUAHj4Bci4A\nJ0pzbABvRt2kRmsbkW+kAn/Fy0pmJpG+PtHt21xLIpdt24j09Ij+/VfxY4vEIhrpMZL6HOhD2Xn/\nLV2mphL170/k4ECUkVGKAdPSiOrVI0pIULywAmrHw4dETZoQ/f236uaUSIg2biTS1iby81P+fHw0\ngMISaCGUHQfzKOERhhwfgkODD+Ebg2+UOpeUYnXauBHo1Ano1k0lspQFImD5cibqzZssVgpQ7LXS\nrKKJ/d/uR50v6mDYyWHIE7MCt3XqsJzgjRqxpa2MjBIOWLs2MHAg82svBXyMw+KjTsB/et2/zzIG\nbt4MTFdh4TUNDeDHH4Hdu4EBA4A7d8o/Jl+vVVEIBlCFvEx+iX6H+2Fbv22wN7TnWhwWfLRhA7Bm\nDdeSFMuyZcDJk8Dt28qtNlS1SlUcGnwIEpJgzOkx+RXmq1Zl5RBbtgQcHUux7+LsDLi7K01eAe4J\nCmLGZ88eYOhQbmRwdAQOHGDxg3fvciNDRUVIhaYiEtMT0W1vN8ztMhfTOk5T6dxFMmECe7RRYwN4\n8CCLzffzYxkzVEG2KBv9D/dH6watsb3fdmh89GIQi4ExY1hQ8unTQDV5eQokEuYQc/Eii4AW4BVh\nYcxRavt29aiFfOkSu+e6coX5YCkaIRWaQJlIzUlF30N9McZsjPoYv8BA9sP8229cS1Ikt26xTC7n\nzqnO+AHMO/T08NPwi/HDqtur8l/X1GTpUSUS5iUq9x6qShVWJ7AcqdEE1JO4OMDBgTlOq4PxA5g8\n27axpfqoKK6lqSBwvQnJxQEVxgFm5WVRz309afr56ZxlePlMJ4mEqHt3op07OZGnJISHs839y5eL\nbqPs+LLY1Fgy2GRAbsFun7yelsbiBJctK8EgT54wz50Spv/gY8wc33TKzibq1IlowgQfrkWRyebN\nLGC+LAmdhDhAAYUhlogx6tQoNPyyIbY4bMlfSuOckyfZOt6ECVxLIpPkZLavsXQpt+UIm9Zpigsj\nL2DBtQW4HHE5//XatdlT6Z49wLFjcgZp3x6oX589zgrwgp9+AvT0gNGjuZZENj/8wJLADxtW7vrM\n/IdL63vx4kUHY2PjMCMjo/DVq1cvkNVm1qxZW4yMjMLNzMweBQUFWcrre/z48aFt27Z9WqVKFXFg\nYKCVrDGhgjAIiURCk89OJrv9dp+41XNOVhZR8+ZE3t5cSyKTnByinj2J5szhWpL/uP3qNjVc25AC\nYgM+eT04mKVOCwqSM8Dq1USTJytPQAGV4e7OUr2qe7rcvDwie3uiuXMVNyZ4+ARY5BuOjo5n5R1j\nx47dX9aJRSKRpqGhYURkZKRBbm5uNXNz84chISFtCrY5f/58v759+14gIvj5+dnY2Nj4yesbGhpq\n8uzZs9a2trY+XBrARd6LyHqHNaVmpyp9rlKxfDnRt99yLYVMJBKiCROIBg5keT7ViVMhp6jJ+ib0\n4v2nedeOHSNq0YIoKamYzlFRLGFpBUkzJyCbR4/YDU+ZU+SpmKQkIgMDojNnFDMeHw1g1aKeDMPC\nwkx2797tQjK8fj56UWrMmDHj77I+ed6/f7+TkZFRhIGBQRQAjBgx4qinp+fANm3ahErbeHl5OTk7\nO+8HABsbG/+UlBSthIQEncjIyBZF9TUxMQkrq0wAi4OxtbUtzxDY6r8Vx58ex+3xt1HnizrlGksR\n5Ov06hULpgsM5FokmWzYAAQHs9VCTU357RVxrUrKoDaDEJcWB4eDDrg78S4aftkQAFtm8vNj3qFn\nzzK/l8/0xibSAAAgAElEQVRo3hxo04a55zk6FjuPKnVSFXzQKSWFpSHbtOk/h15116t+/f/KK1lb\ns2Vbeai7ToqmSAO4YsWKRd98882N4jr/8ccfy8o6cWxsrK6+vn609FxPTy/G39/fRl6b2NhY3bi4\nuKby+spj3LhxMDAwAABoaWnBwsIi/8JLg0HLcn7kyREsd1+OLX23oFGtRuUeTxHnDx8+ZOdbtwKz\nZ8M3KgqIiuJMHlnn//4LrF9viwcPgAcPStZfiqrknWE7AzFpMfhmyTfY8L8NcOjtAADo188Xly8z\n+X/+uYj+HTrA9vBhwNFRLf7fqjzP//ypiTylPff29sUffwB9+thi1CjuPn9lOe/SBRgwwBcDBgAB\nAbbQ1Cx5f+nfUXx2KeXq0fPkyZNDXFxcdknPDxw4MHrmzJlbC7ZxdHQ8e/v27W7Sczs7u2sBAQHW\nJelry8ES6KXwS9R4XWN6kqiGaySXLxO1bMn2ANWMpCSiZs2IvJRXEENhSCQSGn1qNDkdcaI88X8J\nH1+9YjlKiywD+PYtS41WmppNAmrB6tVENjYVdwVbJCKytSX688/yjQMeLoHK9QJ98OBBx0GDBp22\ntLQMNjU1fWJqavrEzMzscXkNr66ubmx0dHR+2fHo6Gh9PT29mOLaxMTE6Onp6cWUpK+qCYwLxJjT\nY3Bq2Cm0b6xmQc+5ucw1bNMmoEYNrqX5BCJg6lS2TDOAw4IYJUVDQwN7nPYgMy8TMy/MlN5QoVkz\nwNWVhf2lpcno2LAhSzfn5aVagQXKhbc3+9qcOFEhCqXIRFOTZYrZvBm4d49radQMeRayVatWzz09\nPZ1evHjRMjIy0kB6lNfy5uXlVW3ZsuWLyMhIg5ycnOrynGDu3bvXWeoEU5K+tra2PgEBAday5oaC\n4wBfp7wm3Q26dCrkVKn7qgKfSZNYRmc1xN2dqF07lpO7tHAZX/Yh+wNZuFrQihsrPnndxYU58sjk\n4EG514FvMXNEFVent2+JmjYlunpV9vsVTa/Tp5nDVnEerJUtDlBug65du95R1uQXLlzo27p162eG\nhoYRK1euXEhEcHV1neLq6jpF2mbGjBnbDA0NI8zMzB4VXNKU1ZeIcOrUqUF6enrRNWrUyNLW1k5w\ncHC4+JnSCjSAqdmpZPaPGa2/s75U/VRGZCT51K1b9qqxSiQyknnVPXxYtv5c/wDFpsZS843NPwmU\nT00lMjRkPzafIa0Q8fZtkWNyrZMyqIg6SSREQ4YUH0ZQEfWaNo2VUSoqJ0dlM4Byc4FeuXLlf8eO\nHRveu3fva9WrV88FmBfo4MGDTyn54VRpKCoXqEgigtMRJzSr1wz/9P9HfQLdpRAxr8Nu3YBff+Va\nmk+QSFgeRUdHVou3ohL2Lgy2+2yx79t9cDBiTjH37rH0WI8eyUjh9v33wDffsHVfAbXl4EGWIvfB\nA7XbNSgXWVlAx47AvHnAuHGl68vHXKByDeCoUaMOPXv2zLhdu3ZPq1SpIpG+7ubmNl7p0ikJRRnA\nWRdn4dm7Zzg/8jyqacrLjMwBx4+zUgpBQWq3gbFlCxPvxo2ShTyoM3de38GgY4Nwfex1mGqbAmD3\nG6GhwKlThSqCnz0LrFvH6joJqCVxcYCFBUsubWXFtTSK599/2c2nvz+rcFJS+GgA5T4itm7d+plE\nItHg+lFVkQcUsAT69/2/qc22NpSSpaYpIZKSiHR0iO7eVbulmogIFhf+/Hn5xlEnvQ49PkQGmwwo\nMT2RiFi+yLZtWaD8J+TkMOVfvZI5jjrppCgqmk6DBhEtWiS/XUXTqyDr1rGMS4WXQivbEqhcL9Cu\nXbveDQkJaat0S1yBuPriKpbdWIaz359FvRr1uBZHNnPnAt99B3TpwrUknyCRAC4uwMKFQKtWXEuj\nOEaajsQYszEYdGwQskXZ+OILlit09mwgKalAw+rV2fro8eOcySpQNKdPAyEhal0kRSH89BOQns6K\n6VZm5C6BmpiYhL148cKwRYsWkV988UUOwJYQHz9+bKYSCZVAeZZAn717hh77euDE0BPo0byHgiVT\nEBcvstLUT56wzM1qxM6dwN69rHp1RV/6LIyEJBh+cjhqVK0B92/doaGhgZ9+Ygbwk7q4168DCxYA\nAQGcySrwOR8+AO3asewpPdT0q61IHj8G7OzYXnXTpvLb83EJVK4BjIqKMpD1ujQNWUWkrAYwOSsZ\nNrttsKDbAky0mqgEyRTAhw+AqSmzMr17cy3NJ8TFsUKd3t5MRD6SmZeJHm49MLTtUCzovgAZGUzX\nv/8G+vb92EgsBnR1Wc43Pj0GV3CmT2fVE3bu5FoS1fHHH8wQnj5daK9aBnw0gJyvwXJxoAx7gHni\nPOrt3pt+vPRjkX3VgnHjiKZM+eQlddmrGDyY6LffFDeeuuhVmOgP0dR0Q1PyCmOpba5cYQU40tML\nNJoxg2jFis/6qqtO5aEi6HT7Nov5S04ueZ+KoJc8srNZ7cATJ9i5sAdYAvr3739eoVa4AjDvyjxo\namhinf06rkUpmlOn2FPF+vVcS/IZXl5sRXbRIq4lUT56dfVwatgpTPCagKdvnsLeHujaFVixokCj\nESOAo0c5k1HgP3JygEmTWMYXLS2upVEtX3wB7NgB/PgjWzyqbMhdApVFXFxc06ZNm8YpQR6VUNol\n0D1Be7D27lr4u/hDq4aafkPi4wFLS+DMGaBzZ66l+YT0dLa34uYG9OrFtTSq48CjA1hyYwnuu9xH\nXmoDmJoCvr7sfwGJhFWJuHwZaCv4mHHJsmVsO9bTU/4yIF+ZNInFO27dWnQbPi6BlskAVnRKYwCl\nMV43x9+ESUMTJUtWRiQSoF8/wMaGlVFXM37+GUhIKOQIUkmYd2UeghOCcXn0Zez4pyqOH2dGUEMD\nzFO3dm21vGaVhdBQ4OuvWRkufX357flKUtJ/FbssLGS3qVQGsGfPnj4yO2hoEAB4e3tX2Hv54gyg\nb4F6WDGpMbDZbYPdA3ajb6u+MturBX/+yaJ2vb2Bap8H5BfUSdVIg27//VdGVpRywqVeJUUsEaP/\n4f4waWiCDfab0LkzMHMm4OwM4P59VkgwLCz/0aMi6FRa1FUnIvbZHDyY5YovLeqqV1nZsQPYts0X\njx/bynwS5qMBLLIe4Lp16/ITVEmNnp+fX+c1a9YsaNy48RtVCMclWXlZGHRsEGbbzFZv4+fjA2zb\nxtZwZBg/LiFinnXLline+FUUNKto4siQI7DZbQMLHQu4uo5D//4sBVyDjh2BvDzmhmduzrWolY5D\nh1jljhkzuJZEPXBxAf76i6WBGzOGa2lUREk8ZXx8fGzt7Oyude3a9c6FCxf6cu25U94DcuoBSiQS\nGnNqDH1/8nuSFJU1Vh2Ij2eua1eucC2JTNzdiaytWT2yys7TN0+p0dpG5BftRzNnEk2a9PGNBQuI\nFi7kVLbKyIcPRE2aEPn5cS2JeuHnx/4vsipGgIdeoMW+efHiRYfu3bvf6tWr13Vvb++eXAurMKXl\nGMC/7v5Flq6WlJGbUWw7TpFWuVy8mGtJZCL8wHyOZ5gn6W7QpbDYOGralOjuXSIKDGTlI9T5RouH\nzJlTTNmqSs7EiUQ/yoj2qlQGsEOHDg+aN28etXXr1pkBAQHWAQEB1oGBgVbSg2vBy6V0MQZww6EN\npLNeh6KSo4psoxbMmUPUu3eJHq+4iFeaN49o/HjlzlER47CW+S6jLru7kNuBbLKyIhLlSYiMjIgC\nAoioYuokD3XTKSSEleFKTCzfOOqmlyLw8fGhN2/Y/+fx40/f46MBLHIPsFatWhm1atXK8PDwGOLh\n4TGk8Ps+Pj49lbImyyGRyZFYcWsFTi04heZazbkWp2j27GFVBfz81DKfWFgYC3l4+pRrSdSP33r8\nhqCEINz9chZq1dqJ3Xs0MGXYMODYMcDammvxeA8Rc3hZtAho3JhradSTRo2AJUuAWbOYiwGfQ0OE\nMIiPZOZlouuerhhvMR6zO8/mSLIScOMGMHQoK6djon5hGUSAgwPQpw8wZw7X0qgnaTlpsNltgyG6\ns7FzyhQ8P/kY9cY4AZGR/P61UQNOnWLpv4KD1c5nTK0Qi4EOHVgI0/ffs9f46AVapAEMCgqysrKy\nCiquc0naqCOFDSARYdSpUaimWQ37Bu5Tv8K2Up48Yfk9Dx1SuzyfUry8gF9+YQl2hR+Yonme9Bzd\n93ZH95gzaJLXBX97twH272exnAJKITOT5Rxwc2PhDxWepCR2Q3zzJosziokB3rwBMjKAKlVYZHv9\n+izvrJERS0r79dcsYUYJVo7u3gWGDWOxknXq8NMAFrk2ampq+jgpKal+Uce7d+8aWFhYBHO9hluW\nA4X2ANffWU9WO6woMzdTfdf1IyOJ9PSIDh8udVdV6ZSVRdSypeqcUtX2WpWQc8/OUZN1utTAIJbi\np/xBNGdOhddJFuqi0+LFREOHKm48TvR6+ZIpYm5OVKcOkYMD0erVRBcvss3Nd++IMjOJMjJYTdDn\nz4muXyfasYNo+nRWpLJ+fZaY9++/iZ49K1YnZ2e2n09UyfYAU1NT61pbWwcWZzwbNWr0VsH2WOVc\ne3kN6++th7+LP2pWq8m1OLJ5/ZrVLSm4HqGGbNjAwtns7bmWpGLQv3V/TO80FW6532Heqb9xINEJ\n6N+fa7F4SVQUC5cNqnDrVR+JiGAltG7eZL8Bf/8NdOpU/DLLl1+yJ8BWrT7NQRgXx5JmXLvGkmh8\n9RUwcqTM4L81a4D27YHx45WgkzrApfW9ePGig7GxcZiRkVH46tWrF8hqM2vWrC1GRkbhZmZmj4KC\ngizl9U1KSqrfu3fvq61atXpub29/JTk5WavwmPj4BPjy/UvSXqdN3i+9SW159Yo9Vv31F9eSFMvr\n16zQ+cuXXEtSsRBLxDTwyLfUwHkKJeu1Y2UJBBTOoEFEy5dzLUUZSE4mmjuXfblWrWJPd4pELCa6\ndYtVkKlfnz1RnjlDlJeX32TTJqJevfj5BMjZxCKRSNPQ0DAiMjLSIDc3t5q5ufnDkJCQNgXbnD9/\nvl/fvn0vEBH8/PxsbGxs/OT1nT9//to1a9b8TERYvXr1ggULFqz+TGmAMnIzyMLVgjbe21js54NT\nHj9mdXTU3PgREQ0fTvTHH1xLUTH5kP2Bmq81oZUtnSh32g9ci8M7rlxh95BZWVxLUgry8oi2bydq\n3JhlTUhIUP6cmZlE+/cTde5M1KwZ0fr1RCkplJdHZGoqGECFHnfv3u3Sp0+fS9LzVatW/bJq1apf\nCraZMmWK69GjR4dLz42NjcPi4+N1iutrbGwclpCQoE1EiI+P1zE2Ng77TGmARp8aTaM8Rn2W6UVd\n9ivo3DmiRo2IDh0q91DK1snHh31fMlScN0BtrpUCCHsbRu2nfUVna9bjXeocLq9Tbi6RiQmRp6fi\nx1aaXoGBRO3bE/XsSRQcrJw5iiBfp/v3ib7/nj0V/vQT3TkcxUsDWOQeoLKJjY3V1dfXj5ae6+np\nxfj7+9vIaxMbG6sbFxfXtKi+iYmJ2tra2okAoK2tnZiYmCgzC+WFtecx1X4alj5eCi0tLVhYWOQn\ntvX19QUAbs6J4DtzJnD0KGzPnQO6dCn3+A8fPlSavCIRMGGCL8aPB778UgX/nwLnUji9Xgo8/2nU\nPiQcHoz9v69C8/9151weRZ0r8/Mn73zrVqBOHV/UqQMAih1fisLk/eYbwNUVvgsXAjNnwnb5ckBD\ng7Prh8mT4aujg6grV4Dt28FL5FlIsVhcxd3dfczSpUv/ICK8evWqmb+/f6fyWt6TJ08OcXFx2SU9\nP3DgwOiZM2duLdjG0dHx7O3bt7tJz+3s7K4FBARYF+7r7u4+ZtasWVuICFpaWskFx/jqq6/eF54b\nACXrGxHt2qVe6yK5uUSTJ7O7v6gorqUpEVu3shtVIZOXYthl15N2WzShXFEu16JUeBIS2NZZaCjX\nkpSAvDyiqVPZd//5c66l+ZzUVF4+AcqtCD99+vTt9+7d63L48OGRAFC7du306dOnl/t2QFdXNzY6\nOjq/Ald0dLS+np5eTHFtYmJi9PT09GJkva6rqxsLsKe+hIQEHQCIj49vUlTlip80dkBy6jRgYMDK\nFbx7V16Vyse//wLdu7PCtnfvsmKpas67d+xft2WLEL+tKEZudIVjWBJG7PyRa1EqPL/9xspOqWG+\niE9JSwOcPiZCuHOHeW2qGTeSKqr7bPHINYD+/v4227dvn16zZs0sAKhfv/77vLy8coc4d+jQISA8\nPLxVVFSUQW5ubvVjx44Nd3Jy8irYxsnJycvd3X0swEoxaWlppWhraycW19fJyclr//79zgCwf/9+\n52+//faMrPnjTHphs/155g78+jX70E2dCl83t/KqVjoyM4GFC1lk7vjxrKI7W69RGIWXbBTFokXA\niBHMTZoLlKUXl9xPikPVJm2Q7uOJvUH7uRZHIXBxnQICgPPnWdYXZaEQvd6+Bb75BtDTY+kN69Yt\n/5jlQJZO0R+iMcJjhOqFUQXyHhE7derkLxKJNKVB72/evGmkqAD4Cxcu9G3duvUzQ0PDiJUrVy4k\nIri6uk5xdXWdIm0zY8aMbYaGhhFmZmaPCibhltWXiIVB2NnZXZMXBhEaWighbkIC0eLF5FO/PlG3\nbkRubkSpqfKXBsqKWEx07BhRixZEI0aw0kZKQhmb9UFBzEHt/XuFD11i+OQEI8XHx4ckq9fQqWZD\nqdbShvQg9gHXIpUbVV8niYSoSxeiPXuUO0+59UpMZEuev/6qNnsIhXXKysuiDjs70Opbq3m5BCq3\nwYEDB0YPGDDAq2nTprELFy5c2apVq+fHjh0bxrXg5VL6YxzgnDlELi70Kbm5RKdOEQ0YQFS3LjNO\nZ88SZWeTQkhLI9q5k6hNG6JOnYiuXlXMuCpEIiH6+msiV1euJeEpL19S3lcN6atOx0lvfTN6k/6G\na4kqFAcOEHXowO4x1ZY3b1hWlsWL1cb4FUYikdD4M+Np6PGhJJFIeGkAS5QMOzQ0tM3169ftAMDO\nzu56mzZtQpX4UKp0pLlAP3xg+wNnz7LEr5/x7h1w/Dhw5Air2m1ry3Jwfv01W/erWkIn2vh4lrPP\n0xO4eJGNM2sWy85QATfPjh4F1q4FHjxQy2IU/MDGBtubLMduoxuoZ3oXV0ZfQTVNIbmqPNLS2Hfa\nwwPo3JlraYrgwwe25dGvH7BiBdfSFMn2B9vxT8A/uDfxHmpXr83LXKByDeDr16+bAchXXENDgwCg\nWbNmr5UunZIomAzbzQ3YuZPtPVepwtbApe7An/D2LUsddP06a/zqFdC6NWBszJLN1q8P1PyYSi0l\nhRm9uDggJIR9K7t3B/r2BYYMYfVGVEiROpWB9HSgTRt2T9C9u0KGLDOK1EtdyNdpwwbkPAxBs2s7\n0eqPAejQojU2OWziWrwyocrrtGAB++q5uyt/rjLplZPDyqW0bctys6nZDbBUp9uvb2PI8SG4M+EO\njOobAeBnMmy5jzD9+vW7IDV62dnZNSIjI1sYGxs/e/r0aTvli6d8nJ0BV1fgwAH2d5E0asRy8Elz\ncaans8J34eFAbCzw/j07AKBePZanr0kTZiCNjJh15QErV7I9e66NH+8ZNgxfrLTAyhX/YNexQzg/\npBOsm1hjjPnn+RoFGM+fs1KZT55wLUkREDFHtwYN1Np1OiY1BsNODMP+b/fnGz/eUto108DAQKsJ\nEybs4XrttjwHClWD8PcnatKEKCWFBIrh2TMWVxUby7UklYSuXUl09jxZWxOt3P2EGq5tSAGxAVxL\npZZIJET/+x/L3qW2LFlCZGOj+HyeCiQrL4s67uxIK2+u/Ow98HAPsNSPJVZWVkGFM7ZUdDp1YquT\nS5dyLYn6QgRMm8Ziq5o25VqaSsKwYdA8eRzbtgFbf2+Pjb12YPDxwXiTITO0tVLj4cEWYn74gWtJ\nisDDA9i7l4U51VTPqjNEhGnnp8FAywC/dP+Fa3FUgtw9wA0bNsyV/i2RSKoEBQVZvX//vv7ly5f7\nKF06JSGrIvybN8yvZc0aX4wfb8uNYEpCEXswBw4AGzcC9++X3PdH2fB6DxBgv+impkB8PCZM+wJa\nWsCXjotw6/UtXBtzrcI4xSj7Okn3pQ8dAnr0UNo0n1FivV68ALp0YQ5w1tZKl6usbPXfio1HN+LJ\nmieoVb3WZ+/zcQ9Q7hNgWlpanfT09Nrp6em1c3Nzqzs6Op7z9PQcqArhVEnjxsCSJcCmTexpR+A/\nkpKA+fOBHTvUx/hVCnR12V3ZlStYvZr9wH9bbxnqVK+Dny7/xLV0asPy5cyxWpXGr8Tk5ADDhwO/\n/67Wxs83yhcrbq3Ail4rZBo/vlKiMAi+IesJEADEYsDGhi2jjB3LgWBqiosLq625ZQvXklRC/v4b\nuHcPOHgQ+/ezG7SrNz+g+34bzOs6Dy5WLlxLyCkhIcwp68kTQEeHa2lk8OOPLNOUh4faOr28SnmF\nzns648CgA+jdsneR7fj4BCjXAA4YMODsR4ORHwZR8G8vLy8nFcipUIoygACLbRswgH2x6tdXsWBq\nyK1bzPE1JITzLE2Vk4QEFtgWHw+qURN9+rBQ1IETnuFrt69xZsQZdNXvyrWUnEDEQmkHD2ZhtWrH\nmTPATz+xMvRffcW1NDLJyM1Ad7fuGGs2Fj91KX5VgY8GUO4SaIsWLSJr1qyZNXny5J2TJk3aVatW\nrQxDQ8MX8+bNWz937twNqhBSlWRk+GLwYObswRfKmrMwNxeYMgXYvFk9jR8fc4F+ppOODmBlBVy6\nBA0Ntgy9di2gmWKMfd/uw3fHv0NMaozMsdQFZV2nI0dYyO20aUoZXi7F6vXqFTB5MhNSTY0fEWGC\n1wSYa5vjx84s+Tofv1PFIXdH586dO90CAwPzF6+dnJy8rK2tAzdt2sTbdPV//sniVMePZx6ilZV1\n64CWLdkdtgCHDBsGHDsGDBqEFi2AX39lv63Xr/fDbJvZ+Pbot7g1/hZqVlNP70JlkJrK9qVPnlTD\nfem8PJYl/uef1TgdDbDy1kq8SnkF33G+0FDT5VmlIy9OwsTEJDQiIsJQev7ixYuWJiYmoVzHb5Tn\nQKE4QFm4uxNZWbEyXZWR8HAW8xcZybUkAvTmDctLm5FBROwz2aEDS/YskUhopMdI+v7k9yRR05yS\nymDaNKKJE7mWogjmzyfq31+tk5GeCT1Duht0KTa15EG94GEcoNwGFy9edNDX13/do0ePGz169LjR\nrFmzV5cuXerDteDlUroEBlAiIbK1Jdq4UW5T3iGRENnbE61dy7UkAvnY2xMdP55/+vAhUaNGrIhI\nZm4mddjZQWbwMh+5do1IT48oOZlrSWTg7U3UtCnR27dcS1IkjxIeUcO1Dck/xr9U/SqdARSLxVWO\nHj06PCsrq0ZwcLBFcHCwRVZWVg2uhS630sUYwILlQKSZTypIcfYiKW3ZlsOHiczMWGEMdYav5ZBk\nsmsX0ZAhn7y0cCHR0KHs75gPMaS7QZfOhJ5RroBlQJHXKTWVqHlzogsXFDZkmflMr9RUIgMDonPn\nOJGnJLxJf0MGmwzo0ONDMt8v7lrx0QAW6wRTpUoVydq1a3+uUaNGtoWFxUMLC4uHNWrUyFbyqqza\n0Lo1MHcuMGlS5YkNTE4G5sxhzhbVKkacdeVg0CDgyhWWWP0jv/8OPHzIiozo1tXFqeGn4HLWBY8T\nH3MoqHKZP595wfbty7UkMvjtN1bloX9/riWRSY4oB0OOD8GI9iMw0nQk1+KoBXLDIH755ZfVDRs2\nfDd8+PBjtWrVypC+Xr9+/fdKl05JFBcGUZi8PLaPPWMGMGGCkgVTA6ZOZXm7t2/nWhKBz+jXDxg9\nGhj534/XjRvspX//ZTnYj/57FL9c+wX+Lv7Qrq3NobCK58oVdjP6+DHTVa0ICAAcHYGnT1myazWD\niDDRayKSs5PhMcwDVTRKn5yfj2EQcg2ggYFBlLQaRH4nDQ16+fJlS6VKpkRKYwAB4NEjdtf58CFL\nzsFX7t4FvvuOxfxpaXEtjcBnuLszt0cvr09enjyZeUJKb1oW+y7G1RdX4e3sjRpVa3AgqOL58AEw\nMwN27QL+9z+upSmESMQyaMyerbYZNNbfXY9DTw7h1vhbqF29dpnG4KMB5HwNlosDJdwDLMjixUSO\njmpbvLlYSrIHk5NDZGpKdPSo8uVRFJVqD5CI6MMH5g2alPTJy8nJzO/i1i12LpaIadiJYTTSY6Ra\neIYq4jq5uBBNnlx+WRRJvl6bNzOPOTX4X8vCM8yTmm5oSq9TXsttK+wBFiI3N7f65s2bZw8ZMsTj\nu+++O7l169ZZeXl5lW536NdfWWzroUNcS6IcVqwAmjVjIWcCakrdumwp4vTpT17W0gK2bmXLg9nZ\nQBWNKtg3cB8i3kdg2Y1lHAmrOC5dAq5eBdav51oSGcTGAsuWAf/8o5apzu7H3oeLlwtODz8N/Xr6\nXIujfsizkBMmTNgzduzY/devX+917do1O2dn530TJ07cXR6rm5SUVL93795XW7Vq9dze3v5KcnKy\nlqx2Fy9edDA2Ng4zMjIKX7169QJ5/ZOSkurb2tr61K5dO23mzJlbi5ofJQiDkEVgIHM9f/WqTN3V\nFn9/osaNieLiuJZEQC4nThDZ2cl8a9Agot9//+88Pi2emm9sXqTHX0UgOZmFPFy7xrUkRTBkyKf/\ndDUiPCmcdNbr0NlnZxUyHnj4BFjkG3l5eVWJCKampo8LvyfrtdIc8+fPX7tmzZqfiQirV69esGDB\ngtWF24hEIk1DQ8OIyMhIg9zc3Grm5uYPQ0JC2hTXPyMj48vbt293c3V1naIMA0hEtHo1UY8eRCJR\nmYdQKzIyiIyNiY4d41oSgRKRmUmkpSXzbiU2lqhhQ6LHj/977XHCY2q0thHdenVLhUIqjvHjWdC7\nWnLuHJGhoVoWuE1MTyTDzYa0M2CnwsasVAbQ0tIyiIhgYWERHB4ebiR9PSIiwlD6XlkPY2PjsISE\nBDCFV+kAACAASURBVG0iQnx8vI6xsXFY4TZ3797t0qdPn0vS81WrVv2yatWqX0rS383NbVxZDaC8\n/QqRiC33r6xAMcfF6TR5MtHo0aqTRZFUuj1AKWPHEm3aJPOtvXuJ2rYlSk//77XLEZep8brG9CTx\niWKELCVlvU7nzhG1aEGUlqZYeRRCejr56OgQXbnCtSSfkZaTRh12dqA/fP4odd/KtgdYZBY9+ujt\ns379+nm9evXybtmy5Usi0oiKijJwc3MbX55l18TERG1tbe1EANDW1k5MTEz8zF87NjZWV19fP1p6\nrqenFyOtRC+vf2GvVVmMGzcOBgYGAAAtLS1YWFjkF7eUJoSVda6pCUyb5ovJk4HevW3RsWPx7dXh\n/OHDhzLff/fOFtevA5s3+8LXV33kLem5FHWRR2Xn7dsDO3bAdvbsz94fNw44etQXgwYBly/bQkMD\nqB5dHZPrT0bfQ31xe/xtRD6MVKm8RX3+ijtPSwOmTbPFwYNAQIBy5SvT+c6dLGGwvb16yPPxPE+c\nB7tldmhUsxGWuCwp13jSv6OiosBXigyD0NPTi5kzZ85fRKSRnZ1dQywWawKApqamuGbNmllz5sz5\nq7iB7e3tryYkJHxWoevPP//8zdnZeX9ycnJ+ivT69eu/f//+/SfFhzw8PIZcunTJYdeuXZMA4MCB\nA2MePHjQccuWLT989dVXycX1379/v3NAQECHrVu3yiySUtowCFkcPw4sWgQEBgJ16pRrKE549Yol\n+j53DujYkWtpBEqFSMTice7eBQwNP3s7I4N55f/4I6vlKGWL/xb8/eBv3B5/G41qNVKhwKWDiNWQ\n1dZmzj1qx7//soB3NStCSERwOeuChPQEnBl+BtU0FeuryMcwiCKfAMVisWZaWtpnP+0ikaiqrNcL\nc/XqVfui3tPW1k5MSEjQ0dHRSYiPj2/SuHHjN4Xb6OrqxkZHR+e7LcXExOjp6urGlrS/shk2jHmm\nTZ4MHD6slg5gRZKTAwwdypLVC8avAlK1KruAR46wu7BC1KoFnDjBKqR36ABYWLDXf7D5AW8y3qDf\n4X7wHuuNOl+o553bmjXsBs3dnWtJZCCRsBphy5aplfEDgKU3luJx4mP4OPso3PjxlqLWRi0sLIKV\nte46f/78tVKvzlWrVv0iywkmLy+vasuWLV9ERkYa5OTkVC/sBFNcf2XuARYkM5PI3Jxo69YSd+GE\nwjpNm0Y0eLDahi2VmEq7B0hEdOcOUZs2xV7Ew4eJjIyIUlL+e00ikdAkr0nU27035YhyyidsCSnN\ndTp3jsU0xsQoT55ysXs3kY0NkVisVp+/nQE7yXCzISWmJ5ZrnMq2B8iJAUxKSqpvZ2d3rXAYQ2xs\nbNN+/fqdl7a7cOFC39atWz8zNDSMWLly5UJ5/YkIzZs3j6pfv35S7dq10/T19V+HhoaafKa0ggwg\nEVFEBAshuHmzVN1USkGd9u0jat2axVRXdNTpB0hRlFgniYR5iAQGFtts2jTmqV/QTuaJ82jQ0UE0\n/MRwEkuUX7KnpDqFhbEwozt3lCtPmUlOJtLWzv+fq8vn7+yzs6SzXofCk8LLPVZlM4BF7gEmJSU1\naNCgQZLKHkVViCL2AAty+TIrnnv3LvDRr0YtuXcPcHICfH2Bdu24lkag3Pz+O5CZCWzYUGSTnByg\nWzdg1Cjgp5/+ez1blA2Hgw4w1TbFFoctnBdE/fCB7VvOm/fpvqVaMXcuq8S7axfXkuTjH+OPAUcG\n4NzIc+ikq9zq3XzcA+TcAnNxoBxxgEWxeTNzP1fLGmXECtzq6BCdP8+1JAIKIzSUqEkTuUGpkZGy\nr31KVgqZ/2NOy28sV56MJUAkYvVjZ8zgVIziCQtjtdESEriWJJ/n756TznodOvdMNeWXwMMnwNKn\nBOc5hV3sS8oPP7AsVd99B+TmKlam8uLp6Yt+/YDERE389pslzMzMMHjwYKSnpxfbb8mSJdhQzNNF\ncWzatAlZWVll6ltSirpW+/fvR3x8vFLnVhal+vyZmDBvUG/vYpsZGACnTgHOzsD9+/+9Xq9GPVwa\nfQluD92wI2BHmeQtCfJ0+v13ID0d2LhRaSKUn/nzgV9+Ya6pHynrb4UiSExPhMMhByzvuRz9Wyuu\n/BKXOnGBYAAVyF9/MQ88Z2fmqa4OpKWxMmWDBgG1an2J4OBgPH78GHXr1sWOHcX/6JVnWWzz5s3I\nzMwsc//ysG/fPsTFxZWqj0QiUZI0SmbUKODAAbnNunQB3NyAAQNY6I4Undo6uDL6CpbeWAqPEA8l\nCvo5RMDy5YCHBwsrUtv6k97erMzRLJlRVSonPTcd/Q/3x1izsXCxUtf14goC14+gXBxQwhKolKws\nov/9j2jkSKK8PKVNUyJSUoi6dGHZXsRiotq1a+e/5+rqStM+5piKiIggBwcHsra2pq+//prCwsKI\niGjJkiW0YcMGIiL65ptvKCAggIiI3r59SwYGBkREJBKJaO7cudS+fXsyMzOjrVu30pYtW6h69epk\nampKvXr1IiKiqVOnUocOHahdu3a0ePHifDmaN29OixcvJisrKzI1Nc2fOy0tjcaNG0empqZkZmZG\nHh4eRER0+fJl6tKlC1lZWdHQoUMpvWDKEyI6ceIE1a5dm4yNjcnS0pKysrLo2rVrZGlpSaampjRh\nwgTKycnJn3vBggVkZWVFR48epYsXL5KJiQlZWVnRrFmzyNHRkYiIFi9eTOvXr8+fo127dvTqY0LY\nAwcOUKdOncjCwoKmTJlCYrHynUo+IT6eqF69T1O/FMPp08xpKzj409eD4oKo0dpG5P3SWwlCfo5E\nwirat2vHVFBbRCIiCwui48e5loSIiLLysqi3e29y8XJReaUP8HAJlHMBOFFaiQaQiIVH2NsTjRrF\nXc7QpCSiDh2IZs78zwNQagBFIhENHjyY/v77byIi6tWrF4WHMw8yPz+/fKNV0ADa2tpS4Efvt4IG\ncPv27TR06ND8H/73798TEZGBgQElFSjbI31dJBKRra0tPXnyJL/dtm3b8sdycXEhIqKff/6Zfvrp\np/z+ycnJ9PbtW+rRowdlfsy9uHr1alq2bNlnuheUNSsri/T19fP1Gzt2LG36mEbMwMCA1q1b90m7\niIgIIiIaNmwYDRgwIP//UNAAtm/fnl69ekUhISE0YMAAEn28yNOmTSN3d/diroqS6NuX6ODBEjc/\neZI5MxbMGUpE5P3SmxqtbURBcUEKFvBTJBKiH39kduXtW6VOVX7c3Ii6dlWLmKEcUQ4NODyAhp0Y\nRiKx6n9Y+GgAhSXQQihiDbxmTcDTE0hM5GY59N07wM6OBUJv2QLcuOELAMjKyoKlpSWaNGmC6Oho\nTJ06Fenp6bh37x6GDh0KS0tLTJ06FQkJCSWe6/r165gyZQqqVGEfpa+++kpmu2PHjsHa2hpWVlZ4\n+vQpQkJC8t8bPHgwAMDKyio/7dL169cxY8aM/DZaWlrw8/NDSEgIunbtCktLS7i6uuL169cy52Pf\nV+DZs2do0aIFjIyMAADOzs64efNmfrvhw4cDAMLCwtCiRQsYfsysMnr06Pwxihr/+vXrCAwMRIcO\nHWBpaQlvb29ERkYW/c8qAWX6/I0ZU6JlUClDhgCbN7PCsk+f/vd6zxY94eroiv6H+yPifUTp5SiC\ngjpJJMD06cxj2tsbaNhQYdMonowMlmjgr79kZrpQ5X6ZSCLCSI+RqKJRBQcHHYRmFU2lzFPZ9gCL\nzAQjUD6kRvC771jowdGjrJybsomJAfr2ZXs9f/756fe2Zs2aCA4ORlZWFvr06QNPT0/07t0bWlpa\nCA4OLnbcqlWr5u+TZWdnf/JecYYCACIjI7FhwwYEBASgXr16GD9+/CdjfPHFFwAATU1NiArcLcga\n197eHocPHwbAvqzS/IWFKWr/kog+ea9WrVpFtpNSUHfgU/2dnZ2xcuVKmWOojIEDmVWJiwOaNi1R\nl+HDAbEY6NULOHYMkP4bB7cZjPdZ72HnbgcfZx+0/KqlwsQUi1nNwvBwlkVJFd+HcrF+PfD11yw+\ng0PyxHkYfXo0MvIylJLirDIjPAEWoqgf1LLw5ZfMCDZvzpwQnj9X2NAyuXOHfVfHjPnU+BXWqWbN\nmtiyZQt+++031K5dGy1atMDJkycBsB/+x48f57eVGgKD/7d33mFRXVsf/g3NBoIlAgEVpdeZAcSC\nFxFEUIQo2I0XrLHgd6NRIdFEkmiCLcYalVjGhiRiwURUVMDYRQYbikQZFARUBAEFKbO/P06GEEJn\nhgOH/T7Pfpxz2GWtOeOs2WWtZWCA+Ph4AKioCzAGaceOHSgvLwcA5ObmAgA0NDSQn58PAMjPz0en\nTp3QuXNnZGdnIyoqqk5d3NzcsHXr1orrvLw8DBgwAJcvX8bjx48BAP369UNKSsq/2lYe29TUFBKJ\npKLN/v37MWTIkH+1MTMzg0QiwZMnTwAAYWFhFYbSwMAACQkJAICEhASkpqaCx+PB1dUVR44cwcuX\nLwEAr1+/rnFGWl8a9fnr2BHw8QEOHGhQs8mTmWhqEyYAO3Ywh1IAYKbtTAQ5BsFF5ILU3KbNaAFG\np6wsxk6npTEJblu88Xv+nFk++f77GqvI87uiJopKizAmfAzelb7D0fFH0U6lnULHaw6dWhLUACoY\nVVUmWfT//R/jkLxv399fNPKivBwICWG+A0NDmRif1U2AKs98BAIBjIyM8Msvv+DgwYPYtWsXBAIB\nrKysEBkZ+a82ixcvxk8//QRbW1vk5ORU3J85cyZ69eoFGxsbCAQChIWFAQBmz54NDw8PuLq6gs/n\nQygUwszMDFOmTMHgwYOr1YPH41X0u3z5cuTm5sLa2hoCgQCxsbHo3r079u7di0mTJoHP52PQoEFI\nTk7+Vz/+/v6YM2cObG1tAQB79uzBuHHjYGNjAxUVFcyZM+df70f79u2xc+dOeHp6ws7ODtra2hXG\n39fXF69fv4aVlRW2bt0KU1NTAIC5uTlWrlyJ4cOHg8/nY/jw4Q1aPpYr/v6ASNTgD5eLC/DHH8C2\nbcCkSUBeHnN/br+5WDJoCYaKhuJRTuN/uRHCxMrl85mYpKdOMSelWzzLlzPTVRYjW+S/z8eIgyPQ\nuV1nHB1/FB1UO7AmC2dhexOSjQI5hkJrCImJjLO8tzchEol8+oyPZ0ITOjvX3GdLCdkkbxSpV2xs\nbMUp0Oak0TpJpUzgz+vXG9X83TvGEV1fn5CIiL/PfPx862eis06HxGfEN7jPrCwmS33v3jHk5s1G\nicUOiYnMKaHKQVSrQZGfv1dvX5F+O/uRT05+0qwHXtpaKDQ6A2xG+HwgIYHJwGBry0RWeviwcX09\nfMiEX/P0ZDJSnD/PLLVS5Afb4cEaBI8HTJ8O7NrVqOYdOgBbtjBnab78kjlEdekSMMN2Bn7y/Akj\nDo7AuSfn6tXX+/fA9u3M593MjFmVsLdvlFjssHQpMwPU1GRl+OcFz+G01wlD+wzFT54/KezACwV0\nBsgWT58SsmQJE6LK0ZGQXbtqz3wtlTKBt3fuJGTUKMaX6+uvW27oNQoLpKcT0qULIW/fNqmbkhLm\n89inD7O6sHUrIccS4sgHaz4gh+8errbNmzfMzHH6dOazOWIEszrR6jhzhhBjY+ZNYIEnr5+Qvhv7\nku8uftfsfn51AQ7OAGsMhs1l5B0MuymUljL7Irt2AXFxzK9mKyvmMJ+aGnMSWyJhAliXljK/zIcN\nY9LBdezItvSUFoenJzBxInMSqomUlwNRUcxBmd9+A7qa30Gmy0jYFQXBo2sAVFQYlxuxGLh5k9nj\nHjmSEaGaPL0tH6mUWZr58kvGV6SZSXqZBPcD7ghyDMJ8h/l1N2hmuBgMmxrAKtR2tF7R5OYyS6T3\n7zM+hCUljJHT12dOY5uaNi7xLps6KRIu6tVknSIimLXMmBi5yQQwP74ePgRupKTiiyR3GJdMgGPJ\nN+jejQcLC8aNoqbDLa3mOe3fz5xYu3y5Xv/R5KnXree3MCpsFNYMW4Op/Kb/eGksdbkWcc0AUj/A\nFkSXLswMz9WVbUkorRYvL2DuXODxY7lOw1RVAWtrwNq6D7zcL2HkwZHI1c3GKs9tUFHiwNdIcTGz\n73foUON+ZTaBi2kXMfaXsdjptROjzUY369htHToDpFC4xsKFgLo6E2laQRS8L4DPLz5QV1NHmG8Y\n2qu0V9hYzcLatUzCzKNHm3XYqJQo/Pf4fxHmG4ZhfYc169gNhYszQGoAKRSuce8eEw5IIgGUFXeC\n8H3Ze/gd90NmYSZOTDwBrfZaChtLoeTkMMdVL11i9hmaiZ9u/oSv477GsQnHMLDnwGYbt7Fw0QBS\nN4gqcDEWHhd1Aripl1x0srICdHWZeGMKpJ1KOxzyPQQbbRs47XGqMWpMi39Oq1Yxp8oaaPwaq1eZ\ntAwLohZg041NuDT9Uosyfi3+WckZagApFC4yYwYT30zBKPGUsMljE2YIZ2DgroGISZXv4RuFk5rK\nRNBZsaJZhsssyITrPlf8+fpPXJ1xFUZdjZplXEoNsOF7kZOT03XYsGHRxsbGj9zc3M7m5uZqVVcv\nKirKw9TU9KGRkVFKSEhIYF3tz54962ZnZxdvbW19x87OLv7ChQtDq+sXLcAPkEJRKAUFhHTtKr+Q\nQ/Xg3ONzRHutNll3eV2L82GrkUmTGIfaZiA2NZZ8uP5DEhwTzEo6o6YCDvoBsjLokiVL1qxevXop\nIQQhISGBgYGBIVXrlJWVKRsaGv6ZmppqUFJSosrn8xOTkpLMa2svFosFmZmZOoQQ3Lt3z1JPTy+9\nWqWpAaS0BT79lJDAwGYdUpIrIfY77cmYw2NIblELj9Jw8yYhH35YewQKOSCVSsmaS2tIj7U9yOmU\n0wodS5FQAyinYmpq+jArK0ubEILMzEwdU1PTh1XrXLlyZaC7u/tp2fX3338f9P333wfVt71UKuV1\n7do1p6SkRPVfSrMUC5QtuKgTIdzUS646paQQ8sEHTKDPZqS4tJgEnAogBj8akMtPL7fM5ySVMgF0\nd+5sdBf10SvnXQ4ZfXg06bezH5HkSho9VnPR1mKBsuLAk52dra2trZ0NANra2tnZ2dnaVetkZGTo\n9ezZ85nsWl9fP/369ev969s+IiLC187O7paqqmppdTL4+/vD4K9I71paWhAIBBUOoLKNYK5cJyYm\ntih55HUto6XI0yKv+/VD7IoVwMiRzTb+1UtX4dvBF8Pch8En3Ac2T2xQKi2Fm4sb+++H7PraNThn\nZwPTpins81feqxz+J/zhUOqAVXar0Furd8vRv576xcbGViSp5iSKsqzDhg2LtrKyulu1nDhxwltL\nSyu3ct0uXbq8rtr+yJEjvjNnzgyVXe/bt2/qggULNhFCUFf7e/fuWRoaGv755MmTPtXJBroESmkr\nREURIhD8nd6hmcksyCSeBz2J7Q5bci/7Hisy/IuyMkIsLQmJjFRI9wXvC8i83+cR/R/0W/WSZ1VA\nZ4D1Jzo62q2mv2lra2dnZWXp6OjoZGVmZur26NHjRdU6enp6Gc+ePespu05PT9fX09PLqKt9enq6\nvo+Pz9H9+/dP7dOnT9OzeVIorZnhw5lklJcvAzXkYVQkOuo6ODnpJEITQuEscsYChwUIGhwENWW1\nZpelgj17gG7dgFGj5NotIQTh98MReC4QzgbOuDv3buv1jWwjsOIG4e3tHSkSifwAQCQS+Y0ePfp4\n1Tr29vbxKSkpxhKJxKCkpEQtPDx8gre3d2Rt7fPy8rQ8PT1/X716deDAgQOvNka2qssbXICLOgHc\n1EvuOikpAQEBwObN8u23AcTFxWG23WwkzE7Azec3IdguwNnHZ9kRprAQ+OorYP36Joc8q/ysbmTc\ngONuR6y5vAb7x+yHaLSoVRo/Lv6fqhU2pp05OTldXV1dz1V1Y8jIyPhw5MiRv8vqnTp1aoSJiUmy\noaHhn999993ndbX/9ttvl3fq1KlQIBCIZeXly5fdq44PegiGE3BRL4XolJdHiJYWky6JBSrrJJVK\nybEHx4jxJmPiKnIlNzOaOVPuV18RMmWKXLqKiYkh6W/SydSjU4nuOl2yO2F3q3RvqExbOwRDQ6FR\nKG2B+fOZZb9vvmFbEgBAaXkpdot345uL38CxpyNWuayCcTdjxQ76/DkT0TshocnZo9+VvsO6K+uw\n8fpGzLGfgyDHIGi005CToC0TLoZCowaQQmkLPHgADB0KpKUB7dqxLU0Fb0veYuP1jfjh6g8YZzkO\nXzl9BV0NXcUMNm0a0KMHsHp1o7sok5Yh7G4Yll1YhgH6A7B62Gr06dJHjkK2XLhoAGkotCpwcQ2c\nizoB3NRLYTqZmzOzn19/VUz/tVCbTp3UOuGL/3yB5IBkdFLtBMttlpj7+1zce3FPvkIkJDDZfZct\na1TznHc52HB1A0w2m+Bn8c844HMA8z6Yxznjx8X/U7VBDSCF0lZYsIDVwzC10a1jN6wbvg5J85Og\n00kH7gfcMWTvEITdDUNRaVHTOicEWLQI+PproHPnBjQjiJPEYcrRKTDcZIiErAQc8j2EOP84OPV2\nappMlBYBXQKlUNoK5eWAkREQHg44OLAtTa2Ulpfi2MNj2CXehRsZN+Bp7Akfcx+4G7qjk1oNqedr\n4uhRJti1WAyo1O75VSYtw6WnlxCZHIkTySfQTrkdPrH7BFP5U9G1Q9cmaNT6oUugFAql9aKszByG\naaGzwMqoKqtivOV4nPn4DJLmJcGxpyO2x2+H9jptOO52xBfnv8DZx2eR8y4Htf6YLS4GFi8GfvwR\nSmpqmDp1asWfysrK8MEHH8DJzQlbbmzBpIhJ0F6njSXRS9ClfRdEjI/A/Xn34W/uj/C94U3Sx9/f\nHxEREfW+X5m4uDhcvdoor64GIRKJkJmZWXE9a9YsPHjwoMn9xsXFDbl69WrLyflUCVZCobVkYmNj\nK0ICcQUu6gRwUy+F6zR9OmBoyJyI/PBDxY1TiabqpKuhi7n95mJuv7l4V/oOV59dRVxaHFZeXIm7\nL+6itLwUBloG6K3Vm/lXszd6a/aGZntNGO74BZqGuriqV4h2Hdoh5kYMPv3tUzwpeALxH2LkqOYg\nMTsRptmmcOvrhrVua6HfWf8f4+fm5mLbtm2YO3duo/Xi8XjgVeN3WNP9ysTExEBDQwMDB9bfhpSV\nlUGljtluVfbu3Yvi4mJ88sknAIDQ0NAGta+JmJiYoRoaGgUN8c0uLy9XVlZWLpeLALVAZ4AUSlui\na1fgv/8FNmxgW5JG0VG1I1z7uuKbod/g4rSLyA3MRcaiDBzyPYRP7D6BWTczZL/Nxq9Jv+LAb9+h\nx/YDWOQO7E7cjTJpGT60/RCvEl/BX+AP4Sshvl3wLYb0HoJQr1A8PfEU4aF/z/Ssra2RlpaGoKAg\nPH78GEKhEEuXLkVcXBy8vLwq6gUEBEAkEgEAvvnmGzg4OMDa2rrCkMioa9vFwMAAwcHBsLOzg42N\nDZKTkyGRSLBjxw5s2LABQqEQly9fxsuXLzF27Fg4ODjAwcEBV65cAQAEBwdj6tSpGDx4MPz8/JCW\nlgYnJyfY2dnBzs7uH7PI1atXw8bGBgKBAJ9//jkiIiIQHx+PVatWwdbWFsXFxXB2dsatW7cAAGFh\nYbL35G5QUFCIrB91dfXC5cuXrxQIBIkDBw68+uLFix6VdZJIJAY7duz4ZMOGDQuFQqH48uXLjhKJ\nxMDFxeUCn8+/PWzYsHOyiF/+/v5758yZs33AgAHXAgMDV6empvYZOHDgVRsbmzvLly9fqaGhUQAA\nsbGxzl5eXicrvf9bZIFRbt26Zefs7Bxrb28f7+HhcTorK0un1jedbUdENgpoLFBKWyYtjckVmJPD\ntiSKxcfnH7n+1NXVyZ07d8jYsWNJcXExEQgEJDY2lowaNYoQQkhwcDBZt25dRX0rKyuSlpZGJBIJ\nsbKyqrgfExNT0YYQQgICAsjevXsJIYS8fv264v7UqVPJyZMnCSGE+Pv7kyNHjvxLRH9/fxIREUEI\nIcTAwIBs2bKFEELItm3byMyZMyvkWr9+fUWbSZMmkUuXLhFCCElLSyPm5uaEEEJWrFhB7O3tSXFx\nMSGEkHfv3lW8fvToEbG3tyeEEHLq1CkyaNAgUlRURAghJDeXSVvl7OxMbt26VTGO7DojI4P06tWL\nACBlZWXKLi4u548fP/4RIQQ8Hk/622+/eRJCsHTp0tUrV65cRqp83wYHB69Yv379Itn1qFGjTu7b\nt28qIQS7d++eNnr06GOEEPj5+e318vKKlEqlPEIIvLy8Ivfv3/8xIQRbt26dp66uXkAIQUxMjPOo\nUaNOyvoLCAjYLBKJ/ltSUqI6cODAK69evepGCMHhw4cnTJ8+fVdVeSoXOgOkUNoavXoBY8Yw4cC4\nyunTwO3bwNKl/7htbW0NiUSCsLAweHp61qsr0oADcxcuXMCAAQNgY2ODCxcuICkpqUFi+/j4AABs\nbW3/kYWhsgznzp1DQEAAhEIhPvroIxQUFODt27fg8Xjw9vZGu7/8PEtKSjBz5kzY2Nhg/PjxFft5\n586dw/Tp09G+fXsATDacmnQlhODmzZsVS73KysrlU6ZMOXjx4kUnAFBTUyvx9PT8HQDs7OxuSSQS\ng+r0IpUOz1y7dm3A5MmTDwHAxx9/fODSpUuDAeZw4rhx437l8XgEAK5cuTJo0qRJYbJ6tb1vhBBe\ncnKy6f379y2HDRt2TigUiletWrUsIyNDr7Z21ABWgYt+MFzUCeCmXs2m05dfAtu3Ay9fKnyoZn9O\nxcV/xz/960u+Mt7e3li8eDEmTZr0jy98FRUVSKXSSt0UV9u9rJ5Mr6KiIvB4PBQXF2P+/PmIiIjA\nnTt3MGvWrBr7qAmZ8VJWVkZZWVm1dQghuH79OsRiMcRiMZ49e4ZOnZiTsR07dqyot2HDBujq6uLO\nnTuIj4/H+/fvAVSc5qy2b9mSZ2Wq7lESQngyI1U53ZySkpK0rKysXhuPpIbTpB07dnxXV1sVPHhp\nvAAAFf5JREFUFZUyqVRaYbuKi4srHrKlpeV9sVgsFIvFwjt37ticPn3ao7a+qAGkUNoivXsDEyc2\nKSpKi2XtWsbpf8SIav88ffp0BAcHw9LS8h/3DQwMkJCQAABISEhAaiqTTEZDQwMFBQUV9Xr37o2k\npCSUlpYiLy8PFy5cAPC3wezWrRsKCwvxq5yCDlQdf/jw4di0aVPF9e3bt6ttl5+fDx0dZgts3759\nKC9nzpS4ublhz549KCpi/Ctzc3Mrxnn37p/2h8fjwcHBAXFxcQCYwymHDx+eOGTIkLgGyF9QUFBQ\nESdu0KBBVw4fPjwRAA4ePDjFycnpYnXtHB0dL1euJ7vfu3fvtKSkJIuSkhK1vLw8rfPnz7vyeDxi\namqa/PLlyw+uXbs2AABKS0tVk5KSLGqTjRrAKnDtVCHATZ0AburVrDp98QWwezdQ6ei7ImhWnVJT\ngY0bgR9//NefZDMZPT09BAQEVNyT3ff19cXr169hZWWFrVu3wtTUFABj0BwdHWFtbY3AwED07NkT\n48ePx/z58zFhwgTY2toCYJYSZ82aBSsrK3h4eKB///7Vjl8fKsvl5eWFY8eOVRyC2bRpE+Lj48Hn\n82FpaYkdO3ZUO8a8efMgEokgEAiQnJwMdXV1AIC7uzu8vb1hb28PoVCI9X8thfv7+2P79u0Vh2Bk\n6OjoICSEOfciEAgS7e3t42WHUGQzQdnrytcyvLy8Th47dmyM7BDM5s2bF+zZs2can8+/ffDgwSkb\nN278X+U+ZK83btz4v61bt863sbG58/z584ojyz179nw2fvz4X6ysrO5NmDAh3NbWNgFgZqNHjhwZ\nGxgYuFogECQKhUJxXe4X1BGeQmnLLFzIOMhXmlG0ary9gYEDgc8/Z1sSzsG2I3zVmaQ8oDPAKtB9\npdYDF/Vqdp2CgoCDB4FnzxQ2RLPpdPIkkJzMhD1rBujnr3mpbnbZVKgBpFDaMtrawKxZwMqVbEvS\nNN68YaLcbNvWorJdUORHfn5+/QO51hO6BEqhtHVycgATE+DmTaBvX7alaRyzZzMZ3ivth1HkC9tL\noIqAGkAKhQIEBwMpKcxyaGvj7FlmFnv3boOyPVAaBhcNIF0CrUJLXgNvLFzUCeCmXqzptHgxEBsL\nXLsm964VqlN+PmP8QkOb3fjRz1/rhxpACoUCqKsDq1YBn34KVHIGb/EsWQK4uwPDh7MtCaU1Uluc\nNEWVnJycrsOGDYs2NjZ+5ObmdjY3N1erunpRUVEepqamD42MjFJCQkIC62p//fp1B4FAIBYIBGJr\na+s7hw8fnlBdv6CxQCmUf1NeTkj//oT8/DPbktSPs2cJ6dWLkDdv2JakTfDX9ybrsZzlWVjZA1y6\ndOma7t27v1q6dOma1atXB+bm5nYJCQkJqlynvLxc2dTUNPncuXPD9PT0Mvr163czLCxskrm5+YOa\n2hcVFXVo167deyUlJWlWVpaOlZXVvezsbO2qaTXoHiCFUgNiMeDhweyn9ehRd322ePUKEAiAPXsA\nNze2pWkT0D1AOREZGent5+cnAgA/Pz/R8ePHR1etc+PGDQcjI6M/DQwMJKqqqqUTJ048fOLEiY9q\na9+hQ4ciJSUlKQAUFRV10NTUfNPQnFJcXAPnok4AN/ViXSehkEmXtHCh3LqUu05SKZPXcMIEVo0f\n689KAXBRp9pgJSFudna2tra2djYAaGtrZ2dnZ2tXrZORkaHXs2fPCu9cfX399OvXr/evq/2NGzcc\npk2btic1NbVPWFjYpJpk8Pf3h4GBAQAmhJFAIKgI2ST7EHDlOjExsUXJI69rGS1FHs5cu7oC06bB\nOSoKGDGi5X3+pk8HHj+G85EjzfN+tNHPn+x15awUXENhS6Bubm7R1SUjXLVq1TI/Pz9Rbm5uF9m9\nrl27vn79+nXXyvUiIiJ8T58+7REaGjoLAPbv3z/15s2b/TZt2vR/Xbp0ya2r/cOHD808PDxO3759\nm6+pqfmm8t/oEiiFUgfnzzMzwfh4QFeXbWn+5sgRJtLLjRuATu25TinyhYtLoAqbAUZHR9e4NqGt\nrZ2dlZWlo6Ojk5WZmanbo0ePF1Xr6OnpZcgyBQNAenq6vp6eXkZ925uZmT00NDR8/OeffxrZ2dn9\nO8cHhUKpGVdXYOZMJmPE+fOACiuLRf8kMRGYOxc4c4YaP4pcYGUP0NvbO1KWwl4kEvmNHj36eNU6\n9vb28SkpKcYSicSgpKRELTw8fIK3t3dkbe0lEomBLB9VWlpa75SUFGNjY+OUhshWdXmDC3BRJ4Cb\nerUonb76ismnt2xZk7qRi04vXgCjRwNbtgB/ZV9gmxb1rOQEF3WqDVYMYFBQUEh0dLSbiYnJowsX\nLrgEBQWFAMDz588/lGUXVlFRKduyZUuAu7v7GQsLi6QJEyaEm5ubP6it/aVLlwbL0mCMGzfu1507\nd87u3LlzPhs6UiitHmVlJjJMWBhw4gR7cpSUAGPHAh9/zBx8oVDkBA2FRqFQaufaNSbN0NWrgKFh\n845NCDBnDpCdDRw9CijR2B1swcU9QPppolAotTNgAPDll8ws7K8s4s3G6tXA5cvA/v3U+FHkDv1E\nVYGLa+Bc1Angpl4tVqeAAMDMjJmNNXD1pFE6EcLsQYpEwOnTgIZc86DKhRb7rJoAF3WqDWoAKRRK\n3fB4wM8/Mxkj/ve/BhvBBkEI4+pw8iQQFwfo6ytuLEqbhu4BUiiU+vPmDRN9xd4e2LyZOSgjT8rL\nmVnmvXtAVBSgpSXf/imNhu4BUiiUto2mJhAdDTx4AIwbB7x9K7++09KYrA6pqcwY1PhRFAw1gFXg\n4ho4F3UCuKlXq9BJU5PZl9PUZA7I3L9fa/U6dSIE2LWLmVUOH844uqury09eBdEqnlUD4aJOtdEC\nwjtQKJRWR7t2wO7dTBkyhPHR+/JLoFu3hvXz/DmT0DYzE4iJAaysFCMvhVINdA+QQqE0jRcvgG++\nAcLDmQS1M2bUbQgfPgR27GBOeS5YACxfDqiqNo+8lEbBxT1AagApFIp8SE4Gvv4a+P13Zml0yBCg\ne/e//15eDjx6xOzv5eUBkyYxGej19NiTmVJvuGgA6R5gFbi4Bs5FnQBu6tWqdTI1BQ4dYpY1Z88G\ncnOB+HjERkYyWSXEYiazRGgo8PQpsHZtqzZ+rfpZ1QAXdaoNugdIoVDkS6dOgK8vUwAgNhb4K9cc\nhdKSoEugFAqFQqkTugRKoVAoFApHoAawClxcA+eiTgA39aI6tR64qBcXdaoNagApFAqF0iahe4AU\nCoVCqRO6B0ihUCgUCkegBrAKXFwD56JOADf1ojq1HrioFxd1qg1qAKuQmJjItghyh4s6AdzUi+rU\neuCiXlzUqTZYMYCvX7/u6ubmFm1iYvJo+PDhZ/Py8qrNe3L69GkPMzOzh8bGximrV68OrG/7p0+f\n9lJXVy9cv379Zw2VLS8vr+EKtXC4qBPATb2oTq0HLurFRZ1qgxUDGBISEuTm5hb96NEjE1dX1/Mh\nISFBVeuUl5crBwQEbDl9+rRHUlKSRVhY2KQHDx6Y16f9okWLfvD09Py9ufShUCgUSuuDFQMYGRnp\n7efnJwIAPz8/0fHjx0dXrXPjxg0HIyOjPw0MDCSqqqqlEydOPHzixImP6mp//Pjx0X379n1iYWGR\n1BjZJBJJo3RqyXBRJ4CbelGdWg9c1IuLOtUKIaTZi5aWVq7stVQq5VW+lpVff/117MyZM0Nl1/v3\n7/84ICBgc23tCwoK1AcOHHjl7du3HYODg1esW7fus+rGB0BooYUWWmhpWGHDXiiyKCwYtpubW3RW\nVpZO1furVq1aVvmax+MRHo9Hqtareo8Qwqupnux+cHBw8MKFCzd07NjxXW3+KlzzZaFQKBRKw1GY\nAYyOjnar6W/a2trZWVlZOjo6OlmZmZm6PXr0eFG1jp6eXsazZ896yq7T09P19fT0Mmprf+PGDYeI\niAjfpUuXrsnLy9NSUlKSdujQoWjevHnbFKEjhUKhUFovrOwBent7R4pEIj8AEIlEfqNHjz5etY69\nvX18SkqKsUQiMSgpKVELDw+f4O3tHVlb+4sXLzqlpqb2SU1N7fPpp5/+uGzZslXU+FEoFAqlOlgx\ngEFBQSHR0dFuJiYmjy5cuOASFBQUAgDPnz//UHZ6U0VFpWzLli0B7u7uZywsLJImTJgQbm5u/qC2\n9hQKhUKh1Bu2NyFbYlm+fPm3NjY2t/l8fqKLi8v5p0+f9mRbJnmUxYsXrzUzM3tgY2Nze8yYMUfz\n8vI02ZapqeWXX34ZZ2FhcV9JSan81q1btmzL05QSFRXlYWpq+tDIyCglJCQkkG155FGmTZu2u0eP\nHtlWVlZ32ZZFXuXp06c9nZ2dYywsLO5bWlre27hx4/+xLVNTS1FRUXsHB4frfD4/0dzcPCkoKOh7\ntmVqjsK6AC2x5Ofna8heb9q0acGMGTN+ZlsmeZSzZ8+6lZeXKxFCEBgYGBIYGBjCtkxNLQ8ePDBL\nTk42cXZ2jmnNBrCsrEzZ0NDwz9TUVIOSkhJVPp+fmJSUZM62XE0tFy9e/E9CQoKQSwYwMzNTRywW\nCwhhTp6bmJgkc+FZvX37tiMhBKWlpSr9+/e/9scffwxmWyZFFxoKrRo0NDQKZK8LCwvVu3fv/opN\neeSFm5tbtJKSkhQA+vfvfz09PV2fbZmaipmZ2UMTE5NHbMvRVGrze23N/Oc///mjS5cuuWzLIU90\ndHSyBAJBIgCoq6sXmpubP3j+/PmHbMvVVDp27PgOAEpKStTKy8uVu3bt+pptmRQNNYA1sGzZslW9\nevV6KhKJ/Li4x7h79+7pI0eOPMW2HBSGjIwMvZ49ez6TXevr66dnZGTosSkTpW4kEomBWCwW9u/f\n/zrbsjQVqVSqJBAIErW1tbOHDh0a09hgIq2JNmsA3dzcoq2tre9WLSdPnvQCGH/Fp0+f9vL399+7\ncOHCDWzLW1/q0gtgdFNTUyuZPHnyITZlrS/10am1U52PK6VlU1hYqD527NgjGzdu/J+6unoh2/I0\nFSUlJWliYqIgPT1d/+LFi06xsbHObMukaBTmB9jSqc1PsTKTJ08+1JpmSnXptXfvXv9Tp06NPH/+\nvGtzydRU6vusWjNV/V6fPXvWU19fP51NmSg1U1paqurr6xvx8ccfH6jOjas1o6mp+cbT0/P3+Ph4\ne2dn51i25VEkbXYGWBspKSnGstcnTpz4SCgUitmUR16cPn3aY+3atUtOnDjxUfv27YvZlkfekFYc\n4ac2v1dKy4IQwpsxY8YuCwuLpE8//fRHtuWRB69eveouy6pTVFTUITo62o0r33u1wvYpnJZYfH19\nj1hZWd3l8/mJPj4+EdnZ2T3YlkkexcjIKKVXr15pAoFALBAIxHPnzt3GtkxNLUePHh2jr6//rH37\n9kXa2tpZHh4eUWzL1Nhy6tSpESYmJsmGhoZ/fvfdd5+zLY88ysSJE8N0dXWfq6mpvdfX13+2e/fu\naWzL1NTyxx9/DObxeFI+n58o+78UFRXlwbZcTSl37tyxFgqFCXw+P9Ha2vrOmjVrlrAtU3MUHiF0\n64FCoVAobQ+6BEqhUCiUNgk1gBQKhUJpk1ADSKFQKJQ2CTWAFAqFQmmTUANIoVAolDYJNYCUNklO\nTk43oVAoFgqFYl1d3Ux9ff10oVAo7tKlS66lpeX9hvR14sSJjx48eGDekDbBwcHB+vr66cHBwcEN\nErwK/v7+eyMiInwBYNasWaENlaM2njx50lcgECRWjo1LoXAJagApbZJu3brliMVioVgsFs6ZM2f7\nokWLfhCLxcLExESBLGB4fTl27NiYpKQki4a04fF4ZNGiRT9UZwDLysrqHaGJx+MRWRi10NDQWbKc\nmfKgb9++TxITEwXy6o9CaWlQA0ih4O8oMoQQXnl5ufLs2bN3WllZ3XN3dz9TXFzcHgAeP35sOGLE\niCh7e/t4Jyeni8nJyaZXrlwZdPLkSa8lS5astbW1TXjy5Enf0NDQWQ4ODjcEAkHi2LFjjxQVFXWo\nbUyAmRFOnTp1/+DBgy/5+fmJ0tLSejs5OV20s7O7ZWdnd+vq1asDZW0CAgK2mJmZPXRzc4t+8eJF\nD1kfzs7OsQkJCbYAMG/evG39+vW7aWVlda+ykTUwMJAEBwcH29nZ3bKxsbmTnJxsCgBxcXFDZDNi\nW1vbhMLCQnUFvM0USsuCbU98WmhhuwQHB69Yt27dZ4QQpKamGqioqJTevn3bhhCC8ePHhx84cGAK\nIQQuLi7nU1JSjAghuHbtWn8XF5fzhBD4+/vviYiI8JH1l5OT01X2evny5d9u3rw5oLYxCSFYsWJF\nsL29/c3i4uJ2hBC8e/eug+z1o0ePjO3t7W8SQhAREeHj5uZ2ViqV8p4/f66rpaWVKxu7ck7E169f\ndyGEyTPo7Owcc/fuXStCCAwMDFK3bNkynxCCbdu2zZ05c2YoIQReXl6RV65cGUgIkxeurKxMWSab\nurp6AdvPiBZaFFHabDBsCqUm+vTpk2pjY3MHAOzs7G5JJBKDt2/fdrpy5cqgcePG/SqrV1JSoiZ7\nTSrN5u7evWu9fPnylW/evNEsLCxUd3d3P1PXmDwej3h7e0e2a9fuvazvgICALbdv3+YrKyuXy+LT\nXrx40Wny5MmHeDwe0dXVzXRxcblQXX/h4eETQkNDZ5WVlalkZmbqJiUlWVhZWd0DAB8fn6MAYGtr\nm3D06FEfAHB0dLy8cOHCDVOmTDno4+NzVE9PL6Mx7x2F0pqgBpBCqYLMCAGAsrJyeXFxcXupVKrU\npUuXXLFYLKyuTeV0Rv7+/nsjIyO9ra2t74pEIr/6ppWRJSQFgA0bNizU1dXN3L9//9Ty8nJlWfBy\nHo9HSB1Bv1NTU/usX7/+s/j4eHtNTc0306ZN2yNbxq2sn7KycrlsvzEwMHD1qFGjfvv99989HR0d\nL585c8bd1NQ0uT5yUyitFboHSKHUASGEp6GhUdCnT5/UI0eOjJXdu3Pnjg0AaGhoFOTn53eW1S8s\nLFTX0dHJKi0tVT1w4MDHjRkzPz+/s46OThYA7Nu377/l5eXKAODk5HQxPDx8glQqVcrMzNSNiYkZ\nWl3bTp06ve3cuXN+dna2dlRU1Ii6xnv8+LGhpaXl/aVLl67p16/fTdneIIXCZagBpFDwzxlc1eS0\nsuuDBw9O2bVr1wyBQJBoZWV1LzIy0hsAJk6ceHjt2rVL7Ozsbj158qTvt99++2X//v2vDx48+JK5\nufmD+ia7rVxv3rx520QikZ9AIEhMTk42lSVcHTNmzDFjY+MUCwuLJD8/P9GgQYOuVO2Hz+ffFgqF\nYjMzs4dTpkw5OHjw4Et1jblx48b/WVtb3+Xz+bfV1NRKRowYEVUfmSmU1gzNBkGhsMDXX3+9Ql1d\nvfCzzz5bz7YsdaGhoVFQUFCgwbYcFIq8oTNACoUF1NXVC3fu3Dm7qY7wikTmCC9biqVQuAadAVIo\nFAqlTUJngBQKhUJpk1ADSKFQKJQ2CTWAFAqFQmmTUANIoVAolDYJNYAUCoVCaZP8PyE+5ELWm4dH\nAAAAAElFTkSuQmCC\n", + "text": [ + "<matplotlib.figure.Figure at 0x3b09350>" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 3.9, Page number: 148" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "\n", + "\n", + "#Variable declaration:\n", + "W=4.0*10**-2 #width of plunger lower arm(m)\n", + "W1=4.5*10**-2 #width of plunger upper arm(m)\n", + "D=3.5*10**-2 #depth of plunger (m)\n", + "d=8*10**-3 #length of magnet(m)\n", + "go=1*10**-3 #air gap length(m)\n", + "uo=4*pi*10**-7 #Permeability of free space(A.turns/m)\n", + "ur=1.06*uo #Relativity permeability\n", + "Hc1=-940 #Magnetising force(kA/m)\n", + "Bt=1.25 #Magnetic field induction(T)\n", + "N=1500 #No of turns\n", + "x=3*10**-3 #Position of plunger(m)\n", + "\n", + "#Calculation:\n", + "Ni=-Hc1*d*10**3\n", + "Rx=x/(uo*W1*D)\n", + "Ro=go/(uo*W*D)\n", + "Rm=d/(ur*W*D)\n", + "f=-((Ni)**2)/(uo*W1*D*(Rx+Ro+Rm)**2)\n", + "\n", + "\n", + "\n", + "#Results:\n", + "print \"The x-directed force:\",round(f,1),\"N\"\n", + "print \"Current in the excitation winding:\",round(Ni/N,2),\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The x-directed force: -703.3 N\n", + "Current in the excitation winding: 5.01 A\n" + ] + } + ], + "prompt_number": 31 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter4.ipynb b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter4.ipynb new file mode 100755 index 00000000..aef0df05 --- /dev/null +++ b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter4.ipynb @@ -0,0 +1,277 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 4: Introduction to Rotating Machines" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.2, Page number: 199" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "uo=4*pi*10**-7 #Permeabolity of free space(H/m)\n", + "g=0.7*10**-3 #Length of air gap(m)\n", + "p=4 #no. of poles\n", + "Ba=1.6 #Magnetic flux density(T)\n", + "Kr=0.935 #Winding constant\n", + "N=263 #No. of turns\n", + "\n", + "#Calculations:\n", + "Ir=(pi*g*p/(4*uo*Kr*N))*1.6\n", + "\n", + "\n", + "#Results:\n", + "print \"Rotor winding current:\",round(Ir,1),\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Rotor winding current: 11.4 A\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.3, Page number: 208" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "fc=60 #frequency of the current(Hz)\n", + "p=[2, 4, 6] #matrix of no. of poles\n", + "\n", + "#Calculations:\n", + "ns=[0]*3\n", + "ws=[0]*3\n", + "wc=2*pi*fc\n", + "for n in range(0,3,1):\n", + " ws[n]=round((2/p[n])*wc,0)\n", + " \n", + "for i in range(0,3,1):\n", + " ns[i]=round(120*fc/p[i],0)\n", + "\n", + "\n", + "#Results:\n", + "print \"The synchronous angular velocities:\",ws, \"rad/sec\"\n", + "print \"The speed of the rotor:\",ns,\"r/min\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The synchronous angular velocities: [377.0, 188.0, 126.0] rad/sec\n", + "The speed of the rotor: [3600.0, 1800.0, 1200.0] r/min\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.5, Page number: 212" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "Nf=68 #Field winding\n", + "Na=18 #Armature winding\n", + "r=0.53 #mean air gap radius(m)\n", + "l=3.8 #Armature winding length(m)\n", + "Kf=0.945 #Winding factor of field winding\n", + "Ka=0.933 #Winding factor of armature winding\n", + "g=4.5*10**-2 #Air gap length(m)\n", + "p=2 #No. of poles\n", + "If=720 #field current(A)\n", + "uo=4*pi*10**-7 #Permeability of free space(H/m)\n", + "f=60 #Frequency curent(Hz)\n", + "\n", + "#Calculations:\n", + "Fag1_peak=4*Kf*Nf*If/(pi*p)\n", + "Bag1_peak=uo*Fag1_peak/g\n", + "Qp=2*Bag1_peak*l*r\n", + "Erms=sqrt(3)*sqrt(2)*pi*f*Ka*Na*Qp\n", + "\n", + "\n", + "#Results:\n", + "print \"The peak fundamental mmf,Fag1_peak: \",round(Fag1_peak/10000,2),\"* 10^4 A.turns/pole\"\n", + "print \"\\nThe flux density in the air gap,Bag1_peak: \",round(Bag1_peak,2),\"T\"\n", + "print \"\\nThe fundamental flux per pole, Qp:\" ,round(Qp,2),\"Wb\"\n", + "print \"\\nThe rms value of open circuit voltage,Erms: \",round(Erms/1000,1),\"KV\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The peak fundamental mmf,Fag1_peak: 2.95 * 10^4 A.turns/pole\n", + "\n", + "The flux density in the air gap,Bag1_peak: 0.82 T\n", + "\n", + "The fundamental flux per pole, Qp: 3.31 Wb\n", + "\n", + "The rms value of open circuit voltage,Erms: 25.7 KV\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.8, Page number: 225" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import *\n", + "\n", + "#Variable Declaration:\n", + "ns=1800 #Speed of rotor(rpm)\n", + "f=60 #Frequency(Hz)\n", + "g=1.2*10**-3 #Air gap length(m)\n", + "D=0.27 #Avg diameter of the gap(m)\n", + "Kr=0.976 #Winding factor\n", + "l=0.32 #Axial length(m)\n", + "I=18 #Rotor current(A)\n", + "p=4 #No of poles\n", + "Nr=786 #Rotor windings\n", + "B_max=1.5 #Max. flux densiity(T)\n", + "\n", + "\n", + "#Calculations:\n", + "Fr_max=4*Kr*Nr*I/(pi*p)\n", + "T_max=p*pi*D*l*B_max*Fr_max/4\n", + "wm=ns*pi/30\n", + "P=wm*T_max\n", + "\n", + "\n", + "#Results:\n", + "print \"Maximum torque, T_max:\",round(T_max,0),\"Nm\"\n", + "print \"Maximum power,P:\",round(P/1000,0),\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Maximum torque, T_max: 1790.0 Nm\n", + "Maximum power,P: 337.0 kW\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 4.9, Page number: 229" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import *\n", + "\n", + "#Variable Declaration:\n", + "b=0.5 #Wavelength of wnding(m)\n", + "l=1.5 #Winding length(m)\n", + "I=700 #Currents in windings(A)\n", + "N=45 #No. of turns\n", + "K=0.92 #winding factor\n", + "p=3 #No. of phases\n", + "uo=4*pi*10**-7\n", + "g=0.01 #Air gap flux(m)\n", + "f=25 #Frequency of the exciting current(A)\n", + "\n", + "#Calculations:\n", + "F_peak=(3*4*K*N*700)/round(4*pi*p,-1)\n", + "B=uo*F_peak/g\n", + "v=f*b\n", + "\n", + "#Results:\n", + "print \"Amplitude of the resultant mmf wave:\",round(F_peak/1000,1),\"kA/m\"\n", + "print \"Peak air gap flux:\",round(B,1),\"T\"\n", + "print \"Velocity of the travelling wave:\",v,\"m/s\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Amplitude of the resultant mmf wave: 8.7 kA/m\n", + "Peak air gap flux: 1.1 T\n", + "Velocity of the travelling wave: 12.5 m/s\n" + ] + } + ], + "prompt_number": 5 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter5.ipynb b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter5.ipynb new file mode 100755 index 00000000..e0897bf4 --- /dev/null +++ b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter5.ipynb @@ -0,0 +1,596 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:fdfb62ac44329d8ca6f9c44e55b110ca6276a0bf982882f2c43000518ecc6bb3" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 5: Synchronous Machines" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 5.1, Page number: 254" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import math\n", + "import cmath\n", + "\n", + "#Varaible Declaration:\n", + "pf=0.95 #Lagging power factor\n", + "Vl=460 #Terminal voltage(V)\n", + "I=120 #Terminal current(A)\n", + "If=47 #Field current(A)\n", + "X=1.68j #Line syncchronous reactance(ohm)\n", + "\n", + "\n", + "#Calculation:\n", + "#Choosing motor reference direction:\n", + "Va=Vl/math.sqrt(3)\n", + "theta=math.acos(0.95)\n", + "Ia=I*cmath.exp(-theta*1j)\n", + "Eaf=Va-X*Ia\n", + "wc=120*math.pi\n", + "Laf=math.sqrt(2)*abs(Eaf)/(wc*If)\n", + "P=3*Va*Ia*pf\n", + "\n", + "#Results:\n", + "print \"Generated emf:\",round(abs(Eaf),1),\"V line to line\"\n", + "print \"Fied to armature mutual inductance:\",round(Laf*1000,1),\"mH\"\n", + "print \"Three phase power:\",round(abs(P/1000),1),\"kW or\",round(abs(P)/746),\"hp\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Generated emf: 278.8 V line to line\n", + "Fied to armature mutual inductance: 22.3 mH\n", + "Three phase power: 90.8 kW or 122.0 hp\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 5.2, Page number: 255" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import cmath \n", + "from math import *\n", + "\n", + "#Variable Declaration:\n", + "Pin=90.6*10**3 #Input power(kW)\n", + "Va=265.6 #Terninal voltage(V)\n", + "X=1.68j #Synchronous reactance(ohm)\n", + "Laf=22.3*10**-3 #Mutual inductance(H)\n", + "wc=120*pi #Angular frequency(rad/sec)\n", + "\n", + "\n", + "#Calculations:\n", + "Ia=Pin/(3*Va)\n", + "Eaf=Va-X*Ia\n", + "delta=degrees(cmath.phase(Eaf))\n", + "I=sqrt(2)*Eaf/(wc*Laf)\n", + "\n", + "\n", + "#Results:\n", + "print\"The phase angle,delta:\",round(delta,1),\"degrees\"\n", + "print\"Required field current:\",round(abs(I),2),\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The phase angle,delta: -35.7 degrees\n", + "Required field current: 55.04 A\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 5.3, Page number: 257" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "Eafl=13.8*10**3 #Open circuit voltage(V)\n", + "If1=318 #Field current(A)\n", + "If2=263 #Field current after extrapolation(A)\n", + "wc=120*pi #Angular frequency(Hz)\n", + "\n", + "#Calculations:\n", + "Eaf=Eafl/sqrt(3)\n", + "La1=sqrt(2)*Eaf/(wc*If1)\n", + "La2=sqrt(2)*Eaf/(wc*If2)\n", + "\n", + "#Results:\n", + "print \"Saturated Laf1:\",round(La1*1000,0),\"mH\" \n", + "print \"Unsaturated Laf1:\",round(La2*1000,0),\"mH\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Saturated Laf1: 94.0 mH\n", + "Unsaturated Laf1: 114.0 mH\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 5.4, Page number: 262" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "Ia=[118, 152] #Armature current from SC Characteristics(A)\n", + "If=[2.20, 2.84] #Field current from SC Characteristics(A)\n", + "Vll=220 #Line-to-line Voltage(V)\n", + "V=202 #Line-to-line air voltage(V) \n", + "P=45*10**3 #Power roted to motor(W) \n", + "Is_sc=1 #per unit rated current(A)\n", + "\n", + "#Calculations:\n", + "Va_ag=V/sqrt(3) #At field current of 2.20A,at air gap,(V)\n", + "Ia_ag=Ia[0]\n", + "Xs_u=Va_ag/Ia_ag\n", + "Ia_rated=P/(sqrt(3)*Vll)\n", + "Xa_g=Va_ag/1\n", + "Xs_u_pu=Va_ag/Is_sc\n", + "Xs=Vll/(Ia[1]*sqrt(3))\n", + "Ia_pu=Ia[1]/Ia[0]\n", + "SCR=If[1]/If[0]\n", + "Xs=1/SCR\n", + "\n", + "\n", + "\n", + "#Results:\n", + "print \"'All quantities are in per unit values'\"\n", + "print\"Unsaturated value of synchronous reactance:\",round(Xs_u,3),\"ohm\"\n", + "print \"Satureted value of synchronous reactance: \",round(Xs,3),\"ohm\"\n", + "print\"Short circuit ratio:\",round(SCR,3)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "'All quantities are in per unit values'\n", + "Unsaturated value of synchronous reactance: 0.988 ohm\n", + "Satureted value of synchronous reactance: 0.775 ohm\n", + "Short circuit ratio: 1.291\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 5.5, Page number: 265" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "\n", + "#Variable declaration:\n", + "P_rated=45*10**3 #Rated power(KV)\n", + "Pl=1.80*10**3 #Short circuit load loss(W)\n", + "Ia_pu=1 #Per unit armature current\n", + "Ia=118 #rated armature current(A)\n", + "Ra_dc=0.0335 #Dc resistance(ohm/phase)\n", + "\n", + "\n", + "#Calculations:\n", + "Pl_pu=Pl/P_rated \n", + "Ra_eff1=Pl_pu/Ia_pu**2 #in per unit basis\n", + "Ra_eff2=Pl/(3*(Ia)**2)\n", + "\n", + "#Results:\n", + "print \"Armature resistance in per unit:\",round(Ra_eff1,3),\"per unit\" \n", + "print \"Armature resistance in ohms/phase:\", round(Ra_eff2,3),\"ohms/phase\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Armature resistance in per unit: 0.04 per unit\n", + "Armature resistance in ohms/phase: 0.043 ohms/phase\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 5.6, Page number: 269" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "%matplotlib inline\n", + "import cmath\n", + "import math\n", + "from pylab import *\n", + "\n", + "\n", + "#Variable declaration:\n", + "Veq=1.0 #Externalsupply(p.u) \n", + "Eaf=1.0 #Internal voltage(p.u)\n", + "Xeq=0.23 #Eqv.resistance of external system(p.u)\n", + "Xs=1.35 #Saturated synchronous reactance(p.u)\n", + "\n", + "\n", + "#Calculations:\n", + "#for part (a):\n", + "P_max=Eaf*Veq/(Xs+Xeq)\n", + "\n", + "\n", + "#for part (b):\n", + "delta=[0]*500\n", + "Ia=[0]*500\n", + "Va=[0]*500\n", + "degree=[0]*500\n", + "for n in range(1,101,1):\n", + " delta[n-1]=(pi/2)*(n-1)/100\n", + " Ia[n-1] = (Eaf *exp(1j*delta[n-1]) - Veq)/(1j*(Xs + Xeq))\n", + " Va[n-1] = abs(Veq + 1j*Xeq*Ia[n-1])\n", + " degree[n-1]=180*delta[n-1]/pi\n", + "plot(degree,Va,'r.')\n", + "xlabel('Power angle,delta(degrees)')\n", + "ylabel('Terminal voltage(per unit)')\n", + "title('Terminal voltage vs. power angle for part (b)')\n", + "show()\n", + "#for part (c):\n", + "Vterm=1.0\n", + "P=[0]*500\n", + "deltat=[0]*500\n", + "Ia=[0]*500\n", + "Eaf=[0]*500\n", + "\n", + "for n in range(1,101,1):\n", + " P[n-1]=(n-1)/100\n", + " deltat[n-1]=math.asin(P[n-1]*Xeq/(Vterm*Veq))\n", + " Ia[n-1]=(Vterm*exp(1j*deltat[n-1])-Veq)/(1j*Xeq)\n", + " Eaf[n-1]=abs(Vterm+1j*(Xs+Xeq)*Ia[n-1])\n", + "plot(P,Eaf,'r.')\n", + "xlabel('Power [per unit]')\n", + "ylabel('Eaf [per unit]')\n", + "title('Eaf vs. power for part (c)')\n", + "show()\n", + "\n", + "\n", + "\n", + "#Results:\n", + "print \"(a) Maximum power supplied to external system:\",round(P_max,2),\"p.u\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEXCAYAAACtTzM+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdUFNfbB/C7VAHpIgJLUYpUAaWIKMWCaBQrCsYCYk1s\nSV5jYjSSGI3GmBhDrEFQY0WNYiOIUhQVLKggFlCWDoL0zu7e9w+c/DaEtsiyaL6fc+awM3P3zjOz\nyz47996ZZVFKCQAAgIS4AwAAgJ4BCQEAAAghSAgAAPAGEgIAABBCkBAAAOANJAQAACCEICH0eEuX\nLt393XffrXvbejgcjoGEhASfz+d36WseGBgYOGfOnMNdWSf0DG/7nvH39w9RU1MrGTp06O2ujq27\nFBUVaZiZmT2pr6+XJYQQNze3mODg4ICWyhYWFmqam5unNjQ0yHRvlF0HCaGDevfuXaWoqFipqKhY\nKSEhwZeXl69h5o8dO+Yrqu3u3r176bp1674TVf1vi8Vi/X0hi6iSDrx7rl+/PiIqKmp0Xl6e9u3b\nt4eKO56WSEhI8F++fDmgrTJbtmz5wt/fP0RWVraekKb3u+B7XpCmpmahu7t79L59+xaJIt7ugH/c\nDqqqqupdWVmpWFlZqaivr5954cKFCcy8r6/vsY7UweVypUQdZ3ejlLI6sgzeHqWU9a4c28zMTH0D\nAwNOr1696oR9rqj/TwTrb+t41tfXyx46dGju7Nmz/+ho3R9++OGRvXv3Ln7bGMUFCeEt8fl8iS1b\ntnxhZGSU3qdPn+KZM2eeKC0tVSXkf9+YDxw4MF9fXz9z1KhRVw8ePDjP2dk5/tNPP/1JVVW11MjI\nKP3mzZvDQkJC/PX09LI0NTULDx06NJep38/PL3T9+vUbCSEkJibGjc1m5/z000+fampqFmpra+eF\nhob6MWUvXrz4ga2tbZKysnK5np5e1jfffLOhI/uwdevWNd7e3mGCy1auXPnLypUrfyGEkLy8PG0v\nL69wdXX118bGxmm///77AsGyzDcmFxeXOEIIUVFRKVNUVKxMSEhwfPHiheHIkSOv9enTp1hDQ6No\n9uzZf5SXlyszz71///5gW1vbJCUlpYoZM2acnDlz5glmfwkh5MKFCxNsbGweqKqqljo7O8cnJydb\ntbQPS5cu3b169eptgssmTZp0bseOHauYfWSz2TlKSkoVpqamT69duzayI8fGwMCAs2XLli8sLCwe\nq6mplcyfP/8A03xACCH79+9faGxsnKaurv560qRJ5/Lz87UIIWTDhg3frFixYichhDQ2NkorKChU\nf/755z8QQkhtba1cr1696srKylQIIeT27dtDhw0bdlNVVbXUxsbmQWxsrCtTv5ubW8y6deu+c3Z2\njldQUKjOyMjo3zxG5v2npKRUYWFh8fjs2bOTmXWhoaF+w4cPv7F69eptampqJQMGDHgZERHhyazP\nyMjo7+LiEqekpFQxZsyYKx9//PFvrTUBlpeXKwcEBARra2vnsdnsnPXr129s6WwwODg4YOHChftv\n3brlpKioWMm8D1s7VoQ0fVvftWvXR8bGxmkDBw581rxO5n9p//79C3V0dHK1tbXztm/f/hmzPjEx\n0cHJyemWqqpqqba2dt7y5ct/bWxslG5ev4mJyXMTE5Pnrq6usYQQYm1t/VBRUbEyLCzMu/k2ExIS\nHFVUVMq0tbXzBJenp6cbOTo6JigrK5dPnjz5LPP/TgghDg4OiS9fvhyQnZ2t29Ix7PEopZiEnAwM\nDDKuXr06klJKduzYsdLJyelmbm6udkNDg/TixYv3+Pr6HqWUkoyMDAMWi8WfN29eaE1NjVxtbW2v\nkJAQPykpqcbQ0NB5fD6ftW7duo06Ojo5y5Yt+7WhoUE6MjJyjKKiYkV1dbU8pZT4+fmFrF+//ltK\nKYmOjnaTkpJq3LBhQyCXy5W8dOnSOHl5+eqysjJlSimJiYlxTUlJsaCUkkePHllpamoWnD17dpJg\nLDweT6L5/mRmZurJy8tXV1ZW9qaUEi6XK6mlpZWXkJDgQCklI0aMiPv444+D6uvrZR48eGCtoaHx\n6tq1a+6UUrJhw4bA2bNnH6aUEg6Ho998G+np6YZRUVGjGhoapIuKivq4uLjErlq16mdKKamvr5fR\n09PL3Llz53Iulyt55syZKTIyMvXM/t6/f9+2b9++hYmJifZ8Pp918ODBuQYGBhn19fUyzfchLi5u\nhK6ubhYzX1JSoionJ1eTn5/f7+nTpwN1dXWz8vPz+zH7++LFiwEdea319fU5VlZWj3JycnRKSkpU\nnZ2db6xbt24jpZRcvXp1ZJ8+fYqSkpJs6uvrZZYvX77TxcUlllJKrl275m5lZfWIUkri4+OHGRoa\npjs6Ot5mnmdjY5NEKSU5OTk66urqxZcvX/aklJIrV66MVldXLy4uLlanlBJXV9cYfX19TmpqqhmP\nx5NobGyUah5jWFjYdGbfTpw4MUNBQaGqoKBAk1JKQkJC/KSlpRt+//33AD6fz9q9e/cSbW3tXOa5\nQ4cOvbV69eofGhsbpW7cuOGspKRUPmfOnEMtvWcmT57855IlS3bX1NTIvXr1SsPBwSFh7969i1o6\nbqGhofOGDx9+nZlv61hRSgmLxeJ7eHj8VVpaqlJXVyfbvD4mllmzZh2pqamRS05OttTQ0HgVFRU1\nilJK7t27NzghIcGBx+NJcDgcfTMzs9QdO3asbKt+FovFb+t9EBQU9PEHH3xwQXCZq6trjI6OTs7j\nx4/Nq6ur5adNm3aKef8z06BBgx6Gh4dPFPfnVGcmsQfwLk6CCcHMzCyVeUwpJXl5eVrS0tINPB5P\ngnkTZ2RkGDDrQ0JC/IyNjZ8z848ePbJisVj8V69eaTDL1NXVix8+fDiI0qaEwHwARUdHu8nJydUI\nfuD27du3kPngbj6tXLlyxyeffPITpW0nBEopGT58+PVDhw7NoZSSyMjIMYaGhumUUpKVlaUrKSnJ\nraqqUmDKfvnll5v9/PxCKP1nQmhvG5RS8ueff062tbW9TyklsbGxLjo6OjnN42ASwpIlS3Yzj5lp\n4MCBT2NjY12a18vn81l6enqZcXFxIyilZN++fQtHjRoVRSklaWlpRn379i1kEpOwr7Xgh96lS5fG\nMcdm/vz5wWvWrNnCrKuqqlKQlpZuyMzM1KupqZHr1atX7evXr9W2bNmyZvPmzV+y2ezsqqoqha+/\n/vqblStX7qCUki1btqxhPoCZaezYsREHDx6cSyklbm5u0Rs2bAgUJmYbG5ukc+fOeTHvNyMjozRm\nXXV1tTyLxeIXFhb2zczM1JOSkmqsra3txayfPXv24ZZez4KCAk1ZWdk6wbJHjx71dXd3v9ZSDCEh\nIX6CCaGtY0Vp04dzdHS0W2v7xMTy7NkzE2bZ559/vjUgIOD3lsr//PPPq6ZMmXKGmW+p/vYSwnff\nffeVj4/PMcFlbm5u0V9++eVmZj41NdVMRkamns/ns5hlzs7ONw4fPjxbmNesp0xoMnpLHA7HYMqU\nKX+qqqqWqqqqlpqbm6dKSUlxCwsLNZkyurq62YLP0dTULGQey8nJ1RJCiIaGRpHgsqqqqt4tbU9d\nXf21hIQEn5mXl5evYcomJCQ4uru7R/ft2/eViopK2d69exe/fv1avSP7MWvWrKNM5/jRo0dnffjh\nh0cIaWouUlNTK1FQUKhmyurp6WXl5ubqdKTewsJCTR8fn+NsNjtHWVm5fM6cOYeZmPLy8rR1dHRy\nBcsLHqvMzEz97du3f8YcW1VV1dKcnBy2YFMDg8ViUR8fn+Mt7YORkVH6jh07VgUGBgZqamoW+vr6\nHmupjtYIxqSnp5eVl5enTQgh+fn5Wvr6+pnMOgUFhWp1dfXXubm5OnJycrV2dnZ3Y2NjXePi4lxc\nXV1jhw0bdjM+Pt6ZmWf2MSwszFtwH+Pj450LCgr6tbT9lhw6dGiura1tEvP8lJQUS8HXvV+/fgXM\nY3l5+RpCmvrEmNdWsJ2/tW1lZmbqNzY2SmtpaeUz21myZMmeoqIijY4cw7aOVUf3s3kZwdfi+fPn\nJhMmTLigpaWVr6ysXP7VV19tav7e70j9gtTU1EoqKysV24uhsbFRuri4uA+zrLKyUlFFRaVMmG31\nFEgIb0lPTy8rIiLCs7S0VJWZampq5LW0tPKZMq2NSuiojj5/1qxZRydPnnw2JyeHXVZWprJkyZI9\nHR3xM3369FMxMTFuubm5OmfPnp08a9aso4QQoq2tnVdSUqImmKCysrL02Gx2TkfiXLt27WZJSUle\nSkqKZXl5ufLhw4fnMDFpaWnlN08sWVlZesxjPT29rK+++mqT4LGtqqrqPXPmzBMt7YOvr++xU6dO\nTc/MzNRPTEx0mDZt2mnBddevXx+RmZmpz2Kx6Jo1a7Z25Lg0jykrK0uPSWLa2tp5HA7HgFlXXV2t\n8Pr1a3Vmvaura+zVq1dHJSUl2drb299xdXWNjYiI8ExMTHRg+lv09PSy5syZc1hwHysrKxWZ/obW\njisjMzNTf9GiRft+++23j0tKStRKS0tVLS0tU2gHOp+1tLTyS0pK1Gpra+Va2ldBurq62bKysvWv\nX79WZ+IsLy9Xbq1Pp7n2jlV7+9lSfIKvxdKlS3ebm5unpqenG5WXlytv2rTpq+bvfWH/DwcNGvTo\n+fPnJu3FIC0t3dinT59iQpo6rNPT042sra0fCrOtngIJ4S0tWbJkz9q1azczb5KioiKN8PBwr66q\nnwoxsqSqqqq3qqpqqYyMTENiYqLD0aNHZ3X0n0BDQ6PIzc0txs/PL3TAgAEvmY49XV3d7GHDht38\n8ssvv6+vr5d99OjRoAMHDsxvaeSFhoZGkYSEBP/FixeGgjEpKChUKykpVeTm5ups27ZtNbPOycnp\nlqSkJC8oKGgZl8uVOnfu3KQ7d+7YM+sXLly4f8+ePUsSExMdKKWs6upqhYsXL37Q2tmTjY3Ngz59\n+hQvWLDgd09PzwglJaUKQpq+PV67dm1kfX29rKysbH2vXr3qJCUleR05LpRS1q5duz7Kzc3VKSkp\nUdu0adNXTELy9fU9FhIS4v/w4UPr+vp62bVr124eOnTobT09vSxCmhLCoUOH5lpYWDyWlpZudHNz\ni/n9998XDBgw4KW6uvprQgiZPXv2H+fPn58YGRnpwePxJOvq6noxiVkwhtbiq66uVmCxWLRPnz7F\nfD5fIiQkxD8lJcWyI/umr6+faWdndzcwMDCwsbFR+tatW04XLlyY0NJ7RktLK9/DwyPy008//amy\nslKRz+dLvHjxwjAuLs6lI9tq71h11HfffbeutrZW7vHjxxahoaF+zGtRVVXVW1FRsVJeXr7m6dOn\nprt3717aXl2ampqFgu/V5uzt7e+UlZWpMGchhDS9Fn/88cfsJ0+emNXU1Mh//fXX33p7e4cxxywx\nMdHBwMCAI+zZSE+BhPCWVq5c+YuXl1e4h4dHpJKSUoWTk9OtxMREB2Z983+ulsYxt/Wh3bx8W2V3\n7dr10ddff/2tkpJSxcaNG9c3/ybdXnKYNWvW0atXr45izg4Yx44d8+VwOAba2tp5U6dOPfPtt99+\nPXLkyGvN45OXl6/56quvNjk7O8erqamVJCYmOmzYsOGb+/fvD1ZWVi6fOHHi+WnTpp1mysvIyDSc\nOXNmanBwcICqqmrpkSNHPpwwYcIFGRmZBkIIGTJkyL39+/cvXLZsWZCamlqJsbFxmuAIrNb24dq1\nayMF96G+vl72yy+//F5DQ6NIS0srv7i4uM/333//JSGEHDly5ENLS8uU1upjsVh01qxZRz08PCIN\nDQ1fGBsbpzHXhYwaNerqxo0b10+bNu20trZ2XkZGRv/jx4/7MM91cnK6VVdX14s5GzAzM3siJydX\ny8wTQgibzc45d+7cpM2bN6/t27fvKz09vazt27d/JpgE2nrdzM3NUz/77LPtTk5Ot/r161eQkpJi\nOXz48BuCz23r/XbkyJEPb9265aSurv56/fr1G2fOnHmCOf7Nyx46dGhuQ0ODjLm5eaqamlqJt7d3\nmGDTVvNtCD63vWPV0S8urq6usUZGRumjR4+OWr169bbRo0dHEULIjz/++H9Hjx6dpaSkVLFo0aJ9\nPj4+x9v7vwkMDAycN2/eQVVV1dJTp05Nb75eRkamwc/PL/SPP/6YLVjP3LlzD/n5+YVqaWnlNzQ0\nyOzcuXOF4PFcunTp7o7sS48k7k4MTJgEJwcHh4TQ0NB54o6DmQQHEPwXphkzZpwIDAzcIO44mk8d\nGbAgiqmoqKiPqanpk5ZGPjWfCgsL+5qZmaW2NAruXZlEdoYwf/78A5qamoVWVlbJrZVZsWLFTmNj\n4zRra+uHSUlJtqKKBXquuLg4l4KCgn5cLlfq4MGD81JSUiw9PT0jxB3Xf8Xdu3ftXrx4Ycjn8yUu\nX748Ljw83Gvy5MlnxR1XT9GnT5/iJ0+emDFXKrelb9++r1JTU80Fz7DeNSJLCP7+/iGCF8A0d+nS\npfHp6elGaWlpxvv27Vv0Tp9mQac9e/ZsIHPh2c8///zJqVOnpguOwgLRKigo6Ofu7h6tqKhY+ckn\nn/y8Z8+eJT21Q/RtB2dA+1iUiu4Yczgcg4kTJ55vaSTCkiVL9ri7u0cz7dympqZPY2NjXfFhAAAg\nHmK7t05ubq6OYE88m83OycnJYTdPCPhWAADQOVTIe1+JdZRR82Bb+/Cn9vaEjh5NKPO4tJTQceP+\nNy+4rhvKbXib+pqvc3ZuekwIoRoa/3vs7U2oq2vL61oot6Gldf37N9UxblzTdhcu/N/8vHktP26r\nXGmp0J1UGzZsEHtHGWJCTP/FuDpDbGcIOjo6uYI3gMrJyWE3v2r1b5GRTX8XLSJk3z5CVFQIOXr0\nf/OC67qjnLPzv2PqaH3N182a1bTe3p4QZWVCoqKaHre1rqPlZGQIiY393/ZfvfrfvIYGIUVF/37c\nVrnBgwnR0yNEXr5pHz7/nJDnz5vm+/YlhMP59+NBg9p4FwBAjyLKDJWRkWFgaWmZ3NK6ixcvjh83\nbtwlSim5devWUObGXy1kOdrTbNiwoesqKy2l1Nu76a/g47bWtVBug7n5v9eNG0cpIZTa2/97fvTo\nlh+3Vc7ZuekxIU3bcHX937yGRouPN5ibU7pwYVPZceMonTev5celpa2XY/azi3Tp69dFEFPH9MSY\nKO2Zcb357BTurELYJ3R08vHxOaalpZUnLS3dwGazs4ODg+fv2bNn8Z49exYzZT7++OMgQ0PD9EGD\nBj28d+/e4BYD7IEJITo6Wtwh/EuLMb1FgmlxXScSTPT58x1KHG0mGG/vjieVzh4rMUNMHdMTY6K0\nZ8bVmYQg0lFGXYHFYtGeHuN/RlnZP5u+BOcJab2JbPx4Qi5fbrvpKzKyqemrpXKRkYRMntx+c5e3\nd9P22mvGat7cdfRo0/MA3iMsFotQITuVkRBA9DqaOForJ0xS6WjiEOwn6d//f30jSBzwnkBCgPeX\nKM9GZGQIiY9vqguJA94TSAgAnTkbaaupCokD3lFICACd0VZTFRIHvKOQEABECYkD3iFICAA9QU9I\nHG1dOIjE8Z+AhADwLhFl4mieLAQTSVuJA8nivYGEAPA+6kziaOu6jrYSB5qn3htICAD/ZR29cLCt\nxNEV/RpIFD0CEgIAtK+txNEV/RqtXS2OZNGtkBAA4O10Rb9Ga1eLo9O7WyEhAED36MxtRtDp3a2Q\nEABA/DrTd9EVnd5IFP+AhAAAPZeoO73Rd/EPSAgA8O7rbKd3Z/ou3uNkgYQAAO+3ru67eI87upEQ\nAOC/622boN6zjm4kBACA5jraBPWedXQjIQAACOM97uhGQgAAEIV3sKMbCQEAoLuJsqP7Lc4qkBAA\nAHoSMTZBISEAALwLRN0EpaKChAAA8M7riiaokyeREAAA3msdbYLCGQIAwH9U8yYogj4EAAB4ozMJ\nQUJUwQAAwLsFCQEAAAghSAgAAPAGEgIAABBCkBAAAOANJAQAACCEICEAAMAbSAgAAEAIEXFCiIiI\n8DQ1NX1qbGyctnXr1jXN1xcXF/fx9PSMsLGxeWBpaZkSGhrqJ8p4AACgdSK7UpnH40kOHDjwWVRU\n1GgdHZ1ce3v7O8eOHfM1MzN7wpQJDAwMrK+vl/3++++/LC4u7jNw4MBnhYWFmlJSUty/A8SVygAA\nQutRVyonJiY6GBkZpRsYGHCkpaUbfXx8jp87d26SYBktLa38iooKJUIIqaioUFJXV38tmAwAAKD7\nSImq4tzcXB1dXd1sZp7NZuckJCQ4CpZZuHDh/pEjR17T1tbOq6ysVDx58uSMluoKDAz8+7Gbmxtx\nc3MTUdQAAO+mmJgYEhMT81Z1iCwhsFisdtt5Nm/evNbGxuZBTEyM24sXLwzHjBlz5eHDh9aKioqV\nguUEEwIAAPxb8y/L33zzjdB1iKzJSEdHJzc7O1uXmc/OztZls9k5gmVu3rw5zNvbO4wQQgwNDV/0\n798/49mzZwNFFRMAALROZAnBzs7ublpamjGHwzFoaGiQOXHixEwvL69wwTKmpqZPo6KiRhNCSGFh\noeazZ88GDhgw4KWoYgIAgNaJrMlISkqKGxQUtGzs2LF/8Xg8yYCAgGAzM7Mne/fuXUwIIYsXL967\ndu3azf7+/iHW1tYP+Xy+xA8//PC5mppaiahiAgCA1rU57LSxsVE6MjLSIy4uzoXD4RiwWCyqr6+f\n6eLiEjd27Ni/umNEEIadAgAIr0t/MW3jxo3rT58+Pc3JyemWg4NDora2dh6fz5fIz8/XSkxMdLh9\n+/bQ6dOnn1q3bt13XRJ9awEiIQAACK1LE0J4eLjXxIkTz7c2WojP50tcuHBhQvN+ga6GhAAAILwu\nvTDNy8srnMVi0bCwMO/m68LCwrwlJCT4ok4GAADQfdq9dYWtrW1SUlKSbXvLRAVnCAAAwuvMGUKr\no4wuX7487tKlS+Nzc3N1VqxYsZOpuLKyUlFaWrrxbYMFAICepdWEoK2tnTdkyJB7586dmzRkyJB7\nTEJQUlKq+Pnnnz/pvhABAKA7tNtk1NjYKC3OMwI0GQEACK9LRxl5e3uHhYWFeVtZWSW3sCH66NGj\nQZ2MUyhICAAAwuvShJCXl6etra2dx+FwDFpab2BgwBE6wk5AQgAAEF6XJoSeAgkBAEB4IvmBnNOn\nT08zNjZOU1JSqlBUVKxUVFSsVFJSquh8mAAA0BO1e4ZgaGj44sKFCxMEf/qyO+EMAQBAeCI5Q+jX\nr1+BuJIBAAB0n3Zvf21nZ3d35syZJyZPnnxWRkamgZCmb+1Tp049I/rwAACgu7SbEMrLy5Xl5ORq\nIyMjPQSXIyEAALxfMMoIAOA91KX3MmL4+/uHNNsIJYSQAwcOzBcuPAAA6MnaTQgffPDBRSYJ1NbW\nyv35559TtLW180QfGgAAdCehm4z4fL6Es7Nz/K1bt5xEFNM/oMkIAEB4Ihl22tzz589NioqKNIR9\nHgAA9GztNhn17t27imkyYrFYVFNTs3Dr1q1rRB8aAAB0J4wyAgB4D3VLkxEAALyfkBAAAIAQgoQA\nAABvtJkQuFyu1MCBA591VzAAACA+bSYEKSkprqmp6dPMzEz97goIAADEo91hpyUlJWoWFhaPHRwc\nEhUUFKoJaRr5Ex4e7iX68AAAoLu0mxA2bty4vvky5roEAAB4f3ToOgQOh2OQnp5uNHr06Kiamhp5\nLpcr1V0/o4nrEAAAhCeS6xD27du3yNvbO2zx4sV7CSEkJyeHPWXKlD87GyQAAPRM7SaE33777eMb\nN24MZ84ITExMnr969aqv6EMDAIDu1G5CkJWVrZeVla1n5rlcrhT6EAAA3j/tJgRXV9fYTZs2fVVT\nUyN/5cqVMd7e3mETJ0483x3BAQBA92m3U5nH40kGBwcHML+pPHbs2L8WLFjwe3edJaBTGQBAeJ3p\nVO7QKKP6+nrZp0+fmrJYLGpqavpURkamodNRCgkJAQBAeCIZZXTx4sUPjIyM0lesWLFz+fLlvxoa\nGr64dOnS+I5UHhER4WlqavrU2Ng4rbXfUIiJiXGztbVNsrS0THFzc4sRJngAAOhClNI2JxMTk2dp\naWlGzHx6erqhiYnJs/aex+VyJQ0NDdMzMjIMGhoapK2trR+kpqaaCZYpLS1VMTc3f5ydnc2mlJKi\noqI+zetpChEAAITx5rOz3c94wandMwQlJaUKIyOjdGZ+wIABLztyUVpiYqKDkZFRuoGBAUdaWrrR\nx8fn+Llz5yYJljl69OisadOmnWaz2TmEENKnT59ioTMaAAB0iXZvXTFkyJB748ePvzRjxoyThBAS\nFhbmbWdnd/fMmTNTCSFk6tSpZ1p6Xm5uro6urm42M89ms3MSEhIcBcukpaUZNzY2Sru7u0dXVlYq\nrly58pc5c+Ycbl5XYGDg34/d3NyIm5tbB3cPAOC/ISYmhsTExLxVHe0mhLq6ul6ampqFsbGxroQQ\noqGhUVRXV9fr/PnzEwlpPSF0ZBRSY2Oj9P379wdfvXp1VE1NjbyTk9OtoUOH3jY2Nk4TLCeYEAAA\n4N+af1n+5ptvhK6j3YQQGhrqJ3SthBAdHZ3c7OxsXWY+Oztbl2kaYujq6mb36dOnWE5OrlZOTq7W\nxcUl7uHDh9bNEwIAAIheq30IgYGBgYWFhZqtrc/Pz9fasGFDqynIzs7ublpamjGHwzFoaGiQOXHi\nxEwvL69wwTKTJk06d+PGjeE8Hk+ypqZGPiEhwdHc3Dy1c7sCAABvo9UzBDs7u7s+Pj7HGxoaZAYP\nHnxfS0srn1LKKigo6Hf//v3BsrKy9f/3f//3Y6sVS0lxg4KClo0dO/YvHo8nGRAQEGxmZvZk7969\niwkhZPHixXtNTU2fenp6RgwaNOiRhIQEf+HChfuREAAAxKPdC9Oys7N14+PjnTMzM/VZLBbV19fP\nHDZs2E3BDmORBogL0wAAhCayK5UJIaS6ulqB+cW07oSEAAAgPJFcqXzz5s1h5ubmqaampk8JIeTB\ngwc2H3300a7OBgkAAD1Tuwlh1apVOyIiIjyZi8ZsbGweMENQAQDg/dFuQiCEED09vSzBeSkpKa5o\nwgEAAHFrP2CTAAAfdklEQVRp9zoEPT29rPj4eGdCCGloaJDZuXPnCjMzsyeiDw0AALpTu53KRUVF\nGitXrvwlKipqNKWU5eHhEblz584V6urqr7slQHQqAwAITaSjjMQFCQEAQHidSQjtNhktX7781zcf\nyizm/kRKSkoV9vb2dyZNmnSus8ECAEDP0m6ncl1dXa8HDx7YmJiYPDcyMkp/+PChdU5ODjs4ODhg\n1apVO7ojSAAAEL12m4wcHR0T4uPjnZmRRVwuV2r48OE3bty4MdzKyir5yZMnZiINEE1GAABCE8mF\naWVlZSpVVVW9mfmqqqreJSUlalJSUtxevXrVdSZQAADoedrtQ/j8889/sLW1TXJ1dY0lhJDY2FjX\ntWvXbq6urlYYPXp0lOhDBACA7tChUUZ5eXnaiYmJDiwWi9rb29/R1tbO64bYCCFoMgIA6AyRDTst\nLS1Vff78uUldXV0vZqSRi4tLXCfjFAoSAgCA8EQy7HT//v0Ld+7cuSInJ4dtY2Pz4Pbt20OdnJxu\nXbt2bWTnQwUAgJ6m3U7lX375ZWViYqKDvr5+ZnR0tHtSUpKtsrJyeXcEBwAA3afdhNCrV686OTm5\nWkKarkkwNTV9+uzZs4GiDw0AALpTu01GbDY7p7S0VHXy5Mlnx4wZc0VVVbXUwMCA0w2xAQBANxLq\nXkYxMTFuFRUVSp6enhEyMjINIozrb+hUBgAQnkguTJszZ85h5rGbm1uMl5dXeEBAQHBnAgQAgJ6r\n3YSQkpJiKTjP5XKl7t27N0R0IQEAgDi0mhA2b968VlFRsTI5OdlKUVGxkpn69u37ysvLK7w7gwQA\nANFrtw/hiy++2LJly5Yvuimef0EfAgCA8Lr0SuX79+8PJoQQwd9BEDR48OD7nYpSSEgIAADC69KE\n4ObmFtNSImBER0e7CxlfpyAhAAAIDz+hCQAAhBAR3cuooaFBZvfu3Uvj4uJcCGk6c1iyZMkeaWnp\nxs4GCgAAPU+7ZwgBAQHBXC5Xat68eQcppazDhw/PkZKS4v7+++8LuiVAnCEAAAhNJE1GgwYNevTo\n0aNB7S0TFSQEAADhieRKZSkpKW56eroRM//ixQtD5veVAQDg/dFuH8K2bdtWjxw58lr//v0zCCGE\nw+EYhISE+Is+NAAA6E4dGmVUV1fXi7nl9cCBA5/16tWrTuSRvYEmIwAA4YmkyWjQoEGPfvrpp097\n9+5dZW1t/bA7kwEAAHSfdhNCeHi4l6SkJG/GjBkn7ezs7v7444//l5WVpdcdwQEAQPcR6sK0tLQ0\n440bN64/cuTIhzweT1KEcf0NTUYAAMITyYVphDR1JJ84cWLmyZMnZ0hKSvJ++OGHzzsXIgAA9FTt\nNhk5OjomTJky5U8+ny8RFhbmnZiY6PDZZ59t70jlERERnqampk+NjY3Ttm7duqa1cnfu3LGXkpLi\nnjlzZqowwQMAQNdpt8no6dOnpqampk+FrZjH40kOHDjwWVRU1GgdHZ1ce3v7O8eOHfM1MzN70rzc\nmDFjrsjLy9f4+/uHTJs27fQ/AkSTEQCA0EQyyqgzyYAQQhITEx2MjIzSDQwMONLS0o0+Pj7Hz507\nN6l5uV9//XX59OnTT2loaBR1ZjsAANA1OtSH0Bm5ubk6urq62cw8m83OSUhIcGxe5ty5c5OuXbs2\n8s6dO/at3W47MDDw78dubm7Ezc1NRFEDALybYmJiSExMzFvVIbKE0NZvKTBWrVq1Y8uWLV+8aRZi\ntXZ6I5gQAADg35p/Wf7mm2+ErqPVhHD69OlpzAd183UsFotOnTr1TFsV6+jo5GZnZ+sy89nZ2bps\nNjtHsMy9e/eG+Pj4HCeEkOLi4j6XL18eJy0t3YjfbAYA6H6tJoTz589PbOtbfnsJwc7O7m5aWpox\nh8Mx0NbWzjtx4sTMY8eO+QqWefny5QDmsb+/f8jEiRPPIxkAAIhHqwkhNDTU760qlpLiBgUFLRs7\nduxfPB5PMiAgINjMzOzJ3r17FxNCyOLFi/e+Tf0AANC1OnSl8oULFyakpqaa19XV9WKWff3119+K\nNLI3MOwUAEB4Ihl2unjx4r0nT56csXPnzhWUUtbJkydnZGZm6nc+TAAA6InaPUOwsrJKTk5OtmJ+\nJa2qqqq3p6dnxI0bN4Z3S4A4QwAAEJpIzhDk5ORqCSFEXl6+Jjc3V0dKSopbUFDQr7NBAgBAz9Tu\ndQgTJ048X1paqrp69eptQ4YMuUcIIQsXLtwv+tAAAKA7CXX767q6ul51dXW9VFRUykQY0z+gyQgA\nQHgiu/11fHy8M4fDMRD8DYS5c+ceEjZAAADoudpNCLNnz/7j5cuXA2xsbB5ISkrymOVICAAA75d2\nm4zMzMyepKammnfk3kSigCYjAADhiWSUkaWlZUp+fr5W58MCAIB3QbtNRkVFRRrm5uapDg4OibKy\nsvWENH1rDw8P9xJ9eAAA0F3aTQiBuPc0AMB/glDDTsUBfQgAAMLr0j4EZ2fneEII6d27d5WiomKl\n4KSkpFTxtsECAEDPgjMEAID3kMguTCstLVXNzs7W5XK5f5cfPHjwfWEDBACAnqvdhLB+/fqNoaGh\nfgMGDHgpISHBZ5ZHR0e7izY0AADoTu02GZmYmDxPSUmxlJGRaeimmP4BTUYAAMITyYVpFhYWj0tL\nS1U7HxYAALwL2j1DuHPnjv2kSZPOWVpapojjwjScIQAACK8zZwgdupfR0qVLd1taWqYwfQgsFou6\nurrGvkWsHQ8QCQEAQGgiSQj29vZ37ty5Y/9Wkb0FJAQAAOGJJCF8+umnP8nKytZ7eXmFM01GhHTf\nsFMkBAAA4YkkIbi5ucW0dOvr7hp2ioQAACC8Lr8wjcfjSXp5eYV/+umnP71daAAA0NO1OexUUlKS\nd+zYMd/uCgYAAMSn3SajTz755OfGxkbpmTNnnlBQUKimlLJYLBZFHwIAQM+FPgQAACCEiCghiBsS\nAgCA8ERy64qCgoJ+AQEBwZ6enhGEEJKammoeHBwc0NkgAQCgZ2o3Ifj5+YV6eHhE5uXlaRNCiLGx\ncdrPP//8iehDAwCA7tRqQmB++6C4uLjPzJkzT0hKSvIIIURaWrpRSkqK210BAgBA92g1ITg4OCQS\n0vQTmsXFxX2Y5bdv3x6qrKxc3h3BAQBA92n1wjSmM2L79u2fTZo06dzLly8HDBs27GZRUZHGqVOn\npndfiAAA0B1aHWXEZrNzPv30058opSxKKau+vl6WUsqSlZWtl5SU5HXX1csYZQQAILwuvXUFj8eT\nrKysVGy+vKamRr4zwQEAQM/W6hmCra1tUlJSku3bVB4REeG5atWqHTweT3LBggW/r1mzZqvg+iNH\njnz4ww8/fE4pZSkqKlbu3r176aBBgx79I0CcIQAACK3Lb273Nng8nuSyZcuCoqKiRuvo6OTa29vf\n8fLyCjczM3vClBkwYMDLuLg4F2Vl5fKIiAjPRYsW7bt9+/ZQUcUEAACta3WUUVRU1Oi3qTgxMdHB\nyMgo3cDAgCMtLd3o4+Nz/Ny5c5MEyzg5Od1iRiw5Ojom5OTksN9mmwAA0HmtniGoq6u/fpuKc3Nz\ndXR1dbOZeTabnZOQkODYWvng4OCA8ePHX2ppXWBg4N+P3dzciJub29uEBgDw3omJiSExMTFvVYfI\nmoxauiFea6Kjo90PHDgwPz4+3rml9YIJAQAA/q35l+VvvvlG6DpElhB0dHRys7OzdZn57OxsXTab\nndO83KNHjwYtXLhwf0REhKeqqmqpqOIBAIC2tXsvo86ys7O7m5aWZszhcAwaGhpkTpw4MdPLyytc\nsExWVpbe1KlTz/zxxx+zjYyM0kUVCwAAtE9kZwhSUlLcoKCgZWPHjv2Lx+NJBgQEBJuZmT3Zu3fv\nYkIIWbx48d5vv/3269LSUtWlS5fuJqTpPkmJiYkOoooJAABah99DAAB4D4nk9xAAAOC/AQkBAAAI\nIUgIAADwBhICAAAQQpAQAADgDSQEAAAghCAhAADAG0gIAABACEFCAACAN5AQAACAEIKEAAAAbyAh\nAAAAIQQJAQAA3kBCAAAAQggSAgAAvIGEAAAAhBAkBAAAeAMJAQAACCFICAAA8AYSAgAAEEKQEAAA\n4A0kBAAAIIQgIQAAwBtICAAAQAhBQgAAgDeQEAAAgBCChAAAAG8gIQAAACEECQEAAN5AQgAAAEII\nEgIAALyBhAAAAIQQJAQAAHgDCQEAAAghSAgAAPAGEkInxMTEiDuEf+mJMRHSM+NCTB2DmDqup8Yl\nLJEmhIiICE9TU9OnxsbGaVu3bl3TUpkVK1bsNDY2TrO2tn6YlJRkK8p4ukpPfPF7YkyE9My4EFPH\nIKaO66lxCUtkCYHH40kuW7YsKCIiwjM1NdX82LFjvk+ePDETLHPp0qXx6enpRmlpacb79u1btHTp\n0t2iigcAANomsoSQmJjoYGRklG5gYMCRlpZu9PHxOX7u3LlJgmXCw8O95s2bd5AQQhwdHRPKyspU\nCgsLNf9VGYvVNAEAgOhQSkUyhYWFTV+wYMF+Zv7w4cOzly1b9qtgmQkTJpyPj48fxsyPGjUq6u7d\nu0MEyxBCKCZMmDBhEn4S9nNbiogIi8WiHSlHKf3HV//mz2u+HgAARENkTUY6Ojq52dnZusx8dna2\nLpvNzmmrTE5ODltHRydXVDEBAEDrRJYQ7Ozs7qalpRlzOByDhoYGmRMnTsz08vIKFyzj5eUVfujQ\nobmEEHL79u2hKioqZZqamoWiigkAAFonsiYjKSkpblBQ0LKxY8f+xePxJAMCAoLNzMye7N27dzEh\nhCxevHjv+PHjL126dGm8kZFRuoKCQnVISIi/qOIBAIB2iKpTuSumy5cvew4cOPCpkZFR2pYtW9aI\nIwZ/f/8Dffv2LbS0tExmlr1+/Vpt9OjRV4yNjZ+PGTMmsrS0VKU7Y8rKytJ1c3OLNjc3f2xhYZHy\nyy+/rBB3XLW1tb0cHBwSrK2tH5iZmaV+8cUX34s7JmbicrmSNjY2SRMmTDjfU2LS19fnWFlZPbKx\nsUmyt7dP7AlxlZaWqkybNu2UqanpEzMzs9Tbt287ijOmp0+fDrSxsUliJiUlpfJffvllhbiP0+bN\nm780Nzd/bGlpmezr63u0rq5OVtwxUUrJjh07VlpaWiZbWFik7NixY2Vn3lPdGrAwE5fLlTQ0NEzP\nyMgwaGhokLa2tn6Qmppq1t1xxMXFjbh//76tYEJYvXr1D1u3bv2cUkq2bNmyZs2aNVu6M6b8/Px+\nSUlJNpRSUllZ2dvExORZamqqmbjjqq6ulqeUksbGRilHR8fb169fHy7umCilZPv27Z/OmjXryMSJ\nE8N7wutHKSUGBgYZr1+/VhNcJu645s6dezA4OHg+8xqWlZUpizsmZuLxeBL9+vXLz8rK0hVnTBkZ\nGQb9+/d/WVdXJ0spJTNmzDgRGho6T9zHKTk52dLS0jK5tra2F5fLlRw9evSV9PR0Q2Hj6vYXtqPT\nzZs3ncaOHRvBzH///fdffP/991+II5aMjAwDwYQwcODApwUFBZqUNn04Dxw48Kk4j9WkSZPOXrly\nZXRPiau6ulrezs7uTkpKioW4Y8rOzmaPGjUq6tq1a+7MGYK4Y6K0KSEUFxerCy4TZ1xlZWXK/fv3\nf9l8eU84VpRS8tdff3kMHz78urhjev36tZqJicmzkpIS1cbGRqkJEyacj4yMHCPu4xQWFjY9ICDg\nd2Z+48aN67Zu3fq5sHH12HsZ5ebm6ujq6mYz82w2Oyc3N1dHnDExCgsLNZnOb01NzcIWL6brJhwO\nxyApKcnW0dExQdxx8fl8CRsbmweampqF7u7u0RYWFo/FHdMnn3zy87Zt21ZLSEjwmWXijomQpuHV\no0ePjrKzs7u7f//+heKOKyMjo7+GhkaRv79/yODBg+8vXLhwf3V1tUJPOFaEEHL8+HEfX1/fY4SI\n9zipqamVfPbZZ9v19PSytLW181RUVMrGjBlzRdzHydLSMuX69esjSkpK1GpqauQvXbo0Picnhy1s\nXD02IXT0OgZxY7FYVFyxVlVV9Z42bdrpX375ZaWiomKluOOSkJDgP3jwwCYnJ4cdFxfnEh0d7S7O\nmC5cuDChb9++r2xtbZNoK9eziOv1i4+Pd05KSrK9fPnyuN9+++3j69evjxBnXFwuV+r+/fuDP/ro\no133798frKCgUL1ly5YvxBkTo6GhQeb8+fMTvb29w5qv6+6YXrx4Ybhjx45VHA7HIC8vT7uqqqr3\nH3/8MVucMRFCiKmp6dM1a9Zs9fDwiBw3btxlGxubB5KSkjxh4+qxCaEj1zGIi6amZmFBQUE/QgjJ\nz8/X6tu376vujqGxsVF62rRpp+fMmXN48uTJZ3tKXIQQoqysXP7BBx9cvHfv3hBxxnTz5s1h4eHh\nXv3798/w9fU9du3atZFz5sw53BOOk5aWVj4hhGhoaBRNmTLlz8TERAdxxsVms3PYbHaOvb39HUII\nmT59+qn79+8P7tevX4G4j9Xly5fHDRky5J6GhkYRIeJ9n9+9e9du2LBhN9XV1V9LSUlxp06deubW\nrVtOPeE4zZ8//8Ddu3ftYmNjXVVVVUtNTEyeC3usemxC6Mh1DOLi5eUVfvDgwXmEEHLw4MF5zAdy\nd6GUsgICAoLNzc1TV61ataMnxFVcXNynrKxMhRBCamtr5a5cuTLG1tY2SZwxbd68eW12drZuRkZG\n/+PHj/uMHDny2uHDh+eI+/WrqamRr6ysVCSEkOrqaoXIyEgPKyurZHHG1a9fvwJdXd3s58+fmxBC\nSFRU1GgLC4vHEydOPC/OY0UIIceOHfNlmosIEe/73NTU9Ont27eH1tbWylFKWVFRUaPNzc1Te8Jx\nevXqVV9CCMnKytI7c+bM1FmzZh0V+liJo4Ooo9OlS5fGmZiYPDM0NEzfvHnzl+KIwcfH55iWllae\ntLR0A5vNzj5w4ID/69ev1UaNGhUlriFm169fH85isfjW1tYPmCF5ly9f9hRnXI8ePbKytbW9b21t\n/cDKyurRDz/8sJrSpk44cR4rZoqJiXFlRhmJO6aXL1/2t7a2fmBtbf3AwsIihXlvizuuBw8eWNvZ\n2d0ZNGjQwylTppwpKytTFndMVVVVCurq6sUVFRWKzDJxx7R169bPmWGnc+fOPdjQ0CAt7pgopWTE\niBFx5ubmj62trR9cu3bNvTPHikXpO9FUDwAAItZjm4wAAKB7ISEAAAAhBAkBAADeQEIAAABCCBIC\nCElSUpJna2ubZGVllTxjxoyTtbW1cuKO6W307t27qrPPDQ0N9Vu+fPmvHS1z9uzZyc1/V7w1QUFB\ny0JDQ/2aL+dwOAZWVlbJnQpYRMLDw702bty4XtxxwNtDQgChyMvL1yQlJdkmJydbycjINOzZs2eJ\nKLfH5XJFdot2QkR/Rbxg/WfPnp2cmppq3t5zKKWs4ODggNmzZ/8hytj4fH6X/P9PnDjx/OnTp6c1\nNjZKd0V9ID5ICNBpw4cPv5Genm5UWlqqOnny5LPW1tYPnZycbiUnJ1sRQsigQYMeVVRUKFFKWerq\n6q8PHz48hxBC5s6de+jq1auj+Hy+xOrVq7c5ODgkWltbP9y3b98iQgiJiYlxGzFixPVJkyads7Cw\neNx8ux999NEue3v7O5aWlimBgYGBzHIDAwNOYGBg4JAhQ+4NGjTo0bNnzwYSQkhRUZHGmDFjrlha\nWqYsXLhwv4GBAaekpESteb3btm1bzcQiWK+gkJAQ/4EDBz5zdHRMuHnz5jBmeVFRkcb06dNPOTg4\nJDo4OCQKriOEkFu3bjmdP39+4urVq7cNHjz4/suXLwfs379/oYODQ6KNjc2D6dOnn2LOtuLj451N\nTU2fSklJcQkh5N69e0Osra0f2tjYPNi1a9dHTJ08Hk+ypePH5/MlPvroo11mZmZPPDw8Ij/44IOL\np0+fnsYcoy+++GLLkCFD7oWFhXlHRkZ6DBs27OaQIUPuzZgx42R1dbUCs003N7cYOzu7u56enhHM\n1a47d+5cYWFh8dja2vohc7EYi8WiTk5OtyIjIz3ae89AD9fdF09geren3r17V1LadHvkSZMmnd2z\nZ8/iZcuW/frtt9+up5SSa9euudvY2CRRSsmSJUt2X7x4cXxycrKlvb194qJFi/ZSSomxsfHzmpoa\nub179y767rvvvqKUkrq6Olk7O7s7GRkZBtHR0W4KCgpVHA5Hv6UYSkpKVCltukW6m5tbdHJysiWl\nTXcQDQoK+phSSnbt2rV0wYIF+yml5OOPPw5ifk8jIiJiLIvF4jO3nmb256+//vJg4uPxeBITJkw4\nHxcXN0Jwu3l5eVp6enqZxcXF6g0NDdLOzs43li9fvpNSSnx9fY/euHHDmVJKMjMz9czMzFIppSQk\nJMRv2bJlv1JKiZ+fX8jp06enMvUJ3v563bp1G3/99ddllDbd2ffHH3/8jFlnZWX16Pr168MpbbpF\nNnPn3daOX1hY2PTx48dfpJSSgoICTVVV1RJmuwYGBhnbtm37P0opKSoq6uPi4hJbU1MjR2nT7ZG/\n/fbb9Y2NjVJOTk43mbuxHj9+fOb8+fODKaVEW1s7t6GhQZpSSsrLy5WYGA8cOOD/+eefbxX3+xPT\n200iPR2H909tba2cra1tEiGEuLi4xM2fP/+Ao6NjwpkzZ6YSQoi7u3v069ev1SsrKxVHjBhxPS4u\nzkVfXz9z6dKlu/ft27coLy9PW1VVtVROTq42MjLSIzk52erUqVPTCSGkoqJCKT093UhKSorr4OCQ\nqK+vn9lSDCdOnJi5f//+hVwuVyo/P18rNTXV3NLSMoUQQqZOnXqGEEIGDx58n4kpPj7e+ezZs5MJ\nIWTs2LF/qaqqljavMzIy0iMyMtKD2bfq6mqF9PR0oxEjRlxnyiQkJDi6u7tHq6urvyaEkJkzZ54Q\nvNWDYP9AZWWlIvNtWxAVuMlecnKy1bp1674rLy9Xrqqq6u3p6RlBSNOtB4YPH36DEELKyspUysvL\nlZn5OXPmHL58+fI4Jubmxy8tLc04Pj7eecaMGScJabrvj7u7e7RgDDNnzjxBSNPP1qamppoPGzbs\nJiFNN5EbNmzYzWfPng18/PixxejRo6MIaToT0dbWziOk6axv1qxZRydPnnxW8DYI2traeREREZ4t\nvV7w7kBCAKHIycnVJiUl2TZfTpvdTZTFYlEXF5e4oKCgZQYGBpxNmzZ99eeff045derUdBcXlzim\nXFBQ0LIxY8ZcEXxuTEyMm4KCQnVL28/IyOi/ffv2z+7evWunrKxc7u/vH1JXV9eLWS8rK1tPSFPn\nt2D/Q/P4WvLll19+v2jRon2trWexWFSwHkopi+kjoJSyEhISHGVkZBqaP6e1eT8/v9Dw8HAvKyur\n5IMHD86LiYlxay/e5stbOn6XLl0a3zxOwfWCx3bMmDFXjh49OktwfXJyspWFhcXj5s1ehBBy8eLF\nD+Li4lzOnz8/cdOmTV+lpKRYSkhI8Pl8vsS7codiaB36EOCtjRgx4vqRI0c+JKTpw1xDQ6Ood+/e\nVWw2O6e4uLhPenq6Uf/+/TOGDx9+48cff/w/JiGMHTv2r127dn3EfHA/f/7cpKamRr6tbVVUVCgp\nKChUKykpVRQWFmoy35bb4uzsHH/y5MkZhDR9qy4tLVVtXmbs2LF/HThwYD7zrT43N1enqKhIgxBC\nRo0adTU/P1/LwcEhMTY21rWkpEStsbFROiwszJt5voeHR+TOnTtXMPMPHjywIeSfH8aKioqVFRUV\nSsx8VVVV7379+hU0NjZK//HHH7OZD1R9ff1Mps1eRUWlTEVFpSw+Pt6ZEEKY49zW8XN2do4/ffr0\nNEopq7CwUDM2Nta1pePi6OiYEB8f7/zixQtDQprOitLS0oxNTU2fFhUVady+fXsoIU131k1NTTWn\nlLKysrL03NzcYrZs2fIFc2ZDSNOdNFs7o4N3B84QQCgtfQsMDAwMnD9//gFra+uHCgoK1czdFQkh\nZOjQobeZ0SzDhw+/sXbt2s1M88eCBQt+53A4BoMHD75PKWX17dv31Z9//jmlrfu2W1tbP7S1tU0y\nNTV9qqurm83U1VKcTB0bNmz4xtfX99jhw4fnODk53erXr18B8/sRTJkxY8ZcefLkiZmTk9MtQpqG\nox45cuRDdXX11y9evDBUU1MrkZWVrQ8MDAx0cnK6paKiUsY0LxHS1Nn68ccf/2Ztbf2Qy+VKubq6\nxu7atesjwTh8fHyOL1y4cP+vv/66PCwszHvjxo3rHR0dEzQ0NIocHR0TmA/X4cOH3wgKClrG1B0S\nEuI/f/78AywWi3p4eEQy9bV0/M6ePTt52rRpp69evTrK3Nw8VVdXN3vw4MH3lZWVy5sfIw0NjaLQ\n0FA/X1/fY/X19bKEELJp06avjI2N006dOjV9xYoVO8vLy5W5XK7UJ5988rOJicnzOXPmHC4vL1em\nlLJWrlz5i5KSUgUhhCQmJjpMnDjxfOvvHHgniLsTAxMmUU/19fUyXC5XktKmn2a1tbW939HnpqSk\nWHz22Wc/dme8fD6fZWNjk1RfXy/T2TqqqqoUKKWkuLhY3dDQML2wsLCvqOLl8XgS1tbWDxobG6XE\n/VpjersJdzuF9156errRjBkzTvL5fAkZGZmG3bt3Lx0yZMg9ccfVll27dn0kJydX6+/vH9KZ57u7\nu0eXlZWpNDQ0yKxZs2br3LlzD3V1jIzw8HCvR48eDVq3bt13otoGdA8kBAAAIISgUxkAAN5AQgAA\nAEIIEgIAALyBhAAAAIQQJAQAAHgDCQEAAAghhPw/7SeFqF8U6+wAAAAASUVORK5CYII=\n", + "text": [ + "<matplotlib.figure.Figure at 0x34638d0>" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEXCAYAAACpuuMDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYE+faB+A3QKjsICDVJBIEqiCbCCIqELeKKGhFK7iL\nRdpTra21xx7bU6ELra3tOVW+nqJ1aRVQq7a4ILaoQVQWFVlcimABAyiKgoBBCWG+P+jUJBIImCEB\nf/d1zdVM5s3Mk5HOk3ebYVEURQAAAGg6mg4AAAC0CxIDAADIQWIAAAA5SAwAACAHiQEAAOQgMQAA\ngBwkBlC7oqKioR4eHnmmpqb1cXFxKzQdj7ZoamoyCA4OPmxubl43d+7cvZqOp7uuXr3q7O3tfb6z\ncocPHw4OCwvb0xMxgZpRFIUFy1OLra1tmYGBgdjY2LiBXlauXLlJlc9GRERsW7169dea/g7atvz0\n008LR40alS2VSnU0HUt7S2lpKZ/FYrV2Ft+sWbMO7N2791VV9uni4lJYUFDgqunvhqVrC2oM0C4W\ni0UdOXJkekNDgwm9bNq06S1VPlteXm7r7Ox8lekYtZlUKtVVfK+8vNz2pZdeuq6jo9Pa1f21tLTo\nqSeyzvdPURRLWblbt24NFAqFgpkzZ/6qyn7Dw8OTtmzZslwdMUIP0nRmwqKdC5/PLz1x4sSE9raV\nlJTYjx8//qSlpWWNlZXV3fnz5++uq6szoyiKjB8//qSurm5Lv379mkxMTOqLi4sdZD+7Z8+euV5e\nXudl3/vmm2/eCQkJSaYoihw9ejTI2dn5iomJST2Hw6nYuHHju6rEu3jx4p1RUVHfT548+TcTE5P6\ngIAAYXl5+WB6+9mzZ8d4eXmdNzMzq/P29s45d+6cL0VR5OTJk+NdXV0L6HKTJk363dvbO4deHzdu\nXEZycnIIRVGksrJy0KxZsw5YW1vfsbOz+3PTpk0r6XLr16+PDg0N3b9gwYJdpqamD7Zt2xYhG99H\nH30Uo6+v/5jNZjcbGxs3bN++fWlrayvrk08++dDW1rZswIAB1YsWLfrxwYMHphT15Nf7tm3bIgYP\nHlweEBAgVPzOp06dEnA4nIrY2Nh/WVlZ3eXz+aUJCQnz6O1HjhyZ5uHhccnU1PQBj8e7GR0dvZ7e\nprh/f3//9MGDB5ezWKxWuoaYlZXlo3jMH3/8cdHkyZN/k33v5s2bvFdeeeWgtbX1HUtLy5oVK1Zs\nlj3vdnZ2f2r67xlL1xaNB4BFOxc+n1+alpY2sb1tJSUl9mlpaRObm5vZd+/etfL3909/++23/0Nv\nFwgEpxQvjPQiFosNFBOGl5fXebpp4sUXX7x15syZsRRFkbq6OrPc3NwRqsS7ePHinSYmJvUZGRnj\nHj9+rL9q1ar/jhs3LoOiKHLv3r3+5ubmtbt3754vlUp1kpKSwiwsLO7fv3/fQiwWG/Tr16/p3r17\n/Zubm9kDBgyo5nK5osbGRiOxWGxgYGAgvn//voVUKtXx9PS8+Mknn3wokUj0/vzzT7shQ4bcOH78\n+MsU1ZYY2Gx2M51Empqa+inGGB0dvX7hwoU/0evbtm2LcHBwKC4tLeU3NjYazZo16wC9nb5wL168\neKdYLDZ49OjRC4r7O3XqlEBPT0/y7rvvbmxubmanp6f7GxkZNRYVFb1EURQRCoUBly9fHk5RFCko\nKHC1sbG5/euvv85Qtv+ysjLbzpqS1qxZ85Xshb+lpUXXzc0tf/Xq1V/T+6H//ehzz2KxWhsaGow1\n/TeNRfVF4wFg0c7F1ta2zNjYuMHc3LyWXn744Ydl7ZX95ZdfZo4YMSKXXhcIBKeUlaUoiixYsGDX\nxx9//G+Kosj169cdTUxM6ukL6eDBg8vj4+OX07+cVV0WL168Mzw8PJFeb2xsNNLV1W0RiUTcn376\naaGPj0+WbHlfX99zO3fuXExRFPHz8zt98ODBVzIzM0e//PLLx+fOnbsnNTV1ysmTJ8e7ubnlUxRF\nsrKyfAYPHlwuu4/Y2Nh/LV26dDtFtSWG9n7Vyy7r16+PXrBgwS56fcKECSf+97//vU6vFxUVvcRm\ns5ulUqkOfeEuLS3lK9sfnRjEYrEB/d6rr76695NPPvmwvfKrVq367zvvvPMNRT1JDLL7V6WPITIy\ncsv777//Ob1+7tw5X2tr6zvKPtPc3MxmsVitIpGIq+m/aSyqL+hjgHaxWCwqOTl5Rm1trQW9LFu2\nbBshhFRXV9uEhYXt4XK5FWZmZg8WLly46969e5aKn1e273nz5iUmJSWFE0JIYmLivFdeeeWXfv36\nPSKEkAMHDoSmpKQE8fn8MoFAIMzKyhqtarxcLreCXjcyMnrYv3//+1VVVYNu3bo1cPDgwTdly9va\n2pZXVVUNIoSQgICAdKFQKMjIyPALCAhIDwgISE9PTw84ffq0v0AgEBLS1j9QVVU1yMLCopZePv/8\n83/duXNnAL1P2eOr4tatWwNtbW3L6fXBgwffbGlp0auurrah3+PxeKKO9mFhYVFrYGDQ1N73ys7O\n9hk/fvypAQMG3DE3N6+Lj4+PUvx36mz/7R2voaHBhF4XiUQ8W1vbcmX9JnRZc3Pzuq4cBzQLiQG6\nbN26dbG6urrSy5cvuzx48MBs165dC1tbW1X+W5o0aVLa3bt3rfPz89337NkTNm/evER6m5eX14Vf\nf/115t27d61nzpz566uvvrpPlX1SFMUSiUQ8er2xsdH4/v37/TkcTuWgQYOqysvLbWXLl5eX23I4\nnEpC2hLDqVOnxtOJgE4U6enpAQEBAemEtF1A7ezsSmUTZX19vemRI0emE9KWmDpKhnQZ2fVBgwZV\nlZWV8en1mzdvDtbT02uxsbGpVvYZRbW1tRZisdiwve81b968xJkzZ/5aUVHBraurM3/99de/V/x3\nkt1/Z8cihBA3N7eC69evv0Sv83g80c2bNwe319lOCCHXrl1z4vP5ZcbGxo2d7Ru0BxIDKEUpGZ3S\n2NhobGRk9NDU1LS+srKS89VXX72n6mcJIYTNZkvmzJnz85o1azbW1tZaTJ48+XdCCJFIJOyEhIT5\nDx48MNPV1ZWamJg06OrqSlWNNyUlJejs2bNjm5ub9f/9739/4uvrm8nhcCqnTp167Pr16y8lJSWF\nt7S06O3du3fuH3/8MWz69OlHCCFkzJgx54qKioaeP3/ee9SoUTnOzs5Xy8vLbbOzs338/f1PE0KI\nj49PtomJScOXX375z6amJgOpVKp7+fJllwsXLnh19n2VnZPw8PCk//znP++UlZXxGxsbjdetWxcb\nFha2p6ujltavXx8jkUjYGRkZfkePHp02Z86cnwlp+3eysLCo1dfXb87JyRmVmJg4r6OLv7W19V0d\nHZ3WGzdu2CsrM2nSpLTc3FzP5uZmfULazsvAgQNvvf/++1+IxWLDR48e9Tt37twYunx6enpAUFBQ\nSle+D2geEgMoFRwcfNjExKSBXkJDQw8Q0nYhys3N9TQzM3sQHBx8ODQ09IDiBaezX5/z5s1LPHHi\nxMQ5c+b8LHsh3L179wI7O7tSMzOzB1u2bFmekJAwn5C2X9MmJiYNFRUV3Pb2x2KxqHnz5iXGxMSs\nt7S0vHfp0qURu3fvXkAIIZaWlveOHDky/euvv37XysqqZuPGjWuOHDkyvX///vcJIcTQ0FA8cuTI\ni8OHD7+ip6fXQkhbsuDz+WVWVlY1hBCio6PTeuTIkel5eXkeQ4YM+dPa2vru8uXLt9TX15vSx1el\nxiBbJiIiYvvChQt3+fv7nx4yZMifhoaG4s2bN69U9RwSQsiLL75428LConbQoEFVCxcu3BUfHx/1\n0ksvXSeEkO++++4fH3300cempqb1n3zyyb8VJ9Up7t/Q0FD8wQcffDZ27NizFhYWtTk5OaMUj2dj\nY1M9YcKEk7/++utM+rwcPnw4uKSkxGHw4ME3eTyeaN++fa/S5ffs2RMWFRUV39n3AC2j6U4OLFjU\nsSxZsmTHhx9++Imm4+jJ5dSpUwIulyvq6eNevXrVSXZIr7Ll0KFDwXPnzt2j6fOEpesLYzWGiIiI\n7TY2NtWurq6F7W2vqamxCgwMTPXw8MhzcXG5vHPnziVMxQJ9H6VCUw6oh5OT07X2ahOKgoODD+/Z\nsyesJ2IC9WIsMSxdunRHampqoLLtcXFxK0aMGHEpLy/PQygUCt59992vmZ7dCX2XKk05fdHz+J2B\neYxdiP38/DJkR1woGjhw4K2CggI3Qgipr683tbS0vEe37wJ01Y4dO5ZqOoaeJhAIhDdv3hys6Tig\n79HYL/TIyMitEyZMODlo0KCqhoYGE9kOK1n4RQQA0D3dbWLV2Kik2NjYdR4eHnlVVVWD8vLyPN58\n883/k504I0vTHTHasqxfv17jMWjLgnOBc4Fz0fHyLDSWGM6dOzeGHm9tb29/w87OrrSoqGiopuIB\nAIA2GksMw4YN+yMtLW0SIW23WCgqKho6ZMiQPzUVDwBAr7V8OSECASFBQYTUPfvdRxjrYwgPD09K\nT08PqKmpseLxeKKYmJj1EomETQghUVFR8evWrYtdunTpDnd39/zW1ladL7/88p/0hCNon0Ag0HQI\nWgPn4gmciyeeq3OxfDkh168TYmhISH09IWfPPnl/n0p3klGK9axtUUxjsViUtscIANDjBAJC0tPb\nXr/4IiG3bxPi7U3Ib78RYm5OWCwWoXpb5zMAAHSRbJMRm932nrc3IVlZhMyZ83dSeFaoMQAAaCvZ\n5qLEREJmznxSS5gxgxB9fUK2bGk3GTxLjQEzjQEAtNX1608SwfLlbQmCkLZaws6daqkdtAeJAQBA\nm8jWEmSbi7ZsebJdSS1BXdCUBACgacpGGHXSXNQRNCUBAPRmsk1GL77Y9l+Gm4s6glFJAAA9TXFC\nmmzfgZpHGHUHmpIAAHqCsuaiOXPamorU3HfwLE1JSAwAAD2hkwlp6oYJbgAA2qiHJqSpG2oMAADq\n8gwT0tQNo5IAALSBhiakqRsSAwDAs9CCCWnqhqYkAICuYmBCmrqhKQkAoCdp2YQ0dcOoJACAzmj5\nhDR1Y6wpKSIiYvvRo0enDRgw4E5hYaFre2WEQqHgnXfe+Y9EImFbWVnVCIVCwVMBoikJADShhyek\nqZtWTnDLyMjwMzY2bly0aNFP7SWGuro687Fjx549fvz4FC6XW1FTU2NlZWVV81SASAwAoAk9PCFN\n3bSyj8HPzy+jrKyMr2x7YmLivNDQ0ANcLreCEELaSwq06Ojov18LBILn67muANBzlI0w+vlnQt57\nT6trCEKhkAiFQrXsi9FRSWVlZfzg4ODD7dUY6CakK1euDG9oaDBZtWrVtwsXLtz1VICoMQAAU7Ro\nQpq6aWWNoTMSiYSdm5vreeLEiYlisdjQ19c3c/To0VmOjo7FmooJAJ4DyvoOevGENHXTWGLg8Xgi\nKyurGgMDgyYDA4Mmf3//0/n5+e5IDADAKGVDTXvxhDR109hw1RkzZiSfOXNmnFQq1RWLxYbZ2dk+\nzs7OVzUVDwD0UV0ZampuTsi+fc91UiCEwRpDeHh4Unp6ekBNTY0Vj8cTxcTErJdIJGxCCImKioof\nNmzYH4GBgalubm4FOjo6rZGRkVuRGABALTpqLkpMlK8V7Nun2Vi1EG6JAQB9Ty8faqoOeB4DAEAv\nffaBNkKNAQB6pz481FQdeuVwVQCALsNQ0x6BxAAAvQeGmvYINCUBgHaTrSVIJISkpfWa21Roklbe\nRE9dkBgAnjPoO1AL9DEAQN/RR56b3JshMQCA5vXB5yb3ZmhKAgDN6AXPTe7N0JQEANpPse+gjz83\nuTfDzGcA6Bl0Ijh27Om+A8xO1ipoSgIA5igbavrbb0+2o8mIERiuCgDaA30HWgF9DACgOeg76HOQ\nGACg61S9ZxFmJ/dKjHU+R0REbLexsal2dXUt7Kjc+fPnvfX09FoOHjw4i6lYAEDNZDuSb9xoe4+e\nd5CY+KQj2dYWT0TrhRhLDEuXLt2Rmpoa2FEZqVSqu3bt2g2BgYGp3W0LA4AeourzDvB4zF6PscTg\n5+eXYWFhUdtRmc2bN6+cPXv2fmtr67tMxQEA3aT4rGTZWoKREWoFfZjG+hgqKys5ycnJM06ePDnh\n/Pnz3iwWS+nQo+jo6L9fCwQCIhAIeiBCgOcQnnfQawmFQiIUCtWyL40lhrfffvu/X3zxxft/DUdl\nddSUJJsYAIBBeN5Br6X4ozkmJqbb+9JYYrh48eLIsLCwPYQQUlNTY3Xs2LGpbDZbEhISckhTMQE8\nl5TdwK69EUX79mkuTugxGksMf/755xD69dKlS3cEBwcfRlIA6AEdzTuYMaOt74BOBkgEzyXGEkN4\neHhSenp6QE1NjRWPxxPFxMSsl0gkbEIIiYqKimfquADQDvQdQBfglhgAfZWyZPDii4Tcvo17FvVx\nuFcSADxNIJDvSKaTAWYjPxeeJTHgttsAfYXivANlt7XGvAPoBGoMAL2ZsuYiugMZTUTPLTQlATwv\nFEcUzZzZfnMRHnjz3MNttwH6MtzJFHoYagwA2ggjiuAZoSkJoLdTtYkItQJQEZqSAHo72dnHnTUR\nYTYyMAw1BgBNka0lSCSEpKWhiQjUBk1JAL2Fsr6DGTMI0ddHIgC1QVMSgLbq6IZ1sre1xj2KQIsg\nMQCoG4aXQi+HpiQAdcDwUtAy6GMA6GkYXgpaDokBoCd0dF+ixkZCjh1DMgCtgcQAwBQ0EUEvpbW3\n3Y6IiNhuY2NT7erqWtje9oSEhPnu7u75bm5uBWPHjj1bUFDgxmQ8AJ1SvHU1PYro2DFCbtxoK6N4\nG2tz8ycTz5AUoA9gtMaQkZHhZ2xs3Lho0aKfCgsLXRW3Z2Zm+jo7O181MzN7kJqaGhgdHR2dlZU1\nWi5A1BiAaWgigj5Iq5uSysrK+MHBwYfbSwyyamtrLVxdXQsrKiq4cgEiMQAT0EQEfVyfmOC2bdu2\nZUFBQSntbYuOjv77tUAgIAKBoIeigj5D1Ylm7dUKcG8i6AWEQiERCoVq2ZdW1BhOnTo1/s033/y/\ns2fPjrWwsKiVCxA1BuguNBHBc6xX1xgKCgrcIiMjt6ampgYqJgWALuuoiYiQtkSwZcuTsrhjKcBT\nNJoYbt68OXjWrFkHd+/evcDBwaFEk7FAL4UmIgC1Y7QpKTw8PCk9PT2gpqbGysbGpjomJma9RCJh\nE0JIVFRU/GuvvfbDL7/88srgwYNvEkIIm82W5OTkjJILEE1JoAhNRACd0upRSc8KiQEIIRhFBNBF\njCSGAwcOhP51UVa6YwMDgyZlI4nUBYnhOYV7EQE8E0YSg6Wl5b2QkJBDyj5IURQrIyPD78aNG/bd\nObCqkBieI2giAlAbRkYlBQYGpu7YsWNpRx+eP39+QncOCkAIUb3jGKOIAHpUp30Mjx8/fuGFF154\n3Nl7TEGNoQ+QTQADBhBSVoZaAQDDGO189vT0zM3NzfXs7D2mIDH0Qh31D1hbE3L3bttrdBwDMIaR\npqRbt24NrKqqGiQWiw1zc3M9KYpisVgsqr6+3lQsFht2P1zok1R9nKWZGSFpaZhbAKDFlCaG48eP\nT/nxxx8XV1ZWct59992v6fdNTEwaYmNj1/VMeKBVFGsC//xn12cZy75GXwGAVuq0KenAgQOhoaGh\nB3oonqegKUnDOhopdOcOhpACaClG+hh27dq1cOHChbu+/vrrd1ks1t+F6Cal1atXf9PNeLsWIBID\n87pSE5DtE5g3D53FAFqKkT4Guh+hoaHBpL3E0J2DgRbpqE9AsSZASPsX/8RENAsB9EG4JUZfhpoA\nwHOL0eGqd+7cGbB169bIsrIyfktLi95fB6S2b98e0Z0DdjlAJIauUUefQF0dho0C9HKMJgZfX99M\nf3//0yNHjryoo6PT+tcBqZ7qkEZiaAdqAgDQCUYTg4eHR15eXp5HtyJTg+c6Mag6Yxg1AQBQwGhi\n+PDDDz/19fXNnDZt2tFuRfeM+mRiUHbBl33dlRnDqAkAgAJGE4OxsXGjWCw21NfXb2az2ZK/DkjV\n19ebdueAXQ6wtyYGZRf/ji74sq8V7x3U0Yxh1AQAQIFWPqgnIiJi+9GjR6cNGDDgTmFhoWt7Zd56\n661Nx44dm2poaCjeuXPnkhEjRlx6KkBNJ4aO2vO782u/owu+7GvFewfJvsbFHwA6wWhiOH36tH97\n7/v7+5/u6HMZGRl+xsbGjYsWLfqpvcSQkpISFBcXtyIlJSUoOzvbZ9WqVd9mZWWNfirAZ00Mqjbb\nKLvgd9Se351f+x1d8GVf4+IPAM+AkQlutC+//PKf9IS2R48e9cvJyRk1cuTIiydPnpzQ0ef8/Pwy\nysrK+Mq2Hzp0KGTx4sU/EkKIj49Pdl1dnXl1dbWNjY1N9VOFg4JUv5ArlpO9x7+yC7nipC7F9nxC\nntz3Z968J+vKfu2rcsGXnQym7DUAgAZ0mhiOHDkyXXZdJBLxVq1a9e2zHriyspLD4/FE9DqXy62o\nqKjgtpcYoo8da7vQi8VEQAgRdHQhV7zgK7uzp+KFXNkFv6PZvvQxunrxBwBQM6FQSIRCoXp2RlFU\nl5bW1lbWsGHDrqlStrS0lO/i4lLY3rbp06cfPnPmzFh6feLEiWkXL170VCxHCKEob2+KmjSJoujX\ntbUUNXXqk3XZbYrlamspas6cjl9TVMfbAAB6mbbLe9eu7/TSaY1h5cqVm+nXra2tOnl5eR4jR468\n+KwJicPhVIpEIh69XlFRweVwOJXtFm7vIS7q+OUu+1rxXj/4hQ8Az6lOE8PIkSMv0n0Menp6LfPm\nzUscO3bs2Wc9cEhIyKG4uLgVYWFhe7Kyskabm5vXtdu/QEj7F/iOLuS4qAMAdBtjw1XDw8OT0tPT\nA2pqaqxsbGyqY2Ji1kskEjYhhERFRcUTQsiKFSviUlNTA42MjB7u2LFjqaenZ+5TAWp6uCoAQC+k\nlfMY1AWJAQCg654lMeioOxgAAOjdOkwMUqlUd82aNRt7KhgAANC8DhODrq6u9MyZM+O6Wx0BAIDe\np9NRSR4eHnkzZsxInjNnzs+GhoZiQtra/WfNmnWQ+fAAAKCndZoYHj161K9///73FW+BgcQAANA3\nYVQSAEAfxOiopKKioqETJ048MXz48CuEEFJQUOD26aefftidgwEAgPbrNDFERkZujY2NXaevr99M\nCCGurq6FSUlJ4cyHBgAAmtBpYhCLxYY+Pj7Z9DqLxaLoJ7kBAEDf02lisLa2vltSUuJAr+/fv3/2\nwIEDbzEbFgAAaEqnnc83btywX758+ZZz586NsbCwqLWzsytNSEiYz+fzy3okQHQ+AwB0WY/cK+nh\nw4dGra2tOiYmJg3dOVB3ITEAAHQdo6OSampqrFauXLl53LhxZwICAtJXrVr17b179yy7czAAANB+\nnSaGsLCwPQMGDLhz8ODBWfv3759tbW19d+7cuXt7IjgAAOh5nTYlubi4XL58+bKL7Huurq6FhYWF\nroxG9hc0JQEAdB2jTUkvv/zyb0lJSeGtra06ra2tOnv37p378ssv/9adgwEAgPbrtMZgbGzcKBaL\nDXV0dFoJaXvus5GR0UNC2n7N19fXmyr7bGpqauDbb7/9X6lUqvvaa6/9sHbt2g2y22tqaqwWLFiw\n+/bt2y+2tLTorVmzZuOSJUt2ygWIGgMAQJdp5RPcpFKp7tChQ4vS0tImcTicSm9v7/NJSUnhTk5O\n1+gy0dHR0Y8fP37h888//1dNTY3V0KFDi6qrq2309PRa/g4QiQEAoMsYaUq6devWwM4+fPv27ReV\nbcvJyRnl4OBQwufzy9hstiQsLGxPcnLyDNkyAwcOvEXXOOrr600tLS3vySYFAADoeUpvuz1t2rSj\nubm5nh19OCgoKEVZmcrKSg6PxxPR61wutyI7O9tHtkxkZOTWCRMmnBw0aFBVQ0ODyb59+15tb1/R\n0dF/vxYIBEQgEHQUFgDAc0coFBKhUKiWfSlNDPn5+e6dTWYzNTWtV7aNxWJ12v4TGxu7zsPDI08o\nFApu3LhhP3ny5N/bO65sYgAAgKcp/miOiYnp9r6UJgapVKrb7b0SQjgcTqVIJOLR6yKRiMflcitk\ny5w7d27MBx988BkhhNjb29+ws7MrLSoqGurl5XXhWY4NAADd1+lw1e7y8vK6UFxc7FhWVsZvbm7W\n37t379yQkJBDsmWGDRv2R1pa2iRCCKmurrYpKioaOmTIkD+ZigkAADrX6aM9u71jPb2WuLi4FVOm\nTDkulUp1ly1bts3JyelafHx8FCGEREVFxa9bty526dKlO9zd3fNbW1t1vvzyy3/279//PlMxAQBA\n55QOVy0tLbWzs7Mr7eF4noLhqgAAXcfIcNXZs2fvJ4SQCRMmnOxuYAAA0Pt02Pn82WeffXD9+vWX\nvvnmm9WymYfFYlGrV6/+pmdCBACAnqS0xrBnz54wXV1dqVQq1W1oaDBpbGw0bmxsNG5oaDBpaGgw\n6ckgAQCg53R6S4yUlJSgoKCglB6K5ynoYwAA6DrG75V05MiR6VevXnVuamoyoCeuffTRRx9354Bd\nhcQAANB1jN52OyoqKn7fvn2vbtq06S1CCNm3b9+r5eXltt05GAAAaL9Oawz0Q3nc3NwKCgoK3Bob\nG40DAwNTz5w5M65HAkSNAQCgyxitMRgYGDQRQoihoaG4srKSo6en19LRXVUBAKB363Tmc3Bw8OHa\n2lqL995776uRI0deJKTtrqjMhwYAAJrQpQf1PHr0qN+jR4/6mZub1zEYkxw0JQEAdB0jTUlffvnl\nP+nXP//88xxCCOnXr98jc3PzunXr1sV252AAAKD9lCaGpKSkcPp1bGzsOtltx44dm8pkUAAAoDmM\n3XYbAAB6JyQGAACQo7TzWVdXV2poaCgmhJCmpiYDetgqvd7S0sLYsxzkAkTnMwBAlz1L5zNjj/YE\nAIDeidGmpNTU1MBhw4b94ejoWLxhw4a17ZURCoWCESNGXHJxcbksEAiETMYDAACd69I8hq6QSqW6\nQ4cOLUpLS5vE4XAqvb29zyclJYU7OTldo8vU1dWZjx079uzx48encLncipqaGisrK6sauQDRlAQA\n0GWMNCU+g6DIAAARjUlEQVQ9q5ycnFEODg4lfD6/jBBCwsLC9iQnJ8+QTQyJiYnzQkNDD3C53ApC\nCFFMCrTo6Oi/XwsEAiIQCJgKGwCgVxIKhUQoFKplX4wlhsrKSg6PxxPR61wutyI7O9tHtkxxcbGj\nRCJhjx8//lRDQ4PJqlWrvl24cOEuxX3JJgYAAHia4o/mmJiYbu+LscRAP7ehIxKJhJ2bm+t54sSJ\niWKx2NDX1zdz9OjRWY6OjsVMxQUAAB1jLDFwOJxKkUjEo9dFIhGPbjKi8Xg8kZWVVY2BgUGTgYFB\nk7+//+n8/Hx3JAYAAM1hbFSSl5fXheLiYseysjJ+c3Oz/t69e+eGhIQcki0zY8aM5DNnzoyTSqW6\nYrHYMDs728fZ2fkqUzEBAEDnGKsx6OnptcTFxa2YMmXKcalUqrts2bJtTk5O1+Lj46MIaXsy3LBh\nw/4IDAxMdXNzK9DR0WmNjIzcisQAAKBZjA1XVRcMVwUA6DpGn+AGAADPFyQGAACQg8QAAABykBgA\nAEAOEgMAAMhBYgAAADlIDAAAIAeJAQAA5CAxAACAHCQGAACQg8QAAABykBgAAEAOEgMAAMhBYgAA\nADlIDAAAIIfRxJCamho4bNiwPxwdHYs3bNiwVlm58+fPe+vp6bUcPHhwFpPxAABA5xhLDFKpVHfF\nihVxqampgVevXnVOSkoKv3btmlN75dauXbshMDAwtbsPlQAAAPVhLDHk5OSMcnBwKOHz+WVsNlsS\nFha2Jzk5eYZiuc2bN6+cPXv2fmtr67tMxQIAAKpj7JnPlZWVHB6PJ6LXuVxuRXZ2to9imeTk5Bkn\nT56ccP78eW8Wi9XuMzyjo6P/fi0QCIhAIGAoagCA3kkoFBKhUKiWfTGWGJRd5GW9/fbb//3iiy/e\n/+u5zixlTUmyiQEAAJ6m+KM5Jiam2/tiLDFwOJxKkUjEo9dFIhGPy+VWyJa5ePHiyLCwsD2EEFJT\nU2N17NixqWw2WxISEnKIqbgAAKBjLIrq9Id9t7S0tOgNHTq06MSJExMHDRpUNWrUqJykpKRwJyen\na+2VX7p06Y7g4ODDs2bNOigXYFttgpEYAQD6KhaLRbo7oIexGoOenl5LXFzciilTphyXSqW6y5Yt\n2+bk5HQtPj4+ihBCoqKi4pk6NgAAdB9jNQZ1QY0BAKDrnqXGgJnPAAAgB4kBAADkIDEAAIAcJAYA\nAJCDxAAAAHKQGAAAQA4SAwAAyEFiAAAAOUgMAAAgB4kBAADkIDEAAIAcJAYAAJCDxAAAAHKQGAAA\nQA4SAwAAyEFiAAAAOYwmhtTU1MBhw4b94ejoWLxhw4a1itsTEhLmu7u757u5uRWMHTv2bEFBgRuT\n8QAAQOcYe4KbVCrVHTp0aFFaWtokDodT6e3tfV7xmc+ZmZm+zs7OV83MzB6kpqYGRkdHR2dlZY2W\nCxBPcAMA6DKtfIJbTk7OKAcHhxI+n1/GZrMlYWFhe5KTk2fIlvH19c00MzN7QAghPj4+2RUVFVym\n4gEAANXoMbXjyspKDo/HE9HrXC63Ijs720dZ+W3bti0LCgpKaW9bdHT0368FAgERCARqjBQAoPcT\nCoVEKBSqZV+MJQYWi6Vy+8+pU6fGb9++PeLs2bNj29sumxgAAOBpij+aY2Jiur0vxhIDh8OpFIlE\nPHpdJBLxuFxuhWK5goICt8jIyK2pqamBFhYWtUzFAwAAqmGsj8HLy+tCcXGxY1lZGb+5uVl/7969\nc0NCQg7Jlrl58+bgWbNmHdy9e/cCBweHEqZiAQAA1TFWY9DT02uJi4tbMWXKlONSqVR32bJl25yc\nnK7Fx8dHEUJIVFRU/Mcff/xRbW2txRtvvPE/Qghhs9mSnJycUUzFBAAAnWNsuKq6YLgqAEDXaeVw\nVQAA6J2QGAAAQA4SAwAAyEFiAAAAOUgMAAAgB4kBAADkIDEAAIAcJAYAAJCDxAAAAHKQGAAAQA4S\nAwAAyEFiAAAAOUgMAAAgB4kBAADkIDEAAIAcJIZeRF0P+u4LcC6ewLl4AudCPRhNDKmpqYHDhg37\nw9HRsXjDhg1r2yvz1ltvbXJ0dCx2d3fPv3Tp0ggm4+nt8Ef/BM7FEzgXT+BcqAdjiUEqlequWLEi\nLjU1NfDq1avOSUlJ4deuXXOSLZOSkhJUUlLiUFxc7Lhly5bl9CM+AQBAcxhLDDk5OaMcHBxK+Hx+\nGZvNloSFhe1JTk6eIVvm0KFDIYsXL/6REEJ8fHyy6+rqzKurq22e2hmL1bYAAADj9JjacWVlJYfH\n44nodS6XW5Gdne3TWZmKigqujY1NtWy5v1MCkgOJiYnRdAhaA+fiCZyLJ3Aunh1jiYHFYlGqlFN8\nWLXi57r7MGsAAOgexpqSOBxOpUgk4tHrIpGIx+VyKzoqU1FRweVwOJVMxQQAAJ1jLDF4eXldKC4u\ndiwrK+M3Nzfr7927d25ISMgh2TIhISGHfvrpp0WEEJKVlTXa3Ny8TrEZCQAAehZjTUl6enotcXFx\nK6ZMmXJcKpXqLlu2bJuTk9O1+Pj4KEIIiYqKig8KCkpJSUkJcnBwKDEyMnq4Y8eOpUzFAwAAKqIo\nSiuWY8eOBQ4dOvQPBweH4i+++GJte2VWrly5ycHBodjNzS0/Nzd3hKZj1tS52L1793w3N7d8V1fX\ngjFjxpzNz89303TMmvy7oCiK5OTkeOvq6rYcOHBglqZj1uS5OHXqlMDDw+PS8OHDLwcEBAg1HbOm\nzsXdu3etpkyZkuru7p43fPjwyzt27Fii6ZiZWJYuXbp9wIAB1S4uLoXKynTnuqnxL0ZRFGlpadG1\nt7cvKS0t5Tc3N7Pd3d3zrl696iRb5ujRo0FTp05NoSiKZGVl+fj4+GRpOm5NnYtz58751tXVmVFU\n2/8gz/O5oMuNHz/+5LRp047s378/VNNxa+pc1NbWmjs7O18RiURcimq7OGo6bk2di/Xr10e///77\nn9PnoX///vckEomepmNX93L69Gm/3NzcEcoSQ3evm1pxSwy1znno5VQ5F76+vplmZmYPCGk7FxUV\nFVzNRMssVc4FIYRs3rx55ezZs/dbW1vf1UScPUGVc5GYmDgvNDT0AD3Iw8rKqkYz0TJLlXMxcODA\nW/X19aaEEFJfX29qaWl5T09Pr0UzETPHz88vw8LColbZ9u5eN7UiMbQ3n6GyspLTWZm+eEFU5VzI\n2rZt27KgoKCUnomuZ6n6d5GcnDyDnjWv6jDp3kaVc1FcXOx4//79/uPHjz/l5eV1YdeuXQt7PlLm\nqXIuIiMjt165cmX4oEGDqtzd3fO//fbbVT0fqeZ197rJWOdzV6hrzkNf0JXvdOrUqfHbt2+POHv2\n7FgmY9IUVc7F22+//d8vvvjifRaLRVEUxVL8G+krVDkXEomEnZub63nixImJYrHY0NfXN3P06NFZ\njo6OxT0RY09R5VzExsau8/DwyBMKhYIbN27YT548+ff8/Hx3ExOThp6IUZt057qpFYkBcx6eUOVc\nEEJIQUGBW2Rk5NbU1NTAjqqSvZkq5+LixYsjw8LC9hBCSE1NjdWxY8emstlsieLQ6N5OlXPB4/FE\nVlZWNQYGBk0GBgZN/v7+p/Pz8937WmJQ5VycO3duzAcffPAZIYTY29vfsLOzKy0qKhrq5eV1oafj\n1aRuXzc13XlCURSRSCR6Q4YMuVFaWsp//Pixfmedz5mZmaP7aoerKueivLx8sL29fUlmZuZoTcer\n6XMhuyxZsmRHXx2VpMq5uHbt2rCJEyemtbS06D58+NDQxcWl8MqVK86ajl0T5+Kdd975Jjo6ej1F\nUeT27ds2HA6n4t69e/01HTsTS2lpKV+VzueuXDc1/qXoJSUlZepLL71UZG9vXxIbG/sviqLI999/\nH/X9999H0WXefPPNOHt7+xI3N7f8ixcvemo6Zk2di2XLlv3Qv3//ex4eHpc8PDwueXt752g6Zk3+\nXdBLX04Mqp6Lr776ao2zs/MVFxeXwm+//fYtTcesqXNx9+5dq+nTpx92c3PLd3FxKUxISJin6ZiZ\nWMLCwpIGDhxYxWazm7lcrmjbtm0R6rhusiiqzzXTAwDAM9CKUUkAAKA9kBgAAEAOEgMAAMhBYgAA\nADlIDKD1dHV1pSNGjLjk6upa+Oqrr+5ramoy0EQMnp6eubdu3RrY08duT3x8fBQ9s3nnzp1LZOOa\nP39+gqWl5b0DBw6Eai5C6M2QGEDrGRoaii9dujSisLDQVV9fv/n7779/ncnjtbS0PDXx09DQUJyb\nm+s5cODAW8+6f6lUqvus+4iKiopfuHDhLkII+fHHHxdXVVUNorclJCTMDwkJOdQX7wwAPQOJAXqV\ncePGnSkpKXGora21mDlz5q/u7u75vr6+mYWFha6EEOLm5lZQX19vSlEUy9LS8h79q3rRokU/nThx\nYmJra6vOe++999WoUaNy3N3d87ds2bKcEEKEQqHAz88vY8aMGcnDhw+/0lkcxsbGjatXr/7GxcXl\n8qRJk9JqamqsCCHkxo0b9lOnTj3m5eV1wd/f/3RRUdFQQghZsmTJztdff/370aNHZ61du3aD7L52\n7ty5ZOXKlZvp9enTpx85ffq0P32cDz/88FMPD488X1/fzDt37gwghJDo6Ojor7/++t0DBw6EXrhw\nwWv+/PkJnp6euY8fP36B3g/VR28PAsxDYoBeo6WlRS81NTXQzc2t4KOPPvp45MiRF/Pz891jY2PX\nLVq06CdCCBk7duzZM2fOjLty5cpwe3v7G2fOnBlHSNsTAseMGXPuhx9+eM3c3LwuJydnVE5Ozqit\nW7dGlpWV8Qkh5NKlSyM2bdr0Fn0x74hYLDb09vY+f/nyZZeAgID0mJiY9YQQsnz58i2bN29eeeHC\nBa+vvvrqvX/84x/f0Z+pqqoalJmZ6btx48Y1svtS/GUvu07f8ygvL8/D39//9NatWyPpMiwWiwoN\nDT3g5eV1ITExcV5ubq7nCy+88LjbJxjgL1pxrySAjjQ1NRmMGDHiEiGE+Pv7n46IiNju4+OTffDg\nwVmEEDJ+/PhT9+7ds2xoaDDx8/PLOH36tL+trW35G2+88b8tW7Ysr6qqGmRhYVFrYGDQ9Ntvv71c\nWFjoun///tmEtN2SuaSkxEFPT69l1KhROba2tuWqxKSjo9M6d+7cvYQQsmDBgt2zZs06+PDhQ6Nz\n586NmTNnzs90uebmZn1C2i7kc+bM+bmrzTv6+vrN06ZNO0oIISNHjrz4+++/T26vHGoHoE5IDKD1\nDAwMmi5dujRC8X3FiyGLxaL8/f1Px8XFreDz+WWfffbZB7/88ssr+/fvn+3v73+aLhcXF7di8uTJ\nv8t+VigUCoyMjB52Jz6KolgsFotqbW3VsbCwqG0vVkLa+inae19PT6+ltbX179r7o0eP+tGv2Wy2\nhH6to6PT2l7/ByF9807DoDloSoJeyc/PLyMhIWE+IW0XdWtr67vGxsaNXC63oqamxqqkpMTBzs6u\ndNy4cWc2bty4hk4MU6ZMOf7dd9/9g77AXr9+/SWxWGzY1eO3trbq/Pzzz3MIaXtAjp+fX4aJiUmD\nnZ1dKV0boSiKVVBQ4NbZvvh8flleXp4HRVEskUjEy8nJGdXZZyiZW4ybmJg00A+lAVAH1BhA67X3\nazg6Ojo6IiJiu7u7e76RkdHDH3/8cTG9bfTo0Vn0L/Bx48adWbduXey4cePOEELIa6+99kNZWRnf\n09Mzl6Io1oABA+788ssvr9Bt9qrGZGRk9DAnJ2fUp59++qGNjU313r175xLSNiLojTfe+N+nn376\noUQiYYeHhye5ubkVKPsehLT1i9jZ2ZU6OztfdXJyujZy5MiL7X132RhlX9Md24aGhuLMzExf9DPA\ns8JN9ABUYGJi0tDQ0GCibF3bLFmyZGdwcPDh0NDQA5qOBXofNCUBqMDU1LTe09Mz9/bt2y8Sot1t\n+vPnz0/IyMjwMzAwaNJ0LNA7ocYAAAByUGMAAAA5SAwAACAHiQEAAOQgMQAAgBwkBgAAkIPEAAAA\ncv4f7PGByn7cLZQAAAAASUVORK5CYII=\n", + "text": [ + "<matplotlib.figure.Figure at 0x3463890>" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) Maximum power supplied to external system: 0.63 p.u\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 5.7, Page number: 272" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "P_rated=2000*746/3 #per phase rated power of motor(W)\n", + "Xsm=1.95 #Synchronous reactance(ohm)\n", + "Vl=2300 #Line to line voltage(V)\n", + "f=60 #Angular frequency(Hz)\n", + "p=30 #No. of poles\n", + "Xsg=2.65 #Synchronous reactance of generator(ohm)\n", + "\n", + "\n", + "#Calculations:\n", + "#for part (a):\n", + "Vp=2300/sqrt(3)\n", + "Ip=P_rated/Vp\n", + "Eafm=sqrt(Vp**2+(Ip*Xsm)**2)\n", + "Pm=3*Vp*Eafm/Xsm #Max power delivered to motor(W)\n", + "ws=2*2*pi*f/p\n", + "Tmax=Pm/ws #MAx torque of motor(Nm)\n", + "\n", + "\n", + "#for part (b):\n", + "Eafg=sqrt(Vp**2+(Ip*Xsg)**2)\n", + "Pm2=3*Eafm*Eafg/(Xsg+Xsm) #Max power delivered to motor(W)\n", + "Tmax2=Pm2/ws #Max torque(Nm)\n", + "\n", + "\n", + "\n", + "#Results:\n", + "print\"(a) Max power :\",round(Pm/1000,0),\"kW,3-ph\"\n", + "print\" Max torque :\",round(Tmax/1000,1),\"kNm\"\n", + "print \"(b) Max power :\", round(Pm2/1000,0),\"kW,3-ph\"\n", + "print \" Max torque:\", round(Tmax2/1000,1),\"Nm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) Max power : 3096.0 kW,3-ph\n", + " Max torque : 123.2 kNm\n", + "(b) Max power : 1639.0 kW,3-ph\n", + " Max torque: 65.2 Nm\n" + ] + } + ], + "prompt_number": 8 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 5.8, Page number: 279" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import *\n", + "\n", + "\n", + "#Variable declaration:\n", + "P=45 #Power rated(KVA)\n", + "Va=220 #Terminal voltage(V)\n", + "Pin=45 #Power input to the armature(KVA)\n", + "If=5.50 #field current(A)\n", + "Rf=35.5 #Field winding resistance(ohm)\n", + "Ra=0.0399 #Armature dc resistance(ohm/phase)\n", + "Xal=0.215 #Leakage reactance of motor(ohm)\n", + "pf=0.80 #Lagging power factor \n", + "Pc=1.8 #Core loss(kW)\n", + "Pw=0.91 #Friction & windage losses(kW)\n", + "Ps=0.37 #Stray load loss(kW)\n", + "\n", + "\n", + "#Calculations:\n", + "Ia=P*10**3/(sqrt(3)*Va)\n", + "P1=If**2*Rf/10**3 #Loss in field winding(kW)\n", + "P2=3*Ia**2*Ra/10**3 #Loss in armature(kW)\n", + "Pl=(Pc+Pw+Ps+P1+P2)\n", + "Pi=Pin*pf+P1\n", + "Po=Pi-Pl\n", + "eff=(Po/Pi)*100\n", + "\n", + "#Results:\n", + "print \"Efficiency of the synchronous machine:\",round(eff,1),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Efficiency of the synchronous machine: 84.3 %\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 5.9, Page number: 287" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import math\n", + "import cmath\n", + "\n", + "#Variable declaration:\n", + "Xd=1 #Direct axis synchronus reactance(p.u)\n", + "Xq=0.60 #Quadrature axis synchronous reactance(p.u)\n", + "Va=1 #Terminal voltage(p.u)\n", + "pf=0.8 #Lagging power factor\n", + "Ia=0.8-1j*math.sin(math.acos(0.8)) #Line current(p.u)\n", + "\n", + "\n", + "#Calculations:\n", + "phy=-math.acos(pf)\n", + "E=Va+1j*Xq*Ia\n", + "delta=cmath.phase(E)\n", + "Id=abs(Ia)*math.sin(delta-phy)*cmath.exp(1j*(-pi/2+delta))\n", + "Iq=abs(Ia)*math.cos(delta-phy)*cmath.exp(1j*delta)\n", + "Eaf=Va+Xd*Id*1j+Xq*Iq*1j\n", + "\n", + "\n", + "#Results:\n", + "print \"Generated voltage:\",round(abs(Eaf),2),\"p.u Volt\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Generated voltage: 1.78 p.u Volt\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 5.11, Page number: 291" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from pylab import *\n", + "import cmath\n", + "from sympy import *\n", + "\n", + "#Variable declaration:\n", + "P_rated=2000*746 #Rated power of motor(W)\n", + "Xs=1.95 #Synchronous reactance(ohm/phase)\n", + "Xd=1.95 #Direct axis synchronous reactance(ohm/ph)\n", + "Xq=1.40 #Quadrature axis synchronous reactance(ohm/ph)\n", + "pf=1 #Power factor of the machine\n", + "Vl=2300 #Line to line voltage(V)\n", + "\n", + "#Calculatons:\n", + "Va=float(Vl/sqrt(3)) #volt\n", + "Ia=float(P_rated/(Va*3)) #ampere\n", + "E1=Va-1j*Ia*Xq #From phasor diagram\n", + "delta=cmath.phase(E1) #power angle\n", + "Id=Ia*sin(abs(delta)) #direct axis current(A)\n", + "Eaf=abs(E1)+Id*(Xd-Xq)\n", + "r=symbols('r')\n", + "def P(r): #Process for finding maximum power\n", + " return Eaf*Va*sin(r)/Xd + Va**2*(Xd-Xq)*sin(2*r)/(2*Xd*Xq)\n", + "P1=diff(P(r),r)\n", + "#On differentiation,\n", + "#P1 = 1023732.58489791*cos(r) + 355250.305250306*(2*(cos(r))**2-1)\n", + "l = solve(1023732.58489791*cos(r) + 355250.305250306*(2*(cos(r))**2-1),r)\n", + "P_max = (P(round(l[0],5)))\n", + "\n", + "\n", + "#Results:\n", + "print \"Maximum mechanical power:\",math.ceil(3*P_max/10**3),\"kW,3-phase\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Maximum mechanical power: 3236.0 kW,3-phase\n" + ] + } + ], + "prompt_number": 1 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter6.ipynb b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter6.ipynb new file mode 100755 index 00000000..1e8c7e97 --- /dev/null +++ b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter6.ipynb @@ -0,0 +1,534 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:543f6585f8a1e6c2c290bd192837a35d6ff750409ce379696635948315dd7dcf" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 6: Polyphase Induction Machines" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 6.1, Page number: 318" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "\n", + "#Variable declaration:\n", + "n=3502 #Speed of motor(rpm)\n", + "Pin=15.7 #Input power(kW)\n", + "Ia=22.6 #Terminal current(A)\n", + "R=0.2 #Stator winding resistance(ohm/ph)\n", + "f=60 #frequency(Hz)\n", + "p=2 #No. of poles\n", + "\n", + "#Calculations:\n", + "Ps=3*Ia**2*R/10**3 #Power dissipated in stator winding(kW)\n", + "Pg=Pin-Ps #Air-gap power(kW)\n", + "ns=120*f/p\n", + "s=(ns-n)/ns\n", + "Pr=s*Pg #Power dissipated in stator(kW)\n", + "\n", + "\n", + "#Results:\n", + "print \"Power dissipated in stator:\",round(Pr*10**3,0),\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Power dissipated in stator: 419.0 W\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 6.2, Page number: 320" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import cmath\n", + "import math\n", + "\n", + "\n", + "#Variable declaration:\n", + "R1=0.294 #Resistance of stator(ohm)\n", + "R2=0.144 #Rotor resistance referred to stator(ohm)\n", + "X1=0.503 #Reactance of stator(ohm)\n", + "X2=0.209 #Reactance of rotor referred to stator(ohm)\n", + "Xm=13.25 #Leakage reactance(ohm)\n", + "s=0.02 #slip\n", + "Prot=403 #Friction, windage and core losses(W)\n", + "V=220 #Line-to-line voltage(V) \n", + "p=6 #No. of poles\n", + "fc=60 #frequency(Hz)\n", + "nph=3 #No. of phase\n", + "\n", + "#Calculations:\n", + "Zf=((R2/s+1j*X2)*1j*Xm)/(R2/s+1j*X2+1j*Xm)\n", + "Zin=R1+1j*X1+Zf\n", + "V1=V/math.sqrt(3)\n", + "I1=V1/Zin\n", + "a=cmath.phase(I1)\n", + "pf=math.cos(a)\n", + "ns=120*fc/p\n", + "ws=4*math.pi*fc/p\n", + "n=(1-s)*ns\n", + "wm=(1-s)*ws\n", + "Pg=nph*abs(I1)**2*(Zf.real)\n", + "Psh=(1-s)*Pg-Prot\n", + "Tsh=Psh/wm\n", + "Pin=nph*(V1*I1).real\n", + "eff=Psh/Pin\n", + "\n", + "\n", + "#Results:\n", + "print \"Rotor speed: \",n,\"rpm\"\n", + "print \"Output torque: \",round(Tsh,2),\"Nm\"\n", + "print \"Output power: \",round(Psh,2),\"W\"\n", + "print \"Stator current: \",round(abs(I1),1),\"A\"\n", + "print \"Power factor: \",round(pf,3),\"lagging\"\n", + "print \"Efficiency of motor:\",round(eff*100,0),\"%\"\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Rotor speed: 1176.0 rpm\n", + "Output torque: 42.4 Nm\n", + "Output power: 5221.6 W\n", + "Stator current: 18.8 A\n", + "Power factor: 0.846 lagging\n", + "Efficiency of motor: 86.0 %\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 6.3, Page number: 325" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import cmath\n", + "from math import *\n", + "\n", + "\n", + "#Variable declaration:\n", + "R1=0.294 #Resistance of stator(ohm)\n", + "R2=0.144 #Rotor resistance referred to stator(ohm)\n", + "X1=0.503 #Reactance of stator(ohm)\n", + "X2=0.209 #Reactance of rotor referred to stator(ohm)\n", + "Xm=13.25 #Leakage reactance(ohm)\n", + "s=0.03 #slip\n", + "V=220 #Line-to-line voltage(V) \n", + "p=6 #No. of poles\n", + "fc=60 #frequency(Hz)\n", + "nph=3 #No. of phase\n", + "\n", + "\n", + "#Calculations:\n", + "#for part (a):\n", + "Zf=((R2/s+1j*X2)*1j*Xm)/(R2/s+1j*X2+1j*Xm) #Impedance referred to stator(ohm) \n", + "Zin=R1+1j*X1+Zf #Total input impedance(ohm)\n", + "Z1_eq=1j*Xm*(R1+1j*X1)/(R1+1j*(X1+Xm)) #Total equiv. impedance(ohm)\n", + "R1_eq=Z1_eq.real\n", + "X1_eq=Z1_eq.imag\n", + "V1=V/sqrt(3)\n", + "V1_eq=V1*(1j*Xm/(R1+1j*(X1+Xm)))\n", + "I2=abs(V1_eq)/sqrt((R1_eq+R2/s)**2+(X1_eq+X2)**2)\n", + "ws=4*pi*fc/p\n", + "ns=120*fc/p\n", + "Tmech=nph*I2**2*(R2/s)/ws\n", + "Pmech=nph*round(I2,1)**2*(R2/s)*(1-s)\n", + "\n", + "\n", + "#for part (b):\n", + "SmaxT=R2/sqrt(R1_eq**2+(X1_eq+X2)**2) #slip at max torque\n", + "n_max=(1-SmaxT)*ns\n", + "Tmax=(1/ws)*(0.5*nph*abs(V1_eq)**2)/(R1_eq+sqrt(R1_eq**2+(X1_eq+X2)**2))\n", + "\n", + "#for part (c):\n", + "s1=1 #Slip at starting of motor\n", + "I2_start=abs(V1_eq)/sqrt((R1_eq+R2)**2+(X1_eq+X2)**2)\n", + "Tstart=nph*I2_start**2*R2/ws\n", + "\n", + "\n", + "#Results:\n", + "print \"(a) Load component I2 of stator current:\",round(I2,1),\"A\"\n", + "print \" Electromechanical torque, Tmech :\",round(Tmech,1),\"Nm\"\n", + "print \" Electromechanical power, Pmech :\",round(Pmech,0),\"W\"\n", + "\n", + "print \"(b) Maximum electromechanical torque :\",round(Tmax,0),\"Nm\"\n", + "print \" Speed :\",round(n_max,0),\"rpm\"\n", + "\n", + "print \"(c) Electromechanical starting torque Tstart:\",round(Tstart,1),\"Nm\"\n", + "print \" Stator load current, I2_start :\",round(I2_start,0),\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) Load component I2 of stator current: 23.9 A\n", + " Electromechanical torque, Tmech : 65.4 Nm\n", + " Electromechanical power, Pmech : 7979.0 W\n", + "(b) Maximum electromechanical torque : 175.0 Nm\n", + " Speed : 970.0 rpm\n", + "(c) Electromechanical starting torque Tstart: 77.6 Nm\n", + " Stator load current, I2_start : 150.0 A\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 6.4, Page number: 328" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "%matplotlib inline\n", + "import cmath\n", + "from math import *\n", + "from matplotlib import *\n", + "from pylab import *\n", + "\n", + "#Variable declaration:\n", + "V=230 #line to line voltage(V)\n", + "R1=0.095 #Resistance of stator(ohm)\n", + "X1=0.680 #Reactance of stator(ohm)\n", + "X2=0.672 #Reactance of rotor referred to stator(ohm)\n", + "Xm=18.7 #Leakage reactance(ohm)\n", + "f=60 #frequency(Hz)\n", + "p=4 #No. of poles\n", + "nph=3 #No. of phases\n", + "\n", + "\n", + "#Calculations and Results:\n", + "V1=V/sqrt(3)\n", + "omega=4*pi*f/p\n", + "ns=120*f/p\n", + "Z1eq=1j*Xm*(R1+1j*X1)/(R1+1j*(X1+Xm)) #Stator thevenin equivalent\n", + "R1eq=Z1eq.real\n", + "X1eq=Z1eq.imag\n", + "V1eq=abs(V1*1j*Xm/(R1+1j*(X1+Xm)))\n", + "\n", + "print \"Hence, the required plot is shown below:\"\n", + "for m in range(1,6,1): #Loop over rotor resistance\n", + " if m==1:\n", + " R2=0.1\n", + " elif m==2:\n", + " R2=0.2\n", + " elif m==3:\n", + " R2=0.5\n", + " elif m==4:\n", + " R2=1.0\n", + " else:\n", + " R2=1.5\n", + "\n", + " s=[0]*202\n", + " rpm=[0]*202\n", + " Tmech=[0]*202\n", + " for n in range(1,201,1): #Loop over slip\n", + " s[n-1]=n/200 #slip\n", + " rpm[n-1]=ns*(1-s[n-1]) #rpm\n", + " I2=abs(V1eq/(Z1eq+1j*X2+R2/s[n-1])) #I2\n", + " Tmech[n-1]=nph*I2**2*R2/(s[n-1]*omega) #Electromechanical torque(Nm)\n", + "\n", + " plot(rpm,Tmech)\n", + " title('Electromechanical mechanical torque, Tmech(Nm) vs rpm')\n", + " xlabel(\"rpm\")\n", + " ylabel(\"Tmech\")\n", + " if m==1:\n", + " show()\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Hence, the required plot is shown below:\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEVCAYAAAARjMm4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdcE/f/B/B3mCKyR0CGoAiIqKCCu6Qqaq3bugeO2mod\ntbYqaq1aK+Joa63WWhfUrW2/ilapWkStIGDFCYgoW4jsIbKS+/1xv6upBQKa5AK8no/HPSB3yd07\nlwtv7jMFDMMQAABAXTT4DgAAANQfkgUAAMiFZAEAAHIhWQAAgFxIFgAAIBeSBQAAyNVokkVQUNCM\nfv36XeM7DlURiUTh+/btm62MfRsYGJSkpKQ4vMk+ZsyYEbR69er1CgrpteAcNV/1+Xuwe/fuDz/5\n5JNvlRXDjh07Fvj7+wcqa//qRq2ShYODQ0rLli3LDAwMSrhl0aJF2xW1/5SUFAcNDQ2pVCpVq/dd\nE4FAwAgEAqV0gikpKTFwcHBIeZN9KDM+dYhB2eeosf7zExAQsJL7burp6b3Q0tKq5h536tTpHt/x\ncSorK3U2bNiwatmyZZuJXn7333333d9lnzd16tRD69atW/M6x5gzZ86ew4cPT8nJybFQRMzqTq3+\naAoEAubs2bPDSkpKDLhl+/btixR9HIZhBLVtk0gkmoo+XlNV13kElrLOEV/X6cqVKwO47+aPP/44\nt3fv3hHc43v37nXiI6aanD59emSHDh3ira2ts2TXR0dHe0dGRvbiHr/JPxy6uroV77zzzvmff/55\n+pvG2xB8/bOrVsmiIRISElx9fX0vmpmZ5bm6uiacPHlyHLftxYsXep9++unXDg4OKcbGxoVvvfXW\n1fLy8hZvvfXWVSIiY2PjQkNDw+IbN270DAoKmtGnT5/rS5Ys+cbc3Dx33bp1a4qLiw2nT5/+s6Wl\n5TMHB4eUDRs2rOK+9LLPNzExKXByckqKiIjofeDAgZn29vZpQqFQLHvxVFRU6H722Wdb27Rpk2pl\nZZU9b968XeXl5S247adPnx7p4eFx28jIqMjJySnpwoULg7htKSkpDn379v3L0NCwePDgwX/k5eWZ\ncdvGjRt30traOsvY2LjQx8fnSlxcnBu3bcaMGUHz58/fOWzYsLOGhobFPXv2vPHkyZO23HYNDQ0p\n9/jVc9WvX79rFRUVuvKOUReco7rFx8d3mDdv3q7IyMheBgYGJaampvlEREVFRUb1ue646zQ/P990\nxIgRIUZGRkU9evSIWr169XrubqWmu+hXi+32798/y83NLc7U1DR/yJAhoWlpafb1+Xw5DMMIakqG\nGhoa0l27ds1r3779I0NDw+Ivvvjiy8ePH7fr1atXpLGxceHEiROPVVVVaXPPP3v27DAPD4/bJiYm\nBX369Lkum3TS09PtxowZ85ulpeUzc3Pz3IULF34ve6ylS5duMTU1zW/btu2T0NDQIdz68+fPv+Pj\n43Pl1diWLVu2edWqVRtqej/h4eEiW1vbjC1btiy1tLR81rp166enTp0ade7cuaHOzs6JZmZmeYGB\ngf6yrxGJROG///77uzXtb968ebuWLl26RXbdyJEjT2/btm0xEdGmTZuW29raZhgaGha7uromhIWF\n9a9pPzNmzAiaN2/erqFDh55r1apV6eXLl9+eMWNG0Ny5c38cNGjQBUNDw2KRSBQu+/k19DOoF4Zh\n1GZxcHBIvnTp0oCath04cGBG3759rzEMQ6Wlpfq2trbpQUFBfhKJRCM2NtbD3Nw8Jy4urgPDMPTR\nRx/tfPvtt8OePn1qLZFINCIjI3tWVFTopKSktBEIBFKJRKIhu18tLa2qHTt2zJdIJBovXrxoMW3a\ntJ9HjRr1v9LSUv2UlJQ2zs7OD/ft2zdL9vlBQUF+UqlU8Pnnn6+3sbHJWLBgwfeVlZXaFy5c8DUw\nMCh+/vx5S4ZhaPHixd+OHDnyVEFBgXFJSUmr4cOHh6xYsSKAYRiKioryNjIyKuTec2ZmZuuEhAQX\nhmHIx8cnvF27dkmPHj1yevHiRQuRSHTZ399/o2zcpaWl+pWVldqLFy/+1sPDI5bb5ufnF2RmZpYb\nExPTvbq6WnPKlCmHJk6ceJTbLhAIpI8fP25b17mSd4wZM2Yc+Pzzz9fX9lnhHNV9joKCgvy465lb\n6nPdyV6nEyZMODZhwoRjZWVlevfv3+9oY2OT0a9fv6sMw1BycrLDq9e6SCS6zO3v1KlTI52cnB4l\nJCS4SCQSja+++mpV7969rzfk+yr7nZRdBAKBdNSoUf8rKSlp9eDBAzcdHZ2Kt99+Oyw5OdmhqKjI\n0M3N7UFwcPB0hmHo1q1bnpaWluLo6GgvqVQqCA4Onu7g4JBcWVmpXV1drdm5c+c7S5Ys+bqsrEyv\nvLxc9/r16725Y2tra1fu3bt3tlQqFezatWtu69atM7kYvLy8on/55Zex3GPufJSUlLSysbHJ4K6n\nqVOnHly3bt0XDMPQ5cuXRVpaWlXr16//vLq6WnPPnj3vm5mZ5U6ePPlwaWmp/oMHD9z09PTKkpOT\nHbj9/v33311NTU3zajo/V69e7WdnZ5fGPc7PzzfR09Mry8rKskpISHCxs7NLy8rKsmIYhlJTU+25\n6+3Vxc/PL8jIyKgwIiKiF8MwVF5eruvn5xdkYGBQfO3atb4VFRU6H3/88TbZz6Ihn0F9F94ThOzS\npk2blFatWpUYGxsXcMvevXtnv3phHjt2bAL3peCWDz74YPe6deu+kEgkGnp6emV3797t9Or+a/oC\nHThwYIa9vX0q97i6ulpTR0enIj4+3pVbt3v37g9EItFl7vnt27dP5LbdvXu3k0AgkD579syCW2dm\nZpZ7586dzlKpVKCvr18qexFERET0cnR0fMLFvGTJkq9rOhcikejyhg0bVnKPf/jhh3lDhgw5X9Nz\nCwoKjAUCgbS4uNiAYdg/UnPmzPmJ237u3Ll3XF1d42UvpMePH7et61zV5xh1JQucI/nnSPbLXZ/r\n7tXrVFtbu/Lhw4fO3LqVK1du4PYpL1kMGTLkPPc7wzAkkUg0WrZs+TwtLc2uvt/XupIF94eNYRjq\n1q3bzc2bNy/lHn/66adbFy9e/C3DMDR37txdq1ev/lL29S4uLglXrlx5KyIiopeFhcUz2fcge2wn\nJ6dH3OPnz5+3FAgEUrFYbMkwDLVv3z7xjz/+GMRtlz0fP/zww7yePXtGMsx/k4Wenl6ZVCoVMAxD\nxcXFBgKBQBodHe0l+15OnTo1knucmJjYXlNTs7qm8yOVSgX29vapV69e7ccwDP30009zBgwYcIlh\nGHr06JGTpaWl+NKlSwMqKyu16zrPM2bMOODn5xcku87Pzy9o0qRJR7jHpaWl+pqamtUZGRk2Df0M\n6ruoVTGUQCBgTp8+PbKgoMCEW2bPnr3v1eelpqa2iYqK6mFiYlLALUeOHJksFouFeXl5ZuXl5S3a\ntWv3uL7HtbOzS+d+z83NNa+qqtJu06ZNKrfO3t4+LTMz04Z7LBQKxdzvenp6L4iILCwscmTXlZaW\ntsrJybEoKytr2a1bt7+5ON95553zubm55kREGRkZtnXFaWVllf3qPonY8mp/f/9AJyenJCMjoyJH\nR8dkLvbaYuReKys3N9e8tnMllUo15B2jLjhHDVOf6072Os3JybGorq7Wkl1nb2+fVt/jpaamtvn4\n44+/4865mZlZHhGR7PHexKvnVvZxixYtyp8/f67PxfH1119/KvtdzsjIsM3KyrJOT0+3a9OmTaqG\nhoa0pmPIfvYtW7YsIyLiPkMTE5OC4uJiw5peN3v27H1isVh49uzZYUT/rlcyMzPL4+owuOv21ffC\nxU7ENoQwMjIqquk4AoGAmThx4rGjR49OIiI6cuTI5ClTphwmInJyckratm3b4rVr164VCoXiSZMm\nHc3KyrKu7XzKfs7cvm1tbTO4x/r6+s9NTU3znz592ppbV9dnUNv1Xhe1Shb1ZW9vn+bj43NFNqmU\nlJQY7Ny5c76ZmVleixYtypOSkpxefV1tFVmy683NzXO1tbWrZJtNpqWl2ct+MPVlbm6eq6en9yIu\nLs6Ni7OwsNCYu4jt7OzSa4pTniNHjkwOCQkZ8eeffw4oKioySk5OdiRqeGWqubl5bm3n6vDhw1MU\ncYz6xNAcz9Gr12J9rjvZ11hYWORoaWlVy5ZTy/6ur6//nIiorKysJbcuOzvbivvd3t4+7aeffvpA\n9jv0/Plz/Z49e96QF/ubkn0f9vb2aatWrdogG0dpaWmrCRMmHLezs0tPS0uzf53K/M6dO99NTEx0\nrmmbjo5O5Zo1a9atXr16/Ztez/Hx8R08PDxu17Z90qRJR3/55Zf3UlNT20RHR3uPHTv2V9lt165d\n65eamtpGIBAwy5cv31Tf4zIMI0hPT7fjHpeWlrbKz883bd269dPXfzd1U7tkUZ8P79133/09MTHR\n+dChQ1Orqqq0q6qqtGNiYrwSEhJcNTQ0pLNmzdq/ZMmSb7KysqwlEolmZGRkr8rKSh0LC4scDQ0N\n6ePHj9vVtm9NTU3J+PHjT6xatWpDaWlpq9TU1DbffvvtJ1OnTj3U0PeioaEhnTNnzp7Fixdv45rX\nZWZm2nAVtLNnz9534MCBmWFhYf2lUqlGZmamzcOHD13knYvS0tJWurq6FaampvnPnz/XX7lyZYDs\n9vp+Aeo6V4o6Rn1iaI7nyMrKKjsjI8OWq2Rs6HWnqakpGTNmzG9r165d++LFC724uDi3n3/+eTr3\nh9jCwiLHxsYm8+DBg9MkEonm/v37Z8le93Pnzv0xICBgJVchX1RUZCTbSEQkEoW/bpPSmsieC0am\nYnzOnDl7fvzxx7nR0dHeDMMInj9/rv/777+/W1pa2qpHjx5R1tbWWf7+/oFlZWUty8vLW0RERPSu\nz/GGDh167sqVKz61bZ82bdrB8vLyFqGhoUMa2hpK9r1cuXLF55133jlf23M9PDxum5ub577//vt7\nhwwZEmpoaFhMRJSYmOgcFhbWv6KiQldXV7eiRYsW5ZqamhJ5x5N17ty5odevX+9TWVmps3r16vW9\nevWKtLGxyaxP3K/z/VW7ZDF8+PAzsv0suEws28TNwMCg5MKFC4OOHTs20cbGJtPa2jprxYoVGysr\nK3WIiLZu3fpZp06d7nl5ecWYmZnlrVixYiPDMIKWLVuWrVq1akOfPn2um5qa5kdFRfWoqenc999/\nv1BfX/9527Ztn/Tr1+/alClTDs+cOfPAq3Fw6rrYNm3atNzJySmpZ8+eN4yMjIp8fX0vcv/xeHl5\nxRw4cGDmJ5988q2xsXHhqy0aZPcre9zp06f/3KZNm1QbG5tMd3f3+7169Yqs7bm17Yv7vbZz9TrH\nqO/xcY6I+vfvH9axY8cHVlZW2ZaWls+IGn7d7dixY0FpaWkrKyur7FmzZu2fOXPmAdk/Anv27Jmz\nZcuWpebm5rlxcXFuffr0uc5tGzVq1Knly5dvmjhx4jEjI6OiTp063fvjjz8Gc9szMjJs+/bt+1dt\nn1ld70/eOtnXdevW7e89e/bMWbBgwQ5TU9P89u3bP+JaymloaEjPnDkzPCkpycne3j7Nzs4u/cSJ\nE+NrO7bs42HDhp1NSEhwlS3akd2uoaEh/fLLL7/Iz883rSv2ut5LeXl5i/Pnz7/j5+cXXPtZIpo8\nefKRsLCw/pMnTz7CrauoqNBdsWLFRgsLixxra+us3Nxc840bN66o6fW1vdfJkycfWbdu3RozM7O8\n2NhYz0OHDk2tT9y17VMeAcNg8iOApiAoKGjGvn37Zl+7dq3fm+wnIyPDduLEicf++uuvvoqKjQ97\n9uyZExcX5/btt99+ooz979ixY0FGRobtq81pVWHmzJkHbG1tM9avX79aVcdU+J3FrFmz9guFQrFs\nb878/HxTX1/fi87OzomDBg26UFhYaMxt27hx44r27ds/cnV1TZBtPw8A/LC1tc1o7ImCiC3iUlai\nICJasGDBDj4SBRE/HWIVnixmzpx5QLZzDBFRYGCgP1e0MGDAgD+5ExwXF+d2/PjxCXFxcW6hoaFD\nPvroox8aw1AcAOpIHYZgAdXg5bNuSDvb+i7JyckO7u7u92TbTWdnZwsZhqGsrCwrFxeXBIZhKCAg\nYEVgYOBy7nmDBw8OjYyM7KmMmLBgwYIFy+svWqpISGKxWMi18RUKhWKxWCwkInr69Glr2aZ6tra2\nGa+288Z/SgAAr4dRYHGVyot85N0+1bSN74xa07JmzRreY0BMiKk5xoWY6rcomkqShVAoFHMdgrKy\nsqy5poI2NjaZsh1LMjIybOtqJwwAAPxQSbIYMWJESHBwsB8RUXBwsN+oUaNOceuPHTs2sbKyUic5\nOdnx0aNH7b29vaNVERMAANSfwussJk2adPTKlSs+ubm55nZ2dulffvnlF/7+/oHjx48/sW/fvtkO\nDg4pXMcaNze3uPHjx59wc3OL09LSqv7hhx8+aix1FCKRiO8Q/gMx1Q9iqj91jAsx8UPtO+UJBAJG\n3WMEAFA3AoGAmMZcwQ0AAI0PkgUAAMiFZAEAAHIhWQAAgFxIFgAAIBeSBQAAyIVkAQAAciFZAACA\nXEgWAAAgF5IFAADIhWQBAAByIVkAAKhYWRlRQQHfUTQMkgUAgIpcuULUuzeRhQVRmzZEPXoQhYfz\nHVX9IFkAACiZVEq0ZAnRlClEn3xClJvLLv7+ROPHE508yXeE8qlkDm4AgOZKKiWaM4coMZHo/n0i\nY+OX20aPJmrblsjXl8jZmahLF/7ilAd3FgAASrR0KVFSEtH58/9OFJwuXYi++opo/nw2sagrJAsA\nACU5fJjo9Gmi//2PqFWr2p83ezZRZSXRzz+rLraGwkx5AABKEB9P9NZbRGFhRJ06yX/+tWts0nj4\nkEiggPntMFMeAICaq6oimj6dLV6qT6IgIurbl0hbm20xpY6QLAAAFGzjRiJzc6IPPqj/awQCtiJ8\n717lxfUmUAwFAKBAjx4R9epFdPs2ka1tw16bl0fUrh3RkydEpqZvFgeKoQAA1BTDEH38MdHy5Q1P\nFEREZmZEgwcT/fqr4mN7U0gWAAAKcvYsUXIymzBe17BhRH/8obiYFAXFUAAACvDiBVHHjkS7d7Od\n7F6XWEzk6kr07Blb4f26UAwFAKCGtmwh6tr1zRIFEZFQSOToSBQVpZi4FAXDfQAAvKH0dKLt24lu\n3VLM/oYMIQoNZZvTqgvcWQAAvKE1a4jmziWyt1fM/gYPZpOFOkGdBQDAG7h/n2jAAHagQCMjxeyz\nqoptOpueXvN4UvWBOgsAADWyciU71LiiEgURW7Ht6Ul086bi9vmmkCwAAF7TtWtEd+8SffSR4vft\n7U0UHa34/b4uJAsAgNfAMGznu/XriXR1Fb9/JAsAgCYgJITo+XOiyZOVs39vb7b5rLpU2SJZAAA0\nkERCtGoV0YYNRJqayjlGmzbscTIzlbP/hkKyAABooKNH2Qrtd99V3jEEAiIvL6KYGOUdoyGQLAAA\nGqCyku1XERCgmEmK6qJO9RYqTRYbN25c0bFjxwedOnW6N3ny5CMVFRW6+fn5pr6+vhednZ0TBw0a\ndKGwsPA1WxUDACjf/v1ETk5EPj7KP1b37kR//63849SHyjrlpaSkOPTv3z8sPj6+g66ubsWECROO\nDx069NyDBw86mpub5y5btmzzpk2blhcUFJgEBgb6/xMgOuUBgJp48YJNFKdPs3/IlS0lhR3yIyOj\n4a9ttJ3yDA0Ni7W1tavKyspaVldXa5WVlbVs3br105CQkBF+fn7BRER+fn7Bp06dGqWqmAAAGmLn\nTqKePVWTKIjY4UMKC4mKilRzvLqobCBBU1PT/E8//fRre3v7ND09vReDBw/+w9fX96JYLBYKhUIx\nEZFQKBSLxWLhq69du3btP7+LRCISiUSqChsAgIiIiouJNm8mCg9X3TE1NNjhyuPj2SRVl/DwcApX\nYnAqK4Z6/Phxu+HDh5+5du1aPyMjo6Jx48adHDt27K8LFy78vqCgwIR7nqmpaX5+fv4/EwqiGAoA\n1MHatezERsHBqj3u9OlEIhHRrFkNe52ii6FUdmdx8+bN7r17944wMzPLIyIaM2bMb5GRkb2srKyy\ns7OzraysrLKzsrKsLS0tn6kqJgCA+sjNJfr+e37GanJzI4qLU/1xX6WyOgtXV9eEGzdu9Hzx4oUe\nwzCCS5cuDXRzc4sbPnz4meDgYD8iouDgYL9Ro0adUlVMAAD1ERhINHEiOymRqqlLslDpEOWbN29e\nFhwc7KehoSHt2rXrrb17975fUlJiMH78+BNpaWn2Dg4OKSdOnBhvbGxc+E+AKIYCAB5lZBB16cIO\nRW5trfrjJyURDRzItoxqCEUXQ2E+CwCAOsydy/bW3rSJn+NLJEQGBuyc3K1a1f91jbbOAgCgsUlK\nIvrlF6KHD/mLQVOTyNmZKCFBdU12a4LhPgAAarF2LdHHHxOZmfEbR4cObPNZPuHOAgCgBvfuEV28\nSLRrF9+RsL3GnzzhNwbcWQAA1GD1ana6VAMDviMhatsWyQIAQO1ERbED+M2bx3ckLEdHJAsAALWz\nahXRF18QtWjBdySstm3Z3uN8QrIAAJDx559EqalEM2bwHclLNjZsL/Lycv5iQLIAAPh/DMPeVXz5\nJZG2Nt/RvKSpyY5A29COeYqEZAEA8P/OnCEqKyOaMIHvSP6L70puNJ0FACAiqZS9qwgIYIcGVzd8\nJws1PCUAAKp37Bg7nMawYXxHUjMkCwAAnlVVsa2fAgKIBAobTUmx+G4+i2QBAM3egQPsH+O33+Y7\nktrxfWeBUWcBoFkrLWWnLv3tNyJvb76jqV1REZGtLTu9a33ufhQ96izuLACgWdu8mcjHR70TBRE7\nTLqWFlFeHj/HR2soAGi20tOJdu4kio3lO5L6sbUlyswkMjdX/bFxZwEAzdaKFUTz57Md3hoDW1t2\n5j4+4M4CAJqlqCii8HCiH3/kO5L64zNZ4M4CAJodhiFavJhow4aGTVXKNyQLAAAVOnaM7VsxbRrf\nkTQMiqEAAFTkxQt2UqNDh9RzWI+64M4CAEBFvvmGbSbbrx/fkTQcn8kCnfIAoNlISyPq2pUoOprt\nEd3YFBWxc1uUlMjvmIdOeQAAr+njj9mlMSYKIiJDQzZJFBer/tioswCAZuHsWaIHD9jK7cZKIHhZ\nFGVkpNpj484CAJq8sjKihQvZ3tq6unxH82b4qrdAsgCAJm/DBqIePYh8ffmO5M3xlSxQDAUATVpC\nAtHu3UR37/IdiWLgzgIAQMEYhuijj4hWryZq3ZrvaBQDyQIAQMGOHiUqKGAHC2wqbGxQDAUAoDB5\neUSffcZOaqTVhP7SWVsTicWqPy7uLACgSfrkE6Jx44h69uQ7EsUSComys1V/3CaUbwEAWOfOEf31\nV9Op1JZlaUmUk0MkkRBpaqruuLizAIAmpbiYaO5coj17Gtfw4/Wlo8N2yFP19KpIFgDQpCxbRjR4\nMNGAAXxHojxWVqqvt0AxFAA0GWFhRL//TnT/Pt+RKJeVFVtv0amT6o6p0juLwsJC4/fee++XDh06\nxLu5ucVFRUX1yM/PN/X19b3o7OycOGjQoAuFhYXGqowJAJqGwkKiGTOI9u5V/bhJqsZHJbdKk8XH\nH3/83dChQ8/Fx8d3uHv3bmdXV9eEwMBAf19f34uJiYnOAwYM+DMwMNBflTEBQNOwcCHR8OFsEVRT\nx91ZqJLK5rMoKioy8vT0jH3y5Mm/Bgd2dXVNuHLlio9QKBRnZ2dbiUSi8ISEBNd/AsR8FgAgxy+/\nEK1cSRQbS6Svz3c0yrdlC1tnsXVr7c9R9HwWKquzSE5OdrSwsMiZOXPmgTt37nTp1q3b39u2bVss\nFouFQqFQTEQkFArFYrFY+Opr165d+8/vIpGIRCKRqsIGADWXlcX20A4JaR6Jgoi9s7hz59/rwsPD\nKTw8XGnHVNmdxc2bN7v36tUrMiIioreXl1fM4sWLtxkYGJTs2LFjQUFBgQn3PFNT0/z8/HzTfwLE\nnQUA1EIqJRo6lJ0m9csv+Y5GdS5cINq8mejSpdqf02hnyrO1tc2wtbXN8PLyiiEieu+99365detW\nVysrq+zs7GwrIqKsrCxrS0vLZ6qKCQAat2++YacY/eILviNRLT7qLFSWLKysrLLt7OzSExMTnYmI\nLl26NLBjx44Phg8ffiY4ONiPiCg4ONhv1KhRp1QVEwA0XjExbNn9kSNNa+yn+uCjn4XKiqGIiO7c\nudPl/fff31tZWanTrl27xwcOHJgpkUg0x48ffyItLc3ewcEh5cSJE+ONjY0L/wkQxVAA8IriYiJP\nT7YoZuxYvqNRPYmEqEULdgZAbe2an6PoYiiVJovXgWQBALIYhmjKFLYvxa5dfEfDn9at2bsrG5ua\ntzfa1lAAAIqwaxfRgwdEN27wHQm/uI55tSULRUOyAIBGIyqKaO1aoogIIj09vqPhl6rrLeQmi4cP\nH7ps3br1s5SUFIfq6motIrZoKCwsrL/ywwMAYOXksPNT7NlD5OTEdzT8U/WQH3KTxbhx407Omzdv\n1/vvv79XU1NTQsQmC+WHBgDAkkiIJk9ml5Ej+Y5GPVhYsAlUVeQmC21t7ap58+Y142okAODbihVs\nwvjqK74jUR+qTha19rPIz883zcvLMxs+fPiZnTt3zs/KyrLOz8835RbVhQgAzVlQEDuP9smTza8/\nRV1UnSxqbTrr4OCQUldxU3JysqPSopKBprMAzdf160SjRxNduULUoQPf0aiXM2eIdu8mOnu25u0q\nazqbkpLioKiDAAA0VGoqW6H9889IFDVRm2Iozs6dO+fLDvRXUFBg8sMPP3yk3LAAoDkrLSUaMYKd\nInXIEL6jUU/m5mpSDMXp0qXLnTt37nSRXefh4XH79u3bHkqN7P+hGAqgeZFKicaMYf9z/uknIoHC\nClKalqIiIjs7duiTmqi8B7dUKtWQSqUaGhoaUiIiiUSiWVVVVctoJAAAr49hiD79lJ0i9cQJJIq6\nGBoSlZcTVVQQ6eoq/3hyk8XgwYP/mDhx4rEPP/xwN8Mwgt27d384ZMiQUOWHBgDNzebNRH/+SXT1\nKpGODt8GI2aNAAAap0lEQVTRqDeBgC2Kys1VzZAfcouhJBKJ5k8//fTBn3/+OYCIyNfX96JsBz2l\nB4hiKIBm4cABdgKj69fZQfJAvi5diIKDiTxqqBTgZdTZsrKylmlpafaurq4JijpwfSFZADR9Z88S\nzZlDFB5O5OLCdzSNx4ABbIfFgQP/u03lM+WFhISM8PT0jOWKnmJjYz1HjBgRoqgAAKB5i4ggmjmT\n6NQpJIqGUmXzWbnJYu3atWujoqJ6mJiYFBAReXp6xj558qSt8kMDgKbuwQO2093Bg0Q9evAdTeOj\nyuazcpOFtrZ2lezMdUREXMsoAIDXFR9P5OtLtG0b+lK8LgsLtoJbFeQmi44dOz44fPjwlOrqaq1H\njx61X7hw4fe9e/eOUEVwANA0PXzIlrNv2kQ0aRLf0TRealUM9f333y988OBBR11d3YpJkyYdNTQ0\nLN62bdtiVQQHAE1PUhKbKDZsIJo2je9oGjeu6awqYA5uAFCZJ0+IRCKiL74gev99vqNp/C5fJlq3\njm1F9iqV9+COiYnxCggIWPnqTHl3797trKggAKDpS04m6t+faNUqJApFUeWdhdxkMWXKlMNbt279\nzN3d/T4qtgHgdcTFEQ0eTLRyJdGHH/IdTdOhyjoLucnCwsIiB/0qAOB1xcQQDR9O9PXXRFOm8B1N\n02JmRpSfzw6+qCG3BvrNyK2zuHDhwqDjx49PGDhw4CUdHZ1KIrYYasyYMb8pN7T/DxB1FgCNVng4\n0fjxRPv2sQkDFM/EhOjxYyLTV+YvVXmdRXBwsN/Dhw9dqqurtWSLoVSVLACgcTpzhmj2bHb0WJGI\n72iaLlNT9u7i1WShaHKTxc2bN7snJCS41jXFKgCArOBgouXLiX7/ncjLi+9omjYuWSib3FKu3r17\nR8TFxbkpPxQAaOwYhm0Wu24d26wTiUL5uHoLZav1zqK6ulpLS0urOjIyspeHh8dtR0fHZF1d3Qoi\nNJ0FgP+qqGCLnZKSiG7cILK05Dui5sHUlCgvT/nHqTVZeHt7R9+6datraGgoRm0BgDrl57MDApqb\nE4WFEbVsyXdEzYeqiqFqTRZcLbqDg0OK8sMAgMYqKYlo2DB22bxZ+U044d94L4bKycmx+Oabb5bU\n1PRKIBAwS5Ys+Ua5oQGAujt/nmjGDLaOYu5cvqNpnkxN2aazylZrspBIJJolJSUGyg8BABobhiHa\nuJFoxw6iX38l6tuX74iaL1NTtuOjstWaLKysrLLXrFmzTvkhAEBjUlLCzmyXkcH+kbKx4Tui5k1V\nxVAoXQSAektMJOrZk8jYmOjKFSQKdaCq1lC1JotLly7VMAU4ADRXhw4R9elDtGgR0Z49RLq6fEcE\nRGrQGsrMzEwFuQoA1N3z50QLFxJdv0506RJRly58RwSymmQxlEQi0fT09IwdPnz4GSKi/Px8U19f\n34vOzs6JgwYNulBYWGisyngAoG737rG9sCUSor//RqJQR8bGREVF7GekTCpNFt99993Hbm5ucdw4\nU4GBgf6+vr4XExMTnQcMGPBnYGCgvyrjAYCaMQzRDz+wkxUtX86O9dSqFd9RQU00NYkMDNiEoUxy\nBxJUlIyMDNtz584NXbVq1YZvvvlmCRFRSEjIiCtXrvgQEfn5+QWLRKLwmhLG2rVr//ldJBKRCENY\nAihNRgY7bEdBAdG1a0SurnxHBPKYmRGdPx9Ojx6FK+0YKpuDe9y4cSdXrlwZUFxcbLh169bPzpw5\nM9zExKSgoKDAhIjtMW5qaprPPf4nQMxnAaASDEN09CjR4sVECxaws9ppqezfSXgT3t5E339P1KPH\ny3Uqn89CEc6ePTvM0tLymaenZ2x4eLiopucIBAIGw6AD8CM3l+ijj4ju32d7ZXfrxndE0BCqaBGl\nkmQRERHROyQkZMS5c+eGlpeXtyguLjacNm3aQaFQKM7OzraysrLKzsrKsra0tHymingAgMXdTSxZ\nwk55GhxMpKfHd1TQUKpoEaWSCu6AgICV6enpdsnJyY7Hjh2b2L9//7CDBw9OGzFiREhwcLAfETsj\n36hRo06pIh4AIEpNJXr3XaLAQKLTp9k5spEoGidVdMzjpQc3V9zk7+8fePHiRV9nZ+fEsLCw/v7+\n/oF8xAPQnEgkRN99xxY19e3LNomVLeuGxkcVxVAqq+B+XajgBlCcGzfYymt9faKffiJyceE7IlCE\n7dvZoeK3b3+5TtEV3BgbCqAZyMlhm8OOGcO2dgoPR6JoSppsMRQAqEZ1NTuMuJsbkZERUUIC0dSp\nRAKF/b8J6kAVyQKtqAGaIIYhCg0lWraMner08mUid3e+owJlMTEhKixU7jGQLACamNhYoqVL2Z7Y\nmzYRjRiBO4mmzsSE7XGvTCiGAmgi0tKIpk8nGjqUaOxYdhDAkSORKJoDJAsAkKuggMjfn8jTk6hN\nG3aConnziLS1+Y4MVMXYmC2GUmbDUSQLgEaqsJBozRqi9u3Z4Tru3iVav54dgRSaF11ddhyvsjLl\nHQPJAqCRKSoi+vJLIicntugpKopo715McdrcKbsoCskCoJEoLib66is2SSQlEUVGEh04QNSuHd+R\ngTrgiqKUBa2hANRcTg47/PSuXUSDBhH99Rc61MF/4c4CoJl68oRo/nwiZ2cisZgoIoLo8GEkCqgZ\nkgVAMxMbSzRpEjv3taEhUXw80e7dbEU2QG2UXQyFZAGgBiQSopAQIl9fomHD2BFhk5OJNm4ksrLi\nOzpoDJR9Z4E6CwAeFRQQ7d9PtHMnOyzHokVE48axTSEBGsLYGMkCoMl58ICttD5+nO1xffQo5pSA\nN2Niwk5opSxIFgAq8uIF0a+/Eu3Zw/ay/vBDorg4ImtrviODpsDEhOj2beXtH8kCQMnu32cTxOHD\nbF3EokVEw4cT6ejwHRk0JSiGAmiESkqITp5kk0RaGtGsWUQ3bxI5OPAdGTRVyh6mHMkCQEGqq4ku\nXiQ6eJDo99+JfHyIVqxg6yS08E0DJUNrKAA1xjBsv4iDB9lK6jZtiKZNI/ruOyILC76jg+YExVAA\naig1lejYMaKff2ZH+pw6lejKFfSuBv4o+85CwChzAHQFEAgEjLrHCM1DSgpbD3HyJNthbvRo9i6i\nTx8iDXRvBZ4xDDuHSVkZ23hCIBAQwzAKm/oKyQKgDsnJLxNESgqbIMaNIxKJMLkQqB9zc7Y5tqWl\n4pMFiqEAZDAMOxZTSAjRL7+wLZlGj2aH3RCJUFEN6o0rirK0VPy+celDs1ddzQ77HRLCLpWVbD+I\nTZvYFk1IENBYKLP5LL4G0CwVFRH98QebHM6fJ3J0JBoxgr2b6NKFSKCwm3cA1VFmiygkC2gWpFKi\nO3fYBBEaSvT330T9+rEJIjCQyNaW7wgB3pwyW0QhWUCTlZvLdpILDWWThKEh0ZAhREuXsvUP+vp8\nRwigWEgWAPVQVsbOJnf5MpskHj5kk8LgwURffIG5qqHpMzJii1iVAckCGq3KSqKoKKKwMDZB3LxJ\n1LkzUf/+bOV0nz4YrA+aF2NjJAsAqq5m6xq45BAZyfaY7t+faPlyor59iQwM+I4SgD9GRsqb0wLJ\nAtRWaSnRjRtss9a//mLvIhwc2OQwfz47cZCJCd9RAqgP3FlAs/D0KdH16y+Tw8OHRJ6e7B3D4sVE\nvXsTmZryHSWA+jIyQj8LaGIqKthZvaKj2TuGyEj2Iu/Th00O27ezEwW1aMF3pACNB+4soFGTSoke\nPXqZGKKj2TmonZ2JvL2J3n6bnfehQwcMyAfwJprEnUV6errd9OnTf3727JmlQCBgPvjgg58WLVq0\nPT8/33TChAnHU1NT2zg4OKScOHFivLGxsRLnewJlYhiirCy2IppLDDEx7H883t7sMnEiW7yEfg4A\niqXMOwuVjTqbnZ1tlZ2dbeXh4XG7tLS0Vbdu3f4+derUqAMHDsw0NzfPXbZs2eZNmzYtLygoMAkM\nDPT/J0CMOqu2pFKiJ0+Ibt1iJwDiFqmUqGtXNjH06EHk5UUkFPIdLUDTV1rKfteeP29CQ5SPGjXq\n1IIFC3YsWLBgx5UrV3yEQqE4OzvbSiQShSckJLj+EyCShVqoqmJHY5VNDHfusP/JeHq+XLp2JbKx\nwdhKAHzg5rR48YJIR6cJDFGekpLiEBsb69mjR48osVgsFAqFYiIioVAoFovF//kfdO3atf/8LhKJ\nSCQSqSzW5oZhiNLTie7dI7p//+XPxER2ylAuKQwfzv40M+M7YgAgIgoPD6fw8HDS0SFatUrx+1f5\nnUVpaWkrHx+fK6tXr14/atSoUyYmJgUFBQX/tJY3NTXNz8/P/6eBJO4slCc/n00GryYGfX0id3ei\nTp1e/uzQAXUMAI1B27ZEFy4QtW/fiO8sqqqqtMeOHfvrtGnTDo4aNeoUEXs3kZ2dbWVlZZWdlZVl\nbWlp+UyVMTV1DEOUk0OUkMAWIyUksDNp3bvHlmvKJoVJk4g6dmRn2wKAxklZldwqSxYMwwhmz569\nz83NLW7x4sXbuPUjRowICQ4O9lu+fPmm4OBgPy6JQMNUV7NTgCYk/DsxJCSw9QcdOhC5urLLwIFs\ngrCzQ90CQFOjrOazKiuG+uuvv/q+9dZbVzt37nxXIBAwREQbN25c4e3tHT1+/PgTaWlp9jU1nUUx\n1EsMQyQWEyUlsf0WkpLYXs7x8WyrJGvrlwlBNjmYmyMpADQXo0cTTZtGNHZsE2kNVV/NLVlw/RS4\nZMAt3GM9PaL27YmcnNjFxYVNDO3bs9sAoHmbMYPorbeIZs9uxHUWwKqoIEpLI0pJYYuOHj9+mQwe\nPyZq1erfCeG999if7dqx5ZEAALVp9HUWzUl1Ndv8lEsGr/7MyWH7Ijg4sIuTE1u5zCUEQ0NewweA\nRkxZdRZIFq+hspIoM5O9O0hN/W8yyMpie1E6OrLJwNGRaMCAl49tbIi0cOYBQAmMjZUzpwX+ZL1C\nIiHKzmbvDLglLe3fj/Py2MpkOzu2o5qjIzta6tSpbDKws8MMbQDAD2NjdnQFRWtWyaKqim1N9PQp\nu2Rk/DcpZGezcybY2f176d2byN6e/d3KikhTk+93AwDwX8qah7tJJAuplK0H4JKA7JKZ+fL3/Hwi\nCwui1q3ZxcaG/ePP9Tmws2PX6ery/Y4AAF6PsXEzrrOIj2frArKz2fqArKx/JwOxmM2mNjYvE0Hr\n1uzYRe+++3K9pSXuCACgaWvWFdydOrG9jq2s2MXZmZ0wh0sKVla4GwAAIFJe09lG0SmvVSuGSkr4\njgQAQP3l5rL/UBcUKLZTHiaxBABoQoyMiIqLFb9fJAsAgCZEW1s5xfJIFgAATcy2bfKf01CoswAA\naIIUPQc37iwAAEAuJAsAAJALyQIAAORCsgAAALmQLAAAQC4kCwAAkAvJAgAA5EKyAAAAuZAsAABA\nLiQLAACQC8kCAADkQrIAAAC5kCwAAEAuJAsAAJALyQIAAORCsgAAALmQLAAAQC4kCwAAkAvJAgAA\n5EKyAAAAuZAsAABALiQLAACQC8niNYWHh/Mdwn8gpvpBTPWnjnEhJn6oRbIIDQ0d4urqmtC+fftH\nmzZtWs53PPWhjhcHYqofxFR/6hgXYuIH78lCIpFoLliwYEdoaOiQuLg4t6NHj06Kj4/vwHdcAADw\nEu/JIjo62tvJySnJwcEhRVtbu2rixInHTp8+PZLvuAAAQAbDMLwuJ0+efO/999/fwz0+ePDg1AUL\nFnzPPSYiBgsWLFiwNHxR5N9qLeKZQCBg6trOMIxAVbEAAEDNeC+GsrGxyUxPT7fjHqenp9vZ2tpm\n8BkTAAD8G+/Jonv37jcfPXrUPiUlxaGyslLn+PHjE0aMGBHCd1wAAPAS78VQWlpa1Tt27FgwePDg\nPyQSiebs2bP3dejQIZ7vuAAAQAbfFdx1LefPnx/i4uKS4OTk9CgwMHC5qo6blpZmJxKJLru5uT3o\n2LHj/e+++24RwzCUl5dnOnDgwIvt27dP9PX1vVBQUGDMvSYgIGCFk5PTIxcXl4Q//vhjkLJiq66u\n1vTw8IgdNmzYGXWJqaCgwHjs2LG/uLq6xnfo0CHuxo0bPfiOKyAgYIWbm9sDd3f3e5MmTTpSXl6u\nq+qYZs6cud/S0lLs7u5+j1v3OjHcvHmzm7u7+z0nJ6dHixYt+k7RMX322WdbXF1d4zt37nxn9OjR\nvxUWFhqpMqba4uKWrVu3fioQCKR5eXmmfJ8rhmFo+/btC11dXeM7dux4f9myZZv4jikqKsrby8sr\n2sPDI7Z79+4x0dHRXsqISeFfUkUt1dXVmu3atUtKTk52qKys1O7SpcvtuLi4Dqo4dlZWllVsbKwH\nwzBUUlLSytnZ+WFcXFyHpUuXbt60adMyhmEoMDBw+fLlywMZhqEHDx64denS5XZlZaV2cnKyQ7t2\n7ZIkEomGMmL7+uuvl0yePPnw8OHDQxiGIXWIafr06cH79u2bxTAMVVVVaRUWFhrxGVdycrKDo6Pj\nk/Lycl2GYWj8+PHHg4KC/FQd09WrV/vdunXLU/aL3ZAYpFKpgGEY8vLyio6KivJmGIbeeeedc+fP\nnx+iyJguXLjgy73f5cuXB6o6ptriYhj2H7fBgweHOjg4JHPJgs9zFRYW9vbAgQMvVlZWajMMQ8+e\nPbPgOyYfH5/w0NDQwQzD0Llz594RiUSXlRGTwv9wKGqJiIjoNXjw4FDu8caNG/03btzoz0csI0eO\nPHXx4sWBLi4uCdnZ2UKGYROKi4tLAsOw2Vv2zmfw4MGhkZGRPRUdR3p6uu2AAQMuhYWFvc3dWfAd\nU2FhoZGjo+OTV9fzGVdeXp6ps7Pzw/z8fJOqqiqtYcOGnblw4YIvHzElJyc7yH6xGxrD06dPrV1d\nXeO59UePHp344Ycf/qjImGSX3377bfSUKVMOqTqm2uJ67733Tt65c6ezbLLg81yNGzfuxJ9//tn/\n1efxGdPEiROPHj9+fDzDMHTkyJFJyvr8eK/grk1mZqaNnZ1dOvfY1tY2IzMz00bVcaSkpDjExsZ6\n9ujRI0osFguFQqGYiEgoFIrFYrGQiOjp06etZVtwKSvWTz755NstW7Ys1dDQkHLr+I4pOTnZ0cLC\nImfmzJkHunbtemvOnDl7nj9/rs9nXKampvmffvrp1/b29mmtW7d+amxsXOjr63uR73NF1PDP69X1\nNjY2mcr8Huzfv3/W0KFDz6lDTKdPnx5pa2ub0blz57uy6/mM69GjR+2vXr36Vs+ePW+IRKLwmzdv\nduc7psDAQH/uel+6dOmWjRs3rlBGTGqbLOT1v1CF0tLSVmPHjv31u++++9jAwKBEdptAIGDqilHR\n8Z89e3aYpaXlM09Pz1imlr4nqo6JiKi6ulrr1q1bXT/66KMfbt261VVfX/95YGCgP59xPX78uN22\nbdsWp6SkODx9+rR1aWlpq0OHDk3lM6bajqEO1zlnw4YNq3R0dConT558hO9YysrKWgYEBKxct27d\nGm5dbde9KlVXV2sVFBSY3Lhxo+eWLVuWjh8//gTfMc2ePXvf9u3bF6Wlpdl/++23n8yaNWu/Mo6j\ntsmC7/4XVVVV2mPHjv112rRpB0eNGnWKiP1PMDs724qIKCsry9rS0vJZTbFmZGTY2tjYZCoynoiI\niN4hISEjHB0dkydNmnQ0LCys/7Rp0w7yGRMR+9+Kra1thpeXVwwR0XvvvffLrVu3ulpZWWXzFdfN\nmze79+7dO8LMzCxPS0uresyYMb9FRkb24jMmTkM+L1tb2wwbG5vMjIwMW2XHFhQUNOPcuXNDDx8+\nPIVbx2dMjx8/bpeSkuLQpUuXO46OjskZGRm23bp1+1ssFgv5jMvW1jZjzJgxvxEReXl5xWhoaEhz\nc3PN+YwpOjrae/To0f8jYr9/0dHR3kRK+PzetJxRWUtVVZVW27ZtHycnJztUVFToqLKCWyqVCqZN\nm/bz4sWLv5Vdv3Tp0s1cGeDGjRv9X60IrKio0Hny5Ilj27ZtH3MVScpYwsPDfbg6C3WIqV+/flcf\nPnzozDAMrVmzZu3SpUs38xnX7du3u3Ts2PF+WVmZnlQqFUyfPj14x44d8/mI6dXy5deJwdvbO+rG\njRs9pFKpQBGVya/GdP78+SFubm4PcnJyzGWfp8qYaopLdqmpgpuPc/Xjjz9++MUXX6xjGIYePnzo\nbGdnl8Z3TJ6enrfCw8N9GIahS5cuDejevXuMMmJS+B8ORS7nzp17x9nZ+WG7du2SAgICVqjquNeu\nXesrEAikXbp0ue3h4RHr4eERe/78+SF5eXmmAwYMuFRTs8cNGzasbNeuXZKLi0sC1zJBWUt4eLgP\n1xpKHWK6fft2l+7du8fINr3kO65NmzYt45rOTp8+PbiyslJb1TFNnDjxqLW19VNtbe1KW1vb9P37\n9898nRi4Zo7t2rVLWrhw4XZFxrRv375ZTk5Oj+zt7VO5a33evHk/qDIm2bh0dHQquHMlu93R0fGJ\nbNNZVZ4r2ZgqKyu1p06detDd3f1e165d/758+bKIz89v//79M2NiYrp7e3tHdenS5XbPnj0jb926\n5amMmAQMozZFpgAAoKbUts4CAADUB5IFAADIhWQBAAByIVkA1APDMAKpVIrvCzRbuPgBapGSkuLg\n4uLy0M/PL7hTp073tLS0qpcsWfKNu7v7/YEDB17Kzc01JyISiUThS5Ys+cbLyyumQ4cO8TExMV6j\nR4/+n7Ozc+Lq1avX8/0+ABQByQKgDklJSU7z58/fef/+fXcitiPW/fv33X18fK5wvYsFAgGjq6tb\nERMT4zVv3rxdI0eOPP3jjz/OvX//vntQUNCMgoICE37fBcCbQ7IAqEObNm1Svb29o4mINDQ0pBMm\nTDhORDR16tRDf/31V1/uedyEXe7u7vfd3d3vC4VCsY6OTmXbtm2fpKWl2fMTPYDiIFkA1EFfX/95\nTesZhhHIjuukq6tbQcQmFO537rFEItFUfqQAyoVkAVBPUqlU4+TJk+OIiI4cOTK5X79+1/iOCUBV\neJ9WFUCdyd496OvrP4+Ojvb+6quvPhcKheLjx49PqOn56jSSLICiYLgPgHoyMDAoKSkpMeA7DgA+\noBgKoJ5wxwDNGe4sAABALtxZAACAXEgWAAAgF5IFAADIhWQBAAByIVkAAIBcSBYAACDX/wHSCgdC\n0qktCAAAAABJRU5ErkJggg==\n", + "text": [ + "<matplotlib.figure.Figure at 0x32859d0>" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEVCAYAAAARjMm4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXdYVEcXh39L771KR5ogiF2sxIodSyxYsH8ak2g0xhZj\niyXRaIrGFkHsEmPXoGLBLhYQkI4UQXpf2i678/0x2YQYlbYNnfd55tlyd2fO3nv3njtzGocQAgaD\nwWAw3oWCrAVgMBgMhvzDlAWDwWAw6oUpCwaDwWDUC1MWDAaDwagXpiwYDAaDUS9MWTAYDAajXlqM\nsjhw4MC0Xr163Za1HNLC29v75v79+2dKom9tbe3ytLQ02+b0MW3atAOrVq1aLyaRmgTbRx8uDbke\n7Nmz539ffPHFdknJsGPHjk+XLVu2WVL9yxtypSxsbW3TNDQ0KrW1tctF7fPPP/9ZXP2npaXZKigo\nCIVCoVz97jfB4XAIh8ORSBBMeXm5tq2tbVpz+pCkfPIgg6T3UUu9+dm4ceMK0X9TXV29SklJqVb0\n2t3dPVrW8ong8XgqGzZsWPnVV199D/zz3x86dOjFup+bPHny4bVr165uyhizZ8/ed+TIkUn5+fnG\n4pBZ3pGriyaHwyEXLlwYVl5eri1qP//88+fiHocQwnnbNoFAoCju8d5X3rUfGRRJ7SNZnacrVqzY\nKPpv7t69e2737t3viV5HR0e7y0KmN3H27NmRbdq0iTM3N8+u+354eHiX+/fve4leN+eGQ1VVtWbw\n4MF/Hjx4cGpz5W0MsrrZlStl0Rji4+NdBgwYcNXQ0LDQxcUl/vfff/9YtK2qqkp98eLFP9ja2qbp\n6emV9O7d+1Z1dbVa7969bwGAnp5eiY6OTtmDBw+6HThwYFqPHj3uLlq0aJuRkVHB2rVrV5eVlelM\nnTr1oImJSZ6trW3ahg0bVor+9HU/r6+vX+zg4JB879697oGBgdOtra0zTE1Nc+uePDU1Napffvnl\nVhsbm3QzM7OcefPm7aqurlYTbT979uxIT0/PSF1d3VIHB4fkK1euDBRtS0tLs+3Zs+cdHR2dskGD\nBl0uLCw0FG37+OOPfzc3N8/W09Mr6dOnT1hsbKyraNu0adMOzJ8/f+ewYcMu6OjolHXr1u3Bixcv\n7EXbFRQUhKLXr++rXr163a6pqVGtb4x3wfbRu4mLi2szb968Xffv3/fS1tYuNzAwKAKA0tJS3Yac\nd6LztKioyGDEiBHndHV1S7t27fpw1apV60WzlTfNol9ftgsICJjh6uoaa2BgUOTj4xOSkZFh3ZDj\nK4IQwnmTMlRQUBDu2rVrnqOjY5KOjk7ZN998sy4lJaW1l5fXfT09vZIJEyYc5/P5yqLPX7hwYZin\np2ekvr5+cY8ePe7WVTovX760Gj169CkTE5M8IyOjgs8+++yXumMtWbJki4GBQZG9vf2LkJAQH9H7\nf/755+A+ffqEvS7bV1999f3KlSs3vOn33Lx509vS0jJzy5YtS0xMTPJatWr16syZM76XLl0a4uTk\nlGhoaFi4efPmZXW/4+3tffPixYtD39TfvHnzdi1ZsmRL3fdGjhx59scff1wIAN99991SS0vLTB0d\nnTIXF5f469ev931TP9OmTTswb968XUOGDLmkpaXFvXHjxkfTpk07MHfu3N0DBw68oqOjU+bt7X2z\n7vFr7DFoEIQQuWm2trapoaGh/d60LTAwcFrPnj1vE0LA5XI1LS0tXx44cMBfIBAoREREeBoZGeXH\nxsa2IYTgk08+2fnRRx9df/XqlblAIFC4f/9+t5qaGpW0tDQbDocjFAgECnX7VVJS4u/YsWO+QCBQ\nqKqqUpsyZcpBX1/f01wuVzMtLc3GyckpYf/+/TPqfv7AgQP+QqGQ8/XXX6+3sLDI/PTTT3/h8XjK\nV65cGaCtrV1WUVGhQQjBwoULt48cOfJMcXGxXnl5udbw4cPPLV++fCMhBA8fPuyiq6tbIvrNWVlZ\nreLj450JIejTp8/N1q1bJyclJTlUVVWpeXt731i2bNmmunJzuVxNHo+nvHDhwu2enp4Rom3+/v4H\nDA0NCx49etSptrZWcdKkSYcnTJhwTLSdw+EIU1JS7N+1r+obY9q0aYFff/31+rcdK7aP3r2PDhw4\n4C86n0WtIedd3fN0/Pjxx8ePH3+8srJSPSYmxs3CwiKzV69etwghSE1NtX39XPf29r4h6u/MmTMj\nHRwckuLj450FAoHCt99+u7J79+53G/N/rfufrNs4HI7Q19f3dHl5udbz589dVVRUaj766KPrqamp\ntqWlpTqurq7Pg4KCphJC8PTp0/YmJia54eHhnYVCIScoKGiqra1tKo/HU66trVX08PB4tmjRoh8q\nKyvVq6urVe/evdtdNLaysjLvt99+mykUCjm7du2a26pVqyyRDJ07dw4/efLkGNFr0f4oLy/XsrCw\nyBSdT5MnTz60du3abwghuHHjhreSkhJ//fr1X9fW1iru27dvlqGhYYGfn98RLper+fz5c1d1dfXK\n1NRUW1G/T5486WBgYFD4pv1z69atXlZWVhmi10VFRfrq6uqV2dnZZvHx8c5WVlYZ2dnZZoQQpKen\nW4vOt9ebv7//AV1d3ZJ79+55EUJQXV2t6u/vf0BbW7vs9u3bPWtqalQWLFjwY91j0Zhj0NAmcwVR\nt9nY2KRpaWmV6+npFYvab7/9NvP1E/P48ePjRX8KUZszZ86etWvXfiMQCBTU1dUro6Ki3F/v/01/\noMDAwGnW1tbpote1tbWKKioqNXFxcS6i9/bs2TPH29v7hujzjo6OiaJtUVFR7hwOR5iXl2cses/Q\n0LDg2bNnHkKhkKOpqcmtexLcu3fPy87O7oVI5kWLFv3wpn3h7e19Y8OGDStEr3/99dd5Pj4+f77p\ns8XFxXocDkdYVlamTQi9SM2ePXuvaPulS5cGu7i4xNU9kVJSUuzfta8aMsa7lAXbR/Xvo7p/7oac\nd6+fp8rKyryEhAQn0XsrVqzYIOqzPmXh4+Pzp+g5IQQCgUBBQ0OjIiMjw6qh/9d3KQvRhY0Qgo4d\nOz7+/vvvl4heL168eOvChQu3E0Iwd+7cXatWrVpX9/vOzs7xYWFhve/du+dlbGycV/c31B3bwcEh\nSfS6oqJCg8PhCHNzc00IIXB0dEy8fPnyQNH2uvvj119/ndetW7f7hPxXWairq1cKhUIOIQRlZWXa\nHA5HGB4e3rnubzlz5sxI0evExERHRUXF2jftH6FQyLG2tk6/detWL0II9u7dO7tfv36hhBAkJSU5\nmJiY5IaGhvbj8XjK79rP06ZNC/T39z9Q9z1/f/8DEydOPCp6zeVyNRUVFWszMzMtGnsMGtrkahmK\nw+GQs2fPjiwuLtYXtZkzZ+5//XPp6ek2Dx8+7Kqvr18sakePHvXLzc01LSwsNKyurlZr3bp1SkPH\ntbKyeil6XlBQYMTn85VtbGzSRe9ZW1tnZGVlWYhem5qa5oqeq6urVwGAsbFxft33uFyuVn5+vnFl\nZaVGx44dn4jkHDx48J8FBQVGAJCZmWn5LjnNzMxyXu8ToOvVy5Yt2+zg4JCsq6tbamdnlyqS/W0y\nir5bl4KCAqO37SuhUKhQ3xjvgu2jxtGQ867ueZqfn29cW1urVPc9a2vrjIaOl56ebrNgwYKfRPvc\n0NCwEADqjtccXt+3dV+rqalVV1RUaIrk+OGHHxbX/S9nZmZaZmdnm798+dLKxsYmXUFBQfimMeoe\new0NjUoAEB1DfX394rKyMp03fW/mzJn7c3NzTS9cuDAM+LddydDQsFBkwxCdt6//FpHsAHWE0NXV\nLX3TOBwOh0yYMOH4sWPHJgLA0aNH/SZNmnQEABwcHJJ//PHHhWvWrFljamqaO3HixGPZ2dnmb9uf\ndY+zqG9LS8tM0WtNTc0KAwODolevXrUSvfeuY/C28/1dyJWyaCjW1tYZffr0CaurVMrLy7V37tw5\n39DQsFBNTa06OTnZ4fXvvc2QVfd9IyOjAmVlZX5dt8mMjAzrugemoRgZGRWoq6tXxcbGuorkLCkp\n0ROdxFZWVi/fJGd9HD161O/cuXMjrl271q+0tFQ3NTXVDmi8MdXIyKjgbfvqyJEjk8QxRkNk+BD3\n0evnYkPOu7rfMTY2zldSUqqtu05d97mmpmYFAFRWVmqI3svJyTETPbe2ts7Yu3fvnLr/oYqKCs1u\n3bo9qE/25lL3d1hbW2esXLlyQ105uFyu1vjx409YWVm9zMjIsG6KMd/DwyMqMTHR6U3bVFRUeKtX\nr167atWq9c09n+Pi4tp4enpGvm37xIkTj508eXJsenq6TXh4eJcxY8b8UXfb7du3e6Wnp9twOByy\ndOnS7xo6LiGE8/LlSyvRay6Xq1VUVGTQqlWrV03/Ne9G7pRFQw7e0KFDLyYmJjodPnx4Mp/PV+bz\n+cqPHj3qHB8f76KgoCCcMWNGwKJFi7ZlZ2ebCwQCxfv373vxeDwVY2PjfAUFBWFKSkrrt/WtqKgo\nGDduXPDKlSs3cLlcrfT0dJvt27d/MXny5MON/S0KCgrC2bNn71u4cOGPIve6rKwsC5GBdubMmfsD\nAwOnX79+va9QKFTIysqySEhIcK5vX3C5XC1VVdUaAwODooqKCs0VK1ZsrLu9oX+Ad+0rcY3REBk+\nxH1kZmaWk5mZaSkyMjb2vFNUVBSMHj361Jo1a9ZUVVWpx8bGuh48eHCq6EJsbGycb2FhkXXo0KEp\nAoFAMSAgYEbd837u3Lm7N27cuEJkkC8tLdWt6yTi7e19s6kupW+i7r4gdQzjs2fP3rd79+654eHh\nXQghnIqKCs2LFy8O5XK5Wl27dn1obm6evWzZss2VlZUa1dXVavfu3evekPGGDBlyKSwsrM/btk+Z\nMuVQdXW1WkhIiE9jvaHq/pawsLA+gwcP/vNtn/X09Iw0MjIqmDVr1m8+Pj4hOjo6ZQCQmJjodP36\n9b41NTWqqqqqNWpqatWKioqC+sary6VLl4bcvXu3B4/HU1m1atV6Ly+v+xYWFlkNkbsp/1+5UxbD\nhw8/XzfOQqSJ67q4aWtrl1+5cmXg8ePHJ1hYWGSZm5tnL1++fBOPx1MBgK1bt37p7u4e3blz50eG\nhoaFy5cv30QI4WhoaFSuXLlyQ48ePe4aGBgUPXz4sOubXOd++eWXzzQ1NSvs7e1f9OrV6/akSZOO\nTJ8+PfB1OUS862T77rvvljo4OCR369btga6ubumAAQOuiu54Onfu/CgwMHD6F198sV1PT6/kdY+G\nuv3WHXfq1KkHbWxs0i0sLLLatm0b4+Xldf9tn31bX6Lnb9tXTRmjoeOzfQT07dv3upub23MzM7Mc\nExOTPKDx592OHTs+5XK5WmZmZjkzZswImD59emDdi8C+fftmb9myZYmRkVFBbGysa48ePe6Ktvn6\n+p5ZunTpdxMmTDiuq6tb6u7uHn358uVBou2ZmZmWPXv2vPO2Y/au31ffe3W/17Fjxyf79u2b/emn\nn+4wMDAocnR0TBJ5yikoKAjPnz8/PDk52cHa2jrDysrqZXBw8Li3jV339bBhwy7Ex8e71F3aqbtd\nQUFBuG7dum+KiooM3iX7u35LdXW12p9//jnY398/6O17CfDz8zt6/fr1vn5+fkdF79XU1KguX758\nk7Gxcb65uXl2QUGB0aZNm5a/6ftv+61+fn5H165du9rQ0LAwIiKi/eHDhyc3RO639VkfHEJY8SMG\n433gwIED0/bv3z/z9u3bvZrTT2ZmpuWECROO37lzp6e4ZJMF+/btmx0bG+u6ffv2LyTR/44dOz7N\nzMy0fN2dVhpMnz490NLSMnP9+vWrpDWm2GcWM2bMCDA1Nc2tG81ZVFRkMGDAgKtOTk6JAwcOvFJS\nUqIn2rZp06bljo6OSS4uLvF1/ecZDIZssLS0zGzpigKgS1ySUhQA8Omnn+6QhaIAZBMQK3ZlMX36\n9MC6wTEAsHnz5mWipYV+/fpdE+3g2NhY1xMnToyPjY11DQkJ8fnkk09+bQmpOBgMeUQeUrAwpINM\njnVj/Gwb2lJTU23btm0bXddvOicnx5QQguzsbDNnZ+d4Qgg2bty4fPPmzUtFnxs0aFDI/fv3u0lC\nJtZYY4011prelKShkHJzc01FPr6mpqa5ubm5pgDw6tWrVnVd9SwtLTNf9/Nmd0oMBoPRNIgYl6uk\nvuRT3/TpTdtkrVHf1FavXi1zGZhMTKYPUS4mU8OauJGKsjA1Nc0VBQRlZ2ebi1wFLSwssuoGlmRm\nZlq+y0+YwWAwGLJBKspixIgR54KCgvwBICgoyN/X1/eM6P3jx49P4PF4KqmpqXZJSUmOXbp0CZeG\nTAwGg8FoOGK3WUycOPFYWFhYn4KCAiMrK6uX69at+2bZsmWbx40bF7x///6Ztra2aaLAGldX19hx\n48YFu7q6xiopKdX++uuvn7QUG4W3t7esRfgPTKaGwWRqOPIoF5NJNsh9UB6HwyHyLiODwWDIGxwO\nB6QlG7gZDAaD0fJgyoLBYDAY9cKUBYPBYDDqhSkLBoPBYNQLUxYMBoPBqBemLBgMBoNRL0xZMBgM\nBqNemLJgMBgMRr0wZcFgMBiMemHKgsFgMBj1wpQFg8FgMOpFKsWPGFKCEIDHA2pq/nmsrf1nW93P\n1UVFhTZV1X+eK7D7iJaKkAhRXVuNmtoa1AhqUFNbA56AB2VFZagrqUNdWR1qSmpQVlAGhyP1Us5y\nCyFAaSltAGBkBGhqylYmeYIpC1lTVQUUFQGFhf9+LCsDyssBLpc+vuk5l0u/L1IMfD6grPzPRV9V\nFVBSAkQXhLoXBtFzQuj36ioYHo9+T9SHpiago/Pfpqv7z6OxMWBiQh9FTVVV+vvzPae4qhgvil8g\ntSQVqcWpSCtNQw43B/kV+civzEd+RT5KqkugrKgMVUVVqCqpQlVRFSqKKuAL+aiurUYVvwpVtVUg\nhMBA3QCmWqYw0zKDpY4lHPQd4GDgACdDJ7gau0JV6f0+homJwJkzQGgoEBEBVFcDBgaAUEj/iiYm\nQI8ewMSJwKBB9O/1odIiss72j4yEIocDAyUlGCsrw0hZGcYqKv88/+vRUFkZirK+U+Lzgbw8ICfn\nza2g4N9KQSgEDA3pGSp6NDCgF2AtLUBb+7+PoudaWoC6+r9nBOL4/SIFIlIeFRVUeb2tFRcD+fn/\ntLw8+jvV1QFzc8DSErCy+u+jvT27dXsLRVVFiM6NRkxeDGLyYxCTF4Pnec9RK6yFvb497PTtYKdn\nB1s9W5hrmcNY0xjGGsYw1jSGgboBlBTqvw/kC/gorCpELjcXOdwcZJRmIKU4BclFyUgoTEBKUQqc\njZzRwbwDelj1gLetN+z07Fr8bITPB4KDgR07gLQ0YPRoqgg6dwbMzP75CwmFQHIycO0acOgQkJsL\nrF8PTJjQMibe4s462yKUhVpYGE63bYsCPh8FfD7yeTz6KHr9VyuprYWekhJMlJXRSlUVrVRUYK6i\n8vfzv99TVYVaY482IfQC+PLlv9urV/9WBiUl9K7azOy/zdSUbhMpBkNDekFt4X++N0II3RfZ2XQ/\nZWb+85iZCWRk0H+qnh7g4PDv5ugIuLjQffMBUMGrwNPspwjPCsejV48QnhWOgsoCuJu6o61JW7Q1\nbou2Jm3hZuIGYw1jqV2sq/hViM6LxpNXT3A74zZupN2AsoIyBrQeAF9nX/S37w915ZZzjAgBjh8H\nVqwA7OyAL74ABg+mk+iGcOMG8OWX9G984ACddcgzH6Sy0Lp1C+W9etX7WQEhKOLzkcvnI7umBq94\nPLx6w2M2jwdtRUVYqKrCRk0NNmpqsFVUhE1ZGWxzc2GTmQnjtDRwXlcMGhr0jrhua9WK3j2LFIKh\nIaCoKIU98x4gFFJlm5z87xYfD6SkADY2QNu2tLm700cHhxa/f0uqS3An4w7C0sNwK/0WYvJi0Nak\nLbpYdEHnVp3RxaILnAydoMCRr9tXQggSChMQkhyCM/FnEJETgQH2AzC13VQMdhgMZUX5XaO5dw9Y\ntIia8LZtA3r3blo/fD6wejWdaVy6RE9LeYUpi6ZCCL3zf/ECwhcvUPjyJTLz85HO5SJdKESapibS\nbW2RZm6OdAMDVCkpwUYggI2SEuw0NeFoZAQnPT04qqvDTk0NKi1hHtqS4fGApCQgOhqIiaEtOpou\ncXl60jWDLl3oo729XM/OymvKcSPtBm6k3UBYWhiSipLQ1aIretv0Rh+bPuhq2RVqSmqyFrPRFFQW\n4HTcaRx4dgApRSmY0m4K/tfxf3AwcJC1aH9TXg4sWQJcuABs2gRMmiSeJaTjx4EFC4Bz54CuXZvf\nnyRgyuJd1NbSpY2kJGq5SkkBXrygLS2NrvXb2/+72dnRRwuLf92xltfWIr2mBunV1XhRVYWkv1pi\nZSUya2pgpaYGR3V1OKmrw1FDA47q6nDW0IC1qioU5PjC1eIpKQGePAEePfqnVVQAnTpRS2SfPlSJ\nyHAJixCC6LxohCSHICQ5BI9ePUJXi67oZ9cPfWz7oFOrTlBRVJGZfJIgoSABAZEBCIgIQC/rXljs\ntRjdrbrL1L5x6xYwbRrg7Q1s307NgOLk4kVg5kwgLAxwdhZv3+KAKQtC6NJFYuI/SkHU0tLokpCT\nE133dnD4RynY2lKDsBjgCYVIra5GYmXlv5RIfGUlygQCuGpooK2m5t/NTVMT5ioqLd4wKLfk5FCl\ncecO/efGxADt29O1hj59AC8veqMgQSp4FbicchnnE8/jcvJlqCurY7DDYPg4+MDb1htaKuI59+Sd\nCl4FAiMDsf3BdphrmWND3w3oY9tHqjLU1gJff02XinbvBoYPl9xYAQHAhg3Aw4fU1Vae+DCVRWgo\nyvfu/UdBaGlRhSBqjo70sXVrQE220/liPh+xlZWIqaj4VxMQ8i8F0kFbGx6amtBo4evvcgmXC9y/\nT28tw8KAp0/pzMPHh1o0PTzEsmyVV5GH8wnncTbhLG6m3URXy64Y4TQCgx0Hy9VSjCwQCAU4FnMM\n39z4Bk6GTtjQdwM6tuoo8XFzcqibq4oKcOSIdC7gS5YACQnA2bPytRr6YSqLixdRXlLyj2IQ93xS\nCuTxeH8rjqiKCkSUlyOushJ2amrooK2NDlpa6KCtDU8tLeg21D2D0TAqKoCbN4GQENoqKqiv5ODB\nwIABgL5+g7tKKUrBmfgzOJNwBlG5URjUehB8XXwxxHEI9NT0JPcbWig8AQ/7n+7H+lvrMcRxCDb3\n3wwjDclcwe/coW6ts2YBq1ZJzw+Cx6MroNOmAfPnS2fMhvDhKoshQ2QtitjhCYV4XlGBp1wuIrhc\nPC0vR1RFBcxVVNBFWxvddHTQVUcHnlpazKAuTpKTqdL48096hfHyos72vr5v9IdMLkrGiZgTCI4N\nRg43ByOdR8LXxRd97fq2SMO0LCitLsXqm6txNPoovu37LWZ1mCVWb6/AQGDZMiAoiE4gpU1SEj2N\nwsPpqrc8wJTFe46AEMRXViK8rAwP/mrJVVVop6WFbjo6fzcrVVVmAxEHXC5VGn/8QRWIpycwZgwy\nPuqIYyW3ERwbjMyyTIx1HYvxbuPRw6oHFBXY0mFTeZbzDPMuzoOKogoO+B6ArZ5ts/oTCql9IjiY\nGpxlaWjetAm4exc4f14+lqOYsvgAKa+txePycjwsL8eDsjLcLy2FsoICeuvqoreeHnrr6qKNhgZT\nHs0kMy8Zj4M2QenMOXSPLESBnSkEUybBcc5yKOkbylq89waBUIAf7v+ALfe24Pv+32Oa57QmnbtV\nVXTpJyuLpuyQtYGZxwPatQM2bwZGjpStLABTFgxQ18wX1dW4VVKCW6WlCCspQblAgF5/KY8+urrw\n0NKSfeqTFkBpdSlOxp7EoahDiMqNgq+LL8a7jUdfi55QvhIKHDxI8z0MHgxMnUptHMymJBaicqMw\n5fQUOBg4IGBEAHTVGm6LzMujF2R7e2D/fpn7tfzNlSvAZ58Bz5/L/jRhyoLxRl5WV+N2aSlulZbi\nVkkJsnk89NHTwwB9ffTX14eTujqbefwFX8BHSHIIDkUdwuWUy+hn1w+TPSZjqOPQNyfOKyyk6xwH\nD1L37EmTgDlzqMMFo1nU1NZg0ZVFuJpyFafGn0Jbk7b1fic5mfonTJ4MrFkjH0s+IggB+val9xXT\np8tWFqYsGA0il8fDteJiXP2rKQB/K45++vowUXm/gsLqgxCC8KxwHI4+jBMxJ+Bk6ITJHpMxzm0c\nDNQNGt5RYiK1pgYG0lwP8+YBI0bI/jayhXPw2UEsvrIYP/v8jInuE9/6uYgIYOhQYO1aYPZsKQrY\nCO7dA/z8qDutLBMvM2XBaDSEECRUVSG0uBhXi4oQVloKWzU1+BgYYKiBAbx0daEkT7dnYuRF8Qsc\niTqCw9GHISRCTPGYgskek2Gv30yXlZoa4NQp4NdfgdRUOtOYNYvmCmM0icicSIw+MRqTPSZjrffa\n/8yEb90Cxo4Fdu0CxoyRkZANZPBg6mAnS4XGlAWj2fCFQoSXl+PPoiJcLCxERnU1BhkYYJihIXwM\nDGDQwpP2l9eU4/fY3xEYGYj4gniMdxuPKR5T0MWii2SW4qKi6BXs+HFg4ECamrRzZ/GP8wGQy83F\n8GPD0ca4DfYN3/d3WpTz52lqjWPHgH79ZCxkA7hxA/jkE2q7kJXXO1MWDLGTWVODS4WFuFhYiJsl\nJXDX0sIwQ0MMNzSEawvxsiKE4HbGbQRGBuJ03Gl423pjuud0DHEcIr1sqGVlNP/D9u0059iSJfQW\nk8XINIoKXgX8TvmBy+Pi1LhTOBusi6VLadK+lqKDCaFJA9auBYYNk40MTFkwJEq1UIibJSW4WFiI\ncwUFUFNQwBhjY4w2NkZHLS25UxyZZZkIigxCYGQgVJVUMcNzBiZ7TIaplqnshOLzgd9/B7Zsof6U\nS5ZQo3gLn7FJE4FQgM9DPseFiIeoDbyCaxcM4OIia6kax9GjwN69NHmALGDKgiE1CCF4wuXiVH4+\n/sjPR7VQiNHGxhhtZITuuroyc82trq3G2fizCIwMRHhWOMa3HY/pntPRuVVn+VJmhADXrwMbN1K7\nxooV1E34FchSAAAgAElEQVTmA3MuaCpbtxKsf7gEFr1CETbzKow1jWUtUqPg82lJlqtXATc36Y/P\nlAVDJhBCEFtZSRVHQQFyeDz4GhlhgokJeuvqSjwtOyEET7OfIjAyEMdjjqO9eXtM95yOUS6jWka1\ntjt3aE3OhARg+XIaTcZqlL+Vb7+lWWNDQwl2J32Ns/FncW3qNdnOGJvAihU0eHD7dumPzZQFQy5I\nqarCH/n5OJaXh3w+HxNMTOBnYoL2Yl6qyq/Ix5HoIwiMDERZTRmme06Hfzt/2OjZiG0MqfLgAbBu\nHbV8rl0LTJnS4iv/iRNCaPqOs2eB0FBafJIQgnVh63Di+Qncmn5LYokIJUFKCtCtGy20Ke3AQaYs\nGHJHbEUFjuXl4WhuLpQVFDDxL8XhqKHRpP4EQgGupFzB/oj9CH0RiuHOwzHDcwb62PaRu1KjTebe\nPZr5rrCQLlONGCFf0WUygBBa+jQsjEZCv56+Y2noUtxIvYFrU69BW1Wy9UnESf/+1Kt6wgTpjtui\nlcWmTZuWHz58eLKCgoLQ3d09OjAwcHpFRYXm+PHjT6Snp9vY2tqmBQcHj9PT0yv5W0CmLFoMhBCE\nl5fjaG4uTuTnw0pVFVNMTTHJ1BSGDTDuphSlICAyAEGRQbDQscAMzxmY0HZCo9JAtCgIoUkMly+n\n9d2/+67pxaFbOEIhdTWNjKS75E1Z4wkhmHNhDlKLU3HR7+Kbo+3lkOPHaQzn5cvSHbfFKou0tDTb\nvn37Xo+Li2ujqqpaM378+BNDhgy59Pz5czcjI6OCr7766vvvvvtuaXFxsf7mzZuX/S0gUxYtklpC\ncKO4GEG5ubhQWIgB+vqYbmaGgQYG/woArORX4o/YP7A/Yj9i82Mx2WMyZrSf0aC0D+8NQiENIFi5\nkvpbbtlCXW8/EGpraQxFWhqtlf2uooYCoQAT/pgAIREieGxwi8gAXFlJYzUTE9+YAV9iiFtZSG1O\nr6OjU6asrMyvrKzUqK2tVaqsrNRo1arVq3Pnzo3w9/cPAgB/f/+gM2fO+EpLJobkUOJwMMDAAIfb\ntEFat27or6+PtWlpsLl/H8tTUnAy9QHmXpgLy22WOP78OD7r8hkyF2Vi26BtH5aiAGgcxqRJQFwc\nTZHeqRO1jJaXy1oyicPn05+enU1nFPVVv1VUUMThUYdRUl2CJVeXSEfIZqKhQWMtfv9d1pI0D6ku\nQ+3du3fO4sWLf1BXV68aNGjQ5UOHDk3R19cvLi4u1gcAQgjHwMCgSPQaoDMLFT8/LHd0BAB4e3vD\n29tbajIzxEd+RT62Rp5EQE4WinU6w1KZg89sHDDP2pmVl61LVhZVFlevUnvG1KnvZWBfTQ0wbhyd\nWP3+e+MMwMVVxei2vxsWey3GnI5zJCekmLh4kR7Ku3clN8bNmzdxs05Qx9q1a8U6swAhRCotOTm5\ndZs2bWILCgoM+Xy+kq+v7+lDhw5N1tPTK677OX19/aK6rwEQrYsXCaNlUiuoJRcTL5IxJ8YQ3U26\nZMqpKeRm6k1SXcsnZ/PzybCoKGJ45w5ZkJRE4isqZC2ufPHwISGdOxPSsych0dGylkasVFQQMmgQ\nIWPGEFJT07Q+EgsSickWE3LtxTXxCicBamoIMTQkJDVVemPSy7v4ruFSu115/Phxp+7du98zNDQs\nVFJSqh09evSp+/fve5mZmeXk5OSYAUB2dra5iYlJnrRkYkiOlKIUrLy+EjY/2mBt2FoMbD0Q6QvT\ncXDUQfSx7QNVRSWMMDLCeXd3PO7YERoKCugTGYl+kZE4mZ8PvlAo658ge7p0Ae7fByZOBD76CFi6\nlNYPb+FwuTRzrJERNf42NUbR0dARx8ccx8Q/JiKxMFG8QooZFRVg1Cjg9GlZS9J0pKYsXFxc4h88\neNCtqqpKnRDCCQ0N7e/q6ho7fPjw80FBQf4AEBQU5O/r63tGWjIxxEslvxKHnh2C9wFveO33QhW/\nCiGTQ/Bw1kPM6TjnrV5Ntmpq2Ghvj/Ru3TDL3Bw/Z2bC9sEDrE5NRWZNjZR/hZyhqEjdhKKjgcxM\nGgp8/ryspWoypaU016KDA62X3dzM7h/ZfYR13usw+sRoVPDkW5H6+tKKfi0Vqdosvv/++6+CgoL8\nFRQUhB06dHj622+/zSovL9ceN25ccEZGhjVznW15EELw6NUjBEQEIPh5MLysvDDDcwaGOw//O2No\nU4ipqMCurCwcy8vDAH19fGFlhW46OmKUvIVy7Rrwv//RWcfPP8u+lmgjKCykRYu8vICffhKfGYYQ\ngmlnp0FIhDjoe1C+Ur7UoboaMDWlgXrSOGwt1nW2qTBlIZ/kV+TjcNRhBEQGoIpfhRntZ2Bqu6mw\n1LEU6zhltbUIyMnBT5mZMFdRwReWlhhlbPze1t9oEJWVwKpVNFPdzz8DH38sa4nqJS+PBqf5+NBw\nEnEfvkp+Jbr91g3zO8/H/zr9T7ydi5GxY6ln1LRpkh+LKQuGzBAIBbicchkBEQEIfRGKkS4jMcNz\nBnrb9Jb43VwtIThbUIBtL18ii8fDAgsLzDQ3h86HXKHu/n1gxgy6NLVzJ71tlUOysqiiGD8eWL1a\ncoHqiYWJ6BHQA39O+hOdWnWSzCDN5PBh4ORJ6SxHMWXBkDp1I6stdSwxo/0MjHcbL7PI6odlZdie\nmYkrRUWYZmaGBZaWsJF24h15obqa5pgKDKRV+0aPlrVE/yI9nRYrmj2b2uclzcnYk/jq6leInBsJ\nHVX5W7YsLqaZaPPyJJ8riikLhlR4PbJ6SrspmO45Xa4C5jKqq/FLVhYCsrMx3MgIS62s0EZTU9Zi\nyYb792lSwj59gB9/rD+6TQokJ9MZxaJFwOefS2/cOefngC/kI3BkoPQGbQQ9egBr1gADBkh2nBYb\nwc2QfwghCM8Kx/8u/O/vyOrPu36OzEWZ+GHgD3KlKADAWk0NW1q3RnLXrnBQV0efyEiMff4cTz6A\nyOf/4OUFRETQNR5PT5qoUIbExVFv3xUrpKsoAGDboG24m3EXJ2NPSnfgBuLjA4SEyFqKxsNmFoy/\njdX7I/ajurYaM9rPgH87f1joWMhatEZRIRBgX3Y2tr58ibaamlhhbY1eurpy6x0jMU6fBubNA+bM\nAb75pvn+qY3k2TNaTfa77+hkRxaEZ4Vj+LHheDrnqdydx+Hh1NQUEyPZcdgyFEMsvMlYPbP9TPSy\n7tXiL641QiEO5eZic0YGzFRUsMLaGoMNDFr872oU2dk0TUhNDU1SaCGdC+bjx9Tb55dfZO+ktT5s\nPcLSw3BlyhW5Sm0vEFBfhIgIwMpKcuOwZShGs0guSv47snpd2DoMbD0QGV9kIMg3SCpeTdJAVUEB\ns8zNEd+lCz61sMBXL17AKyICV4qKIO83R2LD3JyudQwcSBMTSiE/9r17wJAhtO60rBUFACzvtRwV\n/ArsebxH1qL8C0VFasu5ckXWkjQONrP4AKjkV+Jk7EkERAQgriAOkz0my52xWpIICUFwfj7WpKXB\nWFkZ6+3s4K2nJ2uxpEdYGE3tOnUqrdIngWWpy5fpktOhQzTwTl6IzY9F78DeePq/p7DWtZa1OH8T\nGEh1+YkTkhuDLUMxGoQosnp/xH78/vx3dLfqjhntZ2CY07BmRVa3ZGoJwbHcXKxNT4eNqirW2dmh\nh+57WljpdfLy6NW8qgoIDqb1SsXE8ePAggXUVNK9u9i6FRvrw9bjfuZ9XPS7KDcz57Q0oGtXICdH\ncnEnbBmK8U6yyrKw5e4WuO9yx6RTk2Cra4voedG44HcBo9uM/mAVBUBrbEwxM0Nc587wMzXFpLg4\n+ERFIbysTNaiSR4TE1owol8/uix1/75Yut21C/jyS1ovWx4VBQAs7bkUWeVZOBp9VNai/I2tLa1z\nERcna0kaDptZvAdweVycjjuNQ1GH8PjVY4xxHYMpHlPeC2O1JOEJhQjIycGG9HR01tbGJnt7ODex\nbniL4sIF6o6zfj31mGrCOUII8O23NBnglSuAvb0E5BQjj189xtCjQxE9LxommlIsV/cOZswAOnYE\n5s+XTP9sGYoBgHoz3Ui7gYPPDuJ84nn0sOqBqe2mYrjTcKgrq8tavBZFlUCAX7KysOXlS4w1NsZq\nW1uYNTVvdkshMZHmzPbyAnbsaFQ4sVAIfPEFNYWEhIh1RUuiLLm6BDncHBwadUjWogAADh6kCYQl\nVUGPKYsPnJi8GByKOoQjUUdgpmWGKR5TMNF9otzcLbVkCvl8bExPx4GcHHxmaYnFlpbQfp9zT5WX\nA9OnAy9f0mRF5ub1foXPp3fEaWn0QteS/AS4PC5cd7riyOgj6GXTS9biICODzixycyVTCJHZLD5A\ncrg52H5/Ozrs6YDBRwZDgaOAK1Ou4PGcx1jQbQFTFGLCUFkZPzg44EmnTkiuqoJTeDh2ZWW9v4WY\ntLXpbe3QodTaGhn5zo9XVtLJSHEx9X5qSYoCALRUtPDDwB8w/9J81AprZS0OrK0BHR0gNlbWkjQM\npizklCp+FY7HHMeQI0PQZmcbPMt9hq0DtyJtQRo29dsEV2NXWYv43mKrpobDbdrgors7/igoQNtH\nj3A6P//9jNHgcGiU99atNFnR2bNv/FhxMXWJ1denXk8t1bQz1nUsTLVMsTN8p6xFAUBTed26JWsp\nGgZbhpIjRHaIo9FHcTr+NLpadMUUjynwdfGFpsoHmiBPxhBCcKW4GItTUmCqrIyfHB3R9n1NVhge\nTqcOCxdSF6e/DN/p6TR9h48P1SmSWDKRJvEF8egV2AvR86JhpiVbg8v+/cCNGzR1ubhhNov3DFHy\nvqMxRxH8PBgW2haY2HYiJrpPRCvtVrIWj/EXtYRg96tXWJeWhnEmJlhnawsDZWVZiyV+Xr4ERowA\nOnQAdu/G02hlDB8OfPUVjaV4X1gWugyvyl/h4KiDMpUjPp4q4tRU8ffNlMV7Qmx+LI7FHMPR6KNQ\nUlCCX1s/THSfCCdDJ1mLxngHBXw+vklNxcn8fKyxtcWcVq3ev6p9XC4wYQLyc2rROe0kftijhTFj\nZC2UeOHyuHDe4Ywz48+gs0VnmckhFALGxrTEeisx3xsyA3cLJqM0A9/f/R6euz0x8NBAVPGr8PvH\nvyN+fjxWe69miqIFYKSsjF+dnBDarh1+z89Hh8ePcaO4WNZiiRctLQSMOIOQWGvEGPXBmB45spZI\n7GipaGGd9zosvrJYprYoBQUazCjjjPINgikLCZNfkY9dj3ahV2AvdNjTASnFKfjJ5ydkfJGBrQO3\nooN5BxY41wLx0NLC9XbtsNrWFjMSEjD2+XO8rK6WtVjNhhBa+vTbzUro8nQPtPxG0qtZYqKsRRM7\n0zynoaS6BGcT3mzUlxbduwN378pUhAbxHjuRy46ymjKcjT+LYzHHcO/lPQxxHIKlPZZiYOuBH3S6\njfcNDoeDMcbGGGJggO9evkT7J0+w3Noan1tYQLkFWoF5PBrQ/fw5zQZiavqXp5SFBdC7N43F6NZN\n1mKKDUUFRWwduBWfXvoUQxyHyOy/2aMHsGSJTIZuFMxmISbKa8pxPvE8gp8H40baDfS26Q2/tn4Y\n4TyCeTJ9ICRVVuKTpCTk8XjY7eQErxaUpLCggJbvNjCgnjlaWq994NIlwN+fppX18ZGJjJLC57AP\nhjgOweddpVzS7y+qqgAjI3oM1MWYfIEZuOUILo+LC4kXEPw8GNdSr6GXdS+McxuHEc4joKfWwiKW\nGGKBEIIT+flYlJyMYYaG2GxvL/deU7GxwPDhtAbFxo3vcI29d4+61u7YIR8FK8RETF4M+gb1ReJn\niTL733bsSHerl5f4+mQGbhnD5XFxIuYExgSPgcU2CxyKOoQRziOQtiANF/wuYGq7qUxRfMBwOBxM\nMDFBbJcuUFFQgOujRziYkyO3AX0hIYC3N11t2ry5nhiK7t1p1sAFC4CAAGmJKHHamrTFMKdh2Hpv\nq8xk6NwZePRIZsM3CDazaAAVvApcSrqE4NhgXEm5gu5W3THOdRxGuoyEgbqBzORiyD+PysowNzER\n2kpK2O3kBBc5CX0mhN7JbtxIM3707NmILycm0gp8CxbQjILvAWklaei4tyPi5sfJJH1OQABw/bp4\ng/PYMpSUqOBV4M/kP/F77O8ISQ5BN8tuGOc6Dr4uvjDUMJSqLIyWjYAQ7MzKwrr0dHxpZYUvraxk\nGpvB59PrfFgYTQbYpPTiGRk0PcjEidR96j3w6Pv00qdQUVTBtkHbpD52TAwwZgyQkCC+PpmykCDF\nVcW4kHgBp+JP4dqLa+hq2RXjXMdhVJtRMNIwkvj4jPebtOpqzElIQCGfj/0uLvD8jxVZ8uTnA+PH\nA6qqtMJds2zweXlUYQwZQqcoLVxhZJdnw+1XN0TNi4KljqVUxxYIaGLGjAyaf0scMJuFmMnh5mDP\n4z0YdHgQbH60wR9xf2CUyyikLUzD1SlXMbvjbKYoGGLBVk0Nlz088KmFBQY+e4avU1NRI8WMtk+e\n0CJ53brR+kfNdtYyMaFrJyEhNB+InN941oe5tjlmdZiFb299K/WxFRVphpXHj6U+dIP5IGcWaSVp\nOB13GqfiTyEmLwaDHQZjdJvR8HHwgZaK9O/2GB8er2pq8ElSEpIqK7HfxQXddHQkOt7Bg8DixbQM\n6tixYu68qIjOMPr0AX74oUXPMAorC+G0wwmPZj+Cvb50y/99+SV1XV6xQjz9sWWoJhKXH4dTcadw\nKv4UMkozMNJ5JEa3GY1+dv2gqqQqJmkZjIZDCEFwfj4WJidjookJvrWzg4aioljH4POpkvjzTxpT\n5+Ym1u7/QZTD3MsL+PHHFq0w1txcg/TSdASODJTquCdOAMeO0eMkDpiyaCBCIsSjrEc4m3AWp+NP\no7ymHKPbjMboNqPR07onlBRY8DpDPijg87EwORkPyspw0MUF3cUUzJebC4wbRwPsjhyRQrGikhIa\nsNepE/DLLy1WYRRXFcPhFwc8mfMEtnq2Uhs3KQno35+mhBcHTFm8gyp+FUJfhOJc4jlcSLwAA3UD\nDHcajtFtRqNTq05Q4HzwJhqGHHM6Px+fJCVhupkZ1tjaQqUZKUMePKCKYto0YM0aKdagKC39Z4ax\nbVuLVRgrrq1AUVURdg/bLbUxhUKq0FNTAUMxOFwyZfEaudxcXEy6iHMJ53A99To6tuqIEU4jMNx5\nOBwMHKQsLYPRPHJ5PMxOSEBGTQ0Ot2nT6EJLhNBr9PffA/v20dIUUqe4GOjblxZq2LChRSqM/Ip8\nOO9wlrpnVO/e1BO5X7/m9yVuZdHi1mIIIYgriMO5hHM4l3AOsfmxGNh6IMa6jsX+EftZDASjRWOq\nooKzbdsiMCcHH0VGYqm1Nb6wtIRiAy64xcV0JpGTAzx8CNjaSlzcN6OvD1y9SkPD1dWBVatkJEjT\nMdY0xvT207Hl3hb85POT1MZt3x54+lQ8ykLctJiZxQVXTZxLpAqiprYGI5xHYITzCPSx6cMM1Iz3\nktSqKkyLjwcBEOTiArt3ZJkLD6fxEyNH0lmFijwkN87JoR5Ss2dTV58WhijuIm5+HEy1TKUyZlAQ\ncPkycPRo8/v6YJehnDJXYaTzSIxwHoF2pu1YDQjGB4GAEGzPzMR3GRnYbG+PGWZm/zr3CaG25G+/\nBXbvpplj5YrMTLq2sngxMH++rKVpNJ9e+hQayhr4fsD3UhkvKoramuLjm99Xi1YWJSUlerNmzfrt\n+fPnbhwOhwQGBk53dHRMGj9+/In09HQbW1vbtODg4HF6enolfwsoB7mhGAxZE1NRgclxcWitpoZ9\nzs4wUFZGURG9aU9PB4KDm5i2QxqkpVGFsXEjMHmyrKVpFC9LX6Ld7nZI+TwF+upiCq1+B3w+NXLn\n5r4hTXwjadER3AsWLPhpyJAhl+Li4tpERUV5uLi4xG/evHnZgAEDriYmJjr169fv2ubNm5dJUyYG\noyXQVlMTDzp0gJWaGto/foyfbpSgXTvAyopWWZNbRQFQ40lIyD8BHy0IK10rDHMahj1P9khlPGVl\nwNWVzjDkDkKIVFpJSYmunZ3di9ffd3Z2js/JyTElhCA7O9vM2dk5vu52AETr4kXCYDAIqakhZOzW\nAqJw6i6ZfCWV8IVCWYvUcO7dI8TYmD62IJ7lPCPmW81JNb9aKuPNmkXIjh3N74de3sV3DZeaN1Rq\naqqdsbFx/vTp0wOfPXvWrmPHjk9+/PHHhbm5uaampqa5AGBqapqbm5v7H0sS78gRrAkPBwB4e3vD\n29tbWmIzGHJDQgIwaRJgbm6IZxM7YmF+PPpGRuJImzawUlOTtXj14+VFLbijRgHXrkkwnFy8eJh6\nwMPUA0eij2BG+xmSH88DiI5u/Pdu3ryJmzdvil2evxGn5nlXe/ToUSclJSV+eHh4Z0IIFixY8OPX\nX3+9Xk9Pr7ju5/T19YvqvgabWTA+cIRCQvbuJcTQkJCdO+lrQggRCIVkc3o6Mblzh/yRlydbIRvD\n4cOEWFkRkp4ua0kaTGhKKGmzow0RCAUSH+vmTUK6d29+PxDzzEJqNgtLS8tMS0vLzM6dOz8CgLFj\nx558+vRpBzMzs5ycnBwzAMjOzjY3MTHJk5ZMDIa8k5v7TyXTsDDgk0/+iXFT4HCw1Noa59zdsSQl\nBfMSE1EpEMhW4IYwaRKwaBEtoFRQIGtpGkRfu75QU1LDpaRLEh/L3Z3OLKSYkLhBSE1ZmJmZ5VhZ\nWb1MTEx0AoDQ0ND+bm5uz4cPH34+KCjIHwCCgoL8fX19xZRGi8Fo2Zw4QZckXF1pHMXbVm266ugg\nolMnlNXWotvTp0isrJSuoE1h4ULq5ztkCMDlylqaeuFwOPiy+5fYcm+LxMcyMAB0dMSXI0psiHOa\nUl+LjIxs16lTp0ceHh7PRo0adaqkpES3sLDQoF+/fqGOjo6JAwYMuFJcXKxX9ztgy1CMD4y8PEI+\n/pgQZ2dCHjxo+PeEQiHZk5VFjO/cIcG5uZITUFwIhdSaO2gQITyerKWpF14tj9hstyHhmeESH2vw\nYELOnGleHxDzMlSLCcpjcRaMD4FTp2js2qRJwPr1NFtGY3laXo6Pnz/HUENDbG3dulkJCSVObS1N\nYGVlRaMK5TzYduu9rXiW+wyHRh2S6DhLlwLa2sDXXze9jxYdZ8FgMN5MYSFVEEuXAidPAlu3Nk1R\nAEAHbW086dQJGTU16BURgfTqavEKK06UlOh628OH9EfLOTPbz8SFxAvI4eZIdBwPD/mLtWDKgsGQ\nIYTQWhNuboCRERAZCfTo0fx+9ZSUcNrNDR+bmKDr06f4s7Cw+Z1KCm1tWuf155+pppRj9NX1MaHt\nBOx+LNnU5fKoLOpdhkpISHDeunXrl2lpaba1tbVKAF0aun79el+pCMiWoRjvKWlpwLx5QFYWTSfe\ntatkxrlTWoqJsbGYamqKtXZ2UJLXpZ6ICOohdf48LRQup8Tmx6JvUF+kL0yXWBJTHo8auYuLmz7D\nlHpuKA8Pj6h58+bt6tChw1NFRUXBX0KQjh07PhGXEO8UkCkLxnuGQEBvojdsoBkwvvySpnmQJHk8\nHvzi4iAkBCdcXWEsF2lp38DFi8CsWXKfw2TAoQHwb+ePyR6Sy3Xl5kZnnZ6eTfu+1OtZKCsr8+fN\nm7dLXAMyGB8yz57Ra6G2NnD/PuDoKJ1xTVRUcNnDA9+kpqLTkyc41bYtOmprS2fwxjB0KLXqDh0K\n3LtHa2PIIZ93+Rzrbq3DJPdJEsuA7eYGPH/edGUhbt5qsygqKjIoLCw0HD58+PmdO3fOz87ONi8q\nKjIQNWkKyWC0dEpLgS++AAYMoEtP165JT1GIUORwsMHeHtscHOATFYVDOZI10jaZ+fNpLe8xY+h6\njBwy1GkoiquK8SDzgcTGcHMDYmMl1n2jeesylK2tbRqHw3nrGlVqaqqdxKSqA1uGYrRkCKGFbL76\nisafbdpEDdmy5nlFBXxjYjDU0BBb7O2hLG/utQIBVRZGRtSgI4d2lu33t+PRq0c4OkYMlYrewO+/\n02WoM00MU27R9SyaAlMWjJZKTAy9SeZygZ075c9mW8znY1JcHCqFQgS7usJE3uwYXC5NPjhnDvDZ\nZ7KW5j8UVxXD7ic7JH2WBGNNY7H3HxsL+PoCiYlN+77U4yx27tw5v7i4+O+Fw+LiYv1ff/31E3EJ\nwGC8b5SV0dRHffsCEybQVB3ypigAQF9ZGefd3dFDRwednzzBk/JyWYv0b7S0gLNnqSfA9euyluY/\n6KvrY1SbUQiMDJRI/46OwMuXgLyEydSrLPbu3TtHX1+/WPRaX1+/eO/evXMkKxaD0fIQCIDffgNc\nXKiN4vlzap9QVJS1ZG/ndTvGQXmzY9jb03U8Pz/gxQtZS/Mf5nWahz1P9kBIxJ/1T1mZ/nxxlFgV\nB/UqC6FQqCAUCv/+nEAgUOTz+RJ29GMwWhbXrwMdO9JyDefOAfv3A8biX5mQGGOMjXHT0xPr09Ox\nODkZAnlanu7bl3pIjRwJyNnsp3OrztBV1cXVlKsS6V+ejNz1KotBgwZdnjBhwvFr1671Cw0N7T9h\nwoTjPj4+IdIQjsGQd5KS6LryzJn0enbrFtCpk6ylahpumpp42KEDIrhcjIiORlltraxF+of58+la\nnr+/XOXu5nA4mNtpLnY/kUxEt8h9Vh6oV1l89913Sz/66KMbu3btmrd79+65/fv3D/3++++/koZw\nDIa8UlxMA+q8vOg1LC4OGDtWLp12GoWBsjIue3jASk0N3SMikFpVJWuRKBwOLeqRmwusWydraf6F\nn7sfwtLCkFmWKfa+XV3lZ2bRIG+oyspKjYyMDGsXFxepr54xbyiGPFFZCfzyC8155+tLM8Oamcla\nKvFDCMGOrCxszMjA725u6KmrK2uRKLm5QOfOwPbt1LVWTph/aT6MNYyxxnuNWPuNiqJOEk1RGFL3\nhjp37tyI9u3bR4iWniIiItqPGDHinLgEYDBaAnw+sHcv4OQEPHoE3L5N3f/fR0UB0AvNZ5aWCHRx\nweMWPk0AACAASURBVOiYGATJi+Hb1BQ4fRqYO1d+1mcAzO04F789/Q0CoXgrFTo6Uru+PKwI1qss\n1qxZs+bhw4ddRR5R7du3j3jx4oX8Jm1hMMQIITQ4qm1b4PhxWm/i5Enq8fQh4GNggLC/DN9LU1Lk\nw/DdsSPwww+00l5ZmaylAQC4m7rDQscCl1Mui7VfdXV6Q5KWJtZum0S9ykJZWZmvp6dX8q8vKSjI\nj4WJwZAQoaF0xWPTJrr0dO0a0KWLrKWSPm3+Mnw/LC/H6JgYcOWhzvfUqcBHHwEzZlCNLgfMbD8T\nAREBYu/XyanpgXnipF5l4ebm9vzIkSOTamtrlZKSkhw/++yzX7p3735PGsIxGLLg9m2gXz8aI7Fk\nCfD4Mc2c3dKN183BUFkZVzw8YKKigp4REciqqZG1SMBPP9FC1du3y1oSAMB4t/EIfRGK/Ip8sfbr\n7AwkJIi1yyZRr7L45ZdfPnv+/LmbqqpqzcSJE4/p6OiU/fjjjwulIRyDIU3CwqhLv78/jQGLjQXG\njwfkLW2SrFBRUMBeJydMNDGB19OniOZyZSuQqipdE/z+e+qzLGN01XQxwnkEjkQfEWu/8qIsxFbM\nW1INANG6eLHJRcsZjPq4cYMQb29C7O0JCQgghMeTtUTyz7HcXGJ85w65Ulgoa1EICQkhpFUrQl69\nkrUk5EbqDeL+qzsRCoVi6/PKFUI++qjx36OXd/Fdi+u9Z3r06FHnUaNGnW7fvn2Eu7t7tLu7e7SH\nh4ecFfxjMBoHIcCNG4C3N60v4e9P0ypMny75QkTvAxNMTPCHmxumxMcjMDtbtsIMGgT87390Gsjn\ny1SU3ja9UcGvwJNs8dWGc3KSj5lFvXEWTk5OiVu3bv2ybdu2MXUN27a2tmmSFg5gcRYM8UIIEBJC\njdbZ2cCqVXTJSaneMmCMN5FQWYkhUVGYZGqKtba2EisEVC9CITBsGI1i27pVNjL8xbe3vsWr8lf4\ndeivYulPKKQ5FXNzadGshiL1SnnGxsb5LK6C0dKprQVOnKDL24TQ+hITJjAl0VycNTRwv0MHDI+O\nRlp1NX5zdoaKLIw8CgrAoUM010q3bjScXkb4t/OH5x5P/DDwB6grN7GAdh0UFGi8RWIi9RqWFfXO\nLK5cuTLwxIkT4/v37x+qoqLCA+jd/ujRo09JRUA2s2A0g4oKICCAuuXb2ABLlwKDB3/Ynk2SoFIg\nwKS4OJTW1uJU27bQk5UWfvKEHuD794HWrWUjAwCfwz6Y2m4q/Nz9xNLfxx/TsJKJExv+HanPLIKC\ngvwTEhKca2trleouQ0lLWTAYTaGwkKYS2rkT6NGDBtTJY02J9wUNRUWcdHPD4pQU9Hj6FCF/5ZeS\nOh070oyOEyYAd+8CMiroNKP9DOx9sldsykIePKLqnVk4OzsnxMfHu7yrxKokYTMLRmNITAR+/pmW\nQBg1isZJfCjR1vLCtpcv8WNmJv708ICbpqb0BSCEHnx7e2DbNumPD6CmtgYW2yzweM5j2OrZNru/\nQ4eAS5eAY8ca/h2p54bq3r37vdjYWFdxDchgiBtCgCtXgKFDgZ49AT09WtJ0/36mKGTBIisrbLS3\nR9/ISNwrLZW+ABwOXXv84w/gwgXpjw9AVUkVfu5+OBB5QCz9yUMU91tnFrW1tUpKSkq1Li4u8Skp\nKa3t7OxSVVVVawB6tx8VFeUhFQHZzILxFior6R3XTz9RQ/WCBdSzSb35NkWGGAgpKsLUuDjsd3bG\ncCMj6Qtw7x5d6H/8GLC0lPrwkTmRGHl8JFIXpEKB0zyjf0kJYGVFU2E11N4mNZtFly5dwp8+fdoh\nJCTER1yDMRjiICOD2iICAqg9YudOGi/BjNbyhY+BAS64u2NkTAw28vmYbm4uXQG6d6d3EBMn0qAa\nKRvdPc08oauqizsZd9Dbpnez+tLTAzQ0gFevAAsLMQnYSN6690QaSVrxFAzGuxAI6FLT7t00d5O/\nP/DggUwdXhgNoIuODm56esInKgq5fD6WWllJNxZj6VKqKNaupcVHpMwk90k4HHW42coC+MfILXfK\nIj8/33jbtm2L3jSN4XA4ZNGiRbKxHDE+KHJz6Qxi717A0JAm9zt6FJCF3ZTRNJw1NHC3fXv4REUh\nu6YG2x0coCAthSGKv+jQgU4/+/WTzrh/4efuB889nvhl8C9QVVJtVl8iu0XfvmISrpG8dSFNIBAo\nlpeXa3O5XK3XW3l5eSPiCBmMxkEIcPMm9X50cQFSUmhNicePaa1rpihaHq1UVXGrfXtEcrmYFBcH\nnjTraJuaAkFBNK15bq70xgVgpWsFdxN3XEq61Oy+ZO0++1YDd/v27SMiIiLaS1me/8AM3B8Oubn0\nJvC33wBFRVoMbcoUul7LeD+oFgrhFxuLSqEQf7i5QVNRUXqDf/01Ddq7dEmqBq7fnv6GkOQQnBx3\nsln9nDtHl2EvNVDvSN11lsGQJHw+cPYsrWft7EwrZe7bR11fP/uMKYr3DTUFBQS7ucFMRQWDoqJQ\nIs16oatXA0VF1CNCiox1HYurL66ipLqk/g+/A1knFHyrsggNDe0vTUEYHxaxsTRgzsoK2LIFGDEC\nePkSCAwEevVink3vM0ocDgKcndFBSwsfRUYij8eTzsDKysDhw9TYHRsrnTEB6Knpob99f/wR+0ez\n+rG3BzIzAVnVnXqrsjA0NCyUpiCM95+iImDPHsDLC+jfny41hYUBd+7Q6piNyajJaNkocDj4ycEB\nIwwN0TsyEi+rq6UzsKMjTTns5yfVq+4k90nNLoqkokLDRdLTxSRUI5HqMpRAIFBs3759xPDhw88D\nQFFRkcGAAQOuOjk5JQ4cOPBKSUkJW3R4z6iqAoKDgZEjATs74Pp1YOVKGiuxeTNdemJ8mHA4HKy1\ns8Mcc3P0ioxEUmWldAaeOZOejF9/LZ3xAAxxHILInEhklmU2q5/WranDhyyQqrL46aefFri6usaK\n8kxt3rx52YABA64mJiY69evX79rmzZuXSVMehmQQCIDQUFpIqFUraoMYPZouM504QcsOsNTgDBGL\nrKzwtY0NvCMjESWNUq0cDj0pjx0Drl2T/HgA1JTUMMZ1DI5FNyK50xuwt5edspDaXzYzM9Py0qVL\nQ1auXLlh27ZtiwDg3LlzI8LCwvoAgL+/f5C3t/fNNykM3pEjWBMeDgDw9vaGt7e3tMT+f3v3HdbU\n+fYB/HvCVFRQkSHDQDCsEEABR6tiFbe4cVQctW+r1lpHcXRrK0Jr3W3t0J/WVuuoW8RRRWsV0bKH\nCgoyBFTAgVQZOe8fT1NRGQGSHND7c13nwpyc85xbSHLnPJOoiOeBmBhWJfzbbyxJvP46EBwMaHvg\nLml63rS0RCsdHfjFxWGfTIZuxsaavaCpKRvAM2UKEBcHtGmj2euBVUW9F/4egl4JqncZNd1ZRERE\nICIiot5l10qda7TWtI0ePXpXdHS0Z0RERK8hQ4Yc5HkeJiYmRcrnFQoFV/mxcgOtwd1oKRQ8HxvL\n8x9+yPNSKc/b2fH8Rx/xfEqK0JGRpirszh3e9OxZ/nhhoXYu+N57PD96NHsxa1iFooK3XmnNx+fF\n17uM33/n+aFDVTsW2l6DWx0OHTo0xMzM7Janp2cMX02/X47jeKGmQSeq43kgNpa1Ozg6si6vpaVs\nfMS1a2xGBZrpldTXwLZt8burKyYkJyOsQAt9bEJC2OLrW7Zo/FIiToQJbhMa1NAtZJuFVqqhzp07\n1/3AgQP+YWFhgx49emR4//79VoGBgVvNzc3z8/LyLCwsLPJyc3MtzczMbmkjHlI3yiqmXbuA3btZ\nm8SYMWzajc6dqZsrUa+eJiY46OYG/4QEfO/oiOGanLHW0BD49Vc2DUjPnqxRQIMmuk3E4G2DEdwn\nuF4z0drbA+np7D2p7fedVu4sgoODP8jKyrJJT0+3++2338a99tprJ7du3Rro7+9/YMuWLZMBtiLf\n8OHD92kjHlK7igo2w/PChay3YUAA2//bb+ybTWgoW+6YEgXRhC6tWiFMLsf0q1ex45aGv0PK5eyF\nPmUKoOFpSNzM3dDKoBUisyPrdX7LlmzLzVVzYCoQZAS3srpp0aJFIcePH/eTSqVXT548+dqiRYtC\nhIiHMP/8Axw8CLz5Jmugnj6d9e3etQtITWXd0+lOgmhL55YtcUwux5y0NGzNy9PsxebOZV/X16zR\n7HUABLgGYGfSznqfL1SPqFqXVRUazQ2lWXfusMXE9u9nYyA6dWJjIvz9NX5HTohKkh8+hF9cHJba\n2WGaJrvWXbsGdOnC5sB3dtbYZVJup6Dv1r7ImptVr6qoiRPZoNYpU2o+TmuLH5EXE88DKSlsMrID\nB1ivQT8/Ng7ip5/YNOCENCYuRkY45eGBvnFxeKxQYKamFnSQSFgPjcmTWR2shgYDObdzRttmbfFX\n5l/o0aFHnc8XqpGbJhJ8CRQXs8QwfTogFgODBrEX26JFbKbX3bvZ7K6UKEhjJW3eHBEeHvgqKwur\nsrI0d6Hp09nslaGhmrsGgLGuY7EzuX5VUZQsiNoo7x5WrmR3DZaWwNq1rKE6PJz1pvjuO5Y0DA2F\njpYQ1dg3a4bTHh745uZNhGRmauYiHAds3AisXs36iGvIGNcx2J28GxWKijqfK5EA169rIKhaUDXU\nC6K4mK0eeeQI2xQKYOBAYNYsYM8emqSPvBhsDQ1x2sMDfeLioOB5fNChg/ovYmMDrFjBqqOiogCD\nhq1wVxVpWyksWljgz8w/4Sv2rdO5dGdB6qSsjFWrLl3KuodbWgKrVrFG6UOHgIwMtlDKsGGUKMiL\nxcrAAKfc3bElLw/LNTUF66RJbLLBpUs1Uz6AAJf69YoyNwdKSoD79zUQVA2oN1QTwfNsCv4TJ9j2\n558sMfTty7ZXXwWaNxc6SkK05+bjx+gdG4uplpZYZGur/gvk5wPu7sC+fUDXrmov/lrhNXTf1B05\n83KgK6pbJY+bG/Dzz4BnDWuZUm+ol0h2NpsUU5kgmjVjiSEwkM2B1q6d0BESIpz2BgY45eEB39hY\ncAAWqjthmJsD69ez6qjYWPYGVCNJGwlsWtngdMZp9LHvU7dz/62KqilZqBtVQzUiN26wbwvTpgEO\nDoCHB+vi2rMn8NdfrFHrhx/YaGpKFIQ8SRgbc3PxpSYavUePZm/Ezz5Tf9n4d4BePXpFCdFuQXcW\nAuF59uF/+vST7Z9/gF692DZ3LuDiAogonRNSI6tn7jCC1H2HsW4dmxJk9GjA21utRQe4BsD7R2+s\nH7geejp6Kp8nkbAxUtpEyUJLeJ4ttn76NHDmDPvJ80+Sw+LFbBZXmkqDkLpTJozesbHgOA7v29io\nr3AzM9YPfepU4O+/1do7Smwihn1re5zKOIV+kn4qnyeRsF6O2kTJQkNKSoCLF1mPpXPngPPngRYt\nWJXSa6+xNeMlEkoOhKiL9TN3GPPVmTDGj2ezaAYHszevGil7RdU1WWi7Gop6Q6lJdvaTxHDuHJCU\nxHosdO8OvPIK0K0bm5yPEKJZWY8eoXdcHGa2b4956kwYOTms/eLECdZLSk0y72XC83tP5M3PU7kq\nqrSUdYl/8IBN9lkV6g3VCJSVAfHxTyeHkhKWGLp3Z3esnTurvfMEIUQFNoaGOOXu/t8dxlx1JQwr\nKzYNyNSpwIULgJ7qbQw1sTW2hUMbB0RkRMBP4qfSOfr67MvnjRtsZgZtoObTWvA8m5572zZgzhyW\nDExMWG+6hARgwAD2RePWLTZz68KFbMwDJQpChGNjaIhTHh5Yn5ODddnZ6it46lS2fveKFeorE8BI\np5HYc7lujRDaroqiO4tn5OWxEf5RUazN4eJFdrvn48O24GB210Cjoglp3GwNDfGHhwd6xcSgmY4O\n3lTH9OYcB/z4I/sQGD5cbVOZj3AegZ7/64n1A9dDR6Sj0jnaniPqpU4WhYVsudBLl54kh+LiJ4nh\n3XdZTzlzc6EjJYTUh9jQECfc3dE7Lg6GIhEmquPN3KEDmwbkjTeAs2cBHdU+3GsibStFO6N2iMyO\nxCu2r6h0jljMqqG05aVIFjzPliGMjmbJISaG/buwkLVTeXmxLtRffsmm0KAeSoS8ODo2b45jcjn6\n/JswRqtjROv06cCOHWxlvXnzGl4egJHOrCqqLslinxYXon7hkoVysNuziUGhYEPjO3UCxo5l7VQS\nCQ16I+Rl4GJkhCNyOfr/mzCGNHTxFpGIrRbWrRtbOUwsbnCMI51GYviO4VjhtwKcCt9YxWI2Yai2\nNOlk8fgxW7chPv5JYoiJAYyNnySGGTPYv62t6Y6BkJeZR4sWOOjmhiEJCfjV2Rl+bdo0rMCOHdld\nxYwZbF6eBn7AyM3lEHEixObFwtOy9kmfxGK2No22NJlxFlc8BiE+niWGuDj2My2NVRvJ5az7c6dO\nLDGYmgodNSGksTp77x5GJiZit6srepqYNKyw0lLW2P3hh8C4cQ2OLeh4EAx1DfF5789rPVahAIyM\ngDt32M9nqXucRZNJFgaTBsHdnbUxyOVsc3Ghld4IIXX3R1ERxicn46CbG7q0atWwwiIjgREj2Ejc\nBt6tnM86jzcPvomkmUkqHe/kxKb9cHF5/rmXdlDe7dtUjUQIUY8+rVtjs5MT/BMSEC6Xw7MhfeG7\ndmU9ZBYsYO0YDdDFuguK/inC5TuX4WTqVOvxynaLqpKFujWZ5l1KFIQQdRrUti02SKUYlJCApIcP\nG1bYsmXA0aNARESDihFxIoxwHoG9KXtVOl6bjdxNJlkQQoi6jWjXDislEvSLi0NqSUn9C2rVii2U\n9NZbwKNHDYqpLqO5KVkQQoiWjDc3x1I7O/SLj0dWQz7ohw1js4cuW9ageHp26In0onRk3qt9MSdK\nFoQQokXTLC0xy8oKfvHxuF1aWv+C1q0DNmwAEhPrXYSejh6GOg5VqSqKkgUhhGjZfBsbjGnXDgPi\n43GvvLx+hbRvD3z+OauOUijqHYuqVVGULAghRABLxWJ0NzbG0IQElFRU1K+Qt95iPXK+/77ecfhJ\n/BCbF4vbD2/XeJy5OVvToqHt86qgZEEIIf/iOA5rHBzQwdAQo5OSUFqfuwORCPjhB+CTT9iCSfVg\nqGuIvvZ9cTj1cC3xsnkNtXF3QcmCEEIqEXEcNjk6Qo/jMOnyZVTUZ+CyqyubBuTdd+sdh7/UHweu\nHKj1ODs7ShaEECIIPZEIO1xdcau0FDOuXkW9Zrr44APW0H3oUL1iGCwdjD/S/8Cj8pp7aGmr3YKS\nBSGEVMFQJMJ+mQxxxcVYeP163ROGoSHw7bfs7qIeYzhMm5vC3dwdJ9NP1ngcJQtCCBFYS11dHJHL\nEVZYiJDM2sc9PKdvXzYdyBdf1Ov6/o7+2H9lf43HULIghJBGoI2eHo7J5fgpNxff1afBeuVK1uCd\nklLnU/0d/XHwykEo+Oob2ilZEEJII9HewAAn3N0RnJmJ7fn5dTvZ0pL1jJo5k63OVgfStlIYGxrj\n75t/V3vMC5cssrKybHr37n3K1dU1SSaTJa5du3Y2ABQWFrbx8/M7LpVKr/br1+/Y3bt3GzjBPCGE\nqJ9ds2YIc3PDnLQ0HCssrNvJM2cC9+4Bv/xS5+v6O/rjwNXqe0WZmbFxFsXFdS66TrSWLPT09MpW\nrVo1NykpyTUyMrLrN998805KSopzSEjIIj8/v+NXr16V9unT54+QkJBF2oqJEELqwq1FC/wuk2Fi\nSgqi7t9X/URdXTYNyIIFQFFRna5ZWxda5ViLGzfqVGydaS1ZWFhY5Hl4eMQCQIsWLYqdnZ1TcnJy\nrA4cOOA/efLkLQAwefLkLfv27RuurZgIIaSuXjU2xkZHRwxLTMSVuvRy8vEBhg9nq+rVQVfrrsh9\nkIuMuxnVHqONqihBVsrLyMgQ9+rV63RiYqLM1tY2s6ioqDUA8DzPtWnTplD5GGAr5elPmIDFHTsC\nAHx9feHr66v1mAkhpLL/5eZiyY0b+MvTE1YGBqqdVFTEVirav58lDxVN3T8VnhaemN1ldpXPz5wJ\n6OlFoHXriP/2LVmyRK0r5YHnea1uDx48aNGpU6e/9+7dO5zneZiYmBRVfr5169aFlR8D4FscPswT\nQkhjE3LjBu8aFcUXlJaqftLPP/N8p048X16u8il7U/byfbb0qfb50FCenz//6X3s4119n91a7Q1V\nVlamN2rUqN8DAwO3Dh8+fB8AmJub5+fl5VkAQG5urqWZmdktbcZECCH1tcDGBv1at67bxIMTJwIt\nW7IBeyrys/dDVE4U7j66W+XzYjGQnq5ycfWitWTB8zw3bdq0jS4uLslz5sxZrdzv7+9/YMuWLZMB\nYMuWLZOVSYQQQho7juOwQiKBfbNmGJucjDJVJh7kOJYoli4FcnNVuo6RvhF6duiJ8LTwKp/v0AGo\nz5jButBam8XZs2df7dmz5xm5XB7PcRwPAMuXL1/s4+MTFRAQsDMzM9NWLBZn7Ny5M8DExOS/9Mlx\nHN/i8GE8GDRIK3ESQkhdlSkUGJaYCHN9fWxydATHqdBUsHgxa5Xevl2la/zw9w+IyIjAtlHbnnsu\nLw+Qy4FbleplOI5Ta5uFIA3cdUHJghDSFDysqEDfuDj0NDZGqERS+wklJWx22h9/ZNOC1CL3QS5c\nv3VF/vv50NPRe+o5hQJo3hwoLGQ/AfUnCxrBTQghamCko4NDbm44WFCAr7Oyaj+heXNg9Wo20aAK\nS7latrREx7YdcebGmeeeE4kAGxtAlcvWFyULQghRk7Z6ejgql2NNdjZ+zsur/QR/f9Y6vXatSuX7\nS6sfza3pgXmULAghRI1sDA0RLpcj6No1hBUU1HwwxwFr1gAhIcDNm7WW7e/IRnNX1Xxga0vJghBC\nmhQXIyPsk8kw+fJlXKhtWhCplK3bvWBBreXKzGTgwCHxVuJzz9GdBSGENEHdjI3xPycnDE9MRGpt\n04J8+CFw5gzbasBx3H93F8/SdPdZShaEEKIhQ9q2xRKxGAMTEpBfUyO2kRGwYgUwaxZQXl5jmUOl\nQ6tst6A7C0IIacLeat8eE8zMMCQhAcU1jfIeMwZo1w747rsay+vRoQeu3LmCWw+fnuyC2iwIIaSJ\nWyIWw83ICGOTklBe3dg2jgPWrWMju29VP+uRvo4++tj3wZHUI0/tt7FhA8JVnXWkrihZEEKIhnEc\nh++lUigATL96tcreTADYjLSTJrHR3TUY3HEwDqcefmqfvj5gaqpSp6p6oWRBCCFaoCcSYZerK2KL\ni7GkpvqiTz8FwsOByMhqDxnUcRCOXz+Osoqyp/ZrsiqKkgUhhGhJCx0dHHZzw9a8PPxU3SSCrVoB\noaGssbuaOiWLFhaQtJbgr6y/ntqvyUZuShaEEKJF5vr6CJfL8XF6Og5XN2jv9deBZs2AjRurLWew\n9PmqqA4dNDflByULQgjRso7Nm2OfTIYply9XvZY3xwHr1wMffwxUk1AGdxyMw1efTha2tpoba0HJ\nghBCBNClVSts+nct77R//nn+AHd3ICAA+OijKs/3au+Fgn8KkF70ZNUjShaEEPICGmpqiiViMQbE\nx+NWVYP2li4F9u4FoqOfe0rEiTDQYSDCUsP+20fJghBCXlCVB+09fLZBu3VrYNky1thdxSp8z3ah\npWRBCCEvsCViMWRGRgioatDe1KmsV9TWrc+d10/SD2czz6KkjM09ZWLCDr13T/0xUrIghBCBVR60\nN+PZQXsiEVvvYvFi4MGDp84zNjRG5/adcTL95L/laO7ugpIFIYQ0AspBezHFxfji2cESXboA/foB\nX3zx3HnaqoqiZEEIIY1Ei3+XZt2Ul4etz660t3w5G3eRmvrUbmUXWuXdCCULQgh5CVjo6+Owmxve\nv3YNp4qKnjxhaQkEBQHz5z91vJOpE3RFuv8tiETJghBCXhIuRkb4zcUF45KTkfzw4ZMn5swBkpOB\no0f/28Vx3FOjuSlZEELIS6R369ZYIZFgcEIC8pRjMAwMgJUrgblzgbInkwhWbregZEEIIS+ZQAsL\nTLWweHoMxtChbPGKb7757zhfsS/i8+NR+E8hJQtCCHkZfdyhA9yMjDA+ORkVPM/6x65ezQbr3b4N\nADDUNUSvDr1wNO0orKzYIkjqRsmCEEIaMY7j8INUin8UCryXlsZ6PTk7s5lpK80bpayK0tcHRo9W\nfxyULAghpJHTE4mw29UVp+/exarsbLbzs8+A/fuBmBgAbEGk8LRwVCgqsG2b+mOgZEEIIU2Asa4u\nDru5YWV2Nn6/fZvN7bF0KfDeewDPw8bYBlatrHAh54JGrk/JghBCmghbQ0MclMkw4+pVnL93D5g2\njU0BsnMngKrX5lYXShaEENKEeLZsic1OThiZlIS00lJgzRpgwQKgpKTKBZHUhZIFIYQ0MYPatsVn\nYjEGxcejoFs3oGtX4Msv0dW6K7LvZyP7frbar0nJghBCmqC327fHCFNTDEtMxKPQUGDdOuhkZaO/\nQ/+nFkRSF0oWhBDSRC23t4eVvj6mlJRAMXs2sGABBjkM0ki7BSULQghpokQchy3Ozsh+/BgfjBsH\nREZiSG5LnEo/pf5rqb1EQgghWmMoEmGfTIY9d+/i+3XrYLzwE/w06Hu1X4eSRT1FREQIHcJzKCbV\nUEyqa4xxUUzPM9XTQ5hcjs9MTRHm5YWAyPtqv0ajSBbh4eEDnJycLnfs2DE1NDR0odDxqELoF0dV\nKCbVUEyqa4xxUUxVc2jWDHtcXTElMBAxmzapvXzBk0VFRYXOrFmz1oeHhw9ITk522b59+/iUlBRn\noeMihJCmppuxMb5zccHQ0FC1ly14soiKivJxcHBIE4vFGXp6emXjxo37bf/+/cOEjosQQpqiUe3a\nYZenp/oL5nle0G3Xrl2j33zzzR+Vj7du3Tpx1qxZ65SPAfC00UYbbbTVfVPnZ7UuBMZxHF/T8zzP\nc9qKhRBCSNUEr4aysrLKycrKslE+zsrKsrG2tlb/WHVCCCH1Jniy8PLyupSamtoxIyNDXFpalh+R\nTQAACbZJREFUqr9jx46x/v7+B4SOixBCyBOCV0Pp6uqWr1+/flb//v2PVlRU6EybNm2js7NzitBx\nEUIIqUToBu6atiNHjgxwdHS87ODgkBoSErJQW9fNzMy08fX1PeXi4pLk6uqauGbNmtk8z6OgoKBN\n3759j3fs2PGqn5/fsaKiIhPlOcHBwYsdHBxSHR0dLx89erSfpmIrLy/X8fDwiBkyZMjBxhJTUVGR\nyahRo3Y7OTmlODs7J0dGRnYROq7g4ODFLi4uSTKZLGH8+PHbHj16ZKDtmKZOnbrJzMwsXyaTJSj3\n1SeGS5cudZbJZAkODg6ps2fPXqPumN5///2vnJycUuRyedyIESP23L1711ibMVUXl3JbsWLFfI7j\nFAUFBW2E/l3xPI+1a9e+6+TklOLq6pq4YMGCUKFjunDhgo+3t3eUh4dHjJeX18WoqChvTcSk9jep\nurby8nIdiUSSlp6eLi4tLdVzd3ePTU5OdtbGtXNzcy1iYmI8eJ7HgwcPWkil0ivJycnOQUFBX4aG\nhi7geR4hISELFy5cGMLzPJKSklzc3d1jS0tL9dLT08USiSStoqJCpInYvv7663kTJkz4dejQoQd4\nnkdjiGnSpElbNm7c+AbP8ygrK9O9e/eusZBxpaeni+3s7K4/evTIgOd5BAQE7Ni8efNkbcd05syZ\nHtHR0Z6V39h1iUGhUHA8z8Pb2zvqwoULPjzPY+DAgWFHjhwZoM6Yjh075qf8/y5cuDBE2zFVFxfP\nsy9u/fv3DxeLxenKZCHk7+rkyZO9+/bte7y0tFSP53ncunWrndAx9erVKyI8PLw/z/MICwsb6Ovr\ne0oTMan9g0Nd27lz57r1798/XPl4+fLli5YvX75IiFiGDRu27/jx430dHR0v5+XlmfM8SyiOjo6X\neZ5l78p3Pv379w8/f/58V3XHkZWVZd2nT58TJ0+e7K28sxA6prt37xrb2dldf3a/kHEVFBS0kUql\nVwoLC1uXlZXpDhky5OCxY8f8hIgpPT1dXPmNXdcYbt68aenk5JSi3L99+/Zxb7/99gZ1xlR527Nn\nz4jXX3/9F23HVF1co0eP3hUXFyevnCyE/F2NGTNm5x9//PHas8cJGdO4ceO279ixI4DneWzbtm28\npv5+gjdwVycnJ8fKxsYmS/nY2to6Oycnx0rbcWRkZIhjYmI8u3TpciE/P9/c3Nw8HwDMzc3z8/Pz\nzQHg5s2b7Sv34NJUrHPnzl311VdfBYlEIoVyn9Axpaen27Vr1+721KlT/9epU6fo//u///vx4cOH\nRkLG1aZNm8L58+d/bWtrm9m+ffubJiYmd/38/I4L/bsC6v73ena/lZVVjibfB5s2bXpj0KBBYY0h\npv379w+ztrbOlsvl8ZX3CxlXampqxzNnzvTs2rVrpK+vb8SlS5e8hI4pJCRkkfL1HhQU9NXy5csX\nayKmRpssaht/oQ3FxcUtRo0a9fuaNWvea9my5YPKz3Ecx9cUo7rjP3To0BAzM7Nbnp6eMXw1Y0+0\nHRMAlJeX60ZHR3eaOXPmt9HR0Z2MjIwehoSELBIyrmvXrklWr149JyMjQ3zz5s32xcXFLX755ZeJ\nQsZU3TUaw+tcadmyZR/q6+uXTpgwYZvQsZSUlDQPDg7+YMmSJZ8q91X3utem8vJy3aKiotaRkZFd\nv/rqq6CAgICdQsc0bdq0jWvXrp2dmZlpu2rVqrlvvPGG+ieGQiNOFkKPvygrK9MbNWrU74GBgVuH\nDx++D2DfBPPy8iwAIDc319LMzOxWVbFmZ2dbW1lZ5agznnPnznU/cOCAv52dXfr48eO3nzx58rXA\nwMCtQsYEsG8r1tbW2d7e3hcBYPTo0bujo6M7WVhY5AkV16VLl7y6d+9+rm3btgW6urrlI0eO3HP+\n/PluQsakVJe/l7W1dbaVlVVOdna2taZj27x585SwsLBBv/766+vKfULGdO3aNUlGRobY3d09zs7O\nLj07O9u6c+fOf+fn55sLGZe1tXX2yJEj9wCAt7f3RZFIpLhz546pkDFFRUX5jBgxYi/A3n9RUVE+\ngAb+fg2tZ9TUVlZWpmtvb38tPT1d/PjxY31tNnArFAouMDDw5zlz5qyqvD8oKOhLZR3g8uXLFz3b\nEPj48WP969ev29nb219TNiRpYouIiOilbLNoDDH16NHjzJUrV6Q8z+PTTz/9LCgo6Esh44qNjXV3\ndXVNLCkpaaZQKLhJkyZtWb9+/TtCxPRs/XJ9YvDx8bkQGRnZRaFQcOpoTH42piNHjgxwcXFJun37\ntmnl47QZU1VxVd6qauAW4ne1YcOGtz/55JMlPM/jypUrUhsbm0yhY/L09IyOiIjoxfM8Tpw40cfL\ny+uiJmJS+weHOrewsLCBUqn0ikQiSQsODl6srev++eefr3Icp3B3d4/18PCI8fDwiDly5MiAgoKC\nNn369DlRVbfHZcuWfSCRSNIcHR0vK3smaGqLiIjopewN1Rhiio2Ndffy8rpYueul0HGFhoYuUHad\nnTRp0pbS0lI9bcc0bty47ZaWljf19PRKra2tszZt2jS1PjEouzlKJJK0d999d606Y9q4ceMbDg4O\nqba2tjeUr/UZM2Z8q82YKselr6//WPm7qvy8nZ3d9cpdZ7X5u6ocU2lpqd7EiRO3ymSyhE6dOv19\n6tQpXyH/fps2bZp68eJFLx8fnwvu7u6xXbt2PR8dHe2piZg4nm80VaaEEEIaqUbbZkEIIaTxoGRB\nCCGkVpQsCCGE1IqSBSEq4HmeUygU9H4hLy168RNSjYyMDLGjo+OVyZMnb3Fzc0vQ1dUtnzdv3kqZ\nTJbYt2/fE3fu3DEFAF9f34h58+at9Pb2vujs7Jxy8eJF7xEjRuyVSqVXP/7448+F/n8Qog6ULAip\nQVpamsM777zzTWJiogxgA7ESExNlvXr1Oq0cXcxxHG9gYPD44sWL3jNmzPhu2LBh+zds2DA9MTFR\ntnnz5ilFRUWthf1fENJwlCwIqUGHDh1u+Pj4RAGASCRSjB07dgcATJw48ZezZ8++qjxOuWCXTCZL\nlMlkiebm5vn6+vql9vb21zMzM22FiZ4Q9aFkQUgNjIyMHla1n+d5rvK8TgYGBo8BllCU/1Y+rqio\n0NF8pIRoFiULQlSkUChEu3btGgMA27Ztm9CjR48/hY6JEG0RfFlVQhqzyncPRkZGD6Oiony++OKL\nj8zNzfN37NgxtqrjG9NMsoSoC033QYiKWrZs+eDBgwcthY6DECFQNRQhKqI7BvIyozsLQgghtaI7\nC0IIIbWiZEEIIaRWlCwIIYTUipIFIYSQWlGyIIQQUitKFoQQQmr1/0ZwGmquOtPsAAAAAElFTkSu\nQmCC\n", + "text": [ + "<matplotlib.figure.Figure at 0x34979d0>" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 6.5, Page number: 335" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import math\n", + "from sympy import *\n", + "import math\n", + "\n", + "#Variable declaration:\n", + "nph=3 #No. of phases\n", + "k=0.429 #reactance ratio(X1/X2) from table 6.1,for class C motor\n", + "p=4 #No.of poles\n", + "#Test 1: No-load test at 60 Hz\n", + "V1=219 #Applied voltage, line-to-lne(V)\n", + "I1_nl=5.70 #Phase current(A)\n", + "Pnl=380 #Power(W)\n", + "ft=60 #Hz\n", + "\n", + "#Test 2: Blocked-rotor test at 15 Hz\n", + "V2=26.5 #Applie voltage, line-to-line(V)\n", + "I1_bl=18.57 #Phase current(A)\n", + "Pbl=675 #Power(W)\n", + "fbl=15 #Hz\n", + "\n", + "#Test 3:\n", + "R1=0.262 #Avg resistance per stator phase(ohm)\n", + "\n", + "#Test 4: Blocked-rotor test at 60 Hz\n", + "V4=212 #Applied voltage, line-line (V)\n", + "I2_bl=83.3 #Avg phase current(A)\n", + "Pbl_4=20.1*10**3 #Power(W)\n", + "Tstart=74.2 ##starting torque(Nm)\n", + "\n", + "\n", + "#Calculations:\n", + "#For part (a):\n", + "Prot=Pnl-nph*I1_nl**2*R1\n", + "V1_nl=V1/sqrt(3) #from test 1\n", + "Qnl=sqrt((nph*V1_nl*I1_nl)**2-Pnl**2)\n", + "Xnl=Qnl/(nph*I1_nl**2)\n", + "V1_bl=V2/sqrt(3) #from test 2\n", + "Qbl=sqrt((nph*V1_bl*I1_bl)**2-Pbl**2)\n", + "Xbl=(ft/fbl)*(Qbl/(nph*I1_bl**2))\n", + "X2=symbols('X2')\n", + "fx=k**2*X2**2+(Xbl*(1-k)-Xnl*(1+k))*X2+Xnl*Xbl\n", + "x=solve(fx,X2)\n", + "X2=round(x[0],2) #since X2 must be less than X1\n", + "X1=k*X2\n", + "Xm=Xnl-X1\n", + "Rbl=Pbl/(nph*I1_bl**2)\n", + "R2=(Rbl-R1)*((X2+Xm)/Xm)**2\n", + "\n", + "#for part (b):\n", + "Pg=Pbl_4-nph*I2_bl**2*R1\n", + "ws=4*math.pi*ft/p\n", + "Tstart=Pg/ws\n", + "\n", + "\n", + "#Results:\n", + "print \"(a) N-load rotational loss:\",round(Prot,0),\"W\"\n", + "print \"\\n Equivalent ckt parameters:\\n\"\n", + "print\" R1=\",round(R1,3),\"ohm\",\" R2=\",round(R2,3),\"ohm\"\n", + "print\" X1=\",round(X1,3),\"ohm\",\" X2=\",round(X2,3),\"ohm\",\" Xm=\",round(Xm,2),\"ohm\"\n", + "print \"\\n(b) Starting torque:\",round(Tstart,2),\"Nm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) N-load rotational loss: 354.0 W\n", + "\n", + " Equivalent ckt parameters:\n", + "\n", + " R1= 0.262 ohm R2= 0.447 ohm\n", + " X1= 0.635 ohm X2= 1.48 ohm Xm= 21.2 ohm\n", + "\n", + "(b) Starting torque: 77.7 Nm\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 6.6, Page number: 338" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "Xnl=21.8 #ohm\n", + "Xbl=2.01 #ohm\n", + "R_1=0.26 #ohm\n", + "Rbl=0.65 #ohm\n", + "V=220 #volt\n", + "#Here are the two sets of parameters\n", + "#Set 1 corresponds to the exact solution\n", + "#Set 2 corresponds to the approximate solution\n", + "\n", + "R1=[0.262, 0.262] #ohm\n", + "R2=[0.447, 0.444] #ohm\n", + "X1=[0.633, 0.603] #H\n", + "X2=[1.47, 1.41] #H\n", + "Xm=[21.2, 21.2] #H\n", + "nph=3 #No. of phases\n", + "p=4 #No. of poles\n", + "Prot=354 #Rotational losses(Watts)\n", + "\n", + "#Calculations:\n", + "X_1=0.3*Xbl #(ohm) from table 6.1 and X1+X2=Xbl\n", + "X_2=Xbl-X_1 #ohm\n", + "X_m=Xnl-X_1\n", + "R_2=(Rbl-R_1)*((X_2+X_m)/X_m)**2\n", + "\n", + "#Results for part (a):\n", + "print \"(a) The parameters:\\n\"\n", + "print\" R1=\",round(R_1,3),\"ohm\",\" R2=\",round(R_2,3),\"ohm\"\n", + "print\" X1=\",round(X_1,3),\"ohm\",\" X2=\",round(X_2,2),\"ohm\"\n", + "print\" Xm=\",round(X_m,3),\"ohm\"\n", + "\n", + "#Calculations & Results for part (b):\n", + "print \"\\n\\n(b)\"\n", + "#Here is the operating condition\n", + "V1=220/sqrt(3)\n", + "fe=60 #Hz\n", + "rpm=1746\n", + "#Calculate the synchronous speed:\n", + "ns=120*fe/p\n", + "ws=4*pi*fe/p\n", + "s=(ns-rpm)/ns\n", + "wm=ws*(1-s)\n", + "Zgap=[0]*2\n", + "Zin=[0]*2\n", + "Pmech=[0]*2\n", + "I1=[0]*2\n", + "I2=[0]*2\n", + "Tmech=[0]*2\n", + "\n", + "#Calculate stator Thevenin equivalent:\n", + "#Loop over the two motors\n", + "for m in range(0,2,1):\n", + " Zgap = 1j*Xm[m]*(1j*X2[m] + R2[m]/s)/(R2[m]/s + 1j*(Xm[m] + X2[m]))\n", + " Zin=R1[m]+1j*X1[m]+Zgap\n", + " I1=V1/Zin\n", + " I2=I1*(1j*Xm[m])/(R2[m]/s+1j*(Xm[m]+X2[m]))\n", + " Tmech=nph*abs(I2)**2*R2[m]/(s*ws) #Electromechanical torque\n", + " Pmech=wm*Tmech #Electromechanical power\n", + " Pshaft=Pmech - Prot\n", + " if (m==0):\n", + " print \"Exact Solution:\"\n", + " else:\n", + " print \"\\nApproximate Solution:\"\n", + "\n", + "\n", + "\n", + " \n", + " print \"\\tPmech=\",round(Pmech,1),\"W\",\"\\tPshaft =\",round(Pshaft,1), \"W\"\n", + " print \"\\tI1=\", round(abs(I1),1),\"A\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) The parameters:\n", + "\n", + " R1= 0.26 ohm R2= 0.443 ohm\n", + " X1= 0.603 ohm X2= 1.41 ohm\n", + " Xm= 21.197 ohm\n", + "\n", + "\n", + "(b)\n", + "Exact Solution:\n", + "\tPmech= 2820.7 W \tPshaft = 2466.7 W\n", + "\tI1= 10.3 A\n", + "\n", + "Approximate Solution:\n", + "\tPmech= 2850.5 W \tPshaft = 2496.5 W\n", + "\tI1= 10.4 A\n" + ] + } + ], + "prompt_number": 7 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter7.ipynb b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter7.ipynb new file mode 100755 index 00000000..c5e8eebf --- /dev/null +++ b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter7.ipynb @@ -0,0 +1,473 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 7: DC Machines" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 7.1, Page number: 371" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "Vt=[128, 124] #Terminal voltage(V)\n", + "Ea=125 #Generated emf(V)\n", + "Ra=0.02 #Armature resistance(ohm)\n", + "n=3000 #rpm\n", + "\n", + "\n", + "#Calculations:\n", + "#For 128 V\n", + "Ia1=(Vt[0]-Ea)/Ra\n", + "Pin1=Vt[0]*Ia1\n", + "Pe1=Ea*Ia1\n", + "wm=3000*2*pi/60\n", + "Tmech1=Ea*Ia1/wm\n", + "\n", + "#for 124 V\n", + "Ia2=(-Vt[1]+Ea)/Ra\n", + "Pin2=Vt[1]*Ia2\n", + "Pe2=Ea*Ia2\n", + "Tmech2=Ea*Ia2/wm\n", + "\n", + "\n", + "\n", + "#Results:\n", + "print \"(a) Armature current:\",Ia1,\"A\",\"\\n Terminal power:\",Pin1/10**3,\"kW\"\n", + "print \" Electromagnetic power:\",round(Pe1/10**3,2),\"kW\"\n", + "print \" Torque:\",round(Tmech1,1),\"Nm\"\n", + "\n", + "print \"(b) Armature current:\",Ia2,\"A\",\"\\n Terminal power:\",Pin2/10**3,\"kW\"\n", + "print \" Electromagnetic power:\",round(Pe2/10**3,2),\"kW\",\n", + "print \"\\n Torque:\",round(Tmech2,1),\"Nm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) Armature current: 150.0 A \n", + " Terminal power: 19.2 kW\n", + " Electromagnetic power: 18.75 kW\n", + " Torque: 59.7 Nm\n", + "(b) Armature current: 50.0 A \n", + " Terminal power: 6.2 kW\n", + " Electromagnetic power: 6.25 kW \n", + " Torque: 19.9 Nm\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 7.2, Page number: 372" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "\n", + "#Variable declaration:\n", + "Vt=123 #terminal voltage(V)\n", + "Pt=21.9 #Terminal power(kW)\n", + "Ra=0.02 #ohm\n", + "Eao=125 #generated voltage(V) at 3000rpm\n", + "no=3000 #rpm\n", + "\n", + "\n", + "#calculations:\n", + "Ia=Pt*10**3/Vt\n", + "Ea=Vt-Ia*Ra\n", + "n=(Ea/Eao)*no\n", + "\n", + "#Results:\n", + "print \"Speed of motor:\",round(n,0),\"rpm\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Speed of motor: 2867.0 rpm\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 7.3, Page number: 376" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "\n", + "#Variable declaration:\n", + "Il=400 #Armature current(A)\n", + "If=4.7 #Field current(A)\n", + "Ns=3 #series turns per pole\n", + "Nf=1000 #shunt field turns per pole\n", + "Eao=274 #at Ia=0,(V)\n", + "n=1150 #speed of motor(rpm)\n", + "no=1200 #rated speed(rpm) \n", + "Ra=0.025 #armature resistance(ohm)\n", + "Rs=0.005 #series field resistance(ohm)\n", + "\n", + "\n", + "#Calculations:\n", + "Is=Il+If\n", + "GM=If+(Ns/Nf)*Is #for graphical analysis\n", + "Ea=(n/no)*Eao\n", + "Vt=Ea-Is*(Ra+Rs)\n", + "\n", + "#Results:\n", + "print \"Terminal voltage at rated terminal current:\",round(Vt,0),\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Terminal voltage at rated terminal current: 250.0 V\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 7.4, Page number: 377" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "\n", + "#Variable declaration:\n", + "Il=400 #Armature current(A)\n", + "If=4.7 #Field current(A)\n", + "Ns=3 #series turns per pole\n", + "Nf=1000 #shunt field turns per pole\n", + "Eao=261 #at Ia=400 A,(V)\n", + "n=1150 #speed of motor(rpm)\n", + "no=1200 #rated speed(rpm) \n", + "Ra=0.025 #armature resistance(ohm)\n", + "Rs=0.005 #series field resistance(ohm)\n", + "\n", + "\n", + "#Calculations:\n", + "Ea=(n/no)*Eao\n", + "Vt=Ea-(Il+If)*(Ra+Rs)\n", + "\n", + "#Results:\n", + "print \"Terminal voltage:\", round(Vt,0), \"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Terminal voltage: 238.0 V\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 7.5, Page number: 378" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "\n", + "#Variable declaration:\n", + "Il=400 #Armature current(A)\n", + "If=4.7 #Field current(A)\n", + "Ns=3 #series turns per pole\n", + "Nf=1000 #shunt field turns per pole\n", + "Eao=269 #at Ia=400 A,(V)\n", + "n=1150 #speed of motor(rpm)\n", + "no=1200 #rated speed(rpm) \n", + "Ra=0.025 #armature resistance(ohm)\n", + "Rs=0.007 #series field resistance(ohm)\n", + "\n", + "#Calculations:\n", + "Is=Il+If\n", + "GM=If+(Ns/Nf)*Is #for graphical analysis\n", + "Ea=(n/no)*Eao\n", + "Vt=Ea-Is*(Ra+Rs)\n", + "\n", + "#Results:\n", + "print \"Terminal voltage at rated terminal current:\",round(Vt,0),\"V\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Terminal voltage at rated terminal current: 245.0 V\n" + ] + } + ], + "prompt_number": 5 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 7.6, Page number: 381" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from sympy import *\n", + "\n", + "\n", + "#Variable declaration:\n", + "Ns=4 #Series field turns\n", + "Nf=1000 #Shunt field turns\n", + "Vt=250 #Full load voltage(V)\n", + "#for part (a):\n", + "Ia=400 #Armature current(A)\n", + "Ra=0.025 #Armature resistance(ohm)\n", + "\n", + "#for part (b):\n", + "Rs=0.005 #Added sries resistance(ohm)\n", + "Vo=250 #No load voltage(V)\n", + "If=5 #field current at full load(A)\n", + "\n", + "\n", + "#Calculations & Results:\n", + "\n", + "#for part (a)\n", + "V1=Ia*Ra\n", + "\n", + "#for part (b):\n", + "Ia1=Ia+If\n", + "Rs,Rd=symbols('Rs Rd') #Rd= diverter resistance(ohm)\n", + "Rp=Rs*Rd/(Rs+Rd) # -------(i)\n", + "Is=Ia1*(Rd/(Rs+Rd))\n", + "Inet=If+(Ns/Nf)*Is\n", + "Ea=Vt+Ia*(Ra+Rp) # -------(ii)\n", + "\n", + "#from equation (ii)\n", + "Rp=Rs(Inet-5.0)/1.62 \n", + "R_d=0.0082 #R_d=Rd(say), using (i)\n", + "print \"(a) The operating terminal voltage = 205 V\", Inet\n", + "print \"(b) Rd =\", R_d,\"ohm\"\n", + "print \"\\tHence, by this process, resistance across the series field\" \n", + "print \"\\t(referred to as a series-field diverter) can be adjusted \"\n", + "print \"\\tto produce the desired performance. \"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) The operating terminal voltage = 205 V 1.62*Rd/(Rd + Rs) + 5\n", + "(b) Rd = 0.0082 ohm\n", + "\tHence, by this process, resistance across the series field\n", + "\t(referred to as a series-field diverter) can be adjusted \n", + "\tto produce the desired performance. \n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 7.7, Page number: 383" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + " \n", + "#Variable declaration:\n", + "Ia=400 #Armature current(A)\n", + "n1=1200 #rpm\n", + "n2=1100 #rpm\n", + "Ra=0.025 #armature resistance(ohm) \n", + "Eo=250 #no load armature voltage(V)\n", + "del_n=1.5 #fractional winding added\n", + "N=1000 #Total windings\n", + "\n", + "\n", + "#Calculations:\n", + "#for part(a):\n", + "#point corresponding on the no load saturation curve is :\n", + "Eao=Eo*(n1/n2)\n", + "#using Eao value in curve, value of If is found to be:\n", + "If=5.90 #Field current(A)\n", + "Ea=Eo-Ia*Ra\n", + "#From Fig. 7.14\n", + "Ea1=261\n", + "n=n1*(Ea/Ea1)\n", + "Pe=Ea*Ia\n", + "Pl=2000 #No load Rotational loss(W)\n", + "Po=(Pe-Pl)/(1+0.01)\n", + "\n", + "#for part (b):\n", + "If1=If+del_n/N\n", + "#From Fig. 7.14 the corresponding value of Ea at 1200 r/min would be 271 V.\n", + "Ea2=271 #volts\n", + "n22=n1*(Ea/Ea2)\n", + "\n", + "\n", + "#Results:\n", + "print \"Part(a):\"\n", + "print \"Required speed =\",round(n),\"r/min\"\n", + "print \"Output power =\", round((Po/746),1),\"hp\"\n", + "print \"\\nPart (b):\"\n", + "print \"Required speed =\",round(n22),\"r/min\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Part(a):\n", + "Required speed = 1103.0 r/min\n", + "Output power = 124.8 hp\n", + "\n", + "Part (b):\n", + "Required speed = 1063.0 r/min\n" + ] + } + ], + "prompt_number": 6 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 7.9, Page number: 389" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "V1=50 #terminal voltage(V)\n", + "Ia=1.25 #Armature current(A)\n", + "Ra=1.03 #Armature resistance(ohm)\n", + "n1=2100 #speed at 50V(rpm)\n", + "V2=48 #terminal voltage at 1700 rpm (V)\n", + "n2=1700 #speed at 48 V(rpm)\n", + "\n", + "\n", + "\n", + "#Calculations:\n", + "#for (a):\n", + "Ea1=V1-Ia*Ra\n", + "wm1=n1*2*pi/60\n", + "Km=round(Ea1/wm1,2)\n", + "\n", + "#for part(b):\n", + "Prot=Ea1*Ia\n", + "\n", + "#for part(c:)\n", + "wm2=n2*2*pi/60\n", + "Ea2=Km*wm2\n", + "Ia2=(V2-Ea2)/Ra\n", + "Pmech=Ea2*Ia2\n", + "Pshaft=Pmech-Prot\n", + "\n", + "#Results:\n", + "print \"(a) Torque constant:\",round(Km,2),\"V/(rad/s)\"\n", + "print \"(b) No-load rotational losses of the motor:\",round(Prot,0),\"W\"\n", + "print \"(c) The power output of the motor:\",round(Pshaft,2),\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) Torque constant: 0.22 V/(rad/s)\n", + "(b) No-load rotational losses of the motor: 61.0 W\n", + "(c) The power output of the motor: 275.05 W\n" + ] + } + ], + "prompt_number": 3 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter8.ipynb b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter8.ipynb new file mode 100755 index 00000000..785bba7e --- /dev/null +++ b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter8.ipynb @@ -0,0 +1,427 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 8: Variable-Reluctance Machines and Stepping Motors" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 8.1, Page number: 411" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "%matplotlib inline\n", + "from numpy import *\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "R=0.038 #m\n", + "a=b=pi/3 #rad\n", + "g=2.54*10**-4 #m\n", + "D=0.13 #m\n", + "N=100 #turns in both poles\n", + "uo=4*pi*10**-7 #permeability of free space()\n", + "i1=5 #coil current (A)\n", + "\n", + "\n", + "#Calculation:\n", + "Lm=N**2*uo*a*R*D/(2*g)\n", + "#x=symbols('x')\n", + "subplot(2,1,1)\n", + "x=linspace(-180,-120,100)\n", + "L=-(Lm/60)*x-2*Lm\n", + "plot(x,L,'b')\n", + "#grid()\n", + "\n", + "x=linspace(-60,0,100)\n", + "L=(Lm/60)*x+Lm\n", + "plot(x,L,'b')\n", + "grid()\n", + "\n", + "x=linspace(0,60,100)\n", + "L=-(Lm/60)*x+Lm\n", + "plot(x,L,'b')\n", + "grid()\n", + "\n", + "\n", + "x=linspace(120,180,100)\n", + "L=(Lm/60)*x-2*Lm\n", + "plot(x,L)\n", + "annotate('Lm=0.128 H',xy=(-150,0.10))\n", + "annotate('Lmax',xy=(0,Lm+0.005))\n", + "ylabel('L11(theta)')\n", + "xlabel('theta')\n", + "grid()\n", + "\n", + "#part(b)\n", + "subplot(2,1,2)\n", + "x1=linspace(-180,-120,100)\n", + "x2=linspace(-150,-90,100)\n", + "i1=5\n", + "i2=4\n", + "Tm1=(Lm/(2*pi/3))*i1**2\n", + "Tm2=(Lm/(2*pi/3))*i2**2\n", + "dll=np.ones(100)\n", + "plot(x1,-Tm1*np.array(dll),'g')\n", + "plot(x2,Tm2*np.array(dll),'b--')\n", + "\n", + "x1=linspace(-60,0,100)\n", + "x2=linspace(-90,-30,100)\n", + "Tm1=(Lm/(2*pi/3))*i1**2\n", + "Tm2=(Lm/(2*pi/3))*i2**2\n", + "dll=np.ones(100)\n", + "plot(x1,Tm1*np.array(dll),'g')\n", + "plot(x2,-Tm2*np.array(dll),'b--')\n", + "\n", + "x1=linspace(0,60,100)\n", + "x2=linspace(30,90,100)\n", + "Tm1=(Lm/(2*pi/3))*i1**2\n", + "Tm2=(Lm/(2*pi/3))*i2**2\n", + "dll=np.ones(100)\n", + "plot(x1,-Tm1*np.array(dll),'g')\n", + "plot(x2,Tm2*np.array(dll),'b--')\n", + "\n", + "x1=linspace(120,180,100)\n", + "x2=linspace(90,150,100)\n", + "Tm1=(Lm/(2*pi/3))*i1**2\n", + "Tm2=(Lm/(2*pi/3))*i2**2\n", + "dll=np.ones(100)\n", + "plot(x1,Tm1*np.array(dll),'g')\n", + "plot(x2,-Tm2*np.array(dll),'b--')\n", + "grid()\n", + "ylim(-3,3)\n", + "annotate('___ i1=I1, i2=0', xy=(110,2.6))\n", + "annotate('---- i1=0, i2=I2', xy=(110,2.2))\n", + "ylabel('Torque [N.m]')\n", + "xlabel('thetam [degrees]')\n", + "\n", + "#Results:\n", + "print \"Lm =\",Lm,\"H\"\n", + "print \"(c)The peak torque =\",round(Tm1,2),\"N.m\"\n", + "print \"\\t(i) The net torque, (at thetam=0) =\", 0, \"N.m\"\n", + "print \"\\t(ii) The net torque, (at thetam=45 deg.) =\", 0, \"N.m\"\n", + "print \"\\t(iii)The net torque, (at thetam=75 deg) =\", round(Tm1,2), \"N.m\"\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n", + "Lm =" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 0.127968099059 H\n", + "(c)The peak torque = 1.53 N.m\n", + "\t(i) The net torque, (at thetam=0) = 0 N.m\n", + "\t(ii) The net torque, (at thetam=45 deg.) = 0 N.m\n", + "\t(iii)The net torque, (at thetam=75 deg) = 1.53 N.m\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEPCAYAAABV6CMBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcFPX/B/DXonmFWiqiAoopciwLLKGGB2FfT9T065Hm\nUaiVqXmkeWUplppn6tfKtCz9epS35sVPS1Y80pDjq3jkibCYeSt4ILDv3x8jG8cu7LKzOzP4fj4e\nPHJmZ2ZfzG77YT+fz7xHRUQExhhjzEJOUgdgjDGmLNxwMMYYswo3HIwxxqzCDQdjjDGrcMPBGGPM\nKtxwMMYYs4pdG47o6GhoNBr4+flhzpw5RR4/e/YsQkNDUalSJSxYsKDI47m5udBqtejatas9YzLG\nGLNCeXsdOCsrC8OGDcOhQ4fg6uqK0NBQtG/fHlqt1rhNzZo1sWTJEmzbts3kMRYvXgw/Pz9kZGTY\nKyZjjDEr2e0bx7Fjx6BWq+Hm5oby5cujT58+2LVrV4FtXFxcEBISgueee67I/nq9Hrt378Y777wD\nvkaRKZGzs7PUERizC7s1HHq9Hh4eHsZld3d36PV6i/f/8MMPMW/ePDg58TAMUyaVSiV1BMbswm6f\nyrb8T7Nz507Url0bWq2Wv22wMiUyMhLDhw9Hq1at0KhRI+h0OgwaNAg+Pj7o16+fcbv3338fTZs2\nRZMmTTBp0iQAwL179+Dj44Nz584BAN58802sWLFCkt+DPePITmJjY6lz587G5blz59KMGTNMbhsV\nFUXz5883Lk+ePJnc3d3J09OT6tSpQ1WqVKGBAwcW2a9mzZoEgH/4h3/4h3+s+GnUqJFNn+92azge\nPXpEDRo0IL1eT0+ePKGQkBCKj483ue20adMKNBz56XQ66tKli8nHALvFF9Xbb78tdQSLcE5xlS9f\nvsi6yMhIWrduHRERXbx4kby8vIyPvfXWW7RlyxYiIvryyy8pICCAAgMDycXFhdasWWPc7t1336Wa\nNWtSenq6KDmVcD6VkJFIOTlt/ey026yqSpUqYenSpejQoQMMBgMGDhyI4OBgLFu2DAAwdOhQXLt2\nDU2bNsX9+/fh5OSExYsX4/Tp00UGFZXeV+zp6Sl1BItwTnGZG5+rUKGC8fGKFSsW2J6I8Oeff+Lr\nr79GUlISnJ2dMWjQIOTk5AAADAYDzpw5g+effx63b99GvXr1bM6phPOphIyAcnLaym4NBwB06tQJ\nnTp1KrBu6NChxn/XqVMHaWlpxR7j1VdfxauvvmqXfIzJDREhKysLzs7OeP7553Hz5k3s2bMHbdq0\nAQAsXLgQarUaX3zxBQYNGoTff/8d5cvb9X9jxorgd5wDvPDCC1JHsAjnFFd2dnaBmYVjx44FUPAb\ndOFv0yqVCgEBAdBoNPDy8kKjRo3QqlUrAMC5c+ewYsUKxMXF4fnnn0dYWBhmzJiBqKgom3Iq4Xwq\nISOgnJy24obDAYKCgqSOYBHOKa79+/cjPDzc7OOenp44ceKEcfnHH380/nv16tUm9zl9+rTx36aq\nLZSGEs6nEjICyslpK9XTgRJFUqlUPF2XMcasZOtn5zN9dV1mJlDCEAtjpbJ3L5CVJXUKVtYQAWfP\nSp3iGW84fv4ZGDRIeDHsSafT2fcJRMI5xfHgAdC1K/Deezqpo1hE7ucTUEZGwP45o6OBHj0Ag8Gu\nT1OiZ7rhePttIDVV+OuQMbEsXAiEhQG7dwMPH0qdhpUVubnApEnAzJmA5JWYbL6SpAR79uwhf39/\n8vX1pdmzZxd5/MyZM/TKK69QxYoVC1wEmJqaSq1btyZ/f39q0qQJzZkzp8i+YsTftIkoKIgoN9fm\nQzFG168T1axJdOECUe/eRDNnSp2IlRWrVhGFhhIZDLYfy9bPTrsOjmdlZcHHx6dAafXly5cXKK1+\n48YNXLlyBdu2bcOLL76IcePGAQD+/vtv3LhxA/7+/sjMzERwcDA2btyIwMBA475iDI4TAaGhwMiR\nQP/+Nh2KMYweLXQjLFkCnD8vvLfOngVq1ZI6GVOyx48Bb29g3TqgZUvbjyfrwXFbSqu7urrC398f\ngFCeOiAgAFevXhU9o0oFzJ0LfPKJ/QYzuX9WXHLNeekSsHYt8OmnwnJ6ug5vvCF0LciZXM9nfkrI\nCNgv59dfA1qtOI2GGOzacNhaWj1PSkoK4uLijBdCiS0sDFCrgW++scvh2TNiyhThG0ft2v+smzYN\n+O9/gcuXpcvFlO3OHWDOHGDWLKmT/MOuFwCKUWMqMzMTvXv3xuLFi1G1atUij0dGRhrrw7zwwgsI\nCgoyXnSV1/pbsjx7NtC6tQ5eXkCXLtbvXxaW89bJJY+SluPjgb17dXjrLQAQHgeAM2d0GDkyHJ9+\nCrzzjnzyKm05PDxcVnmKW84j1vH27AlHt27A9es6XL9euuPpdDqsXLkSgDj1tOw6xnHw4EHMmTMH\nO3fuBADMmzcPT548wZQpU4psO336dDg7OxvHOAChZEOXLl3QsWNHfPjhh0XDi3wB4ODBQJ068mrZ\nmfwRAe3aAb16Ae+/X/TxjAygSRNhllW+4T3GSpSWBgQFASdOAG5u4h1X1mMcTZs2RXJyMtLT05Gd\nnY0NGzYUKXqYp/AvQUQYMmQI/Pz8TDYa9jB9OrBsGZCeLu5xC/8lIlecs3T27hX+Bx8ypOD6vJxV\nqwrjHhMnOj6bJeR2Pk1RQkZA/JzTpgFDh4rbaIjBrg1H/tLqgYGB6NGjh7G0el559WvXrsHDwwML\nFy7EjBkzUL9+fWRmZuLw4cNYs2YNYmJioNVqodVqER0dbc+48PAA3nlHeLEYs4TBIDQIX3wBFJrf\nUcC77wrjHL/+6rhsTNlOnQJ27ZLnHxxcq6qQO3eEboUDBwA/P1EPzcqgNWuAr74Cfv9dmKFXnA0b\nhEHOuDgZXMDFZK9rV6BNG+BpUWVRybqrSolefFFo4SdPljoJk7usLGEa99y5JTcaANC7N1C+PLB+\nvf2zMWWLjQWSk4ERI6ROYho3HCZ88AGQlAQcOiTO8Z7V/ll7kUvOb74BNBphOrcphXOqVMI3jilT\n5FUAUS7nszhKyAiIk5NI+ON1xgwg3w0iZYUbDhMqVQI+/xyYMEG8AoiFb4crpqysLPTp0wcajQYt\nW7bElStXTG43ZcoU1K9fv8i05nnz5kGtVmPQoEEICwvD5acXHeTm5mLo0KHw9vZGkyZN8P7778Ng\norpaZGQkNm/eXGCdPX9fObh7VxjXmD3buv3CwwEfH+Dbb+0Si5UBW7YIV4q/+abUSYphU8ESidkz\nfk4OkUZDtGWLOMdzdnYW50AmzJ8/n0aPHk1ERFu3bqXXX3/d5HbHjh2jv/76q0iW2NhYevz4MRER\nLV26lLp3705ERPv27aOWLVuSwWCg3NxcCg0NpV9//bXIcSMjI2nz5s0F1tnz95WDyZOJBg0q3b7/\n+x9R7dpE9+6Jm4kp35MnRE2aEEVH2/d5bP3s5G8cZpQrJ3QrTJ4M5OTY5zkiIyMxfPhwtGrVCo0a\nNYJOp8OgQYPg4+ODfv36WXyc3bt3Y+DAgQCA119/HUeOHDE58NWsWTPUqVOnyPrWrVuj4tPvxC1b\ntkT60/nIbm5uePLkCbKysvDo0SNkZ2fD3d3dZAZTz1dW6fXCtO3p00u3f0AA0KmTMDbCWH4rVgiz\nOzt0kDpJ8ezacERHR0Oj0cDPzw9z5swp8vjZs2cRGhqKSpUqFbkNZkn7OkLHjkC9esAPP9h2HHP9\nniqVCvfv38ehQ4ewcOFCvP7665g4cSLOnDmDc+fOIT4+HgDQt29f45Tk/D9r1qwBULC0i5OTE2rW\nrInr16+XKueyZcvQrVs3AICvry/at2+PunXrws3NDR07doS3t3eR/YgI48ePL5BNjKoBxeWUUlSU\nML02XzUdk4rL+dlnwNKlgB3Kr1lN6vNpCSVkBGzLmZkpvC8k+rizit1KjmRlZWHYsGEFKuO2b9++\nQGXcmjVrYsmSJdi2bZvV+zpC3mBm9+5C5dznnxf/OTp37gwA8Pf3R506deDj4wMAUKvVSE1Nxcsv\nv4yff/5Z/Cc2Yd++fUhISMCBAwcAALGxsYiJiUF6ejqICO3atUOHDh2K1AxTqVSYP38+evToYVxn\nqjxMWXD6NPDLL8C5c7Ydp3594YLBqChg+XJRojGF+/JLYQzs5ZelTlKyEhuOU6dOITY2FikpKVCp\nVPD09ETr1q2hVquL3S9/ZVwAxsq4+T/8XVxc4OLiUqRiriX7OkrTpkCrVsCiRcJsmNLIXwuqsAoV\nKgAQvilUzDeFwsnJydj906dPH5wz8Uk1btw4DBgwAO7u7khNTUXt2rVhMBhw69YtuLi4WJXx119/\nxdatWxEbG2usVHzkyBF06tQJVapUAQB06tQJhw8fNlls0pFdVcWdT3ubPFmY8fLCCyVvW1LOSZOE\nUtljxwoD5lKR8nxaSgkZgdLnvH4dWLxYuMZHCcx2Va1evRrNmjXDRx99hGvXruGll16Cp6cn/vrr\nL3z00Udo2rSpsavEFFsq44pVVVcsM2cKd3W7edOxz5v3Ybx+/XokJiYW+RkwYAAAICIiwvhabN++\nHaGhoXCy4gqzxMREvP/++9ixYwdq5btxRKNGjXDgwAHk5uYiOzsbBw4cQOPGjUX8DZXl0CFhmrZY\nc+tr1ADGjwc+/lic4zHl+vxzYMAA4KWXpE5iGbPfOO7cuYPffvvNbJfD/fv3jdUWTbGlj9ue/eOl\n0bgx0LevMK960SLr99fpdHj48GGBxnDs08tB8/+uhX9vS8/DBx98gIEDB0Kj0aBq1apYt26d8TGt\nVovExEQAwIQJE/DTTz/h0aNH8PDwwLvvvoupU6diwoQJePDgATp27AhnZ2c0aNAA27ZtQ8+ePbF/\n/35j91mHDh3Qs2dPkxlKm700dPkq+DoKkTA9e8YMYbq2JSzJOXKkcOX5kSNAixa25ywNKc6ntZSQ\nEShdzosXgZ9+As6csU8mezDbcIwaNarYHatVq1bsNu7u7khLSzMup6WlFfjgLI41+4pVVr2k5U8/\nBby8dGjWDOjXz7r9AeGaiOIe9/T0xH/+8x/jG+/HH3+ETqcr8EYs7vk2bNhgXM47HzqdDgsXLjQ+\nR0REBCIiIgrsr9PpsG/fPgDAokWLCpy/2NhY9OnTB0uXLi2wfeHn//HHH4vkuX//vqjnv/D5EvN4\nlixv2wb8/bfuabE5y/ZPSkqy6PiffRaOCROAzz/XQaVSfhnwZ3k5KSnJ6v2//TYcY8YAp07ZL5/O\n0WXVMzMzsWzZMpw9exY5T+elqlQq/FDCVKPHjx/Dx8cHhw8fRu3atdGiRQssW7YMwcHBRbaNiopC\n1apVjSXVLd3XHrWqijN9OvDnn8LtG9mzIycH8PcXvm127Cj+8XNzhdLZM2cCr78u/vGZfB0/DnTr\nJky2sMfkG3PsXqvqzTffxN27d/Hbb78hPDwc6enpFl0VbEtlXHP7Sm3cOECnAxISpE7CHOmHH4Rp\n2faaW1+unHAF+qRJ9rtmiMlPXvfn1KmObTREUdIVgn5+fkREFBAQQEREOTk5FBoaatNVh2KxIL7o\nvvmGqF076/aJiYmxSxaxcc6iMjOJ6tUjiouzfl9rchoMRK++SvTdd9Y/j62U8LorISORdTn37CHy\n9ibKzrZfHnNs/ews8RvH80+bwsqVK+PUqVO4ffu2pDOcpPbOO0BKCvB0WICVcQsXAq1bAyEh9n2e\nvGuGoqKAhw/t+1xMerm5/9zHpbxdb+BtHyWOcSxfvhx9+/bFsWPH8Pbbb+PJkyeYPn06Rsig3q+j\nxzjybNok9EfHx/N9FcqyGzcAX1/g6FFhZp0j9O4NBAdzWf+ybvVqoXLA4cOWleQXm62fnSU2HJcu\nXcJLhSYXm1onBakaDiLglVeA0aMBK0pKMYUZPVq4w9+SJY57zvPngdBQYRJGzZqOe17mOI8fCxd8\nrl4tfJuVgt0Hx3v16mXRumeJSiUUqLP0vgqFpz3KFef8x6VLwNq1wr3CS6s0Ob28gDfeEL7ROooS\nXnclZAQsy/nNN0KhS6kaDTGY7V07c+YMTp8+jbt372LLli0gIqhUKjx48AAZGRmOzChLr74KqNXC\n180xY6ROw8T2ySfCN47atR3/3NOmCbctHjUKEGHKPZORu3eFGXQKaQfNMttVtX37dmzduhU7duzA\n6/kml1euXBl9+vTBq6++6rCQ5kjVVZUnORn417+EOdjVq0sWg4ksPl643/P589JNk5w2TbiiuJiq\nPkyBJk0SShd9/720OWz+7Cxp2tXhw4dLPWVrz5495O/vT76+vjR79myT24wcOZL8/PxIq9VSQkKC\ncf3UqVPJy8uLvL29qWfPnvTgwYMi+1oQ3+4iI4k+/ljqFExMbdsK066ldP8+kasrUWKitDmYeNLS\niGrUINLrpU5i+2dniXsnJydTy5Ytydvbm4iITp06RVFRUSUe+PHjx+Tp6Ul6vZ6ys7MpJCSkQMNA\nRLRp0ybq1q0bERElJCRQYGAgERGdP3+eGjZsSFlZWURE9MYbb9D3339fNLwMGo7UVOHNkJ5ufpuy\nOAddSvbM+X//R+TlJdyJzVa25lyyhKhDB9tzlEQJr7sSMhIVn3PwYOHOkXJg62dniYPjgwcPxoIF\nC1C5cmUAws19NmzYUOI3mfyl0cuXL28sjZ5f/jvXabVa5OTkID09HTVq1MBzzz2HBw8eICcnBw8f\nPkSDBg2s/TLlEB4e/9xXgSmbwfDP3PqnleUl9d57wIULwG+/SZ2E2So5GdixQ3h/lQUlNhyPHz9G\n8+bNjcsqlQrlypUr8cCWlEY3t02NGjUwbtw41K9fH/Xq1cMLL7yAtm3bWvQLSWHyZGDbNvPVLfOK\njsnds55z3TqgYkUg3/2obGJrzgoVgFmzhLIUBoM4mUxRwuuuhIyA+ZyTJwvjG2VlLLTEaxZr1KiB\nCxcuGJd37tyJmhZMMLe0rDaZGKC5ePEiFi1ahJSUFFSvXh29e/fG2rVr0b9//yLbOqo6bknLEyYA\n776rw4wZ8qrWycuWLWdlAR99pMPkyYBKJX2evGUXF6BcuXCsXw/UrSt9Hl62ftnJKRwnTwIjR+qg\n00mTRydyddwSO7rOnj1LLVq0oEqVKpGHhwcFBwfT+fPnS+wDi42Npc6dOxuX586dSzNmzCiwzeDB\ng2njxo3GZbVaTXq9ntatW0dDhgwxrv/vf/9L77//fpHnsCC+wzx6RFS/PtGhQ0UfKwv9s3Jij5xf\nfkmU7+0qCrFy7t9P9NJLRE+H/ESnhNddCRmJiuY0GIheeYXov/+VJo85tn52lthV5e3tjcOHD0Ov\n1yMhIQHx8fEW3QWuadOmSE5ORnp6OrKzs7FhwwZ06tSpwDYRERFYu3YtACAhIQHlypWDm5sbGjVq\nhKNHj+LRo0cgIvz666+yv/NcpUrCjeYnTBCuLGfKkTe3fvZsqZOY1qaNcIvZb7+VOgmz1rZtwKNH\ngInOEkUrseTIgwcPsHHjRqSlpcHwtKNVpVJh6tSpJR58z549GD9+PAwGAwYOHIjJkycbS6oPHToU\ngHD3upiYGFSsWBHff/+9sXx6VFQU1q5dCycnJ2i1WqxcuRKVCt16TerrOArLzQW0WqEB6d5d6jTM\nUh9/DFy7JpRPl6sTJ4B27YRrS6pVkzoNs0R2NqDR2O8+Lrawe62q8PBwuLq64uWXXy4wKJ530yUp\nya3hAIDdu4X7dpw8qcyql8+a9HSh/ENSkjBDTs7efhuoX1+4PzWTv2+/FQqi7tsnTSHD4tj9AkC1\nWm1TX5g9WRDf4QwGovBwouXL/1mn1P5ZuRIz5zvvEE2cKNrhChD7fF65IlwzdPWqqIdVxOuuhIxE\n/+TMzCSqW5fo+HFp85hj62dniWMcrVq1QnJyculbpmdM/vsqPHggdRpWnNOnge3blTO3vn59YNAg\n4RbGTN6+/FKoZ/fyy1InsQ+zXVUajQYAkJubi/Pnz6Nhw4aoWLGisJNKhRMnTjgupRly7KrK88Yb\nwn2kP/5Y6iTMnG7dhAqlH30kdRLL3b4tDJQfOiT8l8nP9etCkcpjx4BGjaROY5rdxjhSUlLMPoFK\npZLFldxybjguXBDu2XH2LFCrltRpWGGHDgkzXf78U5gRpyRz5wo3l9qyReokzJRRo4Seh8WLpU5i\nnt3HOAYMGGDROilYEF9Sw4cTjRmjvP5ZubM1p8FA1KIF0cqV4uQxx17n8+FDIg8PIhvqjxaghNdd\nCRmJiNasiaEaNYiuX5c6SfFs/ewscYyj8PhGbm4ujh07ZlGjFB0dDY1GAz8/P8yZM8fkNqNGjYJa\nrUZwcDASExON6+/evYvevXsjMDAQvr6++P333y16TjmZOhX473+Bv/6SOgnLb/t2ICMDGDBA6iSl\nU7myMM4xcSJfMyQ3K1YI9+dxcZE6iZ2Za1FmzpxJzs7OVK5cOXJ2djb+VK9enUaPHl1ii2RLdVwi\nol69etG6deuIiCg3N5fu3btX5DmKiS8b06YR9esndQqWJzubyMeHaPduqZPYJieHSK0m+uUXqZOw\nPMePCzOpMjOlTlIyWz87S9x7YinnKh44cKBAyZF58+bR559/XmCbwYMH06ZNm4zLeSVHbt68SY0b\nNy7xOZTQcNy/T1SnDlGhNpNJZNkyojZthO4qpduxg8jPT2gMmbQMBqLXXiP69lupk1jG1s9Os11V\nly5dAgDMLqYOw8WLF80+VtrquGlpaTh//jxcXFzwxhtvwN/fH2+99RYyMzOL/+okU1WrAn366BQx\n5TOvKJrclTbngwdCF8+cOY65IMve57NzZ2HixapVth1HCa+73DP+3/8JF5M2bqyTOopDmG04Jk+e\njC5dumD58uVISEjAX3/9hatXryI+Ph7Lli1D586dMWXKFLMHLm11XJVKBYPBgLi4OIwfPx7Jycmo\nUaMGPlfw5bJdugCXLwtXkDLpLFoEtGoFNG0qdRJxqFTCDKtp04CHD6VO8+wyGISS6bNmARbccaJM\nMFsUY/369bhw4QJ+/vlnTJkyBVeuXAEANGjQAK1atcKSJUvw0ksvmT1w3reHPGlpaQW+XeTfJu9+\nH3q9Hu7u7jAYDHBzc0PTp/+H9+rVy2zDIZey6sUtt20bjlmzgOHDdVi2DHjtNXnly1vOWyeXPGIu\n37wJzJ2rwzffAIBjnj9vnb1/v1deCcfixUBoqH1/HymX80qDyyVP/uW0tHBUrgy8+KKwnEcu+fLO\nnUPLqpfWo0ePqEGDBqTX6+nJkycUEhJC8fHxBbbZtGkTde/enYiI4uPjKSAgwPjYyy+/TH/++ScR\nEU2bNs3kgLwd44vOYCBq1ozo6Xg/c7DRo4lGjJA6hX38+SdRzZpEN29KneTZ8/gxUYMGRLGxUiex\njq2fnaXae+/evRZtt3v3blKr1eTr60uzZs0iIqJvv/2Wvs03gjRixAjy8/MjrVZboGFJSkqikJAQ\n8vPzo06dOtHt27eLhldIw5E3Bz0mhqhhQ+HNJkdKmStvbc5Ll4QaT9eu2SePOY48n++/TzR2bOn2\nVcLrLteMX35J1LXrP8tyzVmYrZ+dparfOnjw4ALdUOZ06tSpyD048sqp5/nqq69M7hsYGIi4uLjS\nxJOt8HDA11eomjl6tNRpnh2ffCKcb1dXqZPYz7RpgFotXLUsg6IOz4S7d4X708fESJ3E8cyWHOna\ntavZnX777Tc8lMFonJxLjphz8iTQti1w7lzZuf+wnCUkCJMTzp0DnJ2lTmNf06YJkzD++1+pkzwb\nJk8W6lKtWCF1EuvZrVbViy++iNWrV8M53/9teU/2xhtv4Pr166V+UrEoseEAgMhIwN0dmDFD6iRl\nX7t2QI8ewLBhUiexv4wMwMsLiI4WCmwy+9HrgcBA4H//E/5fVhpbPzvNTsdt3rw5qlSpYpzREB4e\njldffRXh4eHw5rKcVsmb3ZDns8+ApUuBq1elyWNO4ZxyZWnOvXuBK1eAd96xbx5zHH0+q1YVuuUm\nTbJuPyW87nLLGBUFvPtu0UZDbjntxWzDER0djddee83kYwcPHrRboGdB/frAkCHCm4/Zh8Eg1HKa\nORN47jmp0zjOe+8JlZl/+03qJGXX6dPAL79Y30CXJSXeOlbOlNpVBQB37gBNmgAHDwI+PlKnKXvW\nrRPKWh89Kr/bdtrb+vXChYFxcYBTiWVMmbVef12Y6DJ2rNRJSs9uXVXFybvJEyu9F18EJkwQBtiY\nuLKyhC6buXOfvUYDAHr3FhqMjRulTlL2HDwInDgBjBghdRJpmW04Nm/eXORny5Yt2Lx5M/6ysE64\nLWXVAaGEu1arLXaGlxKY6/f84AMgPh44csSxecxRSv9sSTmXLhXuwPbqq47JY45U59PJSajH9fHH\nwJMnJW+vhNddDhmJhO7PGTOApzdDLUIOOR3B7HUcffv2Rb9+/eBU6LsuEeHx48clHjgrKwvDhg3D\noUOH4OrqitDQULRv3x5arda4zebNm5GamopTp04hMTERgwYNQlJSkvHxxYsXw8/PDxkZGaX53WSv\ncmVhoHzCBOEvmWfxr2Ox3bsnzK3/9Vepk0jrtdeErtBly4CRI6VOUzZs2yYUyuzXT+okMmDuykCt\nVksnTpww+Zi7u3uJVxaWtqx6WloaERGlpaXRv/71L9q/fz916dLF5HMUE18xcnKI/P2Jtm2TOknZ\nMHkyUWSk1CnkISmJyNWVyMStbJiVnjwh8vYm2rNH6iTisPWz02xX1aJFi1CtWjWTj23durXEBqm0\nZdXT09MBAB9++CHmzZtX5BtPWVOuHDB7tjBDIydH6jTKlp4u/IX92WdSJ5GHwECgQwdg3jypkyjf\nDz8Abm7C+WTFdFWFhYWZ3enQoUMICQkp9sClLatORNi5cydq164NrVZbYp+hEqrj5q0z93hERDjm\nzQMmT9ahc2fp8i5atEiW58/S8zl0qA7t2gEeHvLIK4fz2akTMGJEOIYPB/780/T2eeukPl/FLRfO\n6sjnb9o0HNOnA9Om6XDgQPHbJyUlYcyYMQ7NZ+n5k7w6riVdVbGxsQW6qubOnUszZswosM3gwYNp\n48aNxuWv0Fb5AAAgAElEQVS8rqrJkyeTu7s7eXp6Up06dahKlSo0cODAIs9RyvgOZ0nhs2PHiOrV\nI3rwwP55zFFKgTZTOU+fJqpVi8hELUzJyOV8jhsnFEE0Ry45iyNlxs8/J+rTx7JtlXAuiSSqjmtJ\nw2FrWfU8Op2uTI9x5NerF9HTIsLMSt26Ec2dK3UKebp5Uyi7fvas1EmU5/p14dydPy91EnHZ+tlZ\nquq4lqhUqRKWLl2KDh06wGAwYODAgQgODsayZcsACFVye/bsiZiYGKjValSsWBE//vijyWNZ2u2l\ndLNmAaGhQimDWrWkTqMchw8LxQx//lnqJPJUsyYwfrwwPXfzZqnTKMuMGcCbbwKNG0udRGbMtSjP\nP/88OTs7m/xxcnKyqbUSSzHxZcWar6/DhxONGWO/LMVRytfs/DkNBqIWLYhWrpQujzlyOp8PHxK5\nuxP9/nvRx+SU0xwpMl68KHzb+Ptvy/dRwrkksuM3jszMTMe1Xsxo6lTh4rVRo4CGDaVOI3/btwtV\nYQcMkDqJvFWuDEyfLlwzdOAAXzNkiSlThPu41K4tdRL54VpVMhQVJRSqW7NG6iTylpMDaDTAggVA\nRITUaeQvN1eYovvFF4DCizHYXXy8cI7Onweef17qNOKTpFYVs69x44TqpoUqsLBCVq4U7upX6CaT\nzAy+ZshykyYJN8Yqi42GGLjhcID8c9AtkXdfhYkT7ZPHHGtzSkWn0+HhQ+F/bDkXMpTj+ezcWRgs\nX7Xqn3VyzFmYIzPu3QukpgKDB1u/rxLOpRi44ZCpd98VbgP6rNdcMmfRIqBlS6BZM6mTKItKJTS2\nUVHAo0dSp5Efg0EYB5o169m6j4vVRBigL9aePXvI39+ffH19afbs2Sa3GTlyJPn5+ZFWq6WEhAQi\nIkpNTaXWrVuTv78/NWnShObMmVNkPwfEl9T69UTBwUS5uVInkZcbN4TZLufOSZ1EuXr0IDLzv+Mz\nbfVqoubNhdl6ZZmtn512/eR9/PgxeXp6kl6vp+zsbAoJCTE2DHk2bdpE3bp1IyKihIQECgwMJCKi\na9eu0cmTJ4mIKCMjg7y8vCgpKalg+DLecBgMRE2bEq1bJ3USeRk9Wpi2zErv7FnhSvtbt6ROIh+P\nHxN5ehLFxkqdxP5s/ey0a1fVsWPHoFar4ebmhvLly6NPnz7YtWtXgW12796NgQMHAgC0Wi1ycnKg\n1+vh6uoKf39/AICzszMCAgJwVW436bZQafs987oVpkwRbk5kb0ron718GfjhBx2mTpU6ScnkfD69\nvYFevYQuGTnnzOOIjN98I8zSa9269MdQwrkUg10bjtJWyC28TUpKCuLi4tCqVSt7xpWl8HDh1rLf\nfit1Enn45BOgRw9hNhWzzbRpwI8/AteuSZ1EenfvCjPOvvhC6iTKYNeGo7QVcvPvl5mZid69e2Px\n4sWoWrWqqPkcJa9aZWnNmSP8ZXj/vjh5zLE1p70lJgL79wNLloRLHcUicj+fdeoIt0DdvTtc6igl\nsve5nDtXmHGmVtt2HLm/5mKxW60qQPj2kJaWZlxOS0sr8O0i/zbNmzcHIHwDcXd3BwBkZ2ejZ8+e\n6NevH7p3727yOZRQVl2M5Y4dgREjdBgyRB55pFh+910d+vQBqlaVR56ysNy8ObB8eTj+9z/gzh3p\n80ix7OUVjmXLgKVLddDppM9jj2WdHMqqW8qWCrkGg4EGDhxIY4op3GTn+KIRo37NlStENWoQXb1q\nex5z5FxnZ+9eIi8v4U5scs6Zn1JyjhwZQx07Sp2iePY8l0OGEE2YIM6xlPKa2/rZadeuqvwVcgMD\nA9GjRw9jhdy8Krk9e/aEm5sb1Go13nnnHWOF3MOHD2PNmjWIiYmBVquFVqtFdHS0PePKWv36wKBB\nwvz7Z43BIFwMOXMmz623h65dgXPnhG7AZ83p08AvvwCTJ0udRFm4VpWC3L4tzIY5eFAYMH9WrFsH\nLF4MHD0q36vElW79emD+fODYMcDpGbosuFs3ICxMKPPzLOFaVc+QGjX+ua/CsyIrS5hJNWcONxr2\n1Ls3QARs2iR1Esc5dAhIShImCDDrcMPhAHmDVGIYORI4fhw4ckS0QxqJmVMs334rfLvKP1lFjjlN\nUVJOJydhZtHHHwNPnkidqCixzyWRUFrk88+BSpXEO65SXnNbccOhMHn3VZg4UXjzl2X37gnTkGfP\nljrJs+G114Q73T0dfizTtm8HMjOB/v2lTqJMPMahQLm5QFCQMFj8+utSp7GfTz4B9HqhfDpzjKQk\noGNH4T4UCr1sqkQ5OYC/P7Bw4bNbkt/Wz05uOBRq1y7hq/b//geUt+vVONK4elUo/5CYKMwoY44z\ncCDw0kvCN9uyaPly4f70v/327I6b8eC4Atij3zMiAqhVq+B9FWwlp/7ZqChgyBDTjYacchZHqTln\nzAC++kpepUjEOpcPHggNor3u46KU19xWdm04oqOjodFo4Ofnhzlz5pjcZtSoUVCr1QgODkZivlve\nWbKvUiQlJYl+zLwCiNOmAQ8finNMe+QsjbNnga1bzc+tl0vOkig1Z4MGQGSkvL5xiHUuFy0CWrUC\nQkJEOVwRSnnNbWW3hiMrKwvDhg1DdHQ0Tpw4gU2bNhVoGABg8+bNSE1NxalTp7BixQoMGjTI4n2V\n5O7du3Y5bvPmwCuvCNc4iMFeOa01ebLQDffii6Yfl0vOkig558cfAxs3An/+KUEgE8Q4lzduCOMa\nM2eKEMgMpbzmtrJbw2FLSXVL9mWCWbOABQuAmzelTiKOI0eA+Hhh2jGTTs2awEcfCSX9y4oZM4A3\n3xRmjjHb2K3hsKWkenp6eon7KklKSordjt2kCfDGG0IDYit75rSEpXPrpc5pKaXnHD1auJL86FHH\n5jHF1nN56RKwZo0wU8+elPKa28pu83FKW1LdGo0aNbL4eaS2SsxRbDMWLrT9GI7IWZLDh4U+9uLI\nIaclykLO0FAHBimGGOeyTh0RgpRACa95o0aNbNrfbg1HaUuqe3h4IDs7u8R9AeDChQt2Ss8YY8wc\nu3VVNW3aFMnJyUhPT0d2djY2bNiAToWutomIiMDatWsBAAkJCShXrhzc3Nws2pcxxpg07PaNI39J\ndYPBgIEDBxpLqgPA0KFD0bNnT8TExECtVqNixYrGkurm9mWMMSY9RV85zhhjzPEUc+X42LFj4efn\nBz8/P3Tp0gW3bt0yPvbFF1/Az88PGo0Ge/fuNa6Pj4+HVquFWq3G6NGj7Z5x48aNUKvVKFeuHBIS\nEozrU1JSULlyZeMNqYYPHy5ZxuJyAvI5l4VFRUXB3d3deA737NlTYmapyPniVU9PTwQEBECr1aJZ\ns2YAgNu3b6Ndu3YICAhAhw4dJLkWYfDgwXB1dYVGozGuKy6XVK+5qZxye2+mpaUhLCwMGo0G3t7e\nmDt3LgCRz6dN9w90oP3791Nubi4REU2cONF4S9njx49TSEgI5eTkkF6vJ09PT3ry5AkREWk0GkpI\nSCAiom7dutGWLVvsmvHMmTP0559/Unh4eIFb5F6+fJn8/f1N7uPojMXllNO5LCwqKooWLFhQZL2p\nzFlZWQ7Nlt/jx4/J09OT9Ho9ZWdnU0hIiPG8yYGnpyfdunWrwLoPPviAFi5cSERECxcupFGjRjk8\nV2xsLCUkJBT4/8RcLilfc1M55fbevHbtGp08eZKIiDIyMsjLy4uSkpJEPZ+K+cbRpk0bOD29NVnL\nli2Rnp4OANi1axf69u1rHFhXq9U4duwYUlNTYTAYoNVqAQADBgyw+0WEPj4+aNKkicXbS5ERMJ9T\nTufSFDLRq2oq8x9//OHwbHmUcPFq4fOY/0JcqV7b1q1b48VCpQLM5ZLyNTeVE5DXe9PV1RX+/v4A\nAGdnZwQEBCA9PV3U86mYhiO/5cuXo1u3bgCA9PR0uLu7Gx8zdxGhm5ubpBcRpqSkICgoCC1atMD+\npzd3LnwBpNQZ5X4uv/76a/j6+mLAgAG4fft2sZmlYsmFr1JSqVTG7oqvvvoKAHDjxg3UrFkTAFCr\nVi1cv35dyohG5nLJ7TUH5PveTElJQVxcHFq1aiXq+ZRVQe527drhmomSnLNmzULXrl0BADNnzkSF\nChXQX6I7sFiSsbB69eohPT0d1apVQ2JiIrp06YJTp07JLqfUzGWeOXMmRowYgalTpwIQ+pRHjRqF\nNWvWODpiieR+QerRo0dRu3Zt3LhxAx07doTPs3TzejuR63szMzMTvXr1wuLFi1GtWjVRjy2rhmPf\nvn3FPr5q1Srs2rXL+Bc7UPRCw7y/+Eytz9+q2iujKRUqVECFChUACDW5/P39cfbsWXh4eNglY2lz\nOvpcFmZp5qFDh6JNmzYAzGeWiiUXvkqpdu3aAAAXFxf06tULcXFxcHFxwc2bN1GrVi3cuHHDuI3U\nzOWS22teq1Yt47/l8t7Mzs5Gz5490b9/f3Tv3h2AuOdTMV1V0dHRmDt3Ln755RdUylfIKCIiAuvX\nrzcWSExOTkazZs3g4eEBJycnY1XdtWvXIiIiwmF58/d53r59GwaDAYDw1TE5ORmNGzeWPGPhnHI9\nlwAKdJ9s3rwZarW62MxSkfPFqw8fPsTDpzX4Hzx4gOjoaKjVakRERBj/Ql6zZo3DX1tzzOWS22su\nt/cmEWHIkCHw8/PDhx9+aFwv6vm018i+2Bo3bkz169enoKAgCgoKomHDhhkfmzlzJvn6+pJarabo\n6Gjj+uPHj1NQUBD5+fnRyJEj7Z5xy5Yt5O7uTpUqVSJXV1fq2LEjERFt3LiR1Go1aTQa8vf3p02b\nNkmWsbicRPI5l4UNGDCAAgICyMfHhzp06EB6vb7EzFLZvXs3qdVq8vX1pVmzZkkdx+jSpUsUEBBA\ngYGB5OXlRZ9++ikREd26dYvatm1LGo2G2rVrR3fu3HF4tr59+1LdunXpueeeI3d3d/rhhx+KzSXV\na14454oVK2T33jx48CCpVCoKDAw0fl7u2bNH1PPJFwAyxhizimK6qhhjjMkDNxyMMcasIuuG4/Hj\nx2jatCm0Wi2aNGlSYKCHMcaYNGQ/xvHo0SNUrlwZOTk5aNWqFb744gvjdDfGGGOOJ+tvHABQuXJl\nAMCTJ0+Qm5sLV1dXiRMxxtizTfYNh8FgQFBQEFxdXdGmTRv4+flJHYkxxp5psrpy3BQnJyckJSXh\n3r176NChA3Q6HcLDwwEINZOuXr0qbUDGGFOYRo0a2XTrbdl/48hTvXp1dO7cGUePHjWuu3r1KohI\n9j9vv/225Bk4J+dUck5HZ4yIiMC9e/dARBg0aBBq164Nf39/q3LGxMSgS5cuICKcOXMGr7zyCipW\nrIj58+dblOGdd97BmTNn8PDhQ7Rv3x5+fn7GSUIGg8Hi32XlypXGexmtWrUKRISLFy/a9Hks64bj\n1q1byMjIACAMku/bt6/ADVQYY8wedu3aZSwMOGjQIERHR9t0vJo1a2LJkiX46KOPLN7nu+++Mxah\nnDp1Kk6dOoXk5GQcP34cv/zyi0XH+Ouvv/D555/j2LFjOHbsGD777DP8/fffpfod8pN1w3H16lWE\nhYUhKCgIWq0Wbdu2RefOnaWOZTVPT0+pI1iEc4qLc4rH0Rk9PT2N5dHN3YPD3H6muLi4ICQkBM89\n95zFGcLDwxEfH4/KlSujZcuWAIDnnnsOzZo1s7iLft++fejUqROcnZ3h7OyMjh07lqoAamGyHuPQ\naDTGwnpKljcmI3ecU1ycUzyOzmhJefz58+dj7dq1BdZlZmbi7t27WLRokSgZCue4e/cutm7dil9/\n/RUAsG7dOsybN6/Ivl5eXtiwYYPd7gki64aDMcbk6qOPPirS9ZR/8o7YcnJy0K9fP4wePRoNGzYE\nAPTr1w/9+vWzy/MVR9ZdVYwx5mg7duzAvXv3AACxsbEIDg6Gl5eXcV2eefPmQavVFvh59913MXr0\naADC+MKhQ4eg0WjQt29fZGdnF/u8V69eRe/evQEAe/fuxfHjx9GnTx9oNBr83//9H9577z14eXlh\n1KhRxn3Wrl1bJEOdOnUQGBgIADhw4ADmzJkDPz8/dOnSBefPnxflniCyv3K8OCqVCgqOzxiTqYYN\nGyI+Ph4ZGRm4f/8+oqKiEBcXh9TUVIuP0aJFC2RnZyMuLg5jxoxBgwYNcO/ePVStWhXjxo0zbvev\nf/0La9asQd26dY3rTpw4gWHDhmHJkiWoWLEimjdvjvbt22Pz5s0ldqNNnz4dzs7OGDduHDZt2oSJ\nEyciKSkJ06ZNw4oVK3Du3DnUqVPHps9O7qpijLF8Vq5caRwYb9CgAd58803s2bMH2dnZ8PDwwGef\nfYZBgwYVe4ycnBycPn0aYWFhAICOHTuie/fuqFixIpycnLB48WKcPn0aVapUwcWLF1GjRg2kpKSg\na9euOHnyJAICAox3Da1evToePHiAM2fOIDg4GAAwcuRIDB48uMTfpVevXsjIyEDz5s2RkZEBb29v\nUapvcFeVA+h0OqkjWIRziotziseRGVUqFd566y3UqFEDAPDTTz+hT58++Pnnn5GWloZBgwYhIyOj\nSBdRXjHWs2fP4vr166hbt65x2mxgYCA8PT1x79493LlzB6mpqXB2dsaZM2fQq1cvVKxYsUiOmJgY\nBAcH4+jRo2jbti3OnDmDxMREeHt7Y8mSJUWe29x9zgcNGoTTp08jKCjI2I1mK/7GwRhjVqpatarJ\nGZ86nQ4+Pj4WT5dVq9WYP3++2cdPnz6NSZMmFZhC+/PPP1udd+bMmahQoQL69+9v9b6mcMPhAEqY\n7ghwTrFxTvFYknHevHmYNm0aAOCll17ClStXkJubi0qVKqFWrVrQ6/UgIri6uuLx48e4f/8+AMDb\n2xu//fab8RuGOfnHFjIyMtC6dWuT4w0//fQTGjdujJs3bxrX6fX6AtNiLaHX6/Hvf/8bq1evNs6i\nAoA+ffrg3LlzRbYfN24cBgwYUGT9qlWrsGvXLuzfv9+q5y8ONxyMsTJh/PjxGD9+vM3HMTVonFe+\nI0/VqlWRlJRU7HFeeeUVbNu2Dd27d8eaNWsQEREBAPjjjz/w9ddfY9WqVWb3vXv3Ljp37ozZs2cj\nNDS0wGPr16+3+HeJjo7G3LlzceDAAVSqVMni/Uoi6zGOtLQ0hIWFQaPRwNvbG3PnzpU6UqkooQ8Z\n4Jxi45zicfQYR943ibi4OHh4eGDTpk0YOnRoiSWP8uf8z3/+gzlz5kCj0eDvv//GyJEjAQCpqamo\nUqWK2ecGgK+++goXL17EZ599ZhzDyP8NxpLfARAG0TMzM9GuXTtotVoMHz7c4mMUi2Ts2rVrdPLk\nSSIiysjIIC8vL0pKSjI+LvP4RjExMVJHsAjnFBfnFI8SMhJZlnP8+PHGzzWp2PrZqajrOHr16oUh\nQ4agU6dOAPg6DsYYKw1bPztl3VWVX0pKCuLi4tCqVSupozDG2DNNEYPjmZmZ6N27NxYvXoyqVasW\neCwyMtJYkfKFF15AUFCQcQZGXn+j1Mt56+SSx9zyokWLZHn++HzadzlvnVzymFounFXqPOaWk5KS\nMGbMGNnkyVvW6XRYuXIlAJEqDYvQXWZXT548ofbt29OXX35Z5DEFxCeistU/KwecU1xKyKmEjETK\nyWnrZ6esxzjo6R21atasiYULFxZ5nMc4GGPMerZ+dsq64Th06BDCwsIQEBBgnF72xRdfoGPHjgC4\n4WCMsdKQtOHo2rVridvUqFGj2AtdbKGUhkNnxxr9YuKc4uKc4lFCRkA5OW397LRpcPzs2bP4/vvv\nTQbICzZixAhbnoIxxpjM2PSNY/369ejTp4/N25SWUr5xMMaYnJTpMY6ScMPBGGPWk7SrKs+RI0cw\na9YspKWlwWAwGIOdOHFCjMMrnlL6PeWSUzW9+Duc4TKAhsVvIguXAVop/z9s5PK6F0eMjCW+r8Tg\noPcmTZP2fSVKw9G/f38sXrwY/v7+cHJSzMXoTKZK+p9CCR90gDKKBz5LHPFhq5T3pq1E6aoKCwtD\nbGysGHmswl1VjDFmPVmMcezbtw8bNmzAa6+9ZrxPrkqlQo8ePWw9dLG44WCMMevJosjhypUrkZiY\niOjoaOzcuRM7d+7Ejh07xDh0maCULgvOKS7OKR4lZASUk9NWooxxxMfH48yZMyZvo2iLwYMHY9eu\nXahduzZOnjwp6rEZY4yVjihdVUOGDMH48ePh4+MjRiajgwcPwtnZGW+99ZbJhoO7qhhjzHqyGOPw\n8fHBxYsX0bBhQ1SsWNEYTIzpuCkpKejatSs3HIwxJhJZjHFER0fj/Pnz2Lt3L3bs2IEdO3bgl19+\nEePQZYJS+j05p7g4p3iUkBFQTk5biTLGIcqNQUpJKTdyklMec8tJSUmyysPn0zHLeeSSR8nLSUlJ\nssqTt6xTyo2cIiIiRDnO5cuXyd/f3+RjdowvqmnTiICiP9OmKWt7c48z6cj1vcLvLXmz9bPTbrWq\nrl69inr16tl8HB7jYIwxcclijMMUMRqNN998Ey1atMC5c+fg4eGBH3/8UYRkjle4S0CuOKe4OKd4\nlJARUE5OW9k0xtGmTRuT6/Ou59i/f78th8dPP/1k0/6MMcbEZ1NX1fHjx/850NPG4ujRo5gzZw5q\n165d4HF74K4qxhizniyu4wCEr2gzZszAo0eP8Mknn6BTp05iHLZY3HAwxpj1JB/jiI6ORuvWrfH5\n559jypQpOHz4sEMaDSVRSr8n5xQX5xSPEjICyslpK5vGOJo2bYobN27go48+QmhoKAAgISHB+Hhw\ncLBt6RhjjMmOTV1VeReamCtuGBMTU9pDW4S7qhhjzHqyGeOQAjccjDFmPUnHOPJ3S9myTVmnlH5P\nzikuzikeJWQElJPTVjaNcURGRhZ7oogIQ4YMQWJioi1PwxhjTEZs6qry9PQs8eZNLi4u+OOPP0p1\n/OjoaIwfPx65ubl4++23MXHixAKPc1cVY4xZr8yOcWRlZcHHxweHDh2Cq6srQkNDsXz5cmi1WuM2\n3HAwxpj1JL+Ow16OHTsGtVoNNzc3lC9fHn369MGuXbukjlUqSun35Jzi4pziUUJGQDk5bSXbhkOv\n18PDw8O47O7uDr1eL2EixhhjgEg3crKHksZO8ijhRk5KWc5bJ5c8Sl/OWyeXPEpezrsZkVzyFLec\nRy558s6dmDdyEmWMIycnBytXrkRaWhqmT58OvV6Pq1evolmzZqU+5sGDBzFnzhzs3LkTADBv3jw8\nefIEU6ZM+Sc8j3EwxpjVZDHG8d577yEhIQHr168HAFSrVg3vv/++Tcds2rQpkpOTkZ6ejuzsbGzY\nsEGxNbAK/yUiV5xTXJxTPErICCgnp61E6ao6duwYTp06ZZzxVK1aNRgMBpuOWalSJSxduhQdOnSA\nwWDAwIEDufYVY4zJgChdVYGBgUhISEBISAgSExNx584dtG7dGsnJyWJkNIu7qhhjzHqy6Kr64IMP\n0K1bN1y/fh1Tp05FaGgoxo8fL8ahGWOMyYwoDce7776LmTNn4sMPP0S1atWwfv16vP3222IcukxQ\nSr8n5xQX5xSPEjICyslpK1HGOFJTU/Hiiy+id+/eAISvQampqahfv74Yh2eMMSYjooxx+Pv7G6+7\nePz4MS5fvgxvb2+cOnXK5oDF4TEOxhiznq2fnaJ84yg8CJ6UlISvvvpKjEMzxhiTGbuUHAkKCsLR\no0ftcWhFUkq/J+cUF+cUjxIyAsrJaStRvnEsWLDA+G+DwYCEhATUqlVLjEMzxhiTGVHGOKKiooxj\nHE5OTnB3d8cbb7yB559/3uaAxeExDsYYs16ZvR/Hxo0bERUVhbNnzyIuLs7kVePccDDGmPVkcQFg\n165d8frrr6Nr164m/10aGo0GW7duRVhYmBgRJaWUfk/OKS7OKR4lZASUk9NWooxxNGzYEDdv3sSb\nb74JIsL69evh4uKCf//736U+po+PjxjRGGOMiUyUrqrmzZvj2LFjJa4rjTZt2mDBggXcVcUYYyKR\nRVfV7du3kZKSYly+cuUKbt++XeJ+7dq1g0ajKfKzY8cOi587MjISUVFRiIqKwqJFiwp8VdTpdLws\n4nJkpA4qlQ4qFZ7+CMtRUcrbPipK+vPJy/8sR0X98/rlfz0jI5W1vbnHpV7W6XSIjIw0fl7ajESw\nbds2qlOnDoWFhVFYWBjVqVOHtm/fLsahKTw8nOLj400+JlJ8u4uJiZE6gkU4p7g4p3iUkJFIOTlt\n/ey0eYzDYDAgKysLly5dwsmTJ+Hk5AS1Wo3KlSvb3qo9RdwdxRhjsmG3MQ5bbd26FaNGjcLNmzdR\nvXp1aLVa7Nmzp8A2PMbBGGPWk8V1HJMmTYKrqyt69epV4KK/GjVq2HroYnHDwRhj1pPF4PjPP/+M\n//znPwgLC8PLL7+Ml19+GSEhIWIcukzIP2AlZ5xTXJxTPErICCgnp61EuY4j/4wqxhhjZZsoXVVZ\nWVlYtGgRDh48CJVKhbCwMIwePRoVKlQQI6NZ3FXFGGPWk8UYR//+/VGxYkUMGDAARISffvoJjx49\nwtq1a209dLG44WCMMetJ2nDk5OSgfPnyUKvVRe72Z2qd2MRoOFTTVSKlKcZlAA3t/zQ0zbZzodPp\nEB4eLk4YO1JKTlWkyiGvu80seH/a+t6ylVJec6XklPQOgM2aNUNCQgJUKhVSUlLg6ekJQBjzcHKy\nyz2iROeI/yGU8mZi4oqJjFHE687vT2Ytm75xaLVaJCYmYvfu3Rg8eDB8fHxARDh37hxWrFiBiIgI\nMbMWwV1VjDFmPUm7qtzd3TF27FgQER4+fIhKlSoBEAbLq1SpgrFjx5Y62NixYxEdHQ0AeOmll7Bq\n1SrUrFmzYHhuOBhjzGqSXseRm5uLjIwMZGZmwmAw4OHDh3j48KFxvS26du2K5ORknD59Gv7+/pgx\nY4ZNx5OSUuZ2c05xcU7xKCEjoJyctrJpjKNOnTqYNm2aWFkKaNOmjfHfLVu2xOrVq+3yPIwxxqwj\nyo1xriUAAA5OSURBVBiHvXXt2hV9+/ZF//79C6znrirGGLOepLOqfv31V1t2R7t27XDt2rUi62fN\nmoWuXbsCAGbOnIkKFSoUaTQYY4xJw6aGo/BgtbX27dtX7OOrVq3Crl27sH//frPbREZGGqcBv/DC\nCwgKCjJOLczrb5R6OW+dXPKYW160aJEszx+fT/su562TSx5Ty4WzSp3H3HJSUhLGjBkjmzx5yzqd\nDitXrgQA4+elTWy6m4cd7dmzh/z8/OjGjRtmt5Fx/AKUcnMXzikuzikeJWQkUk5OWz87RSk5Yg9e\nXl548uSJsTR7aGgovvnmmwLb8BgHY4xZTxa1qqTCDQdjjFlPFvfjYMXL3z8rZ5xTXJxTPErICCgn\np6244WCMMWYV7qpijLFnDHdVMcYYcyhuOBxAKf2enFNcnFM8SsgIKCenrbjhYIwxZhUe42CMsWcM\nj3EwxhhzKNk2HJ988gkCAwPh7++PsLAwXLp0SepIpaaUfk/OKS7OKR4lZASUk9NWsm04Jk2ahP/9\n739ITk5G7969MX36dKkjlVpSUpLUESzCOcXFOcWjhIyAcnLaSrYNh7Ozs/HfmZmZqFu3roRpbHP3\n7l2pI1iEc4qLc4pHCRkB5eS0lU1l1e1typQpWL16NapUqYKjR49KHYcxxhgk/sbRrl07aDSaIj87\nduwAINzEKTU1FZGRkfjwww+ljGqTlJQUqSNYhHOKi3OKRwkZAeXktJUipuOmpqaiffv2OHv2bIH1\njRs3xsWLFyVKxRhjytSoUSNcuHCh1PvLtqvq8uXLaNiwIQBg+/bt0Gg0Rbax5RdnjDFWOrL9xtGj\nRw9cvHgR2dnZaNiwIb7//ntFD5AzxlhZIduGgzHGmDzJdjpuYWPHjoWfnx/8/PzQpUsX3Lp1y/jY\nF198AT8/P2g0Guzdu9e4Pj4+HlqtFmq1GqNHj7Z7xo0bN0KtVqNcuXJISEgwrk9JSUHlypWh1Wqh\n1WoxfPhwyTIWlxOQz7ksLCoqCu7u7sZzuGfPnhIzSyU6OhoajQZ+fn6YM2eO1HEK8PT0REBAALRa\nLZo1awYAuH37Ntq1a4eAgAB06NBBkimlgwcPhqura4Eu6eJySfWam8opt/dmWloawsLCoNFo4O3t\njblz5wIQ+XzadMdyB9q/fz/l5uYSEdHEiRNpzJgxRER0/PhxCgkJoZycHNLr9eTp6UlPnjwhIiKN\nRkMJCQlERNStWzfasmWLXTOeOXOG/vzzTwoPD6f4+Hjj+suXL5O/v7/JfRydsbiccjqXhUVFRdGC\nBQuKrDeVOSsry6HZ8nv8+DF5enqSXq+n7OxsCgkJMZ43OfD09KRbt24VWPfBBx/QwoULiYho4cKF\nNGrUKIfnio2NpYSEhAL/n5jLJeVrbiqn3N6b165do5MnTxIRUUZGBnl5eVFSUpKo51Mx3zjatGkD\nJychbsuWLZGeng4A2LVrF/r27Yty5crBzc0NarUax44dQ2pqKgwGA7RaLQBgwIAB2LVrl10z+vj4\noEmTJhZvL0VGwHxOOZ1LU8hEr6qpzH/88YfDs+U5duwY1Go13NzcUL58efTp00eSc1Wcwudx9+7d\nGDhwIADpXtvWrVvjxRdftCiXlK+5qZyAvN6brq6u8Pf3ByBcSB0QEID09HRRz6diGo78li9fjm7d\nugEA0tPT4e7ubnzM3d0der0e6enp8PDwMK53c3ODXq93eNY8KSkpCAoKQosWLbB//34AgF6vl1VG\nuZ/Lr7/+Gr6+vhgwYABu375dbGapFH5Npc5TmEqlMnZXfPXVVwCAGzduoGbNmgCAWrVq4fr161JG\nNDKXS26vOSDf92ZKSgri4uLQqlUrUc+nrKbjtmvXDteuXSuyftasWejatSsA4aLAChUqoH///o6O\nB8CyjIXVq1cP6enpqFatGhITE9GlSxecOnVKdjmlZi7zzJkzMWLECEydOhWA0Kc8atQorFmzxtER\nS6RSqaSOUKyjR4+idu3auHHjBjp27AgfHx+pIymeXN+bmZmZ6NWrFxYvXoxq1aqJemxZNRz79u0r\n9vFVq1Zh165dxr/YAaF1TEtLMy7n/cVnan3+VtVeGU2pUKECKlSoAADQarXw9/fH2bNn4eHhYZeM\npc3p6HNZmKWZhw4dijZt2gAwn1kqhfOkpaVJmqew2rVrAwBcXFzQq1cvxMXFwcXFBTdv3kStWrVw\n48YN4zZSM5dLbq95rVq1jP+Wy3szOzsbPXv2RP/+/dG9e3cA4p5PxXRVRUdHY+7cufjll19QqVIl\n4/qIiAisX78eOTk50Ov1SE5ORrNmzeDh4QEnJyckJiYCANauXYuIiAiH5c3f53n79m0YDAYAwlfH\n5ORkNG7cWPKMhXPK9VwCKNB9snnzZqjV6mIzS6Vp06ZITk5Geno6srOzsWHDBnTq1EmyPPk9fPgQ\nDx8+BAA8ePAA0dHRUKvViIiIMP6FvGbNGoe/tuaYyyW311xu700iwpAhQ+Dn51egVJOo59NeI/ti\na9y4MdWvX5+CgoIoKCiIhg0bZnxs5syZ5OvrS2q1mqKjo43rjx8/TkFBQeTn50cjR460e8YtW7aQ\nu7s7VapUiVxdXaljx45ERLRx40ZSq9Wk0WjI39+fNm3aJFnG4nISyedcFjZgwAAKCAggHx8f6tCh\nA+n1+hIzS2X37t2kVqvJ19eXZs2aJXUco0uXLlFAQAAFBgaSl5cXffrpp0REdOvWLWrbti1pNBpq\n164d3blzx+HZ+vbtS3Xr1qXnnnuO3N3d6Ycffig2l1SveeGcK1askN178+DBg6RSqSgwMND4ebln\nzx5RzydfAMgYY8wqiumqYowxJg/ccDDGGLMKNxyMMcaswg0HY4wxq3DDwRhjzCrccDDGGLMKNxxM\nMe7du4elS5cal3U6ndXlU1atWoW//vpL7GgAgHLlyiE4ONjk8VeuXImRI0fa5XlLa/z48ahbty4W\nLFggdRSmMNxwMMW4c+cOvvnmG5uOsXLlSly9elWkRAVVqVIFCQkJdr1TJRGZrMRaGvPmzcP7778v\nyrHYs4UbDqYYkyZNwsWLF6HVajFhwgSoVCpkZmaib9++aNKkCXr37m38UP39998RGhqKgIAAtGnT\nBunp6di0aROOHz+O/v37Izg4GI8fP0ZUVBSaNWsGHx8fREZGGkvDhIeHY+zYsXjllVfg6+uLuLg4\n9OzZE40aNcLEiRMtyrts2TI0atQILVq0wJEjR4zrr127hi5duiAwMBBBQUE4cOAAAODvv/9Gq1at\nEBQUhPfeew+enp64ffs2UlJS4O3tjcjISAQFBUGv1+Ozzz5DQEAAfH19MXnyZOOxv/vuOwQGBkKt\nVmPw4MHIyclBTk4OBg4cCI1Gg4CAAP6GwWxnp6veGRNdSkpKgRvoxMTEUPXq1enatWtkMBgoNDSU\nYmJiKCsri4KDg+nmzZtERPTzzz9T//79iYiK3Lzq3r17xn8PHDjQWA4mPDycPv74YyIiWrx4MdWt\nW5du3LhBWVlZVK9ePbp+/XqRfM7OzsZ/p6amkpubG929e5dycnKodevWxlIt//73v+nQoUNERHTl\nyhVq1KgRERG98847NG/ePCIi2rdvH6lUKrp16xZdvnyZnJyc6Pjx40REtH37dnrvvfeIiCg3N5e6\ndOlC+/bto6SkJOrcuTPl5OQQEdGwYcPou+++oz/++IM6depkzJaRkWH8d1RUFM2fP9/Sl4AxIiKS\nVXVcxopDJrpomjVrBldXVwBAUFAQ0tLScOLECVy4cAFt27YFAOTm5hq3KXycnTt3YsGCBcjJycGt\nW7cKlBnv0qULAMDf3x/+/v7GKqiNGzdGeno6XFxczGb9/fff0bZtW1SvXh0A0Lt3b5w/fx4A8Ouv\nv+Ly5cvGbbOysnD//n0cOXIEn3zyCQCgbdu2BW4Y1KBBA7z88ssAgL1792Lv3r3GG2s9ePAAKSkp\nSEpKQmJiIkJCQgAAjx49MlbBvXDhAkaNGoWOHTvKpugiUy5uOJiiVaxY0fjvcuXKGbuaAgMDERsb\na3KfvHtmZGZmYsyYMThx4gTq1KmD6f/f3v27NBKEYRz/7hASRRPsYiOWESEqsVgI2CmCkEbSBowG\ntLIRC0FBY2PhH7BK0EIEMbG30dIUaawES8VSkCSIP1jxiuOWyxnl9oiF3vOpdneYeWeK3ZfZZWfW\n1nBd903bxpiGOMYYL857jDENCer3Y8uyqFQqBAJvb79myRGgo6Oj4XxlZYXp6emGa5ubm8zMzJDP\n59/UPz8/5/j4mEKhQKlUYmdn58P+i3xE3zjky2hvb/eWBX+PZVkMDAxwfX3tLQPvui6Xl5deG/f3\n9951YwxdXV08PDxQLBZb1lfbtjk9PaVarfLy8kKpVPLKRkdHcRzHO/+1qVcymeTo6AiAk5MT7u7u\nmrY9Pj7O7u4uj4+PwM9vI7e3t4yNjXF4eOjVq9Vq3NzceMv6T05Oks/nqVQqLRun/J8045AvIxqN\nMjQ0RH9/P6lUiomJiaY77gWDQYrFInNzczw9PeG6LvPz88RiMTKZDNlslkgkwtnZGdlslr6+Pnp7\ne7Ftu2lcy7J87+zX09PD8vIyiUSC7u5u4vG4V+Y4Drlcjq2tLV5fX0kmk2xvb7O+vk46nWZvbw/b\ntolGo7S1tVGr1Rrip1IpLi4uSCQSBINBQqEQBwcHDA4OsrS0xMjICIFAAGMMjuMQCoWYmpry6m9s\nbPgai8iftKy6SIuEw2Hq9fo/139+fvYe+OVymVwu9+lbDK+urhIOh1lYWPjUOPK96FWVSItEIpF3\nfwD8G1dXVwwPDxOPx5mdnaVQKLS4h40WFxfZ39+ns7PzU+PI96MZh4iI+KIZh4iI+KLEISIivihx\niIiIL0ocIiLiixKHiIj4osQhIiK+/ADYIdwwaPRWXQAAAABJRU5ErkJggg==\n", + "text": [ + "<matplotlib.figure.Figure at 0x1d13bd0>" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 8.3, Page number: 424" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "%matplotlib inline\n", + "from sympy import *\n", + "from math import *\n", + "\n", + "#Variable declaration:\n", + "n1=4000 #r/min\n", + "R=0.038 #m\n", + "a=b=pi/3 #rad\n", + "g=2.54*10**-4 #m\n", + "D=0.13 #m\n", + "N=100 #turns in both poles\n", + "uo=4*pi*10**-7 #permeability of free space(H/m)\n", + "Ll=0.005 #H\n", + "Vo=100 #phase voltage applied to phase 1.(V)\n", + "\n", + "\n", + "#Calculation:\n", + "wm=n1*pi/30\n", + "Lm=N**2*uo*a*R*D/(2*g)\n", + "thetam=symbols('thetam')\n", + "t=symbols('t')\n", + "#for part (a):\n", + "#for -60<=thetam<=0deg,\n", + "L11=Ll+(Lm/(pi/3))*(thetam+pi/3)\n", + "L111=diff(L11,thetam)\n", + "R1=L111*wm\n", + "#which is nuch greater than resistance R=1.5 ohm\n", + "thetam=-pi/3+wm*t\n", + "i1=Vo*t/(float(round(Ll,3))+float(Lm/(pi/3))*thetam+float(Lm/(pi/3))*pi/3)\n", + "\n", + "#for part (b):\n", + "V2=-200 #applied voltage(V)\n", + "thetam2=symbols('thetam2')\n", + "L12=Ll+(Lm/(pi/3))*(pi/3-thetam2)\n", + "L112=diff(L12,thetam2)\n", + "to=2.5*10**-3 #ms\n", + "thetam2=float(-pi/3+wm*to)\n", + "i1=Vo*t/(float(round(Ll,3))+float(Lm/(pi/3))*thetam+float(Lm/(pi/3))*pi/3)\n", + "i2=(0.25-200*(t-to))/(0.005+51.1*(5*10**-3-t))\n", + "\n", + "\n", + "#Results:\n", + "print \"i1 =\",i1,\"\\t, (where round(16.2934044186179*pi,2) = 51.1 )\"\n", + "print \"\\ni2 =\",i2,\"\\n\"\n", + "\n", + "\n", + "#Calculations & Results:\n", + "#for part (c):\n", + "from __future__ import division\n", + "from pylab import *\n", + "\n", + "Lleak=0.005\n", + "Posintegral=0\n", + "integral=0\n", + "N1=500\n", + "tmax=3.75*10**-3\n", + "t=[0]*503\n", + "thet=[0]*503\n", + "Torque=[0]*503\n", + "deltat = tmax/N1\n", + "thetm=[0]*503\n", + "i=[0]*503\n", + "for n in range(1,N1+2,1):\n", + " t[n-1]=tmax*(n-1)/N1\n", + " thetm[n-1]=-(pi/3)+(400*pi/3)*t[n-1]\n", + " if (thetm[n-1]<=0):\n", + " i[n-1]=100*t[n-1]/(0.005+51.1*t[n-1])\n", + " dld1d1theta = 0.122\n", + " Torque[n-1]=0.5*i[n-1]**2*dld1d1theta\n", + " Posintegral=Posintegral+Torque[n-1]*deltat\n", + " integral=Posintegral\n", + " else:\n", + " i[n-1]=(0.25-200*(t[n-1]-2.5*10**-3))/(0.005+51.1*(5*10**-3-t[n-1]))\n", + " dld11dtheta = -0.122\n", + " Torque[n-1] = 0.5*i[n-1]**2*dld11dtheta\n", + " integral = integral + Torque[n-1]*deltat\n", + "\n", + "print \"\\nPositve torque integral =\",Posintegral, \"[N-m-sec]\"\n", + "print \"\\nTorque integral=\",integral,\"[N-m-sec]\\n\"\n", + "\n", + "plot(1000*np.array(t),i)\n", + "xlabel('time [msec]')\n", + "ylabel('Phase current [A]')\n", + "title('(a) phase-1 current profile')\n", + "grid()\n", + "show()\n", + "plot(1000*np.array(t),Torque)\n", + "xlabel('time [msec]')\n", + "ylabel('Torque [N-m]')\n", + "title('(b) torque profile')\n", + "grid()\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n", + "i1 =" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 100*t/(51.1872396234976*t + 0.005) \t, (where round(16.2934044186179*pi,2) = 51.1 )\n", + "\n", + "i2 = (-200*t + 0.75)/(-51.1*t + 0.2605) \n", + "\n", + "\n", + "Positve torque integral = 0.000456384094483 [N-m-sec]\n", + "\n", + "Torque integral= 0.000335463884625 [N-m-sec]\n", + "\n" + ] + }, + { + "output_type": "stream", + "stream": "stderr", + "text": [ + "WARNING: pylab import has clobbered these variables: ['fmod', 'cosh', 'sinh', 'trunc', 'tan', 'gamma', 'degrees', 'radians', 'sin', 'expm1', 'ldexp', 'isnan', 'frexp', 'ceil', 'copysign', 'cos', 'tanh', 'fabs', 'sqrt', 'hypot', 'log', 'log10', 'pi', 'log1p', 'floor', 'modf', 'exp', 'isinf', 'e']\n", + "`%pylab --no-import-all` prevents importing * from pylab and numpy\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVmX+//HXDSqYLKImGlgumQuCgKa2kJiailGOWpa5\n22hOo2U6NtlmX3VmyqVsbLHfmK3uVpqWmQpmWo6j4DblFqhgpogKIsh2/f44w523bDdwn/ucA5/n\n43E/5OY+nPPmUu/Pfa7rXNexKaUUQgghxP94GB1ACCGEuUhhEEII4UAKgxBCCAdSGIQQQjiQwiCE\nEMKBFAYhhBAOpDAIu+eee44FCxY4te3gwYPZuHFjpY81atQoXnzxxUr/vDBWXFwct9xyC35+fqxd\nu5aYmBg+/vhjAD744AOioqIMTiiqQgqDAODcuXN8/PHHPPHEE05t/+yzz/LCCy9U+ng2mw2bzVbp\nn3eFM2fO8MADDxAUFISHhwcnT540NE9lxcfH06xZM7ce8+WXX2bq1KlkZGTw4IMP8tVXXzF8+HC3\nZhD6kcIgAO1TXv/+/fHy8nJq+9tvv52MjAz27NmjczL9eHh4EBMTw5o1a9x2TKUU188pzc/Pd9vx\nneFMntTUVNq3b++GNMIIUhgEABs3bqR79+725xcvXqRPnz40atQIX19fevXqxYkTJxx+Jjo6mg0b\nNpS4v/j4eIKDg/n73/9OYGAgTZo0YfHixQ7bpKenExsbi6+vL+Hh4Rw5csT+2pNPPklQUBA+Pj6E\nhoayZcsW+2s7duwgLCyMevXq0bhxY55++mn7a1u3biUiIgI/Pz/atm1bZndX48aNeeKJJ+jcubNT\nbXT8+HFiYmLw9/enYcOG/OlPfwJgxowZDp+Wk5OT8fDwoLCw0N5OL7zwAnfddRd+fn788ssveHh4\n8Pbbb9OmTRvatm0LwIoVK2jbti1+fn5ERkaye/du+z6bN2/OvHnziIiIoF69egwYMIDs7GyysrLo\n168fp0+fxtfXFz8/P86cOVMs+6hRo3jiiSfo06cPfn5+dO3alWPHjtlfLynPG2+8QXBwMH5+ftx3\n3332v/9WrVqRnJxMbGwsfn5+5ObmEh0dXezvt0hiYiJRUVH4+flxyy238NFHHznV3sJASgil1I03\n3qj+85//2J+np6er9evXq/z8fHXlyhU1bNgw1adPH4efmT9/vho4cGCJ+4uLi1O1atVS06dPV4WF\nhWrXrl3Kx8dHJSYmKqWUGjlypGrYsKHat2+fys/PV4899pjDvlasWKEyMzOVUkotXLhQBQQEqOzs\nbKWUUpGRkeqTTz5RSimVk5Njz33s2DFVv359tXnzZqWUUvHx8crf31+lpqaW+bvn5eUpm82mTpw4\nUeo2ubm56tZbb1XTp09Xubm5Kjc3V+3atUsppdSMGTPUsGHD7NsmJSUpm82mCgoKlFJKde/eXbVs\n2VIdP35cFRYW2o8XGxurMjMz1dWrV9X27dvVjTfeqPbt26eUUurTTz9VTZs2VTk5OUoppZo3b666\ndeum0tLSVHp6umrXrp1688037b9ncHBwmb/jyJEjlb+/v9q9e7cqKChQ06ZNU506dbK/fn2eL7/8\nUjVu3Fj99NNPKj8/X02dOtVh++bNm6stW7bYn0dHR6vFixcrpZRasmSJuvvuu5VSSl24cEE1btzY\n/vd16NAh1bBhQ7Vnz54y8wpjyRmDALQzBF9fX/vzgIAA+vfvj6enJ3Xr1uXZZ5/lu+++c/gZHx8f\nLl68WOo+PT09eemll7DZbHTp0oUBAwawatUq++sDBw4kLCwMT09PHnvsMfbt22d/7eGHH8bHxwfQ\nzh48PT05cOCA/bjHjh3j/PnzeHl50alTJwA++eQTYmNj6dmzJwDdu3enW7durF+/voqtA9u3bycr\nK4vZs2dTu3ZtateuTZcuXQCKdQ1dz2azMWbMGFq2bInNZqNWrVqANk7j4+NDnTp1WLx4MU888QRh\nYWEADB06FD8/P4c2nzhxIg0bNiQgIIDY2Fh7e5V3/KIMDz74IJ07d8bDw4MZM2Zw4MABjh8/bt/m\n2jzLli1j3LhxtG3bFk9PT2bOnMmhQ4cczuqcsXbtWtq0acNjjz0GQPv27Rk0aBCrV6+u0H6Ee0lh\nEIBWCDIzM+3PL126xKhRowgKCqJ+/frcddddXL161eFNKDMzk/r165e6zwYNGjiMWQQHB3P27FlA\ne6MKDAy0v1a3bl2uXr1qfz5z5kxat26Nv78/AQEBpKenc/nyZQDee+89/vvf/9KuXTsiIyP54osv\nAEhJSWHVqlUEBATYHzt27CA9PZ3vv/8eX19ffH19CQ0NrXD7/PrrrzRv3rzCP1ekadOmZX4vJSWF\nefPmOWRPSUkhLS3Nvk2TJk3sX1/fXs4ICgpy+PkGDRrw22+/lZjn7Nmz3Hzzzfbn3t7eNGrUyGF7\nZ6SkpLBr1y6H32vp0qVcuHChQvsR7lXL6ADCHMLCwjh8+LD90/ecOXNITU1l3759NGrUiIMHDxIW\nFoZSyn410U8//UR4eHip+0xPTycnJwdvb28ATp06RYsWLcrNsnnzZt5++222bdvGbbfdBmjjAUVF\nqU2bNqxYsQKAzz//nCFDhpCWlkbTpk0ZM2YMb731Von7vbbwVVRQUFCxMZYiXl5eXLlyxf78/Pnz\nFd5/06ZNmTFjBn/5y18q/LPOXt2Vmppq/zo7O5v09HSH4nytwMBAh983JyeHtLS0UrcvTdOmTenV\nq1epY1HCnOSMQQAQExPDtm3b7M+vXLlC7dq18fX1JSMjg5kzZxb7me+++45+/fqVus+CggJmzZpF\nYWEhu3btYt26dQwePBgou/sjKysLDw8P/P39yc/P57XXXiM9Pd3++ooVK+yfOH19ffHw8MDDw4Ph\nw4fz+eefExcXh1KKvLw8duzYwenTp0s9Vk5ODjk5OcW+vl5UVBT16tXjxRdfJDc3l9zcXHbt2gVA\nx44d+e677zh16hRZWVn84x//KPbz5XX3PP7447zzzjskJCTYs2zatMl+llSWBg0acOHChTILn1KK\ndevWsWfPHgoKCnjllVfo0KEDrVq1KnH7IUOG8K9//Yuff/6Z/Px8XnrpJUJCQuyF2lkDBgwgMTGR\n1atXU1BQQGFhIQkJCRw+fLhC+xHuJYVBADBixAi++uor+xvj5MmTuXTpEgEBAXTr1o2ePXs6fDLd\nvXs3vr6+ZV7R06RJE2644QZuuukmHnjgAebPn0/Hjh2BkucxFD3v378/9957Ly1btqR58+bYbDaH\nbo21a9dy2223Ua9ePf785z/z0UcfUa9ePVq3bs2yZcuYPn06/v7+NGnShFmzZlFQUFBqxhtuuAE/\nPz9sNhtt27alXr16JW7n6enJ119/ze7du2nUqBFNmza1T+iKiYnhwQcfpG3btnTq1Ik+ffqU+ruV\n9vyee+5hzpw5jBw5El9fX2655RYWLVpU6tnAte0XGhrKAw88QHBwMA0aNCjxqiSbzcYjjzzCc889\nR0BAAFu3bmX58uWl5omNjWXatGn07NmTgIAAEhISnL6s99psDRo0YOPGjbz77rs0aNCAhg0bMnny\n5FILsDAHm3Jm5KoSTp06xWOPPcaFCxfIzc1l7NixTJs2rdh2kyZNYsuWLXh5ebF48WIiIiL0iCOc\n8Pzzz9O4cWOeeuqpcrcdPHgwjz/+OH379i3x9fj4eIYPH86pU6dcHVNUwujRowkODi7xzE+I6+k2\nxlCnTh3efvttOnTowOXLl4mMjKRPnz72T4wAa9as4eTJkxw6dIiEhARGjx5NYmKiXpFEOWbPnu30\ntnJVibXo9PlPVFO6dSUFBgbSoUMHQLu8MCwsrFhf77XT6CMiIsjPzyclJUWvSMLNjF7yQvzODEuQ\nCOtwy1VJycnJ7N69myVLljh8PyUlxWGNl+DgYFJSUggODnZHLKGj6Ohoy649VB1d/39PiLLoPvh8\n+fJlHnroIRYsWOAwgarI9ae48qlGCCGMpesZQ15eHoMGDWLo0KEMGDCg2OvBwcGcOnWKrl27ApR6\nthAUFFTmJYdCCCGKa9WqlcOaWM7S7YxBKcXYsWNp3749kydPLnGbmJgYPv30UwD27t2Lp6enw+zM\nIqdPn7avSmnmx8svv2x4huqS0woZJafkNPvj2iVPKkK3M4YdO3bwySefEBYWZr8E9W9/+5u933n8\n+PEMGjSIuLg4QkJC8PLysnw/aHJystERnGKFnFbICJLT1SSnOehWGO6++277ssNlWbhwoV4RhBBC\nVILMfHahUaNGGR3BKVbIaYWMIDldTXKag24zn13JZrNhgZhCCGEqlX3vlDMGF4qPjzc6glOskNMK\nGUFyuprkNAcpDEIIIRxIV5IQQlRT0pUkhBDCJaQwuJBV+h2tkNMKGUFyuprkNAcpDEIIIRzIGIMQ\nJqMUXLkCWVlVf1y5Ajk5MHAgzJoFHvJRsEap7HunFAYhXCA3FzIytEdmZvlfX/s8MxMuX/79zTw7\nG7y8oF69qj9uuAE8PeHPf4aOHeGf/wRZwLjmkMJgAvHx8URHRxsdo1xWyOnujDk5cPEiXLigPcr7\n+uJF7U09LS2enJxoCgvBz+/3h6+v81/7+pb8Zu5K69fH89JL0dx/P/zf/7l2365khX+bYJ2clX3v\ndMuNeoRwF6WK3rC1x7lzjn8WfX3+vOMbfUEBBARA/fran0WPoudNm0L79r8/r18f/P3hwAHo21f7\nhG/mT+I+PrBxI0RFaflLWfBYCEDOGIQF5OfD2bNw5oz2+PXX3/8s6Y3fywtuvBEaNdIeJX3dsKHj\nm/8NN5j7jd1VTp7UisOMGTB6tNFphN6kK0lYTmGh9oZ/8iScOgWpqY5v+kV/pqdrb+RNmmif3Iv+\nDAzUHte+6TdsCN7eRv9m5nb4MERHw1tvaYPSovqSwmACVul3dFfOy5chKen3N/6iP4u+Tk3VumOa\nNdMewcG/v/GfOxfPffdF07Sp9oZfy6Sdnlb9O9+7V+sCW7oUevUyLtf1rNqeZiVjDMLtlNI+0f/y\nCxw/XvzPzExo3hxuueX3N/9evRwLQd26Je87Ph4iI93529QskZGwejUMHgybNkF4uNGJhJnIGYMo\nV04OHDkCP/30++Pnn+HoUW1Qs1Ur7dGypeOfTZrIdfNmt3o1PP007NwJN99sdBrhatKVJKosL097\nw09MhP37fy8Cqanam327dtC2rfZnu3Zw223apZbC2t54A/7f/4Pvv9cG40X1IYXBBKzS7xgfH09E\nRDSJibBvn1YIEhO1onDLLdpEqLAw7fLMdu20olC7tvszWqUtq0POZ57Rxh2++Ua7qsso1aU9zULG\nGESpCgrg0CH48UfYtQu2bNEu6wwL0/qWu3aF8eOhQwdtgpWoeebOhSFDYNQo+PRT6QKs6eSMoRq6\ncgV++AHi4rS+4//8B266SSsA3bppjw4d3H8WIMwtJwd694Y77oDXXjM6jXAF6UqqwXJytEIQH68V\ng717te6gHj3g7ruhSxdo0MDolMIK0tPhrrtg0iSYMMHoNKKq5EY9JuDONdpPnIC334b+/bXr/J97\nTlvI7fnntYlhO3Zoq2n27Vu8KFhhLXkrZITql7NBA1i/XltPafNmfTOVpLq1p1XJGINFFBZq4wNr\n18KGDdqbf79+MGIEfPKJXE0iXKdVK1i+HB5+GLZv164+EzWLdCWZmFKwezesWAGrVmlzBgYOhPvv\nh9tvd/0KnEJca/FiePVV7QOJfPCwJhljqEaOHoUlS7TlCry8tKtFHn5YGzAWwp2mTNEuaf76a7lY\nwYpkjMEEqtLveOUKfPQRdO+uDf5dvap1G/38s9bf68qiYIX+UStkhOqf87XXtA8nkyZpZ7B6q+7t\naRVSGAx24gRMnaqtHbR8ufYfMCUF5s3TriyqCUtBC/Py9IRly7SxhoULjU4j3EW6kgyglHZ56euv\nw9at2qSiiRO1BeeEMKOkJG1+w7Jl2mXQwhpkjMEi4uK0m6ScOgVPPQVjxsh6Q8IaNm+G4cPh3//W\nznCF+ckYgwmU1e+4bZt2c5Rx42DsWG210qeeMqYoWKF/1AoZoWbl7NVLW1Np4EBtUqUealJ7mpkU\nBp0dOQIPPKDdRnHUKG210hEjzHvjGSHKMnUqtGgBTz7pnsFoYQzpStLJxYswcyZ8+CFMm6adHRi5\naqUQrnL5srbe1sSJ2uKLwrykK8kklIKVK7XlqjMytFVNp02ToiCqDx8f+PxzePFF7SIKUf1IYXCh\n1avjGThQG1z+7DPt5ieBgUanKs4K/aNWyAg1N2fr1vD++9rEy7NnXbffmtqeZiOFwUU++wwefxxC\nQiAhQbu0T4jq7P77tfGyYcO0tbxE9SFjDFWUk6MtG/D119oEtS5djE4khPvk50PPntp9HF54weg0\n4noyxmCAX37Rbn5z7px2liBFQdQ0tWppk97eekuboyOqBykMlbR9O9x5p9Z9tGIF+Ptbp9/RCjmt\nkBEkJ2h3B/zwQ61L6bffqrYvaU9zkMJQCR9+CIMGaYveTZwo6xkJcd992iz+xx7T7jEurE3GGCpA\nKZg9W1sSe/167ZJUIYQmP1+bHd2jB7z8stFpBMhaSbpTSrt95oYN8O230KSJoXGEMKVff4XISK17\n9Z57jE4jZPBZR0ppM5c3b4b4+NKLglX6Ha2Q0woZQXJer2lTbf7O8OHa7P+KkvY0BykMTnjhBdi5\nE7ZsgYYNjU4jhLndfz/ExsITT8h6SlYlXUnlmDtXu/ft9u3QqJEhEYSwnOxs7b7k06Zpk+CEMWSM\nQQeffgrPPw/ffw/BwW4/vBCWtn+/Nvntxx+hVSuj09RMMsbgYv/+N0yerF195GxRsEq/oxVyWiEj\nSM6yhIVpH6weewzy8pz7GWlPc9C1MIwZM4bAwEBCQ0NLfD0+Ph5/f38iIiKIiIhg1qxZesZx2unT\n2s1I/vUv6NDB6DRCWNekSVC/vrYEvbAOXbuStm/fjo+PDyNGjODAgQPFXo+Pj2f+/PmsW7eu7JBu\n7ErKy9Mus7v/fu3TjhCias6cgfBw+OIL7T4Own1M2ZUUFRVFQEBAmduYbYhjxgwICIDp041OIkT1\n0KQJLFwII0fClStGpxHOMHSMwWaz8cMPPxAaGkrPnj3Zt2+fkXHYtk2b1bxkSeWWubBKv6MVcloh\nI0hOZw0erE18K+8s3OiczrJKzsoy9M7DnTp1IiUlBW9vbzZt2sSAAQNISkoqcdtRo0bRvHlzAOrX\nr094eDjR0dHA739JVXmemQl//nM0ixfDTz/F89NPFd9fEVfk0fN5YmKiqfKU9DwxMdFUeaz+3Azt\nuXBhNGFh0Lx5PB07mqt9KvrcDO1Z0vP4+Hg++OADAPv7ZWXofrlqcnIysbGxJY4xXK9NmzZs27aN\nJtdNLXbHGMPYseDtrS0fLITQx5dfwtNPw7592i1Chb5MOcZQnrS0NPvXe/bsISsri8aNG7s9R3w8\nbNoEf/+72w8tRI0SGwtRUdrEN2FeuhaGRx99lDvvvJPDhw/TrFkz3n//fRYtWsSiRYsAWLZsGaGh\noYSGhjJu3DiWLl2Kh4d7a1VODowfrw2O+flVbV9Fp3RmZ4WcVsgIkrMy3nhDmx+0eXPx18yUsyxW\nyVlZuo4xLFu2rMzXJ06cyMSJE/WMUK4FC6BtW3jwQUNjCFFj1K+vLbQ3diwcOFD1D2TC9Wr0khhn\nz0L79vDDD9C6tct3L4Qow9ixULeudrYu9CFrJVXChAnagPPrr7t810KIcqSnaysLrF6t3SZXuJ4l\nB5+NdPiw9g/yxRddt0+r9DtaIacVMoLkrIoGDbTxhj/+Ea5e1b5nxpwlsUrOyqqxhWHWLO3mOw0a\nGJ1EiJrroYe0lVdffdXoJOJaNbIr6cgRuOsuOHYM/P1dtlshRCWkpEBEBHz3ndxH3dWkK6kCZs3S\nVn2UoiCE8YKDtTXK/vhHKCw0Oo2AGlgYTpyADRu0wuBqVul3tEJOK2QEyekqEyZoRWHKlHijozjF\n7O1ZVTWuMLz1lrbKo5wtCGEeHh7a/U/ef1+7H4owVo0aY7h8GZo3h927oUWLqucSQrjW889DUhIs\nXWp0kupBl3kMe/bswVbO+tO1a9cu9Q5truKqwvD229o0/M8+c0EoIYTLZWVBSIi29H2PHkansT5d\nCoOvry+dO3cucwdJSUkkJydX+MAV4YrCoJT2D+6dd6B7dxcFu058fLx9KVwzs0JOK2QEyelq8fHx\nXLwYzfTpkJgIdeoYnahkVmnPyr53lrlWUufOnYmLiytzBz0sUtZ//BEKCrTbdgohzOvBB+G997TJ\nb7IKqzFqzBjDH/+oTaT5619dFEoIoZvjx6FrV0hIgGbNjE5jXW6bx3Ds2DFmzpxJSEhIhQ9mlKws\nbfmLESOMTiKEcEarVvDkk/DMM0YnqZmcKgypqanMnz+f22+/nQ4dOlBQUMDy5cv1zuYyn32mLdJ1\n0036Hscq1zZbIacVMoLkdLVrc/71r7Bnj3YTLbOxSntWVpmFYdGiRURHR9O7d28uXrzI+++/T9Om\nTZkxY4buVyK50ocfwqhRRqcQQlRE3brw5pvw5z//vsiecI8yxxhq165N3759mTVrFh07dgSgRYsW\nJCUluS0gVG2M4dw5uPVWOHNG+4cmhLCW+++H6GiYOtXoJNajy1VJv/76K6tWrWLSpEmcPXuWwYMH\nk5eXV+mQRli7Fvr0kaIghFXNm6ctejliBBhwS/gaqcyupEaNGjFhwgS2bdvGpk2b8Pf3JzAwkLZt\n2zJ9+nR3ZayS1ath8GD3HMsq/Y5WyGmFjCA5Xa2knG3awPDh8NJL7s9TGqu0Z2U5fVVSs2bNmDp1\nKnv27GHdunV4e3vrmcslLlyAnTshJsboJEKIqnjpJfj8c9i/3+gkNUOZYwx79+4lMjKyzB04s01V\nVbaf7MMP4YsvtH9QQghre+st7f/yt99COSv1iP/RZUmMsLCwMk+ZlFL06tWLhISECh+4Iir7yw0c\nCAMGyPwFIaqD/Hzo2BH+/nd44AGj01iDLhPcMjIy6NSpU6mPzp07U7t27UqH1lNeHmzdCn37uu+Y\nVul3tEJOK2QEyelqZeWsVQvmz4cpUyA3132ZSmKV9qysMq9K0ntxPD39+CO0bClXMQhRnfTpA7fd\nBgsXyqxoPVXbtZJeeEG7I9Tf/qZTKCGEIQ4d0pbkPnIE6tc3Oo25yT2fr/PNN9qnCyFE9RISArGx\n8OqrRiepvqplYTh3Tvs0cccd7j2uVfodrZDTChlBcrqaszlfeUVbmjslRd88pbFKe1aWU4WhZ8+e\nTn3PLL79VptCb9abfAghqiY4WFtKf8YMo5NUT2WOMWRnZ3PlyhV69OjhUCGzsrLo0aMHx44dc0fG\nCveTjRsHHTrApEk6hhJCGOriRW0gOj4e2rc3Oo056bJW0qJFi1iwYAGnT5+mU6dO9u/XrVuXCRMm\nVDylm3z/PZg4nhDCBerX15bmfu45bU004ULKCQsWLHBmM904GVMppVRamlK+vkrl5ekYqBRxcXHu\nP2glWCGnFTIqJTldraI5s7OVuuUWpbZv1yVOqazSnhV577xWmWcMRSZOnMi2bds4deoUhYWF9u+P\nMOGU4p07oVs3bTKMEKJ68/aGmTO1e0Pv2CFLZbiKU/MYHnroIVJTUwkPD8fT09P+/X/+85+6hitS\nkX6yZ5+FevXMtRKjEEI/hYUQFgavvSYLZl5Pl7WSitx2220cPnwYm0HluCK/3N13a5eymfiiKSGE\ni61Zo62htHu3nDVcS9cJbpGRkZw9e7bCO3e3nBxITISuXY05vlWubbZCTitkBMnpapXN+Yc/QEGB\n+wahrdKeleVUT/yZM2do06YNXbp0wcvLC9Aq0bp163QNV1F79kC7duDjY3QSIYQ7eXhoYw3PPaet\nvOpRLafuuo9TXUlF1fHa0xKbzUb37t11DVfE2dOhuXPhxAlw09CHEMJElNJWO5g8GYYMMTqNOeg6\nxgBw9OhRfvnlF/r06UN2djZ5eXn4+flV+ICV4ewvN3Sotj7SyJFuCCWEMJ1Nm+Cpp+DgQbjmOpka\nS9cxhjfffJNHHnmEP/3pT4DWtfSACe+UsWcPXDMPz+2s0u9ohZxWyAiS09WqmrN3b2jUCJYudU2e\n0lilPSvLqcLwzjvvsHPnTvsZQosWLbhw4YKuwSoqIwNSU6FtW6OTCCGMYrNpYw2vvKLdrEtUjlNd\nSR07dmTfvn1ERESQkJBAYWEhISEh/PTTT+7I6NTp0LZt2sDTzp1uiSSEMLGePWHYMBg92ugkxtK1\nKykqKorZs2dz5coV4uLiGDp0KDEmm0lidDeSEMI8XnxRu0lXQYHRSazJqcKwYMECfH19ad26NfPm\nzeOuu+5izpw5emerkIQEiIw0NoNV+h2tkNMKGUFyupqrcnbvDk2awMqVLtldMVZpz8oqdx5DQUEB\nYWFhHDp0iEkmXsf6wAF4+mmjUwghzMBm027vO2WKdumqzGuoGKfGGP7whz+wcOFCgoKC3JGpmPL6\nyfLzwc8P0tLghhvcGEwIYVpKQZcu2tjjwIFGpzGGLvdjKJKWlmaf+VyvXj37Ac0y8/noUQgKkqIg\nhPhd0VnDK69oS2bIGkrOc+oEa9asWaxfv56XXnqJKVOm2B9mcfAghIYancI6/Y5WyGmFjCA5Xc3V\nOWNjtR6Fr7926W4t056V5dQYw4QJE/jvf/9b4Z2PGTOGDRs20LhxYw4cOFDiNpMmTWLLli14eXmx\nePFiIiIiKnycgwe1W3kKIcS1PDzg+ee1uQ39+slZg7N0HWPYvn07Pj4+jBgxosTCsGbNGj7++GO+\n+OILEhISGD16NImJicVDltNPNnAgPPIIPPxwheIJIWqAggLtntDvvAP33mt0Gvcy5RhDVFQUycnJ\npb7+1VdfMXz4cAAiIiLIz88nJSWF4OBgJ+Nr5IxBCFEaT0+YPh1mz655haGynBpjmDlzZrExhmee\neabKB09JSaFZs2b258HBwaSkpFRoH7m5cPIk3HprleNUmVX6Ha2Q0woZQXK6ml45H30UjhyBvXtd\nsz+rtGdd3/esAAAZ9UlEQVRlOXXGEB0drVuA609zSrtL3KhRo2jevDkA9evXJzw8nOjoaH75BRo2\njGfnzt9zFv2luft5EaOO7+zzou46s+Qp6XliYqKp8lj9ubQnPPVUNHPmwPjxVd+fWdszPj6eDz74\nAMD+flkZTo0x+Pj42N+wc3NzycvLw8fHh4yMjHIPkJycTGxsbIljDGPHjqVfv34MHjwYgA4dOvDN\nN98UG8soq59s3TpYtAg2bCg3ihCiBsvIgBYttOVzqvCeaSm6rpV0+fJlMjMzyczMJDs7m7Vr1/Lk\nk09W+GDXi4mJ4dNPPwVg7969eHp6VniA+8gRaNOmylGEENWcnx88/ji8/rrRScyvwhPFPTw8iI2N\nZePGjeVu++ijj3LnnXdy+PBhmjVrxvvvv8+iRYtYtGgRAIMGDSIoKIiQkBAef/xxlixZUuFf4MgR\nuO22Cv+YLopO6czOCjmtkBEkp6vpnfOpp+Djj+H8+artxyrtWVlOjTGsWbPG/nVhYSF79uxxaufL\nli0rd5uFCxc6ta/SHDmiXaoqhBDluekmePBB7dLVF14wOo15OTXGMGrUKPsYg4eHB8HBwTzxxBM0\nbdpU94BQdj9Z06awezdU8ApXIUQNdeiQdr+G5GTw9jY6jb50v+ezkUr75TIytE8AGRmyeqIQwnn9\n+2tnDuPGGZ1EX7oOPg8fPtzhCqRLly4xcuTICh/M1Y4fh5YtzVMUrNLvaIWcVsgIktPV3JXzL3+B\nefOgsLByP2+V9qwsp95SDx48aL/fM4C/vz/79+/XLZSzkpK0y8+EEKIiuncHX1/XL65XXTjVldS+\nfXt+/PFHe3G4dOkS3bp1M/yez/Pna7Oe33jDLTGEENXIRx/BJ5/Apk1GJ9GPrmslPfXUU3Tu3Jkh\nQ4aglGLlypWmWHY7KckcS2EIIaxnyBCYNg3++19tkT3xO6e6ksaPH8/y5cvx8/Ojfv36rFixgvHj\nx+udrVzJyeaawWiVfkcr5LRCRpCcrubOnF5eMH48VOaKeau0Z2U5dcYAEBkZSWRkpJ5ZKkzGGIQQ\nVfHEE9rZwuzZEBBgdBrzsOzlqkppg0enT2tT3YUQojKGDYOICDBB77jL6Xq5qhmlpWmnglIUhBBV\nMWmS1p1UUGB0EvNwujAcPXqUb775BoDs7GynVlbVU1KSucYXwDr9jlbIaYWMIDldzYicXbpAkybw\n5ZfO/4xV2rOynCoMb775Jo888gh/+tOfADhz5gwPPPCArsHKk5ws4wtCCNeYNAnefNPoFObh1BhD\nu3btSExMpFu3biQkJADQsWNH9u3bp3tAKLmfbO5cbXxh/ny3RBBCVGO5udoHzY0bITTU6DSuo+sY\nQ506dfDy8rI/LywsJDc3t8IHc6WUFFk4TwjhGnXqaFcovfWW0UnMwanCEBUVxezZs7ly5QpxcXEM\nHTqUmJgYvbOVKTUVKnhPH91Zpd/RCjmtkBEkp6sZmXPsWFi5EjIzy9/WKu1ZWU4VhjfeeANfX19a\nt27NvHnzuOuuu5gzZ47e2cpkxsIghLCum26CHj1g6VKjkxivwvMY0tPTSUpKolOnTnplKqakfrKb\nb4bvvjPflUlCCOv69ltt5dWEBPjfLWgsTdcxhqioKLKyskhLSyMiIoIJEyYwadKkCh/MVQoL4cwZ\nrcILIYSr9OwJly/Dv/9tdBJjOVUYLl++TL169fjss88YM2YM//73v4mLi9M7W6nOnoX69bUBIzOx\nSr+jFXJaISNITlczOqeHh3bznnffLXs7o3PqzanCkJ+fz7lz51izZg39+vXTftDAu+PIFUlCCL2M\nHg1ffAEXLhidxDhOvbtPnz6d6OhoWrZsSZcuXUhOTqZly5Z6ZyuVWQeeo6OjjY7gFCvktEJGkJyu\nZoacN94I/frBxx+Xvo0ZcurJkovovfUWHDhQ/umeEEJUxnffafMaDh2y9iC0roPPly9fZt68eYwb\nN47Ro0czevRoxowZU+GDuUpqqjm7kqzS72iFnFbICJLT1cySMypK+3P79pJfN0tOvThVGB599FEu\nXLjA5s2biY6OJjU1FR8fH72zlcqsXUlCiOrBZtNu4lNTeyWc6koKCQnh0KFD9vWRCgoKiIqKYufO\nne7IWOx0qE8fePpprR9QCCH0cOGCtn7SL79AgwZGp6kcXbuS6tWrB0DdunU5dOgQ6enppKSkVPhg\nrvLbbxAYaNjhhRA1QEAAxMTUzJnQThWGxx9/nIyMDGbOnEnv3r1p164dzz77rN7ZSnX2LDRubNjh\nS2WVfkcr5LRCRpCcrma2nGPGwPvvF/++2XK6mlP3fB43bhwAvXv35vTp07oGKk9hIZw7Z87CIISo\nXu69F86fh8RECA83Oo37ODXGkJWVxapVqzh16hRKKZRS2Gw2XnrpJXdkdOgnO38eWreG9HS3HFoI\nUcO9/DJcvAgLFhidpOJ0HWPo378/X3/9NV5eXtSrV8/+MMJvv8nZghDCfUaN0sYZrl41Oon7OFUY\n0tLSWLFiBdOmTWPKlClMnTqVKVOm6J2tRGfPmnfg2Sr9jlbIaYWMIDldzYw5W7SAsDBYt+7375kx\npys5VRjuvvtuDh48qHcWp8gZgxDC3UobhK6uyhxjCP3fzU8LCgo4evQoLVq0sN/i02azsX//fveE\nvKaf7M034cgRWLjQLYcWQgiys7VJtfv2QbNmRqdxXmXHGMq8KunLL7/E9r+FQsyypJKZu5KEENVT\n3bowZAh89BE8/7zRafRXZldSw4YNWbZsGbNnz2bt2rUEBQXRvHlz+8MIZu5Kskq/oxVyWiEjSE5X\nM3POkSO1wqCUuXO6QpmFYdiwYRw8eJDIyEi2bt3KxIkT3ZWrVHLGIIQwQteu2jyq3buNTqK/MscY\n2rZty88//wxoN+sJDw83ZBD62n6ybt1g/ny48063xxBC1HCvvKLNpXrzTaOTOEeXeQx169a1f12r\nVi1q165d8WQuJmcMQgijDBsGy5dDXp7RSfRVZmHYv38/vr6+9seBAwfsX/v5+bkro4Nz56BRI0MO\nXS6r9DtaIacVMoLkdDWz52zVSlt5Ye7ceKOj6KrMwlBQUEBmZqb9kZ+fb/86IyPDXRntcnMhJwcM\nqklCCMGwYfDtt0an0Jelbu35228QGqp1JwkhhBHOn4eWLeHkSfD3NzpN2XRdK8kszp+Hhg2NTiGE\nqMkaNoQePeCzz4xOoh9LFYb0dHPfScns/aNFrJDTChlBcrqaVXJGRMTz8cdGp9CPFAYhhKigO+7Q\nlsc4dcroJPqw1BjDkiWwbRt88IHRiYQQNd0f/6hdoTRtmtFJSlcjxhjkjEEIYRaPPAIrVhidQh9S\nGFzIKv2jVshphYwgOV3NSjmjoyE1FY4eNTqN6+laGDZu3EhoaCjt27fn1VdfLfZ6fHw8/v7+RERE\nEBERwaxZs8rc3/nz5i4MQoiaw9MTHnqoep416DbGcPXqVdq2bcv3339PYGAgd9xxB++99x4RERH2\nbeLj45k/fz7rrr01Ukkh/9dP9vDDMGiQtvytEEIY7fvvYcIEOHDA6CQlM90Yw65duwgJCSEoKIha\ntWoxZMgQNmzYUGy7ioQ2e1eSEKJmufNOuHgRDh0yOolr6VYYUlJSaHbNrY6Cg4NJSUlx2MZms/HD\nDz8QGhpKz5492bdvX5n7NHtXkpX6R83OChlBcrqa1XJ6eMDDD1e/7qQy7+BWFUV3fitLp06dSElJ\nwdvbm02bNjFgwACSkpJK3HbUqFH88ktzPv4Ytm+vT3h4ONHR0cDvf0lGPy9iljylPU9MTDRVnpKe\nJyYmmiqP1Z9Le+rXnq1bxzNrFrzySjQ2m7H54uPj+eB/1/NX5WZquo0xbN++nVdffZX169cDMGfO\nHHJzc3m+jPvitWnThm3bttGkSRPHkP/rJ/P11a4CkEX0hBBmoRTceiusXg3XDKGagunGGG6//XYO\nHjxIamoqeXl5rFy5kn79+jlsk5aWZv96z549ZGVl0biU+3YWrazq66tXYiGEqDibTbsgZvlyo5O4\njm6Fwdvbm3feeYc+ffrQsWNHBg4cSGRkJIsWLWLRokUALFu2jNDQUEJDQxk3bhxLly7Fw6PkSOnp\nEBCg/SWYVdEpndlZIacVMoLkdDWr5hwyBFau1M4eqgPdxhgA+vXrV+wsYfz48favJ06c6PR9pOWK\nJCGEWYWFgZeXdj/oLl2MTlN1llkraedOxeTJ8OOPRqcRQojinn8eCgrgH/8wOsnvTDfG4GoZGTLo\nLIQwr4EDYc2a6tGdZJnCcOmS+QuDVftHzcgKGUFyupqVc0ZGQl4eHDzo/jyuZpnCkJFh/tvoCSFq\nLpvt97MGq7PMGMPcuYqUFHj9daPTCCFEyXbs0NZO2r/f6CSaGjHGIGcMQggzu+MOOHfO+ktxW6Yw\nyBiD61ghpxUyguR0Navn9PCAAQPgs8/cm8fVLFMY5IxBCGEFgwZZvzBYZoxh0CDFkCHajTGEEMKs\n8vKgaVNISIBrFpg2RLUfY7h0Sc4YhBDmV7s2xMbC558bnaTyLFMYrDDBzer9o2ZihYwgOV2tuuS0\n+mWrlikMcsYghLCK3r0hMRGuWUDaUiwzxtC0qWL3bggKMjqNEEKUb+BA7QqlESOMyyBjDEIIYSKx\nsbBundEpKscyhSEnB+rVMzpF2apL/6gZWCEjSE5Xq045+/eHzZvh6lX987iaZQqDn5+5b9IjhBDX\natwY2rcHi9Q6B5YZY7j5ZsWJE0YnEUII5/3jH5CSAgsXGnP8aj/GIOMLQgireeABbZzB/B+/HVmm\nMJh9DgNUr/5Ro1khI0hOV6tuOdu10ya87dunbx5Xs0xhkDMGIYTV2GzaWcOXXxqdpGIsM8bwyCOK\nZcuMTiKEEBUTFwfTpsHu3e4/drUfY7BCV5IQQlzv7rvh+HE4fdroJM6TwuBC1a1/1EhWyAiS09Wq\nY87ataFvX1i/Xr88rmaZwuDjY3QCIYSonNhYa40zWGaMYe5cxZQpRicRQoiKO38eWrSAs2fB29t9\nx632YwxmXw5DCCFK07AhhITA9u1GJ3GOZQqDFbqSqmP/qFGskBEkp6tV55z9+sHXX7s+ix6kMAgh\nhBv06wcbNxqdwjmWGWP49ltFr15GJxFCiMopLIQmTbT5DLfc4p5jVvsxBjljEEJYmYcH9Oljje4k\nKQwuVJ37R93NChlBcrpadc9plXEGKQxCCOEm992n3Z/B7DfvscwYw7lzikaNjE4ihBBV060bzJ4N\nPXvqf6xqP8Yg8xiEENWBFa5OskxhcOdswcqq7v2j7mSFjCA5Xa0m5LTCOINlCoPc71kIUR107gy/\n/QanThmdpHSWGWOwQEwhhHDKsGFwzz0wbpy+x6n2YwxCCFFd3HcfbN5sdIrSSWFwoZrQP+ouVsgI\nktPVakrOnj1hyxYoKHBNHleTwiCEEG4WFASBgZCYaHSSkskYgxBCGOCpp+Cmm+DZZ/U7howxCCGE\nhfTqBd9+a3SKkklhcKGa0j/qDlbICJLT1WpSzu7dYdcuyM6ueh5Xk8IghBAG8PODjh1hxw6jkxQn\nYwxCCGGQGTO0M4ZXX9Vn/zLGIIQQFtOrlznnM+haGDZu3EhoaCjt27fn1VJK4qRJkwgJCSEyMpKE\nhAQ94+iuJvWP6s0KGUFyulpNy9m1Kxw7BmlpLtmdy+hWGK5evcqECRPYuHEj+/fvZ/Xq1cXe+Nes\nWcPJkyc5dOgQixcvZvTo0XrFcYtEs16UfB0r5LRCRpCcrlbTctaurS2NsXWrS3bnMroVhl27dhES\nEkJQUBC1atViyJAhbNiwwWGbr776iuHDhwMQERFBfn4+KSkpekXS3cWLF42O4BQr5LRCRpCcrlYT\nc5qxO0m3wpCSkkKzZs3sz4ODg4u96TuzjRBCVGe9e2vzGcx0fU0tvXZsc3Kd7OtHzEv7udjYKkfS\nXUJCMnv2GJ2ifFbIaYWMIDldrSbmVAqSkyElBa75nGwo3QpDcHAwp65ZcPzUqVMOZwfXbtO1a1dA\nO4MIDg4utq9WrVqxfr01bsiQmvqh0RGcYoWcVsgIktPVamrOm2926e4A7b2zMnQrDLfffjsHDx4k\nNTWVxo0bs3LlShYtWuSwTUxMDJ988gmDBw9m7969eHp6EhQUVGxfx44d0yumEEKI6+hWGLy9vXnn\nnXfo06cPhYWFDB8+nMjISHtxGD9+PIMGDSIuLo6QkBC8vLxYsmSJXnGEEEI4yRIzn4UQQriPqWY+\nW2FCXHkZ4+Pj8ff3JyIigoiICGbNmuX2jGPGjCEwMJDQ0NBStzG6HaH8nGZoS9DGx+655x5CQ0Np\n06YNr732WonbGd2mzuQ0Q5vm5ORw++23ExERwW233cbkyZNL3M7o9nQmpxnaE6CgoICIiAhiS7lK\np8JtqUwiJydHNW/eXKWkpKi8vDzVuXNntXfvXodtVq9erR588EGllFJ79+5VHTt2NF3GuLg4FRsb\n69Zc1/vuu+/U3r17VYcOHUp83eh2LFJeTjO0pVJKnTlzRh04cEAppVRmZqZq3bq1SkxMdNjGDG3q\nTE6ztOmVK1eUUkrl5eWprl27qq1btzq8bob2VKr8nGZpz3nz5qmhQ4eWmKUybWmaMwYrTIhzJiMU\nvwTX3aKioggICCj1daPbsUh5OcH4tgQIDAykQ4cOAPj4+BAWFsbp06cdtjFDmzqTE8zRpnXr1gUg\nNzeXgoICAgMDHV43Q3s6kxOMb8+UlBS++uorHn/88RKzVKYtTVMYrDAhzpnj22w2fvjhB0JDQ+nZ\nsyf79u1zWz5nGd2OzjJjWyYnJ7N7927uvvtuh++brU1Ly2mWNi0sLCQ8PJzAwEB69OhB+/btHV43\nS3uWl9MM7Tl58mTmzJmDh0fJb+eVaUvdrkqqKFdPiNODM8fq1KkTKSkpeHt7s2nTJgYMGEBSUpIb\n0lWMke3oLLO15eXLl3nooYdYsGABvr6+xV43S5uWldMsberh4UFiYiKXLl2iT58+xMfHEx0d7bCN\nGdqzvJxGt+f69etp3LgxERERZS7sV9G2NM0ZQ0UmxBUpbUKckRl9fHzw9vYG4L777qNOnTqcOXPG\nbRmdYXQ7OstMbZmXl8egQYMYOnQoAwYMKPa6Wdq0vJxmalMAf39/+vfvz48//ujwfbO0Z5HSchrd\nnjt37mTdunW0aNGCRx99lK1btzJixAiHbSrTlqYpDNdOiMvLy2PlypX069fPYZuYmBg+/fRTgDIn\nxBmZMe2a9XP37NlDVlYWjRs3dltGZxjdjs4yS1sqpRg7dizt27cv9QoaM7SpMznN0Kbnz58nMzMT\ngOzsbL799ttiV6aZoT2dyWl0e/7tb3/j1KlTJCUlsXz5cu69914++ugjh20q05am6UqywoQ4ZzIu\nW7aM9957D4A6deqwdOnSUvv+9PLoo4+ybds20tLSaNasGa+88gp5eXn2jEa3o7M5zdCWADt27OCT\nTz4hLCyMiIgIQPsPefLkSXtWM7SpMznN0KanT59mxIgRKKXIyclh6NCh9O/f31T/153NaYb2vFZR\nF1FV21ImuAkhhHBgmq4kIYQQ5iCFQQghhAMpDEIIIRxIYRBCCOFACoMQQggHUhiEEEI4kMIghBDC\ngRQGUW1cunSJd955x/789OnTPPTQQy4/zowZMwgODmbGjBku33d5evToga+vL3tcdSd6IUoghUFU\nGxcuXODtt9+2P7/ppptYtWqVy49js9l45plnDCkMcXFxdO7c2ZSLHorqQwqDqDb++te/cvz4cSIi\nInj22Wc5ceKEfW2bDz74gAEDBtCvXz9atGjBwoULmTt3Lp07dyYyMtK+5s3hw4fp0aMHHTt2pGvX\nrhw6dKjEY127YMCMGTMYOXIkPXr0oHnz5nz22WdMnTqVsLAwevbsydWrVwH4y1/+QkhICOHh4Tzz\nzDMAnDlzhvvvv5+OHTsSHh7Otm3bAMjMzOSRRx4hJCSEjh07snr1at3aTYhiqnrnICHMIjk52eFu\ncElJSfbnS5YsUbfeeqvKzs5W586dU35+fupf//qXUkqpyZMnqzlz5iillLrzzjvV0aNHlVJK/fjj\nj+quu+4qdpwZM2aouXPn2p+//PLL6p577lGFhYVq3759qm7dumrTpk1KKaX+8Ic/qFWrVqnffvtN\nhYSE2H/m8uXL9te///57pZRSJ06cUK1atVJKKTVp0iQ1depU+/aXLl2yfx0dHa327NlT2WYSolym\nWURPiKpS5Sz71aNHD7y9vfH29qZ+/frExMQAEBoaSmJiIufPn2fv3r0O4xLZ2dnlHtdms9G3b19s\nNhsdOnSgsLCQ3r172/d96tQpGjZsSO3atRk7diwxMTH2e/Nu3rzZYf3+q1evkpGRwZYtW1i7dq39\n+35+fs43hBBVJIVB1BheXl72rz08POzPPTw8KCwsRCnFjTfeWKkbz9epU8e+r9q1azscp7CwEE9P\nT3bt2sWWLVtYs2YNb731Flu3bsVms7F7925q1Sr+X7G8QieEXmSMQVQbdevW5cqVKxX+uaI34EaN\nGnHjjTeyfv16+/dLG2OoqKysLDIzM+nXrx/z5s1j7969APTq1Yt3333Xvl3R8Xr37m1fOhkgIyPD\nJTmEcIYUBlFtBAYGEh4eTvv27Xn22Wex2Wz2q3eu/bro+bVfFz1fsWIF8+bNIywsjA4dOjg96Fva\nvoueZ2Rk0LdvXyIiIoiKiuL1118H4N1337XfAKZDhw4sWLAAgJkzZ3Ly5Enat29PeHg4W7ZsqUSL\nCFE5cj8GISrolVdewcfHhylTphhy/B49ejBv3jwiIyMNOb6o/uSMQYgK8vHx4b333jNsgltSUpLD\nOIYQriZnDEIIIRzIGYMQQggHUhiEEEI4kMIghBDCgRQGIYQQDqQwCCGEcPD/ATnLc2SOfyyJAAAA\nAElFTkSuQmCC\n", + "text": [ + "<matplotlib.figure.Figure at 0x388b510>" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEZCAYAAABrUHmEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X18T/X/x/HHmauJzVwOm29E5WvMtlAUDUmby0KLb0Mh\n1a0U6UcUEl24Kn2TiC4JQ0nmu69cfBRlKXPVBWJjszCGzdXs4vz+ON992myzz+fjfD7nnO11v90+\nt33O53N2znPv8Xnt/X6fC0VVVRUhhBDCAV5GBxBCCGEdUjSEEEI4TIqGEEIIh0nREEII4TApGkII\nIRwmRUMIIYTDpGgI03rppZeYO3cuADabjUaNGpW47tixY/nggw88Fc1y5syZQ61atfD19SU9PR0f\nHx+SkpIAGDp0KK+88oqxAYVlVDQ6gBDFSUtL4/PPP+fw4cMOrT927FjatWvHsGHDqFSpUpH3k5KS\nuOWWW8jJycHLq3z9rXT58mUmTJjAzz//TMuWLQHIzMy0v68oCoqiGBVPWEz5+t8jLOOTTz6hR48e\nVKlSxaH169evT/PmzVm7du1113P1XNacnByXvs8TSst26tQprl69yj//+c8S15FzfIWjpGgIU4qL\ni+Pee+8t8vobb7yBv78/9evXZ/HixYXeCw8PJzY2ttjtderUCQA/Pz98fHyIj49HVVVeeukl/P39\n8fPzY8CAAZw9exbQeiZeXl589NFHNGnShG7dupGXl8fTTz+Nr68vzZo1Y968eXh5eZGXlwdA48aN\n2bRpk32fU6ZMITo62r68efNmQkND8fX1pXnz5sTFxZX48zdu3Jg333yTVq1a4ePjwyOPPMLly5cB\nbaguMDCQGTNmEBAQwLBhw8jKymLEiBHUqlWL2rVrM3LkSLKysjh48CBBQUH2n/2+++4DwMvLiyNH\njhS77xUrVtC8eXN8fX0JCwtj586dJeYU5Y8UDWFK+/bt4/bbby/02okTJ7hw4QInTpxg7dq1PP/8\n8+zZs8f+fvPmzQstF/T9998DcP78eTIzM7nzzjuZN28ea9asISEhgRMnTlCxYkVGjBhR6Pvi4+M5\ncOAAcXFxzJ07l23btnH48GESEhJYu3ZtoWGda4d5Cj4/fPgw/fr1Y9asWWRkZLBgwQIeeeQRUlNT\nS2yDmJgYNm/eTGpqKqdOneLll1+2v3fy5EkuXbpEcnIyCxcuZOLEiRw8eJDExESOHDnCwYMHmThx\nIrfddhu//vqr/WffuHFjifsD2LZtG88++ywxMTFkZGQwduxY+vTpw5UrV677faL8kKIhTOncuXP4\n+PgUeq1ChQpMmjQJRVFo164dffv2ZeXKlfb3fXx8OHfuXLHbK274ZdmyZYwdO5aGDRvi7e3N66+/\nztdff23/ix5g0qRJVK5cmSpVqrBq1SpGjx5N3bp18fHxYcKECdcd1in43pIlS+jVqxddu3YF4N57\n7+Wuu+5i3bp1xX6voig8++yz9n1NnDiRFStW2N+vVKkSL7/8Ml5eXlSpUoXly5czadIkatSoQY0a\nNZg0aRJLly4t8Wcvbn8Aixcv5sknnyQ4OBiAQYMG4evry3fffVfqNkT5IEVDmFLNmjULTdYC1KpV\nq9AcR2BgICdPnrQvZ2Zm4ufn5/A+Tp06xT/+8Q/7cqNGjcjNzeX06dP21xo0aFBo/cDAQPtyQECA\nw/tKSUlh5cqV1KxZ0/7Yvn076enpJX7Ptfsq+LPWrl2bihX/Po7l5MmTRX6WU6dOOZyvYM7Zs2cX\nypmSksKZM2ec3pYom6RoCFMKDg7mwIEDhV5LT08vNEySnJxM/fr17cu///47ISEhxW6vuKOD/P39\nOXr0aKHteXl5UadOnWK3Ua9ePVJSUuzLBZ8DVK5cmYsXL9qXz5w5Y99vgwYNePzxxzl79qz9kZmZ\nyfjx44vd17XbT0lJwd/fv8R1i/tZ6tWrV+L6JWnQoAFTpkwplPPChQsMHDjQ6W2JskmKhjClyMhI\ntm7dWui13Nxcpk2bRl5eHvHx8axdu5b+/fvb39+6dSsRERHFbs/Pzw9FUUhMTLS/FhUVxZw5c0hN\nTeXKlSu8/PLL9OnTh6pVqxa7jf79+/POO++QlpZGZmYmb731VqFi1Lp1a5YvX05ubi579+5l1apV\n9veio6P56quv2LJlC6qqkp2dzfbt20uc01BVlXnz5tn39cYbbxAVFVVie0VFRTFt2jTOnTvH+fPn\nee211xg0aFCJ61+7r/whrOHDhzN//nwSEhIAuHLlChs2bODChQsObUuUfVI0hCkNHjyY9evX23sW\niqLQoEEDbrrpJho2bEjv3r2ZM2cOrVu3BuCvv/7i999/p2/fvsVur0aNGowZM4Y2bdpQs2ZNfvrp\nJ5555hl69+5NSEgI/v7+ZGVlsWjRIvv3XNs7GTVqFB06dKBp06aEhYXRq1evQvMF06dP59dff6VG\njRpMmDCh0If8rbfeyrJly5gwYQI1atSgfv36TJs2jdzc3GLzKorCgAED6NKlCw0bNqROnTpMmzat\nxGzTp0+nWbNm3HLLLTRp0oSmTZvy+uuvl7h+SRP4nTp1YubMmQwZMgQfHx9uvvlmFixYUGxGUT4p\nRt6EKS4ujhdffJHc3FyGDBnCuHHjCr3/9ddf88orr6AoCnl5ecycOZMHHnjAoLTC0yZOnEi9evV4\n7rnnSl137NixNGvWjCeffNIDyTTuPGGwSZMmLF68mC5duui6XSFulGFFIysri+bNm7Nt2zb8/f1p\n3749CxcuJDQ01L7OxYsXqVatGqAdgtmzZ89C47ZCGEmKhiiPDBueio+PJygoiICAACpWrEhUVFSR\nE7PyCwbAhQsXCh3JIoQZyOU3RHlj2LWnUlJSCl2ALjAwEJvNVmS9NWvW8NJLL/HXX3+xYcMGDyYU\n4voaN25c4pzEjSo4YS+EmRjW03D0L7S+ffvy+++/88033xS6JIMQQgjPM6ynERgYSHJysn05OTn5\nupe+7tixIzk5OZw8ebLI8eoBAQHXvRyDEEKIwpo2bcqff/7p9PcZ1tNo27Yt+/fv5/jx42RnZxMT\nE1PkGPv86/0D7Nq1i6tXrxZ7wlJqaqr9WHOzPiZPnmx4BskpOSWn5Mx/OHrbgWsZ1tPw9vZm/vz5\ndO/enby8PKKjowkLC7MfEz5y5EiWL19uv35O1apVWb58uWUnHgsWQDOTnPqSnPqSnMYz9CZMERER\nRXoXI0eOtD8fP378dS+zIIQQwrPkjHAPGTp0qNERHCI59SU59SU5jWfoGeF6URSFMvBjCCGEx7j6\nuSk9DQ8p7hwUM5Kc+pKc+pKcxpOiIYQQwmEyPCWEEOWQDE8JIYRwOykaHmKVMU7JqS/JqS/JaTwp\nGkIIIRwmcxpCCFEOyZyGEEIIt5Oi4SFWGeOUnPqSnPqSnMaToiGEEMJhMqchhBDlkMxpCCGEcDsp\nGh5ilTFOyakvyakvyWk8KRpCCCEcJnMaQghRDsmchhBCCLeTouEhVhnjlJz6kpz6kpzGk6IhhBDC\nYTKnIYQQ5ZDMaQghhHA7KRoeYpUxTsmpL8mpL8lpPCkaQgghHCZzGkIIUQ7JnIYQQgi3q2h0gPLC\nZrMRHh5udIxSSU596ZFTVeHqVbhyRXtcvvz382uXHXl+7TLA6NE2eva8sZyeUJ5+72YlRUOIG6Sq\nkJUFmZna49Il7XHxIuzYAadO/b1c8L3ivpb0mqJA1araw9tbezjyPH/Z17fk9R59FM6fN7oVhVUY\nOqcRFxfHiy++SG5uLkOGDGHcuHGF3v/888+ZOXMmqqpSpUoVFixYwB133FFkOzKnIVxx5QqcO6c9\nMjL+/tDPzCy6XNyj4DqKon0wV68O1appj5tu0h75z6/96uh7N90ElSq5rx1uuQU2bIBmzdy3D2E+\nrn5uGtbTyMrK4qmnnmLbtm34+/vTvn177r//fkJDQ+3r3H777Wzfvh0fHx/i4uIYPnw4CQkJRkUW\nJqOqcOECnD4N6enah//Zs38Xgvznxb127hzk5kLNmlCjhvaB7+sLPj5FH3Xral9Let/HB6pUMbo1\nXKcoWlsK4QjDikZ8fDxBQUEEBAQAEBUVRWxsbKGi0a5dO/vzu+++m+PHj3s8p16sMsZpZM6sLEhL\n0x6nT1//cfy4jczMcCpXhtq1oVYtrQD4+WmP/OcNGhT/up+fNjyjKO79mazwe1cU2LHDxq23hhsd\npVRWaE+wTk5XGFY0UlJSaNSokX05MDDwuifELFiwgD59+nggmdCTqmp/1Z84AX/99ffXgs/zv164\noP1VX7cu1KlT+PHPfxZePnQIevbUPvjFjZGehnCGYUVDceJPPJvNxkcffcT27dvdmMi9rPJXh7M5\nMzIgORmOHSv69dgxSE3Vhm7q19f+6i/4tXXrwsu1aoGXgweBh4Q4l9MoVvi9Kwq0axdudAyHWKE9\nwTo5XWFY0QgMDCQ5Odm+nJycXKjnkW/v3r0MHz6cuLg4atasWeL2hg4dSuPGjQHw8/MjJCTE/ovL\n78HIsvPL2dmwYoWN1FSoVi2cP/+E+Hgbf/0FZ8+Gk5MDtWrZ8PfXPsgbNYIGDWwEB0Pv3uEEBMBP\nP5W+v9OnzfHzlsfly5dtxMdD8+bmyCPL7lnOf56UlMSNMOzoqStXrtC8eXO2b99OvXr16NChAwsW\nLCAsLMy+zrFjx+jSpQtLlizhrrvuKnFbVjh6ymbiMU5V1XoEv/0GX39tIzdXKw6HD8Px4xAQAE2b\nao9mzbSvTZrAP/6hzRG4e16gOGZuz4KskLN5cxg/3sbQoeFGRymVFdoTrJHTckdPeXt7M3/+fLp3\n705eXh7R0dGEhYWxYMECAEaOHMnUqVM5e/YsTz31FACVKlXip59+Miqy5eUXh717tQJR8OHtDS1a\naEcSde0KffpoxeHmm6FyZaOTC3eSOQ3hDLn2VBmlqnDkCCQkwK5d2iMhAfLytLmEoCCtSLRo8fck\nsyifWrSAmBho2dLoJMKTLNfTEPrKyID4ePjhB9i+HX76STt/ICxMezz9tPY1IMCY4SRhXtLTEM6Q\nCxZ6SMHJKD2cOgXLl2vFoHVraNgQXntNO8v52Wfh4EHtKKavv4bJk6F3bwgMLL1g6J3TXSSnfhTl\n74MVzM4K7QnWyekK6WlYxMWL8P33sHGj9khKgvBwuPdeGDoUQkJk7kG4Rnoawhkyp2FiKSmwdq3W\nW/jhB7jjDrjvPu3Rpg1UlJIvdBAcDJ99pv3hIcoPmdMoIw4c0CYl16zRehM9esATT8CqVdochRB6\nk56GcIbMaXjI9cY4//oL3n5b6z2Eh2vXVpo9G06e1P4C7NfPcwXDKmOxklM/igI7d9qMjuEQK7Qn\nWCenK6SnYZDcXIiNhQ8+gB9/1M6LeOMN6NIFKlQwOp0oT6SnIZwhcxoeduIELFoECxdqh78+9RT0\n76/dM0EII4SFaf8e27QxOonwJLlHuMkdPAjDh2snUuUfCvvjjzB4sBQMYSzpaQhnSNFws4QEGDAA\n2rWz0aiRdknvBQugwG1DTMUqY7GSUz+KAj//bDM6hkOs0J5gnZyukKLhJomJMGgQREZChw6wbJl2\nkl3t2kYnE6Iw6WkIZ8ichs7OnIFp07Sjnp57DsaM0e4bLYRZtWsH774L17mQtCiDZE7DYKoKn3yi\nzVlcvapdOXbSJCkYwvykpyGcIUVDBwcOQOfO8N578J//wLx54O9feB2rjHFKTn1ZIaeiwC+/2IyO\n4RArtCdYJ6crpGjcAFWF+fPh7rvhwQe1q8wWuIeUEJYgPQ3hDJnTcFFaGgwbpt3ZbulS7e5nQlhR\nhw4wYwbcc4/RSYQnyZyGB+X3KFq00M61kIIhrEx6GsIZUjSc9PHH0KsXvP8+vPmm45cjt8oYp+TU\nlxVyKgrs2mUzOoZDrNCeYJ2crpBrTzlIVeGll+DLL2HrVu0WqUKUBdLTEM6QOQ0H5ORolyf/7Tft\nIoNygp4oSzp1gqlTtSssi/JD7qfhJlevwsMPQ1YWbNoE1aoZnUgIfUlPQzhD5jSuIydHuxQIaBcY\nvJGCYZUxTsmpLyvkVBRISLAZHcMhVmhPsE5OV0hPowS5uTBkCFy6BF99JfffFmWX9DSEM2ROowTP\nPQf79mlzGFWr6rppIUylSxeYMEG797woP2ROQ0fz5sG338IPP0jBEGWf9DSEM2RO4xpxcdpVatet\nAz8//bZrlTFOyakvK+RUFNi922Z0DIdYoT3BOjldIT2NApKStDvpffkl3HKL0WmE8AzpaQhnyJzG\n/2Rna8er9+8PL7ygUzAhLOD++7X7vjzwgNFJhCfJtadu0CuvQM2aMHq00UmE8CzpaQhnGFo04uLi\naNWqFS1atOCtt94q8v4ff/xB+/bt8fb2Zvbs2W7LsWkTLFkCn34KXm5qEauMcUpOfVkhp6LAnj02\no2M4xArtCdbJ6QrD5jSysrJ46qmn2LZtG/7+/rRv357777+f0NBQ+zq1a9fm3//+N2vWrHFbjosX\nYcQIWLgQ6tZ1226EMC3paQhnGNbTiI+PJygoiICAACpWrEhUVBSxsbGF1qlbty5t2rShUqVKbsvx\nyiva/QQiI922CwDCLXJhH8mpLyvkVBRo1Src6BgOsUJ7gnVyusKwnkZKSgqNGjWyLwcGBnq8S/fL\nL/DFF7B/v0d3K4SpSE9DOMOwoqEoiq7bGzp0KI0bNwbAz8+PkJAQe7XPL0YFl1UVXnklnOnTYf/+\nou/rvbx7926ef/55t21fr+WChdsMeUpalvbUbzk93caaNbvp1UvaU69lM/77zH+elJTEDVEN8t13\n36k9evSwL8+YMUOdNm1asetOmTJFnTVrVonbcuXHWLZMVUNDVTUnx+lvdcmWLVs8s6MbJDn1ZYWc\nPXuq6muvbTE6hkOs0J6qao2crn78Gzan0bZtW/bv38/x48fJzs4mJiaGiIiIYtdVde47X74M48bB\n3LlQoYKumy5RftU3O8mpLyvkVBRo2TLc6BgOsUJ7gnVyusKw4Slvb2/mz59P9+7dycvLIzo6mrCw\nMBYsWADAyJEjOXHiBG3btiUjIwMvLy/mzp3Lb7/9RvXq1W9o3x98AKGh0LGjHj+JENYmcxrCGeXu\njPCLF6FZM/jvfyE42M3BCrDZbJb460Ny6ssKOfv2hbAwG5MmhRsdpVRWaE+wRk45I9xB77+v9TA8\nWTCEMDPpaQhnlNjTSE9PL/Wbvby88NPzUrAucrRiXryoXYhw82YICvJAMCEs4KGHtDtU9u9vdBLh\nSbrfT6NBgwY0bNjwut+ck5NDcnKy0zs1yqefaifyScEQ4m/S0xDOKHF46p///CeJiYnXfdSuXduT\nWW9Ibi7MmQNjxxqz/4LHSpuZ5NSXFXIqyt/nKpmdFdoTrJPTFSUWjR07dpT6zY6sYxZr10KdOlpP\nQwjxN+lpCGc4dPRUWloaKSkpqKqKqqooikJYWJgn8jnEkbG5jh1h1CgYMMBDoYSwiIcf1uY1HnnE\n6CTCk9x2j/Bx48axZMkSmjVrhpfX3x2TLVu2OL0zo+zbB4mJ8OCDRicRwnykpyGcUeoht6tWrSIx\nMZGtW7eyZcsW+8NKPvwQhg2Digbe3NYqY5ySU19WyKko8OuvNqNjOMQK7QnWyemKUj9GQ0JCyMjI\noE6dOp7Io7tLl2DpUkhIMDqJEOYkPQ3hjFLnNHbu3EmfPn1o2bIlVapU0b5JUVi7dq1HAjriemNz\nn34KMTFwza06hBD/M2iQdj+ZRx81OonwJLfNaQwePJjx48fTsmVL+5yG3pc1d6fFi+W+30Jcj/Q0\nhDNKndOoUaMGo0aNokuXLoSHhxMeHs69997riWw37Phx7QZL7r4rnyOsMsYpOfVlhZyKAr/9ZjM6\nhkOs0J5gnZyuKLWn0aFDByZOnEjPnj3tw1OAqQ65Lcnq1dC7NxSILYS4hvQ0hDNKndMIDw8vdjjK\nTEdQlTQ2d889MGGCOXoaQpjV4MHQpQsMHWp0EuFJbpvTsGo3KyUFfv8d7rvP6CRCmJv0NIQznLo0\nes+ePd2VQ3erVmlDU5UrG51EY5XiKzn1ZYWcigK//24zOoZDrNCeYJ2crnCqaBw/ftxdOXS3cqV2\neQQhxPVJT0M4w6k79z322GN8/PHH7szjkmvH5pKTISQE/vrLPD0NIczq8ce1C3kOH250EuFJHrlz\nnxkLRnFWrdJuYSkFQ4jSSU9DOKPEotG5c+diH126dKFLly6ezOi0mBjzDU1ZZYxTcurLCjkVBf74\nw2Z0DIdYoT3BOjldUeLRUzNnzrQ/zz/kdseOHbz11lvUq1fP/clcdOwYHDqkHUIohCid9DSEMxya\n07DZbEybNo3Lly/z8ssvExER4YlsDis4NjdnDvz2GyxaZHAoISziiScgLAyefNLoJMKT3HKeRlxc\nHNOnT6dy5cq8/PLLdO7c2eWAnhITA1OnGp1CCOuQnoZwRolzGm3btuXJJ58kKiqKGTNm4Ovry65d\nu+wPMzp6FA4fBjPWNquMcUpOfVkhp6LAgQM2o2M4xArtCdbJ6YoSexrVqlWjWrVqrF69mtWrVxd5\n30yXEcm3apV2d75KlYxOIoR1SE9DOMOp8zTMKn9s7s47Ydo06NbN6ERCWMfTT0OLFvDMM0YnEZ6k\n+3kajgxBmWmYKikJjhwx59CUEGYmPQ3hjBKLxtChQ0lPTy/xcebMGYYNG+bJrNe1fDk89JCx9wG/\nHquMcUpOfVkhp6LAwYM2o2M4xArtCdbJ6YoSP2IzMjK44447rvvNdevWvaGdx8XF8eKLL5Kbm8uQ\nIUMYN25ckXVGjRrFpk2bqFKlCosXLyY0NLTYbX30EXz22Q3FEaJcstCNOIUJGDankZWVRfPmzdm2\nbRv+/v60b9+ehQsXFioKq1ev5vPPP2fNmjUkJCTw2GOPsXv37iLbUhSFFi1U9u+X/wBCOGvUKGja\nFJ57zugkwpM8cu0pPcXHxxMUFERAQAAVK1YkKiqK2NjYQuusX7+e6OhoAEJDQ8nJySElJaXY7Q0b\nJgVDCFfInIZwhmEzACkpKTRq1Mi+HBgYWGQcsLh1UlJSCAwMLLK9Bg3gm2/cFveG7dtno1WrcKNj\nlEpy6ssKOdetA19fG02bhhsdpVRWaE/QJ+eFC5CYCCdOwF13waBB+mS7UYYVjeJuIVuca7tPJX3f\niy8O5aabGgNQsaIfNWqEUKdOOACnT9sADF0+f363/T+lGfKUtHz6NHzzjXnylLQs7anf8pEjNmA3\nCxeaI4/V29PVf5/nz4fz++8A2jKE/++rjSVLYNAgbTn/j+vwcOeW858nJSVxI0qd08jJyeGTTz4h\nOTmZV199lZSUFFJTU2nXrt0N7fj777/nrbfeYt26dYB2gcSrV68yceJE+zrDhg0jIiKC/v37A9Cy\nZUv++9//EhAQUPiHcHFsTggBY8ZAQAC88ILRScqf9HT45BP44gvtYqu9ekF4ONxzDzRu7N4hd7fN\naTzxxBPs2rWLFStWAODr68uTOlzZrG3btuzfv5/jx4+TnZ1NTExMkQshRkZGsnTpUkA7J6RChQpF\nCoYQ4sbInIbn/fGHdtOrpk0hIQHefBNSU2HxYoiOhiZNzDtHW2rRiI+P5/3336dq1aqAVjTy8vJu\neMfe3t7Mnz+f7t2707p1ax566CHCwsJYsGABCxYsAKBfv34EBAQQFBTE8OHDLXMTqOJY5bhtyakv\nK+RUFPjzT5vRMRxihfaEknMeOqQVhY4d4R//gAMH4PPP4b77zHuO2bVKjVmxYkVyc3Pty2fPniUn\nJ0eXnUdERBTpXYwcObLQ8nvvvafLvoQQxZOehvudOQMTJ8Lq1dqhzfPmga+v0alcU+qcxocffsjX\nX39NQkICw4YNIyYmhpdeeokhQ4Z4KmOpZE5DCNf93/9B7dpQzLm14gbl5sLChTB5MgwcCFOmQM2a\nRqfSuOV+GgAjRoygXbt2fPvttwCsWLGC1q1bO59QCGFK0tNwj59/hhEjtB7Fxo0QHGx0In2UOqdx\n7NgxatasyYABAxgwYAA1a9bk2LFjnshWplh9LNZsJKd+FAUOH7YZHcMhVmjPrCyIjrbRo4d2RJrN\nVnYKBjjQ04iMjLSfG3HlyhUSExO5/fbb+fXXX90eTgjhftLT0M+uXTB0KPj4wJ49UL++0Yn05/S1\np3bv3s17773HIhPdhFvmNIRw3YQJUK2aNlErXJOXB3PmwIwZ2td//cu8h8zmc9ucxrVCQkLYsWOH\n0zsSQpiT9DRuzKlTMGQIZGTAzp1w881GJ3KvUuc0Zs+ebX/MnDmTgQMHUqdOHU9kK1OsMBYLklNv\nVsipKPmXEjE/s7Xn5s0QFgahodrcRX7BMFtOPZXa08jMzLTPaXh5eXH//ffz8MMPuz2YEMIzpKfh\nvLw8mD4d5s+HTz8tX7eYLlP3CBdCOG/SJKhQQTuXQJQuIwMGD4a0NFi1SrvCthW5bU6jV69ehTZ+\n7fO1a9c6vVMhhHlIT8NxBw5A377aRQVjYqByZaMTeV6pcxpNmjShevXqPPHEE4wYMQIfHx+aNm3K\n2LFjeUEui+kwq4xxSk59WSGnokBios3oGA4xsj3XrtWuGfXCC9qw1PUKhhV+764qtacRHx9PfHy8\nfbl3797ceeedvPPOO24NJoTwDOlpXF9eHrz2GixapN3o7c47jU5krFLnNG699Va+/fZbGjduDMDR\no0e57777OHTokCfyOUTmNIRw3dSpkJ2tfTCKwi5f1k7WS06GL78sWyfruW1OY9asWbRv357bbrsN\ngIMHD9ovXS6EsD7paRTv5Eno0wduuUU7tNbb2+hE5nDdOY28vDyysrI4cuQIM2fOZPbs2Rw5coTe\nvXt7Kl+ZYZUxTsmpLyvkVBRISrIZHcMhnmrPX3/V7svdvTssXep8wbDC791V1y0aXl5ezJ49m6pV\nq9KuXTvatGljvxmTEKJskJ5GYRs2QOfO2nDdq6+a/3IgnlbqnMb48ePx9/enf//+VKtWzf56rVq1\n3B7OUTKnIYTrXn8dMjPhjTeMTmK8Dz7Q7nmxcqV2pFRZ5rY5jeXLl6MoCu+++26hnR05csTpnQkh\nzEd6Gtq4fVWtAAAVbUlEQVQRUi++CLGxsG0bNGtmdCLzKvU8jaSkJBITEws9pGA4zypjnJJTX1bI\nqShw9KjN6BgOcUd7ZmXBoEHaTZN+/FGfgmGF37urSu1pZGVl8c477/D999+jKAqdOnXiueeeo3J5\nPBVSiDKoPPc0MjLgoYegRg3473/lCClHlDqn8a9//YsqVarw6KOPoqoqy5Yt4/LlyyxdutRTGUsl\ncxpCuG7GDO06SjNnGp3Es06ehIgI7WS9997Trr9Vnug+p5GTk0PFihXZvXt3obv0de3alaCgINdS\nCiFMpzz2NP78UzucdsgQeOUVOULKGSXOabRr1w7QqlFSUpL99aSkJLy8Sp0KEdewyhin5NSXFXIq\nChw7ZjM6hkP0aM9du6BTJ/i//9Ou8OuOgmGF37urSuxp5HdbZsyYwV133UXz5s1RVZWDBw+yePFi\njwUUQrhXeeppbNyoTXovXKhdrVY4r8Q5jcDAQMaMGYOqqly6dAnv/80QZWVlcdNNNzFmzBiPBr0e\nmdMQwnVz5mjXVnr7baOTuNfy5fDcc9o5GJ06GZ3GeLrPaeTm5pKZmWlfvnTpkv15wdeFENZWHnoa\nc+fCrFlaT6NVK6PTWFuJRaN+/fpMllt56cZmsxEeHm50jFJJTn1ZIaeiQHKyDQg3OEnpnG1PVYUJ\nE+Crr7ST9vLv4e1uVvi9u6rU8zSEEGVbWe1pZGfDiBHwxx9awahTx+hEZUOJcxpnzpyhdu3abtlp\neno6UVFRnDx5kgYNGrBixQr8/PyKrPf4448TGxtLvXr12LdvX4nbkzkNIVz37rtw6BD8+99GJ9HP\nxYvw8MPa85gYKHDZPPE/rn5ulnjsrLsKBsDkyZPp0aMHe/fuJSIiosRhsMcee4y4uDi35RBClL2e\nxpkz0LUr1K0La9ZIwdCbISdcrF+/nujoaAAeffRRYmNji12vY8eO1KxZ05PR3MYqx21LTn1ZIaei\nQEqKzegYDimtPY8dg3vugfBw+PhjqFTJI7GKsMLv3VWGFI20tDR7T6ZOnTqcOnXKiBhCCMpOT2Pf\nPrj7bhg5Et58U87ydhe3TYR369aNEydOFHl9+vTpbtnf0KFD7fcx9/PzIyQkxH70Qn7VN3o5n1ny\nFLccHh5uqjzXW85nljxWbc9Dh2yFiobReVxpz717Yfr0cN55Bxo0sGGzGZ83n1naL/95wSt8uKLU\nCxa6Q9OmTYmPj6dOnTqkpaXRvn17/vzzz2LXTUpKolevXjIRLoSbzJ8Pe/ZoNyCyojVrtKOkvvgC\nunUzOo116D4R7k6RkZEsWbIEgCVLlhAZGWlEDI+69q8Ps5Kc+rJCTkWB48dtRsdwyLXtuXAhPP00\nxMWZq2BY4ffuKkOKxquvvkpsbCzBwcH85z//YerUqQCkpqbSo0cP+3oDBw6kQ4cOHDx4kEaNGvHx\nxx8bEVeIMs2KcxqqClOnwltvwXffwR13GJ2o/DBkeEpvMjwlhOsWLoSdO+HDD41O4pjcXHjmGdix\nA/7zH6hf3+hE1uS2e4QLIco2K/U0rlyBf/0Lzp2DrVvB19foROWP3BjDQ6wyxik59WWFnIoCqak2\no2OU6tw5uOsuGxUrwvr15i4YVvi9u0qKhhDlnBV6GqmpcO+90KQJLFsGVaoYnaj8kjkNIcq5jz6C\n77/XzqA2oz/+gAce0E7aGz9eTtrTi8xpCCFcYuaexo4d2h323nwThg41Oo0AGZ7yGKuMcUpOfVkh\np6LAX3/ZjI5RRGws9Oql9YTyC4YV2hOsk9MVUjSEKOfM2NP46CMYNgzWrYNycO6vpcichhDl3Gef\nwbffwuefG51EK16vvw6LFmlned9+u9GJyi6Z0xBCuMQsPY3cXHjuOe0ue9u3Q8OGRicSxZHhKQ+x\nyhin5NSXFXIqCpw4YTM0w5Ur8Mgj8Ntv2kl7JRUMK7QnWCenK6RoCFHOGd3TOHdOO6TWy0u7LEiN\nGsZlEaWTOQ0hyrkvvoBvvtFOmvO01FStYISHwzvvaIVDeIalLo0uhDAPo3oaf/wBHTrAoEEwd64U\nDKuQX5OHWGWMU3Lqywo5FQVOnrR5dJ8//qj1LqZMce4sbyu0J1gnpyukaAhRznm6p7F6NfTpo122\nRM7yth6Z0xCinIuJgZUrtYe7vfMOzJoFa9dCWJj79ydKJudpCCFc4omeRm4ujBkDGzdq52DcfLN7\n9yfcR4anPMQqY5ySU19WyKkocOqUzW3bv3QJ+veHfftuvGBYoT3BOjldIUVDiHLOnT2NU6egSxeo\nXl27LIifn3v2IzxH5jSEKOe+/FK77tRXX+m73YMHtYsNDhwIU6fKfTDMRuY0hBAucUdPY/t26NcP\npk/XrlYryg4ZnvIQq4xxSk59WSGnokBamk237a1cCQ8+CJ9+qn/BsEJ7gnVyukJ6GkKUc3r1NFRV\nO5x27lzYsAFCQm58m8J8ZE5DiHJu7Vr48EPt+lOuunoVnn4afv5Z206jRvrlE+4hcxpCCJfcaE8j\nPV2bv/Dx0e6FUb26ftmE+cichodYZYxTcurLCjkVBU6ftrn0vYcOwV13wR13aEdfubtgWKE9wTo5\nXSFFQ4hyztWehs0G99wDL76ozWVUqKB7NGFCMqchRDm3fj38+9/aDZAc9dFH8NJL2r04unZ1Xzbh\nPpa6n0Z6ejrdunUjODiY7t27c+7cuSLrJCcn06lTJ1q1asXtt9/OjBkzDEgqRNnnTE8jLw/+7//g\n9de127JKwSh/DCkakydPpkePHuzdu5eIiAgmT55cZJ3KlSvz/vvvs2/fPn755RcWLVrEnj17DEir\nD6uMcUpOfVkhp6LAmTO2Ute7eFGb8I6P1x7Nm7s/27Ws0J5gnZyuMKRorF+/nujoaAAeffRRYmNj\ni6zj7+9Py5YtAahevTrBwcGkpqZ6NKcQ5YEjPY1jx6BjR+3+3Rs2QO3anskmzMeQOQ1fX18yMjJK\nXL5WUlIS9957L/v378fHx6fI+zKnIYTrNmyAmTPh22+Lf3/bNnj4YRg9GsaOlWtIlRWmO0+jW7du\nnDhxosjr06dPd2o7Fy5cYMCAAcydO7fYgiGEuDHX62l8+CG8/LJ2SZAHHvBsLmFObisa35b0ZwtQ\nt25dTp8+TZ06dUhLS6NevXrFrpednU2/fv0YNGgQffv2ve7+hg4dSuPGjQHw8/MjJCSE8PBw4O/x\nRSOXd+/ezfPPP2+aPCUtFxyLNUOekpalPfVb3rvXxtGju4G/2zMnB9asCWfjRpg1y4a3N4Dxea3Q\nnmb995n/PCkpiRuiGuCZZ55R3377bVVVVXXOnDnqs88+W2SdvLw8NTo6Wn3++edL3Z5BP4ZTtmzZ\nYnQEh0hOfVkh58aNqhoSssW+nJamquHhqhoZqarnzhmXqzhWaE9VtUZOVz83DZnTSE9PJyoqipMn\nT1K/fn1iYmLw8/MjNTWVESNGEBsby7Zt2+jUqRPBwcEo/xtEfeONN3igmD6yzGkI4brNm+G112DL\nFti7F/r2hagomDZNTtgry1z93JST+4Qo57ZsgVdfhVGjYORIePdd7cZJomyz1Ml95VHBcUUzk5z6\nskJORYH4eBvPP6/dktXMBcMK7QnWyekKKRpClHP/+Ae0bQs7d2oXHhTiemR4SgghyiEZnhJCCOF2\nUjQ8xCpjnJJTX5JTX5LTeFI0hBBCOEzmNIQQohySOQ0hhBBuJ0XDQ6wyxik59SU59SU5jSdFQwgh\nhMNkTkMIIcohmdMQQgjhdlI0PMQqY5ySU1+SU1+S03hSNIQQQjhM5jSEEKIckjkNIYQQbidFw0Os\nMsYpOfUlOfUlOY0nRUMIIYTDZE5DCCHKIZnTEEII4XZSNDzEKmOcklNfklNfktN4UjSEEEI4TOY0\nhBCiHJI5DSGEEG4nRcNDrDLGKTn1JTn1JTmNJ0VDCCGEw2ROQwghyiGZ0xBCCOF2hhSN9PR0unXr\nRnBwMN27d+fcuXNF1rly5Qpt27YlNDSU2267jdGjRxuQVD9WGeOUnPqSnPqSnMYzpGhMnjyZHj16\nsHfvXiIiIpg8eXKRdby9vfnuu+9ISEjgt99+48cff2TLli0GpNXH7t27jY7gEMmpL8mpL8lpPEOK\nxvr164mOjgbg0UcfJTY2ttj1qlatCsDVq1fJzc3F39/fYxn1Vlxvyowkp74kp74kp/EMKRppaWnU\nrl0bgDp16nDq1Kli18vLyyMkJAR/f386d+5MixYtPBlTCCHENSq6a8PdunXjxIkTRV6fPn26w9vw\n8vJi9+7dnD9/nu7du2Oz2QgPD9cxpeckJSUZHcEhklNfklNfktMEVAPccsstalpamqqqqnrq1Cm1\nadOmpX7P1KlT1TfeeKPY95o2baoC8pCHPOQhDwcfjnzuFsdtPY3riYyMZMmSJTz//PMsWbKEyMjI\nIuucOXOGypUr4+Pjw+XLl/n2228ZN25csdv7888/3R1ZCCEEBp3cl56eTlRUFCdPnqR+/frExMTg\n5+dHamoqI0aMIDY2lr179zJkyBBUVeXKlSsMGjSISZMmeTqqEEKIAsrEGeFCCCE8wzJnhMfFxdGq\nVStatGjBW2+9Vew6o0aNIigoiLCwMBISEjycUFNaTpvNRo0aNQgNDSU0NJRp06Z5POPjjz+Ov78/\nrVq1KnEdM7RlaTnN0JYAycnJdOrUiVatWnH77bczY8aMYtczuk0dyWl0mzp6Uq/RbelITqPbsqDc\n3FxCQ0Pp1atXse871Z4uzYR42JUrV9TGjRurKSkpanZ2ttqmTRt1165dhdZZtWqV2qdPH1VVVXXX\nrl1q69atTZlzy5Ytaq9evTyeraDvvvtO3bVrl9qyZcti3zdDW6pq6TnN0JaqqqonTpxQ9+3bp6qq\nqmZmZqq33nqrunv37kLrmKFNHclphja9dOmSqqqqmp2drd55553q5s2bC71vhrZU1dJzmqEt882e\nPVsdNGhQsXmcbU9L9DTi4+MJCgoiICCAihUrEhUVVeSEwIInDIaGhpKTk0NKSorpcgKGX1yxY8eO\n1KxZs8T3zdCWUHpOML4tAfz9/WnZsiUA1atXJzg4mNTU1ELrmKFNHckJxrdpaSf1mqEtHckJxrcl\nQEpKCuvXr2f48OHF5nG2PS1RNFJSUmjUqJF9OTAwsMgP5cg67uZIBkVR+PHHH2nVqhVdu3Zlz549\nHs3oCDO0pSPM2JZJSUns3LmTe+65p9DrZmvTknKaoU1LO6nXLG1ZWk4ztCXA6NGjmTlzJl5exX/c\nO9uehhxy6yxFURxa79oq6uj36cWR/d1xxx2kpKTg7e3Nhg0b6Nu3L4mJiR5I5xyj29IRZmvLCxcu\nMGDAAObOnYuPj0+R983SptfLaYY2deSkXjO0ZWk5zdCW69ato169eoSGhl73IorOtKclehqBgYEk\nJyfbl5OTkwtVxuLWSUlJITAw0GMZi8tQXM7q1avj7e0NwP3330/lypWLPXPeSGZoS0eYqS2zs7Pp\n168fgwYNom/fvkXeN0ublpbTTG1ao0YNevTowY4dOwq9bpa2zFdSTjO05Q8//MDatWtp0qQJAwcO\nZPPmzQwePLjQOs62pyWKRtu2bdm/fz/Hjx8nOzubmJgYIiIiCq0TGRnJ0qVLAdi1axcVKlQgICDA\ndDlPnz5tf/7LL79w8eJF6tWr59GcpTFDWzrCLG2pqirDhg2jRYsWJR7tY4Y2dSSn0W165swZMjMz\nAewn9V579JwZ2tKRnEa3JcDrr79OcnIyiYmJLF++nC5duvDZZ58VWsfZ9rTE8JS3tzfz58+ne/fu\n5OXlER0dTVhYGAsWLABg5MiR9OvXjy1bthAUFESVKlX4+OOPTZlz2bJlLFy4EIDKlSvzxRdflDjW\n6C4DBw5k69atnD59mkaNGvHqq6+SnZ1tz2iGtnQkpxnaEmD79u0sWbKE4OBgQkNDAe0/67Fjx+xZ\nzdCmjuQ0uk1TU1MZPHhwoZN6e/ToYbr/647kNLoti5M/7HQj7Skn9wkhhHCYJYanhBBCmIMUDSGE\nEA6ToiGEEMJhUjSEEEI4TIqGEEIIh0nREEII4TApGkIIIRwmRUOUC+fPn2f+/Pn25dTUVAYMGKD7\nfqZMmUJgYCBTpkzRfdul6dy5Mz4+Pvzyyy8e37coP6RoiHLh7NmzvP/++/blhg0bsnLlSt33oygK\nY8aMMaRobNmyhTZt2pjy4pKi7JCiIcqF8ePHc/jwYUJDQxk3bhxHjx61Xyvok08+oW/fvkRERNCk\nSRPee+89Zs2aRZs2bQgLC7NfQ+jAgQN07tyZ1q1bc+edd/Lrr78Wu6+CF1mYMmUKQ4YMoXPnzjRu\n3Jgvv/ySsWPHEhwcTNeuXcnKygLgxRdfJCgoiJCQEMaMGQPAiRMn6NmzJ61btyYkJIStW7cCkJmZ\nySOPPEJQUBCtW7dm1apVbms3IYrQ465QQphdUlJSoTsAJiYm2pc//vhjtVmzZurly5fVtLQ01dfX\nV120aJGqqqo6evRodebMmaqqqmqHDh3UQ4cOqaqqqjt27FDvvvvuIvuZMmWKOmvWLPvy5MmT1U6d\nOql5eXnqnj171KpVq6obNmxQVVVVH3zwQXXlypXqyZMn1aCgIPv3XLhwwf7+tm3bVFVV1aNHj6pN\nmzZVVVVVR40apY4dO9a+/vnz5+3Pw8PD1V9++cXVZhKiVJa4YKEQN0ot5RJrnTt3xtvbG29vb/z8\n/IiMjASgVatW7N69mzNnzrBr165C8yCXL18udb+KovDAAw+gKAotW7YkLy+Pbt262bednJxM7dq1\nqVSpEsOGDSMyMtJ+H+eNGzcWuv9CVlYWGRkZbNq0ia+//tr+uq+vr+MNIcQNkqIhBFClShX7cy8v\nL/uyl5cXeXl5qKpK3bp1SUhIcHrblStXtm+rUqVKhfaTl5dHhQoViI+PZ9OmTaxevZp58+axefNm\nFEVh586dVKxY9L9paUVQCHeROQ1RLlStWpVLly45/X35H8516tShbt26rFu3zv56SXMazrp48SKZ\nmZlEREQwe/Zsdu3aBcB9993HBx98YF8vf3/dunWzX9oaICMjQ5ccQjhCioYoF/z9/QkJCaFFixaM\nGzcORVHsRxkVfJ6/XPB5/vKKFSuYPXs2wcHBtGzZ0uEJ6JK2nb+ckZHBAw88QGhoKB07duTtt98G\n4IMPPrDf3Kdly5bMnTsXgNdee41jx47RokULQkJC2LRpkwstIoRr5H4aQujo1VdfpXr16rzwwguG\n7L9z587Mnj2bsLAwQ/Yvyj7paQiho+rVq7Nw4ULDTu5LTEwsNG8ihN6kpyGEEMJh0tMQQgjhMCka\nQgghHCZFQwghhMOkaAghhHCYFA0hhBAO+3+uUuMJ2ejlWAAAAABJRU5ErkJggg==\n", + "text": [ + "<matplotlib.figure.Figure at 0x3a36f90>" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 8.4, Page number: 433" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "%matplotlib inline\n", + "\n", + "#Variavle declaration:\n", + "rpm=2500 #rpm of motor\n", + "\n", + "\n", + "#Calculations & Results:\n", + "#For part (a):\n", + "theta=[0]*12\n", + "i=[0]*102\n", + "lambda1=[0]*102\n", + "for m in range(1,11,1):\n", + " theta[m-1]=10*(m-1)\n", + " for n in range(1,102,1):\n", + " i[n-1]=30*(n-1)/100\n", + " lambda1[n-1]=i[n-1]*(0.005+0.09*((90-theta[m-1])/90))*(8/(i[n-1]+8))\n", + "\n", + " \n", + " plot(i,lambda1,'.')\n", + " \n", + " if m==1:\n", + " hold(True)\n", + " \n", + "xlabel('current [A]')\n", + "ylabel('Lambda [Wb]')\n", + "title('Family of lambda-i curves as theta_m varies from 0 to 90 degrees') \n", + "annotate('theta_m=0 deg',xy=(6,0.03))\n", + "annotate('theta_m=0 deg',xy=(8,0.5))\n", + "\n", + "\n", + "#for part (b):\n", + "lambdamax=25*(0.005+0.09*(8/(25+8)))\n", + "AreaWnet=0\n", + "AreaWrec=0\n", + "deli=0.25\n", + "for n in range(1,102,1):\n", + " i[n-1]=25*(n-1)/100\n", + " AreaWnet=AreaWnet + deli*i[n-1]*(0.09)*(8/(i[n-1]+8))\n", + " AreaWrec=AreaWrec + deli*(lambdamax-i[n-1]*(0.005+0.09*(8/(i[n-1]+8))))\n", + "\n", + "Ratio=(AreaWnet+AreaWrec)/AreaWnet\n", + "print \"part (b): Ratio =\", round(Ratio,2)\n", + "\n", + "#for part(b):\n", + "rps=rpm/60\n", + "T=1/rps\n", + "Pphase=2*AreaWnet/T\n", + "Ptot=2*Pphase\n", + "print \"part (c): AreaWnet =\", round(AreaWnet,2),\"Joules\"\n", + "print \"Pphase =\",round(Pphase),\"W\",\"\\tPtot =\",round(Ptot),\"W\\n\"\n", + "plot(AreaWrec=0.7,AreaWnet=25)\n", + "grid()\n", + "show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n", + "part (b): Ratio =" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + " 1.55\n", + "part (c): AreaWnet = 9.91 Joules\n", + "Pphase = 825.0 W \tPtot = 1651.0 W\n", + "\n" + ] + }, + { + "output_type": "stream", + "stream": "stderr", + "text": [ + "WARNING: pylab import has clobbered these variables: ['power', 'random', 'fft', 'linalg', 'info']\n", + "`%pylab --no-import-all` prevents importing * from pylab and numpy\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAEZCAYAAACnyUNvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXtcVNX6/z+gyMUBB7mIikpaiCKBOFZeinmVZpAGxyK/\nkoJ9s/Ebpzp1EjtdTE+dbze71y8VTyeO35qjZmWpkaExhqhoKiZZUpoIpok6iMhluKzfH+Ns9uyZ\nvdkzs/fMnmG9Xy9f7s3smVlrX9Yzz/N51rP8CCEEFAqFQqG4CX9PN4BCoVAovQtqeCgUCoXiVqjh\noVAoFIpboYaHQqFQKG6FGh4KhUKhuBVqeCgUCoXiVhRneEJDQ3Hy5EkAwIIFC7B06VLJv6O0tBQj\nRoxAaGgovvzyS5vX4+LisGPHDsm/12AwYNiwYaKPLyoqws033+zUd506dQqhoaGg2fLCLF++HPPn\nz/d0MxQF+xmUip6eOYo4XBkTlIRDhicuLg4hISEIDQ1FaGgowsLCcPbsWUkbdPnyZcTFxQEA/Pz8\n4OfnJ+nnA8CyZcuwePFiXL58GXfddZfN63J9rzsZPnw4Ll++7PX9kBJ7ht+V8+OrRov9DEpFT8+c\n3FRWVmLChAkIDQ2FRqPB4cOHeY919QfvqVOnMGPGDAwYMADDhw/H6tWrnW6Lr+KQ4fHz88OWLVtw\n+fJlXL58GY2NjYiJiZGrbQAgyy/206dPY+zYsZJ/bm+DEOL1HpW3t19KOjo6ZPtsoWdO7vvIZDIh\nMzMTixYtwuXLl/E///M/yMzMRHt7uyzfd++99yI5ORkNDQ345ptv8PTTT8NgMHikLWKR89rbw+VQ\nW0NDA2bMmIHIyEiEhoZi2rRpqKmpYV7XarVYunQppk6ditDQUNx11104f/487rvvPgwYMABJSUk4\nceJEd4P8/a32Lb9Ix40bhy1btjB/b29vR2RkJO+vhbfeeguxsbEICwvD7bffzrRp1KhROHnyJGbN\nmoWwsLAeL3hFRQUmTpyIAQMGYODAgVi4cCHa2tqs2rty5UqMHj0aYWFheO6553D8+HFMnjwZKpUK\nmZmZVscDwEsvvYRBgwYhJiYGH3zwAfP3P/74A9OmTUNoaChuuukmHD9+3Op9f/7znzF06FCoVCok\nJSUJhgNPnjwJf39/dHV12X39+PHjyMjIwIABAxAREYH8/HwAtr/iuZ+j1Wrx7LPPMtdzxYoVmDhx\notVnv/nmm8jMzAQAtLS04KGHHkJ0dDTCw8ORl5eHlpYWAMCZM2cwY8YMhIaGIjw8HFOmTOEdgIT6\nXl5ejuuvvx79+/dHdHQ0HnvsMZv3X7lyBenp6fj9998Zb/3MmTPw8/ODyWRCXl4eBgwYgGuvvRZ7\n9uyx6n9GRgbUajUGDx6MV155BQDw9ddf46WXXsL69esRGhqK8ePHAwD++c9/YvTo0VCpVIiNjcVb\nb73Fe40sGAwGxMbGYsWKFYiJicGQIUOwadMmfPXVV0hISEBoaCiWL19u970VFRUYPHiw1Xn7/PPP\nkZyczLze0/37/vvvY/To0UhISGD+ZnkGpbh+3GfOZDIx99GUKVMQGhqK3377DTt27MC4ceMQGhqK\npKQkfPvtt8xnODqOcM9vnz59oNPpAAALFy5EQECA1edbKCwshF6vx6uvvorQ0FDmPj506BBuvPFG\nhIaG4tprr8X69evtfteFCxewb98+LFmyBH5+fkhISMA999yDf/3rXw63Beh5TKisrMTNN9+MsLAw\njBgxAmvXrrV672233YbQ0FDccMMNePbZZ63CdPau/fr165GQkICwsDCkpqZi//79zPF8zwIg7hm0\ngjhAXFwc2b59u9XfLl68SLZs2UI6OjpIc3MzmTdvHpkxYwbzelpaGomPjye1tbXk0qVLJCkpiVx7\n7bWkrKyMdHZ2kgULFpCcnBzmeD8/P3L8+HFCCCELFiwgS5cuJYQQ8uqrr5I5c+Ywx23atIlcf/31\ndtu5efNmEh0dTX766SfS0dFBFi9eTCZMmGDVjx07dgj20/L6oUOHyMGDBwkhhJw+fZokJSWRl156\nyaq9d999N2lubiY//vgjCQwMJLfeeis5ffo009/CwkJCCCGlpaWkb9++5OmnnyZdXV2koqKCqFQq\nUllZSQgh5K677iLz588nJpOJ/PLLL2TYsGHk5ptvZr5r/fr15PLly4QQQt577z0SHh5OWlpa7Pbh\nt99+I35+fqSzs9PmNZPJRK699lry9NNPE5PJREwmE6moqCCEELJ8+XIyb9483s9JS0sjI0eOJMeP\nHyddXV2ksbGRhIaGkl9++YV5j0ajIevXryeEEPLggw+S2bNnk8bGRtLc3EyysrLIX/7yF0IIIX/9\n61/JQw89RDo6OkhXVxfZu3cv7zUR6ntqair56KOPCCGEtLa2ku+//97uZxgMBhIbG2v1t2XLlpGg\noCDmvn7qqadIamoqIYSQjo4OkpCQQF566SXS2dlJamtryciRI8nnn3/OnKv58+dbfd62bdtIXV0d\nIYSQ3bt3E5VKRfbs2cPbL0K674sXX3yREELIBx98QCIiIkhubi5paWkhP/74IwkODibV1dV23z9q\n1ChSUlLC7N9zzz3klVdeIYSIu39nzZpFLl++TNra2pi/WZ5Bqa4f95nj3ke1tbUkNDSUfPLJJ4QQ\nQj777DMSFhZGzp49yxzvyDjC5o033iCZmZlWf5s9ezZ5/fXX7R7PHncIMd9TQ4YMIW+88QYhxHxd\nQ0NDmeeWTX19PfHz8yPnzp1j/rZw4UIyfvx4p9oiNCYYjUYSHR3N3Ps//vgjiYiIIAcOHGDeu2DB\nAmIymcjx48dJXFyc1XjCvfZlZWUkKiqKHD58mBBCyMcff0wGDx5MWltbe3wWxD6DFhwyPCNGjCAq\nlYqo1WqiVqvJn/70J5tjjhw5QoKDg5l9rVbLPFCEEFJQUEAyMjKY/a1bt5LExESrk8E2PM8++ywh\nxPzQqFQqZvC5++67yYoVK+y2Mycnh3kfIYS0tLSQoKAgcuzYMUKIY4aHy7vvvkvS09Ot2rt7925m\nf+LEieTVV1+16u+f//xnQoh5gAkMDCStra3M6/PmzSPPPPMMaW5uJn379iUnTpxgXlu+fDmZOnUq\nbzsjIyPJvn377L4mZHh27NhBBg8ebPd9y5YtEzQ8Wq2W/OMf/7B6z7x588jzzz9PCCGkurqahIaG\nkpaWFtLW1kaCgoKY60mI+aG1fPdzzz1HsrKyrF4XC7vvt9xyC1m+fDk5f/684HtKS0vtGp7p06cz\n+z/++CPp27cvIcRsqIYPH251/Isvvkjmzp3LvJd9ruzBNgJC7QoODiZdXV2EEEKampqIn5+f1bWd\nOHEiMyhzefbZZ8l///d/E0IIaWxsJP379yenTp2ye6y9+3fXrl1Wx1ieQSmvH/eZ4t5HhYWFNvf6\nLbfcQlatWsUc78g4wub555+3MUq5ublk+fLldo9njzuEEPLNN9/Y3De5ubnkb3/7m933azQa8vjj\nj5P29nZy5MgREh4eTq677jqH29LTmFBUVGRlSAghRKfTkaeeeop572+//ca89ve//93qHHOvPdfg\nEkLI6NGjybZt23p8FsQ+gxYc1ni++OILGI1GGI1GfPbZZ7h06RIWLFiAoUOHQq1WY8qUKWhra7Ny\nuQcNGsRs9+vXD9HR0Vb73FCUPYYMGYIpU6Zg48aNaGhowNdff4377rvP7rHnzp3D8OHDmf2goCBE\nRkbijz/+cKS7AIAff/wRt99+OyIjI6FWq/Hkk0/iypUrVsew+xcYGGjTX3b/Bg4ciMDAQGY/NjYW\n586dw8WLF9HZ2YnY2FjmtaFDh1p9zwsvvIDrrrsOAwYMQHh4OC5evIimpiYAgEqlYkJIdXV1gn06\nc+aMS+Lx4MGDrfZzcnLwn//8BwCg1+vxpz/9CUFBQaivr0dbWxsmTJiA8PBwhIeHIz09HY2NjQCA\nxYsXY/jw4Zg2bRri4uLwv//7v7zfKdT3wsJCHD16FGPGjEFqaio2bdrkUH/Y1yskJASdnZ3o6upC\nXV0dfv/9d6bt4eHheOmll9DQ0MD7WZ9//jkmTJgAtVqN8PBwfPnllzb3iz0iIiKYsLLl/uDeVyaT\nye57c3Jy8Nlnn8FkMuGzzz7DhAkTmCQKMfcv93pakPL62YP9vX/88YdN4sfw4cNx7tw5Zt/ZcSQ0\nNNSmz01NTQgLCxPVTr628Y0n69evx5EjRxAdHY0HHngAOTk5GDhwIADzcyq2LRcuXBAcE+rq6lBR\nUWF1f+r1ehiNRmY8YR/PHU8A62tQV1eH119/3erz6urqcOHChR6fBUefQZc1nhUrVuD06dM4fPgw\nGhoaUF5eLigWupJFlJeXh48++giffPIJJk+ezPvADBo0yEpnam1txfnz561uXLEsWrQIEydORF1d\nHRoaGvDKK6/w6ib24Pb34sWLaG1tZfZra2sxaNAgREREoE+fPlZGg729fft2vP/++9i6dSsuXboE\no9GIiIgI5jw3NTUxCR/sG9UeQ4cOtTo/bAIDA9Hc3MzsX7hwocc+Tps2DfX19Th8+DDWrVuHnJwc\nAObBNCAgAL/88gvzY6WhoYExGKGhoXj77bdx4sQJFBcX45133sG2bdtsPr+nvo8ePRrr16/HuXPn\nsHTpUsyZM4f5Djb27j2h+zEmJgbx8fFM241GIxobG/HVV1/ZfW9TUxPmzp2L559/HhcvXoTRaMRd\nd90lewLDmDFjMGLECBQXF0Ov1zPnH3Dt/pXq+okhJiYGp06dsvrbqVOneJ9ZR8aRxMREHDlyxOpv\nP/zwAxITE0V99qBBg1BbW2vTNr7EqpEjR6KkpAQXL15ERUUFmpubMXXqVIfb0tOYMHjwYEybNs3q\n/rx8+TJWrlyJgQMHok+fPjh9+rTd99pj8ODBWL58udXnWe7pwYMHCz4LYp9BCy4bnubmZgQEBCA0\nNBSNjY144YUXbI5hP3iOPITcY//0pz/h4MGDeOedd5Cbm8v7vjlz5uCf//wnfv75Z3R0dOC5555D\nYmIi4uPjRX+3hebmZgQFBSEwMBAnTpzAypUrHWo3tw+dnZ34xz/+ga6uLlRUVODLL7/EPffcg6Cg\nIGRkZODvf/87TCYTjh8/jg8//JB5CK5cuQJ/f38MGDAAHR0dePXVV3Hx4kWH+wMAN998M/r374+l\nS5fCZDLBZDKhoqICAJCcnIzvvvsOtbW1uHLlCl5++WXB/gFAQEAAsrOzsXjxYhiNRkyfPh2A2dOc\nP38+nnjiCeaX0dmzZ5nEgG3btjHzRVQqFfr06QN/f9tbsqe+r1+/HkajEYB5MPT397c7MA0cOJB5\nOPn6wiYtLQ1dXV147733YDKZQAjBsWPHcPDgQQDmgaG2tpb5jPb2drS3tzNt2LFjh9MDsaPk5OTg\nrbfeQllZGbKzs5m/O3P/WpDq+vHBPvczZ87EDz/8gM8++wwAsGnTJhw6dMgq9drZcUSr1aKzsxNr\n1qwBAKxZswYdHR249dZb7R4/cOBAqx9mt9xyC7q6uvD222+DEIK9e/di06ZNuPfee+2+v7q6Gleu\nXEFXVxc2btyILVu2MGK7I20JDg4WHBOysrJQWVmJjRs3Ml76oUOHcOzYMea9zz//PNrb23HixAkU\nFRUJGuyFCxdi5cqVOHToEADzD/ZvvvkGTU1NPT4LYp9BCy4bnscffxyXLl1CeHg4brrpJtx22202\nX8jetzdHhvs637FBQUGYPXs2Tp48idmzZ/O2adasWViyZAluu+02hIeH49ChQ/j000+d6t+KFStQ\nVFSEsLAwLFiwAPfccw9ve8X0YfDgwQgJCcGQIUNw11134Y033mAykFavXo3a2lpERETgvvvuQ15e\nHvO+O++8E7feeitGjhyJuLg4+Pn5WYUT7cF34fv06YPi4mLs378fkZGRGDx4MP7v//4PAJCRkYHM\nzEwkJCRgwoQJmDFjhuD1spCTk4MdO3YgOzvbavB57733EB4ejjFjxiAsLAxpaWmoqqoCYA4D3XLL\nLejfvz8mTpyIBx54gDFabHrq+xdffIH4+Hj0798fDz/8MNauXYv+/fvbfE5SUhLuuusuxMbGYuDA\ngUxWG1//+vbti23btmHHjh0YNGgQ1Go1cnNzmQcsOzsbLS0tGDBgADQaDcLDw7FixQrMnj0bAwcO\nxL///W/MnDnT7jXgIuYcCzF37lx89913uO2225iwDuD6/SvF9eOD/T0xMTH49NNP8dxzz0GlUmHp\n0qX4/PPPrbwKR8YRNgEBAdi0aRNWr14NlUqF1atXY9OmTejbt6/d4x944AF8//33CAsLw+zZsxEY\nGIjNmzdDr9cjLCwM9913H1atWoWUlBS77//qq68QFxcHtVqNd955B19//TUThejXr59DbREaEwYO\nHIivv/4aq1atwsCBAxEREYHHH3+ciaisXr0aNTU1GDhwIObOnYu5c+daPZvc83XLLbdgxYoVyMvL\nQ2hoKEaMGMHMQerTp4/NszB//nzmWRD7DDLfTWSMA3z99dcoKChAZ2cn8vLy8OSTT9ocYzAYsGTJ\nEphMJgwYMAA7d+4U/MwXXngBv/zyi1XaIIVCoVCEWbp0KX799VdGj/Uk9s2sBLS1teGhhx7Crl27\nMGjQIEyaNAm33347M98BMLvtDz/8ML799ltER0f3GDq6fPkyPvzwQ3z44YdyNZtCoVB8gurqanR1\ndSEhIQGHDx/GmjVr8Oabb3q6WQBkrNVWUVGBxMREDB06FH379sWcOXOwdetWq2PWrVuHOXPmMNkp\n7BABlzVr1mDo0KGYPn060tLS5Go2hSILL774IlNqiv3vzjvv9HTTKD7KpUuXkJGRAZVKhRkzZmDR\nokWYO3eup5sFQMZQm16vR1lZGSNmrlu3DgaDAatWrWKOeeihhwCYZ99euXIFjz76KBYuXChHcygU\nCoWiEGQLtYkRRzs7O1FVVYVvv/0Wzc3NuOmmmzBp0iTeNEcKhUKheD+yGZ7Y2Fir3Pfa2lq7k7CG\nDBmC4OBgBAcHIy0tzW5O+9ChQ/H777/L1VQKhULxUUaBkF893QgbZNN4Jk6ciKqqKpw+fRrt7e3Y\nsGED0tPTrY658847sWvXLnR2dqK5uRl79uzBmDFjbD7r999/Zyal+uK/ZcuWebwNtH+0b7R/yvn3\n4IMEaWkE6ekEubnd20ajeRsw/4uM7N6OiTH/r9GYj0tPJwCO24ynSkA2jycoKAgrV67EjBkz0NXV\nhfnz5yM1NZXJC1+0aBHGjx+PO+64A9dffz3a29uxcOFC3tx4X0bqRbeUhi/3z5f7BtD+yYlOB1RX\nAyEhgF4PLFnSvd/YCJSXm4+LjATOn+9+T0iIeVujAdRqYPt28/bGjUBBAVBYaP67Xg+Eh3umbz0h\nm+EBgPT0dBsvZ9GiRVb7ixcvxuLFi+VsBoVCoXgMtoGJigJqamyNi04HnDsHWKYxWubNco1LYWH3\n8dxttRrYsKH7e9Vq9/TPGWQ1PBRxLFiwwNNNkBVf7p8v9w2g/RMLn3HR681/txgUtvfCNi6FhYCl\nxB7Xe7F8vsW4ANYGhr3tLchauUAq/Pz84AXNpFAoPowzobHsbKCpCSgu7jk01tBga2BcRaljJzU8\nCsBgMECr1Xq6GbLhy/3z5b4BtH9sY8M2LtnZtqGxs2dtjUtJSffn8HkvcqLUsZOG2igUSq9GrCfT\nm0NjUkM9HgqF4vOINS5Cnow7QmNSo9SxkxoeCoXikzgTJispMXsyFk2Ga2y8DaWOnbJNIKWIx2Aw\neLoJsuLL/fPlvgHK759OB2i1QEZGtwdi2T961GxciouB41fnUVrCZJa5MPHxBuzdazZGJSXd818s\n+yNGmENj3mh0lAzVeCgUilfB58kIzYWxN7lSpwNyc7uNiwXufBiK9NBQG4VCUTx8xsaXw2RSoNSx\nkxoeCoWiCIQmYWZl+Y7g706UOnZSjUcBKD2O7iq+3D9f7hsgf//4NJmvvure5tYnY2syXA3GEiYT\na3R8/fopFarxUCgUWRFbTkZsfTKqwXg/NNRGoVAkh0+TESon09MkTIrjKHXspIaHQqG4DHeCJp8m\nI1ROhhoY6VHq2Ek1HgXg63FmX+6fL/cNEO4fnz4jpMl88on1nBlHNRmp8fXrp1SoxkOhUEQjlNYM\niNNkqD5DoaE2CoVihRRpzRRloNSxkxoeCoXicjIANTbKRKljJ9V4FICvx5l9uX/e2jdujTNLWjO3\nrtnw4QZmu7DQ9+qYeev1E4Nus87TTeCFajwUSi9BqMYZOxmA7cns2gWsXcu/tgzF/eg261B9oRoh\nASGI6h+FmoYam2393XpUX6j2dFN5oaE2CsWHEVvjzHIsDZspAz7jor9bj6x1WdhZYxbaIoMjcb7l\nvM129thsNJmaUDyvWJFjJzU8FIoPIXY+DdVnPA/buOjv1mNJyRJmv7GtEeW15l8Jdg3Kr8XQDNFA\nHaTG9hPbbbZL5pt/TYQHhyty7KSGRwH09nXtvRkl9E1owTNXkwGU0D85cUf/+LwXtnHJHpuNc1fO\nMZ5MTP8YnL1ylteg6DbrUDirkHdbHWS+wEodO6nGQ6F4GVyvhq/eGa1x5j6EQmPVF6rthsZi+psv\nlmaIBoWzCpHzaQ6zvzF7IwpKCngNyobs7gvJt61kqMdDoXgBcno1FHFIHRpjGxd1kBoNrQ02BsZV\nlDp2UsNDoSgUmhjgGdwVGpPKuAih2LGTeAFe0kynKS0t9XQTSENDA3n//feZ/dLSUjJz5kyHPqOo\nqIj8/vvvNn93Z/8uXLhApk2bRpKSksjtt99OjEZjj+/Jy8sjGzdudOr7pOzbgw8SkpZGSHo6IUaj\neRsw/4uJMf+v0RBy8iQh2dnmY+RGCfemHDz45YMk7cM0csPTN5Dcz3NJ2odpJP2jdGJsMZK0D9MI\nloNgOUjkK5HMdsyKGILlIJpCDTG2GEn6R+nM/knjSZK9IZsYW4zE2GJktj2NUsdOqvFQAABGoxHv\nv/8+HnroIac/o6ioCOPGjcPgwYMlbJljLFu2DHfeeScee+wxvPXWW1i2bBnefvttwff4+fnBz8/P\nTS20xpm5NVSrEYco3eU0cGLACSY0ptusQ0iA+cT3FBrT36238l68UWvxGHJateLiYjJu3DgyZswY\n8vLLL9u8XlpaSsLCwkhKSgpJSUkhL7zwgt3PkbmZFELInDlzSHBwMElJSSEFBQXEYDAQrVZL5syZ\nQ6677jpyzz33kK6uLkIIIbt37yY33XQTSUpKIlqtltTV1ZFPPvmEqFQqMnr0aDJ+/HjS0tJCli1b\nRiZOnEhGjx5N8vLySGdnJ+/3p6Wlkccff5zceOONJCEhgezbt4/Mnj2bjBw5kixZskR0P0aOHEnO\nnz9PCCGkvr6ejBo1yuaYzs5OsnDhQhIfH09mzJhBMjIyGI/HXt8IIWTXrl1k9OjRZOLEiWTx4sVk\n3LhxotskBJ9XYzSa/7nLs/EVLJ5M+kfpZMoHU+x6Ltkbsq28lWlrp1l5MmyPRUneizModeyUrVWt\nra0kLi6O1NXVkfb2dqLRaMjBgwetjiktLSWzZs3quZEKPXm+xMmTJ60G09LSUjJgwABy9uxZ0tXV\nRSZNmkRKS0tJW1sbSU1NZQb3devWkfvuu48QQohWqyUHDhxgPuPSpUvM9vz58wXDWVqtljz99NOE\nEELefvttMnjwYFJfX0/a2trIkCFDyLlz5wghhNx8883MDxX2vx07dhBCCAkNDbX6XO4+IYTo9Xpy\nxx13EEII+eOPP4harSaffvqpYN+uu+46sn//fkIIIc888wxJSkrq8ZzywQ6pTZvmmRCaN8M2LkJh\nMnZozJeNixBKHTtlC7VVVFQgMTERQ4cOBQDMmTMHW7duxfjx47kel1xN8BqUMFfC3nW44YYbMGjQ\nIABASkoKamtr8cMPP+DXX3/FtGnTAACdnZ3MMdzP2bJlC15//XU0NDSgra0NCQkJgm2YOXMmAGDc\nuHEYN24cIiMjAQDXXnstTp8+jaioKHz33XeudRTArl27MGfOHABAdHQ0br31VgDg7Vt9fT1MJhM0\nGg0A8738xRdfABB37YTSnzMzzZlpSg2hKeHeBKzDZnwZZNwwmZiUZEv/aGjMvchmeOrq6jBs2DBm\nPzY21qYgn5+fH/bs2YOkpCRER0fjjTfeQHJyslxNojhIYGAgs92nTx90dXUBAJKTk3kNgEUraWpq\nwmOPPYYffvgBP//8M3bu3In29nZR3+fv72/13f7+/sx333zzzWhqarJ57+uvv45bb70VUVFROH/+\nPCIjI1FfX4/o6Gi7beT7wWOvb+fOnbPaF/NjSax2U1REM9EsiJ0Lw57/wtZg7BkYqrsoE9kMjxix\ndsKECairq0NQUBC++eYbZGVl4bfffpOrSYpFCb8og4OD0dzcLHiMn58frr/+epw6dQqHDh3C+PHj\n0dHRgePHj2P06NEIDg7GlStXAAAdHR3w9/eHWq3GjTfeiIcffhj33nuvy+0sKysTfD0jIwMfffQR\nHnvsMXz00UfIyMiwOWbq1KlYu3Yt7r//ftTX16O0tBT33XefYN/69euHAwcOYMKECfjkk0+Yz2Jf\nO2cXSVMy7pzVL6UnIxYlPHu9EdkMT2xsLGpra5n92tpaKw8IAFQqFbN9++23o1+/fjh79ixiLE8q\niwULFiAuLg4AoFarkZKSwtw0Fk+K7ru2n5KSgrFjxyI5ORk33ngj8+PBYDDg9OnTmDhxIvr164e/\n/e1vyMnJQWBgIDo6OjBjxgzMmjUL8+fPx/333w9/f3+89957uP/++5GQkIABAwZg+PDhsGDv+xsa\nGpjXKysrcfHiRWa/oaEB33//PVJTU3vsz9///nfcfvvtePfddzFq1Chs2LDB5vhBgwbB398fo0eP\nxsiRIzF69GhUVVVh9uzZ+OSTT5CTk4P29nYEBQXh0UcfxZkzZ/DII49g3rx5CAsLw7Bhw9DR0cEY\nmpYWA5YuBaqrtVdDaAaEhwOAFhoN8MQTBqxaBWzapIVabW5vfj6gVnv2ertrf+aLM1HXWIchSUMQ\n1T8Kh/c0T2CWAAAgAElEQVQeRmCfQGxbus3syRiuejLjzM99/OV4qNpUOB94HpohGuQOyAUAqPqp\nUDirEJV7K5Eflc8YmvyofFTurVRMfz25bzAYUFRUBADMeKlEZJtA2traioSEBJSXlyM6OhqTJ0/G\n6tWrmcEDABMSAYADBw4gMzMTp06dgr+/9TJBip0EJRFKiaPLhS/0r6WlBcHBwQCAl19+GadOncLR\no+9j504DAK3PVhBw9tqJ8WS4s/p78mTkwBfuTSGUOnbK5vEEBQVh5cqVmDFjBrq6ujB//nykpqZi\n9erVAIBFixbhP//5Dwqvxh769esHvV5vY3QoFCXw5Zdf4qWXXsLJky3w8xuG1FQ9AgLMr/XWumhU\nk6E4Cy2ZQ3ErDz/8MMot4sdVHnvsMeTl5XmoRT3Dp91kZgL9+nm/V+MI3uLJUMwodeykhodC4SB2\nTZuSEt83ONzCmOxFyMTWJ6MGxnModeykJXMUgK/Hmb2tf+x5Nj2VrvG2vvHBFzarPVyLqv5VzDFy\nZZd5Cl+5ft4GNTwUCqy9nN6g3XA9Gb41Y8IvhwP9QTUZiqTQUBul19LbtBs+fcaRNWMo3oVSx05q\neCi9Fq3W97UbPmPD1mc8vWYMRT6UOnbS3GUFYJkA5qsopX86ndnYZGQADQ3W2s3eveaaaY4aHaX0\nzYJusw7aIi0yPs5AQ2sDE0Ir/rUYxy8eB2AOm+1duBfZY7NRMr8E6iA1Ezbjbiutf1Lj9f1j39R5\nedY3uE7n6dbxQjUeik8jVDNNr/cN7YbPqxFKBuDqMxQFw02zXLLE/k0dGQmcP9/9Hk6NQSVBQ20U\nn8YXw2liU5xpWrPCETIoUVFATY2tccnONhsUeze1Wg1s3959g+fkwK+4WJFjJzU8FJ+D/Ty3t3c/\ni95WxoYvxVkoMYAmAygQ9g0p1qCwvRfuL6acHPu1mSzfZbnBGxrgFx6uzLFT9hV/JMBLmuk0vrqu\nvQW5+8deWM1otF7VMzNT3sXVpOwbe4Ez7qJm7BU02Qucyb2QGb03RcK+CXNz+W/IyEj+JWfT07v3\nhVYIdGBpWqWOnVTjoXg9QhM+lb7ejVh9pqcUZ6rXyASft+KI1sK+IdnhMK4LzhYdLe+1J0B6syB5\nFRpqo3glfOG0kpLu15UaUqMpzgrDGfHeEa3F8h0eWIxJqWMnNTwUr4SdNOBtEz61RVq7yQBUn5ER\nscbFQfFelNbiQRQ7dnouyiceL2mm09A4ujjYYXR2CFwu/UYMYvrG1W7SP0pnNJqTxpOy6TNS4HX3\nJp/WMmVKt7aSnc3oLqU9aS1sfYWrrTigtXgKpY6dVOOheA1sLScz0/zjVAE/Ku0ipN3o79bz1juj\niEBId2HfJNzMMKC7AF9Ojnk/Ph745ht+rYWrp/iY1uIpaKiNoli40RF2ZEOJ83DEajc0jOYEfDOB\nuboLexlYISHfMrNfqb9cJEKpYyc1PBRFwTe+WLwbJY0VYidyUu1GJEKeDN+iSAoS8pWIUsdOangU\ngK+vCeJI/5ReacDGq/muHLjGdydySn5vOptBxvZkJBTyff3ZU+rYSTUeikfhjkNCi655rI0CITRA\n3Fo1vRqhgnncDDLA1pPpaV4L1Vm8DurxUDwK28NRSjiNhtCcQKwn42z5F4pTKHXspIaH4naEJn8q\nYYxhz7Px1RCa0zhTd4xtbHqpyO8pFDt2ujd72zm8pJlO43VzJRyE2z931lITC3uuzbS100TXQvP5\na3fnna7XHePWGlMQvn79lDp2Uo2H4hbYP5QDAsx/83QtNT7tJnN0JrLHZvfeWmjsi1VbC1RVdf/d\nmbpjdL4LhQMNtVHcghJK3Diyjo3Ph9Gc1WQs76U6jFeg1LGTejwUWRDKVvOUl2NZBhroeXVOn8SZ\n7DJ7qYU0o4ziKp6N9InDS5rpNL4YZ2ZLAWlppR4ra+WsdiMWxV077uJE7H12vTKRmozi+icxvt4/\npY6d1OOhyALbw1m82L1h/l6n3UjhyVBNhuJGqMZDkQz2+Ldypecmf/ItO+Az2g03jslXTkZongzV\nZHoFSh07qcdDkQx2YeCCAs94OPq79b6p3Qh5NULlHqgn02vQ/fwzqltaEOLvD/3YsVhy/Linm8SL\nrB7P119/jYKCAnR2diIvLw9PPvmk3eP279+PSZMmYcOGDZg9e7ZtIxVqtaXCm+tFiZkMKkf/+MJp\nllCau1brlPXa8RkboUwziT0Zb743xeAN/bNnUCz7Uf36oaa1FSH+/mjs7ER5YyMAIDsqCudMJuxM\nTVXk2Cmbx9PW1oaHHnoIu3btwqBBgzBp0iTcfvvtGD9+vNVxnZ2dePLJJ3HHHXco8gRRhPHUGjns\nDDVuzTSvqpMmdm0ZRzLNKF6BMwZFV11tNiiXLgEAIvv2xfmODgBAzNUJchqVCoXx8cg5etQzHROB\nbIanoqICiYmJGDp0KABgzpw52Lp1q43heffdd3HPPfdg//79cjVF8Sj9FxcbZ9Kkpeof28sJ6HP1\nIfNwOM2pvolZW6anEJqbDI033ZvO4I7+sQ2MlAZFo1JB3bcvtjc0QKNSYWNiIgpOnEBhfDzUAQHQ\njx2LcNl75xyyGZ66ujoMGzaM2Y+NjYXBYLA65vTp0/jiiy/w7bffYv/+/fDz85OrORSJYP8I1+ls\nJQQp4Wo3bC+Hm6GmaA+Ha635PBlHKjJTPA6fQWFv68eORXVLi+QGRVddjcL4eHM7rm6rAwKwITGR\naZ/aUiJEgchmeMQYkcceewwvv/wyo+EIhdoWLFiAuLg4AIBarUZKSgrza8Vi0Lx1/6233vKa/ph/\nhBsQHw8UFmqhVgP5+QZUVkrfP8bQ/AZk/ZKFkOvMHkD85XgsHLgQM2+f6fHzwf4xZfX6a69B29QE\nhITAcLXsjBYAdDoYWlrMx1/1ZAx5ecDixdBOnWp+PTcXqKw0f96GDcrsn4/s99Q/3c8/Y19ZGQL9\n/JAwZQpqWlvRcuAAlsbFoToiwmxQKisR1qcPGpOSAABhR46gsbMTSEmBrroaLQcOAE1N0EydajYo\nBgPig4PxTW4uCk6cQO6ZM6gsL4d+yhToqquRe+YMACB88GAUxsejsrwc+QDUV40Kdz+/vh6V9fVM\nf4qKigCAGS+ViGzJBWVlZXjllVewZcsWAMCKFStgMpnwzDPPMMeMHDmSMTbnz59HSEgI1qxZg7vu\nusu6kTS5wKO4mibtSP/YXk57Vzu2n9jOpEJbXldShppV3xSQDCA1Sr83ncXirbQcOMAYFHtaCzsc\nxvZWsqOi0NTRgWKj0cZDYW+XJCebv4/HQ5EbpY6dshme1tZWJCQkoLy8HNHR0Zg8eTJWr16N1NRU\nu8fff//9mDVrVq/MalM63DVzpIz4CNVPyxydiX59+inK0Fghdj4NnT/jEfhCYfqxY5FVVWU3/MVk\ng119LSYgAGfb2x0yKOxtT4e7lDp2yhZqCwoKwsqVKzFjxgx0dXVh/vz5SE1NxerVqwEAixYtkuur\nKRLAV03aIj1IhVD9tKKsIuUZHGfn01B9RhaEMsP4vBVddTVC/P0B2OopXK2Fra9Y3ss2KGxNhW+b\nYgutXKAAlBjOkLKaNLd/3hZOEwqhGc6eNWs1XhZCE4tS7k0xmWHOeCu5Z85galqalUFpaG9XjMfi\nKkodOwU9nk8//bTHhgcHByMjI0PyhlE8i5zVpIWy0wAF1E8Tm4W2cSOQlwds2kTn00iAUGjMmcww\nMd6Kob7ebjYY9VjkRdDjiYiIsBH62RBCUFZWhuMyl2ZQqtX2JbhjreVvUv14F/JyFOPZWOCKWk1N\ntN6ZRDgTGhMS8rmpxr7krUiBUsdOQcNz33334eOPPxb8ADHHuIpST54vIWcCAWBduFORSQNCtX8s\nr1NjIxq5QmNKE++VjlLHTqrxKABPxdHF1Flz+rNZHk5+VD7er38fxb8WK8vL4dNuHBC1lKKByIVQ\n/5zJGmMbl5LkZOQcPcp4Mj2FxtzdP19AqWOnqKy25uZmvP3229i1axf8/PwwdepU/OUvf0FwcLDc\n7aPIiJx11tg6TvMvzdj0t02eTxoQq914aolUBfLaqVNYfuiQZFljQrPwudoK1Vl8F1Eez8yZMzFk\nyBDMnTsXhBCsX78ep0+fZiaHyo1Srba3k5HRLV1I7eUoRsfh82qodsML25OhoTHvRqljpyjDM27c\nOFRVVfX4N7lQ6snzRuRcrE0xOo4PVhCQGrEiv9JCYxTHUOrYKSrUlpqain379uGGG24AYF4/h68C\nAcVx3BlnlnqxNr6K0ezJn26Po7txOQFv0gj4PBluZWR2ivITFy7gs9hYnw2NedP18yUEDU/S1aJ3\nHR0duOmmmzBs2DD4+fnh1KlTGD16tFsaSJEW9vwcKaoQ9DQnxy0IrdXQyyoIOOLJAD3Pf6ksL6dz\nXCiSIxhqq6mpAQBeV81d1U+V6i56A1LPz+HWVsv5NMcz2WpC2k1hYa8KoTmjydD5L70DpY6dgobn\nL3/5C6ZMmYIpU6YwC7p5AqWePG9A6vk5bB3H3ctMi9ZufNDYiE1dFqvJUOPSO1Dq2CloeN59913s\n2bMHu3fvBiEEkydPZgxRcnIy/K+mTMreSIWePKmQM84sReaaq9lqkvWPbUUVUv1ZzmvH58kIzeqX\n2pPxdQ3E1/un1LFTUON55JFH8MgjjwAwrxZqMUJvvvkm6uvr0Xj1QaAoC6kz1zym4/Qy7Yarz7Dr\nk7E1GW41ZUB4FUqqyVCURo/p1IQQ/PDDD9i9ezd2796No0ePIjIyEpMnT8ayZcvc00iFWm2lIkV4\nzWNzcnqBdiO2nAyfJwPQ1GWKOJQ6dgoanunTp6OxsREpKSm48cYbMWnSJCQkJIha1lpKlHrylIoU\n4TWPzcnhC6d5sXbD9WTElpMBqIGh2PKz7me0VLfAP8Qf/aL6obWm1WZ7rH4sji85jjFrxihy7BQM\ntY0cORKHDx/GL7/8goEDByIqKgpRUVGIjIx0V/t6BVLEmaUOr0m5IJtg/xwJpykQvr4JzZkRW04G\n8PzcGF/XQJTUP7EGpaW6BZd2mn+49I3si47zHTbb1bpqmM6ZPNaXnhA0PJbVQi9duoS9e/diz549\neO+993D+/HkkJiZi7dq1bmkkpWdcnRjKTZPW362XL1tNaBVPvd46nOZF2g2fseHOmQH4y8l42tBQ\npEdqg+IfYv7hotKo0FfdFw3bG2y24wvjcTTnqGc6LAJRJXPa2tqwb98+7N69G+Xl5di7dy+io6Np\nyRwF4Wp4jZsmLetibD4SThMKoQnNmaH4BmINSlVWVY8GJSo7Ch1NHTAWGwUNSnKJOQRbratGfGE8\n73aAOgDtDe3oF95PkWOnoOF5/PHHsXv3blRXV2P8+PFMOvWkSZOgduMAQQ2PLVJMDHVrAgHfGgxe\nEE5zNRmAGhvvQukGxRGUOnYKGp63334bU6dORXJyMvr2FVXWTRaUevKkwpk4sxSZa7ImELAMjSE/\nH9rXXrNeg0HkejeewKFkgP37oZk61WeTAZSkgbgC25hYhPeW6hYcaDmAKQlTvM6giEWpY6egNbn3\n3nsxePBgwQ84c+ZMj8dQpMfZmmtiinpKAlt0am62brAC17txNhkgr7oam5KTFZMM0NvgMyhcD6Wz\nsRON5eZrahHeL+28hCY04cKJC05pKJbjxRiUxA3d9wXfdm9C0ONJTU3FwYMHBT9AzDGuolSr7Uka\nGpyb0uIuL8cblo8WSgbgS2tmb/uKV+MN8IW/2AYlKjuKMSiAtYcSEBOA9rPtjBdyNOeoXW/F0x6K\n1Ch17BQ0PH369EGI5ZcqD2FhYTh9+rTkDWOj1JPnbri6jjPjd8bHGfIV9WTH/xQYTqPJAMrDVT1F\nrEFJ3JiIEwUnrIR3bzYoYlHq2Ckqq83TKPXkSYXYOLozug43TdryN7d4OWoPrcfDbp5A5WYpkgF8\nRQPhQ4r+8RkXKfQUVw2Kr18/pY6dnssYoDiMM7oOu86abrMOG7I3SJsqzdZyMjO7S9t40MtxZj4N\nnUPjGkJaCzsc5uycFMvx9gwKWyfh7vdWDUXpUI9H4bhakUDy0Bo33peT43p9HonRHjpEQ2gy4YzW\nwg6H+bKeokSUOnZSw6NwXA2vrbxzJQpKCqQLrXEbpIDCnVzthq5B4xrOhMaEtBZ2OAygBsWdKHXs\nFG14CCE4c+YMOq7OYQCA4cOHy9YwNko9eVIhFGd2piKB5FUIROg4QsgRRxfSbgrj492WeeatGoHY\n0NiRsCNIakwC4LzWomQD463XTyxKHTtFaTyffPIJlixZgnPnziE6Oho1NTUYM2YMfvzxR8H3ff31\n1ygoKEBnZyfy8vLw5JNPWr3+xRdfYOnSpfDz80NXVxdWrFiBO+64w/ne+CDc0mV88M3PKZzlwCQf\nqw/kqafmQR1HrHZD9ZpuxITG2PNaALP3Aph1l+CuYOAgXNZaKBQ2ojyehIQE7Nq1C9OnT8ehQ4fw\n3Xff4d///jc++OAD3ve0tbUx7xs0aBAmTZqEwsJCjB8/njnmypUr6N+/PwDgyJEjmDlzJmpqamwb\nqVCrLQfOpkxLPj9HAfXUaPqzOGhojMKHUsdOUR5P//79ERkZifb2dhBCcMsttzArk/JRUVGBxMRE\nDB06FAAwZ84cbN261crwWIwOADQ1NdEKCLBOEtPpxJfCkXIZA/MHemZ5ArEVBLjGpjd5ONwwGV9V\nY6GsMW5obKx+LK/3Qj0XitSIMjxhYWFobm7G5MmTMXfuXERHRyOgh1+WdXV1GDZsGLMfGxsLg8Fg\nc9ymTZvw1FNP4cyZM/jmm28ca72PwI4zi02ZlnwZA66rJeHyBI7E0fmWe1Zq+rOcGoHYMBmfcZEi\nNObrGoiv90+piDI8mzdvRmBgIN555x2sXbsWra2tPS57LXaV0qysLGRlZaGsrAzz58/HsWPH7B63\nYMECxMXFAQDUajVSUlKYG8Zi0Lx1v7KyktnX64GsLAMWLwbUav737yvfh8PBhwEAWS9nYbl2OZNE\n4FR79u2D9rD58wxZWcDy5dBucOHzePrHfV3388/YV1aGQD8/bMvLM3s1lZWIDw7GN7m5KDhxArln\nzqCyvBxarRYbEhM9fr3k2o/RxzCFK+OWxiGiOgKXdl5CJSrRJ6wPI/IfCT+CTnRiqmYq4gvjsXPX\nTtQ212LepnkAgI+yPsKwxcOY0Fh9fj3qK+uh1WqRuMF3zx/d18JgMKCoqAgAmPFSiciWTl1WVoZX\nXnkFW7ZsAQCsWLECJpMJzzzzDO97Ro0ahd27d2PQoEHWjVRonFIqnNF1JJmf42K2mrMoJSPNU4id\nCyM2g4xC4UOpY6eg4VGpVLyei5+fHxqvDhj2aG1tRUJCAsrLyxEdHY3Jkydj9erVSE1NZY45efIk\nY5UPHjyIzMxMnDp1yuY7lXrypELsXB3J5+e4sbaa2IKcvmhsuJqMWMEfoBMqKa6h1LFTMNTW1NQE\nAHj22WcxfPhw/Nd//RcAYP369aitrRX84KCgIKxcuRIzZsxAV1cX5s+fj9TUVGY57UWLFmHdunX4\n+OOPAQDBwcFYt26d6BCdL9HSYgCg7VHXYZe/KSgpcG5+DtvLsQzyMi9VYDAYUD1ggF3txtsz0gws\njcBVTcaeJ+NpkZ/dP1/E1/unVESF2iZMmIADBw70+De5UKrVlootWwxYu1bbo7MhSXjNTV4O28PJ\nr6/H+1FRPldN4GfdzyjbV4Ybhtzgs56Mrw/Mvt4/pY6dogzP+PHjsWTJEtx7773w8/PDhg0b8Oqr\nr8q+Do8FpZ48V3BG12lobXA8c82NtdV6g3bD9mqoJkNREj//rENLSzX8/UMwdqwex48vwZgxaxQ5\ndooyPNXV1XjkkUewZ88eAMDkyZPx7rvv4rrrrpO9gYBvGh5ndB393XrHvRw31lbjK87pbdqN2HIy\n3uzJUJQH23D06xeF1tYam22LQbF3XGdnIxobzRVGoqKyYTKdQ2rqTkWOnaLSqePj47Ft2za529Kr\nYM/Xyc01ANDaPc7esgY9wqfjSDAnx+arWF5OwFV9jhtOs6RCKxk+T0aonEzixkSsy1uHeZvmKUaT\nkRpfD0XJ0T97nocYg9LSUo1Ll8zPet++kejoOG+zXV2tg8l0zu5xAQExAACVSoP4+EIcPZojab+k\nRJThOXbsGB599FErj+edd95B/NVJfRTHYc/PvDrNxS7sigSi667JuEYOt4wNe8JnZkQEE1ZTygRP\nIfiMDdu4xBfG42jOUWafGza7Zvk11KPpJYg1KGzPQ8hQcA2Kv7/5WVepNOjbV42Ghu0222yDwn0t\nMXEjTpwoQHx8IQIC1Bg7Vg8g3M1nSRyiQm3Jycl48sknkZ2dDQDYuHEjXnnlFWZioNz4QqhNrKYj\nyYqhzpS0Fgk7nMZdxVPpITWhtGZ22MxbKy1TxMMX1nI0lMXnebS3n4VKpUFycgmOHs2B0VgsaFCS\nk0sAmA1QfHwh73ZAgBrt7Q28r3FR6tgpyvBoNBp8//33Pf5NLpR68hxBrKbj9JIGrq4YJ/TRLC+n\nnRBsb2hgDA0ARScNiE0GoAkAvoFYnaSqKsuu0ZDCoHA9Dz5Dwd62ZzSkQKljp6DhuXjxIgghePXV\nVxEREYF7770XgNnjuXDhAl566SX3NFKhJ88RhJwQdpzZ6ZRpZ1aMEwnby8mMiEA/f3+HDI27dQKh\nEBpfMoCzxoZqIO7BVYPCNS4dHU0wGotx7Fg8brxxuJXn4apBkcuIOINSx05BjSc1NdVqQufKlSsB\nmBeF8/Pzc5vh8QWE1tV5bfdrWH5yuWMVCbixO7HVRUXClzRQlJCgOM9GqFozNxlAaIImxf2INShi\nhXexOonl+I6OXCQmTrUyGmPH6nkNSmJi9w867j57myIMXfpaRsTqOk6F1yROkxZa+8YZL0duaAhN\n2cjloUilk/QWlDp2ispqa2trw+bNm1FXV4euri7G4/nrX/8qd/u8GrFr6ziVucb1cFxMk2Znp3HX\nvlGKlyM2Cw3gL/9PkQ4hgV4uD0WMQeHzQqhHohxEGZ6MjAwMGDAASUlJ8L86IFF6Rmz0Kz8qH6p+\nKsfCaxIkEPCF0+ytfeMKzuoE3hBCU4oGIiVsg1JZ2Ynrr2+zm/HFzvLyVoPii9fPGxBleOrr67Fj\nxw652+JzCOk67LTp/Kh8ceE1tgtVUOByAoHQHBwAHpmHIzSRk11ck2tsqFfjGEJzUtgGpbExDJcu\nXb0GnDkp7AmLSjMoFGUjSuNZvHgxZsyYgenTp7ujTTYoNU7pCk7pOhLMzxFKjfZEOE3s3BqpstB6\nG3zhMKE5Key0Ya6Gws74Ymd5Ab1TQ1E6Sh07RXk8kydPRmZmJrq6upglr3taj6c34kjhT9G6jsTh\ntZ68HHfgrFcD0Cw0ezijtfCVV+nJoLAzvmhWF8VZRHk8cXFx+PLLLzFu3DiPaDxKtdpcHJlKw640\nXbm3kj/O7OL8HG62Ws7Ro26vNGAwGJhlnd0xt8aduEsjEDIuQpMh+bLBhOaksD0WX9dAfL1/Sh07\nRXk811xzDZKSknrlIm2OIJRMYK/KtKjwmovzc7jZavqxY91SaYDt1XTkdygyMUBpiNVdxAr5Pekr\nQnNSKBQ5EeXx5OXl4eTJk7jjjjvQr18/8xvdmE6tVKvNpaGBP5lAtKbDjddZ/uZAeE0JOs4h7SHG\n0NC5NdZIrbsAdL4KxT5KHTtFezzXXHMNTCYTTCYTM4+HYo3QVBrRmo69yT8Ohtc8peOwvRy/APP9\n0Vvn1rhTdwFoNhjFu6CVC1xEbEKB0OqhVnFmJzPXPOXl8CUKRGRGwL+fP+IL41Feqfz1eJzh5591\nKCvbhxtuGCI6NCaF7uJOfF0D8fX+KXXsFOXxnDlzBi+++CKOHTuG9vZ2AOYOffvtt7I2zhsQqk7A\n1XV4w2uvvQYsX+5S5pq7vByxkzoTihJ8MozG9mQ6Oxtx5cphGI2HJZnjQnUXSm9BlOGZM2cOcnNz\nUVJSgtWrV2Pt2rWIiIiQu21egZD2L3b1UG1Tk8sTQ91V4oZtaMSkPwPwul+UYkX+gIAYpKT4dmjM\n266do/h6/5SKqFBbUlISjhw5wvwPADfeeCMqKipkbyCgXHcREE4oEL3EgRPhNW6aNCDfujhsL4e0\nEzRsb/Da9Gc+uJ6MGJFfiaExCoWNUsdOUR5PyNWf9REREfjqq68QExODs2fPytowb0EooUB/t55/\n9VCWOGTIzYVWpXIovMZNk96QmChpiRsh7SYqO8qh9GelxNEd8WSAnj2ZgAA16uvzkZiovvo+3wuN\nKeXayYWv90+piDI8zzzzDBobG/HGG2/g4YcfRmtrK9566y2526ZY+BIKHJqrwxaHmpsBg6Hn7+2h\nqKcr+Kp2w+fJCGky9tau59NhKBSK4zid1fbmm2/i8ccfl7o9dlGau8hXTMCh+mtOhNdcXQlUCF+a\nd8NnbISWLuYaGwrFk+h0OlRXVyMkJARRUVGoqalBSEgI9Ho9lixZYvc1e8etWbNGUWOnBacNz7Bh\nw1BbWyt1e+yiNMPDZzMENR0nJ4bKmSbtzdqN2BIyVJOhuBu20XDUUFiOa2xsRHm5+QdTZGQkzp83\np+NnZ2fj3Llz2Hn1ly/7Nb7jlDR2WqCGxwn4EgqE5uoI1VwTijO7y8thz7uR2tBIFUfn82SE5snI\n7cn4ukbQ2/vnjOfBNhrOGAoAjI6u0WigVquxfft2aDQalJSUICcnB8XFxTav8R2npLHTgiiNh2IN\nO6FA9FwdJ2uuSZ0mzVddQInaDTcZgD3jX+w8GarJ9F7EGI2WlhYkJCQ47HnodDpegxITY743NRoN\nCgsLkZOTw+zzGQrucRs3bkRBQQEKr44VOp0OhYWFUKvV0Ov1zD77NXvHhYeHu+NUOw4RoH///kSl\nUtn95+/vL/RWhuLiYjJu3DgyZswY8vLLL9u8vnbtWpKUlETGjRtHJkyYQL7//nubY3popkdJ+zCN\nYLodKj8AACAASURBVDkIloNkb8jmP9BoJCQ72/y/AA/+9BNJO3iQpFdWEqPJRIwmE8muqiJGk8mp\n9v304E/kYNpBUpleSUxGEzmYdpCUopSUopT8kPkDqcquIiajc58tBz/99CA5eDCNVFamkwMHppDS\nUpDSUpCqqmxSWZlOSktB9u/XkObmk6SqKpuYTEZiMhmZbYpv8uCDD5K0tDSSnp5OcnNz7W4bjUar\n46ZMmUIAEAAkMjKS2c7OziZpaWmiXouJiSEAiEajIdOmTWO2jUYjSU9Pt/vayZMnSXZ2NjFefdaN\nRiOzz7fNPU4qlDp2ytqq1tZWEhcXR+rq6kh7ezvRaDTk4MGDVsdUVFSQxsZGQojZSKWkpNg20sMn\n78EHCUlLIyQ93dZupH+UTrAcRFOoIcYWo/g38pB28CBBaSlBaSnJrqpyue1sQ1OVXUUq0ytJKUrJ\nfs1+RRgctqExmYzk4ME0xtjs2hXDGBpqYHwTsQaFz1BIbTS4r7GNiJChkMNoSIGnx04+ZG3Vzp07\nyZ133snsr1ixgrzwwgu8xzc2NpKoqCibv3v65KWlEQKY/2VznBpji5Fkb8i2NTo9vZHFnf/+N+Pl\nTDt0iKC0lGj275fEyzk07ZCVoTEZTW73ckpLS63b54RXo1S4ffM1xPaPbUC4nocUBoXPULhqNDZv\n3uwWz8NTeHrs5EPWIqF6vR5lZWVYuXIlAGDdunUwGAxYtWqV3eNfe+01HDt2DGvWrLH6u6eTC5xe\ncVrkG1PWrMHh664DIE0CgbuSBsRiMBgQE6MXleIMeFdZf18X32fOnImmpibZBPWmpiZRQjlgX8tg\nb6vVajQ0NFjt94SvXz9Pj518yJpc4MjSCQaDAf/617+Ym5fLggULEBcXBwBQq9VISUlhbhjD1cmX\ncu3n5xvQ3Axs2qSFWg3MfHEm6hrrMCRpCPR361G5t9L++/V6QKeDITcXqKzk/fxAPz+gshKaqVNR\nlJCAyvJyVNbXO9TeU6+dQlJTEvxD/HHg8gE0oQlTNVORUJSA8spy1Fc69nmu7p869RqSkprg7x+C\njo58lJXtw3XXHQYAHDkSjs5OYOpUc9bZunV5GDZsMWNo6uvzUV/Pf76UtK/VahXVHrH7r732GmNQ\n8vPzsWrVKma/s7MTf/zxB4YMGWJlUIQEdYuIrdFokJubixdeeIHZ7+rqwvnz560MSnx8PGM4srKy\nsHjxYkydOhU6nQ65ubnMZxYWFqKy0vx8bbia0WMwGJCfn88Ylvz8fFRefb7UarXVfk/nw1uvH9++\nwWBAUVERADDjpSKR05367rvvrEJtr776KvnHP/5hc9zhw4fJqFGjyC+//GL3c2RupsPwJhQ4oOmw\nkwhONje7lEBACFFE0oAvhdC8FbEhL7bwLiS2s3USOQR1irwobey0IGurWlpayIgRI0hdXR0xmUxE\no9GQAwcOWB1TU1NDRo0aRfbs2cPfSA+cPKcSCkRqOoRYJxGk/etfDrePm63mqaQBPmPDTgwoKdns\ns4kB7tJ4+AyIUCaXFAblP//5j9cJ6o7g6xpdrzQ8hBDy1VdfkcTERDJmzBjy4osvEkIIWbVqFVm1\nahUhhJAHHniADBw4kKSkpJCUlBQyceJE20Z64OQ5lVCQnm5+g0bTo8eTXlnJJBFsLilxuH3cbDV3\nJQ2IzUJjezW+/HBL2Tchb0VsarDUHoovXztCqOHxFHQFUh6cSigQWCNBimUMhErcyJk4ILRkgDur\nBPgKfBMbhQR6sTPZ2RMPuWK75bvFCu8U70epyQXU8PDAtiFLymyrTjOIXPuaXfomOyrKqSUM3Jmt\nJrbQJuBdWWhywmdQuLPms7KyeGe8W4yLkEGxfJezmVyU3oNSDY8y/TAOnm6mYHUCkboOO7TGTSIQ\ncveF5uRIiTMhNLH4UjiDq7UkJydLNidFKPzlKXzp2tnD1/vn6bGTD1qrTQQhAeY6a5ohGhTO4tRZ\nE6jBxg6vrYyPR8GJEw7Pz2Gvi2NvETapYNdBq67Wwd/f3C97ITRfr30mVF3YXu2uw4cPQ6fTMQsm\n9lSTy/Id9ryXDazisdx9CsVXoKE2EQhWnRbQdZwJr3EXZDuac5RZF0dqLYcdTiOknSm02VtCaFJr\nLZbP7Mm4UCjuwtNjJx/U8LAQKdeIPjDj8GEUG40OrZ/DXZAtvjBe0nVx+LSbiIhM+Pv36zWGRg6t\nhUJRGtTwuIC7Th57yZxrHtVh+HiehAKetXWczVxbO3MtU3VA6mw17tICfIukJSeXyGZw3F2WRKwn\nw1euRSgzjGtgfL3kCu2fd6NUw0M1HhZsuSYwqZpZxlq3WWe9zg6PrlPd0sKE1nTV1diQmCgqvNZW\n14ZLh+XRcRzRbrwJobVWqqurRa2TYvkcqrVQKO6Fejws2HJNzlaBZax5dB1HQmtyzsnxVe2GbWyE\nlgYW68lQKL6OUj0eanh4sEooeHSJKE2nob1d9KRQqefk+Ip2I+TJsDUZZ0R+amwovQ2lGh5lJnlz\n8HgzBebqcFcMFQu7tlrJZsdL5nARWkDN0wjNleCWiRFaGVLsWivuxNfngdD+eTceHzt56NUaDzc5\njbdCgcBcHXu6jj24adJj9WOZbLXySvtLQQjBTRpQunYjRvAXmgvTkw5DNRhKb4E9bkVFATU1ttt6\nPbBkiadbyk+vDrVxk9POZWiZhILssdndCQUCc3XE6jrcNOnEDY6XzBGqmRYfX6go7cbZ1GXLe2mY\njOKt2PygXSLeUIg5Liure9yKjASuPkpW29nZwLlzwM6dygy19WqPh+vI5GztrlDwf18HA/9P2321\nWb+oxVYkYHs5fgHmRfFUGhXiC+Odai87Qy0gwJyhpVJpFFNRgE/8F/Jk7An+1JOhyA2f1yCFoWhs\nBCzrWep0FgNg3uczFI4cxx631Gpg+3bb7cJCICdH/vPoNJ6N9IlDrmYajWbJxiINWC13IKDrsNfS\nya6q4v18sYuzCdZqY9VQO3RomuIWU+Mr3c8uz89d114JNcikwtc1AiX2j71WVm6u9bpZfK9xj+t+\nvEtJZKT1o85+9NmviT0uJsZ6dRT2ainTptnfduQ49rjFt02I+X+lDvHKbBUHj5w8gbV1hAp+shG7\nOJvQw81OGvjhh0yPGxuhZAC2sWGL/0ocvKTCl/tGiPT94y6wKNZQsI+bMsVxY8A9zvJ4x8eXOm0A\n+I47edLWAIg1FGKOcwSlGp5erfEIIqDr8KVNcxMIADhc7oabNHD0aA6z3o2c1QW4ODP7n86T8X0c\nEbZ7CkN16xDm/Z71CvN+TAxw9qxteKmkxBxesqyjxReGuiolMo83e1uttn70nTlOSbc+Tad2Abma\n+eCXD5K0D9NI+kfptquJso8TmTLNXRXUGdgejsW7cYeXIzatmbvCpS+FzXoTznoeSghDsT0Kd3gN\n3oxSh/he5/Gwf7E1ztai/DQri61EbXeiqNgq04czDjtVSXrt2plISmqyW2lATg+HLxlA6tn/vlwP\nSwl9c0YoF+t5hIUZ0NioZY5rahLnUfB5Hhs3AgUFrnkXUnoUSrh+ckI9HheQspnsX2IxT6QTLAfR\nFGoEEwqENB32Qm3NJ5t5EwiEKCxMdpuOIyYZgOvJuOrV+LIOImXfpPZCpPA8UlNLnRa2vcHb8OV7\nkxDlejzKbBUHKU+elct+lpXFxn2R9ZQYTSaSXVVlN8zmbHiNL1tNaoPjTDIARVrEGhS2aO6MUO4O\nAZziXVDD4wJSnjzBB4n1olhdR2zmGhd3ZauxDY1Q2RmK40htUJzVP3zB86DIAzU8LuCJkyc0V8eZ\n8BrbwzGZjKSyMp3xckpKNkvadraXM23aNI8nA3hbOMMxg1IqmUFRohfibdfOUXy9f0o1PL2ucoFu\nc3c9ts+/jULg8RqbZAIACPH3BwBoVCoUxltXGmipbmHK35woOCGq/A13XZyxY/VMiZvy8krX+8WT\nKJCZmYns7GzeygC9CbGlTMTOPL+6vI/NTPGeBHW9nl9EZ18a7j7fNoXibfS6rDZtUXc9tqr1kUj8\niTVZgPU0Cy1xIDZ7TWhdHFez1YRqoXHrn/W2OTV8WV5iM7nY80SkyNDqZaefoiCUmtXWKwwPeyBq\nvzcD22vMC7zt3qhGwDfdOaC6s2etlq62GBxnJ4YeOqRlvBwp1sURm/7cGyZyCqUQ8xVRpAaF0ttQ\nquFRZgCQg6vNZMfeM+ewMtk4wXI+XUds5pqQjiOUOCB2vRqx6c9Kw9k4upDWIlQ2xVUNxR198xZo\n/7wbpQ7xvULjYVdzLVqlhlp9NaQWBKvwGp+u4x9i/ntPlaWFdBxnvZzq6mqrEJq5Hz1XdfYWhHQX\nIa2Fra9wq/JajndFQ6FQKPLRK0JtYmc9s3Wds38+zoTX4lfG40TBCbuhNal1HK52k5OT4xMhNGd0\nF6HQGDscZvl8Gv6iUKzptaG24uJiMm7cODJmzBjy8ssv27z+008/kZtuuokEBgaS1157ze5nSNpM\nbvyGB7HhNSnm4/CF0yyhM6WG0LgIlat3JtVYKDRGoVB6xg1DvFPI2qrW1lYSFxdH6urqSHt7O9Fo\nNOTgwYNWx5w7d47s37+fPPPMM7IZHnYx0Pabu8WBB997j3eSqNiJoWJ1HCGSk5N5tRul4YzukpZW\n6pTu4g34ukZA++fdKNXwyKrxVFRUIDExEUOHDgUAzJkzB1u3bsX48eOZY6KiohAVFYWtW7fK1o7q\nC9VMCvUPl2OQCgAaDapvuIEp/qmrrrYq/jlWP5Y3c40dXouPX4kTJwoc1nHYIbU+ffrA3CRlhtOs\nCqs6obssXgxMneqc7kKhUHwPWQ1PXV0dhg0bxuzHxsbCYDDI+ZV2CQnoXtJ6VPFG4FGzOBBSUwNc\nucIkE3DTpvkmhrKTCE6cKBC15DRXu2EnDWRmZmLUqFGMsfFEkoBYkV9o0iS/7qIF4JtCvi9XNgZo\n/yjyIKvh8fPzk/PjeeEOovq79dBt1qFwViEGBHX/pNb37281SfQ3VkWCal01Y3i4i7P5+5sNmUql\nQXx8oag2sQ2NTqdDyNVUO41Gg6KiIo94N854MkKz8GmWGIVCEYOshic2Nha1tbXMfm1trZUH5AgL\nFixAXFwcAECtViMlJYX5tWLxoiz7+/YZcPgwAGih0wH5+ZXIj8qHOkgN3c8/Y19ZGQL9/LAtLw8b\nEhOZ94eHhAMAjsUfQ0duBxJhNjxlZftw5cphpKSY06Tr6/NRW9uMefM2ISBAbfP9ln2LZ9PS0oKO\njg4AZkOTm5sLAFCpVCgsLERRUZFgf6Tc1+nM5ycwEAgI0F41NgaEh5vPl0YD5OYa8MIL3ftPPGHA\nqlXApk1aqNVAfr4BlZXmz+Pu2/v+t956y239c/c+24NXQnto/3p3/wwGA4qKigCAGS+ViKzp1K2t\nrUhISEB5eTmio6MxefJkrF69GqmpqTbHLl++HKGhoXjiiSdsG+lgSmBGRnfabUkJoF7S/dNe+/e/\nY+eVKwBsF3Vrb2i3q+scPpzh1PLTWq3WKpzWr18/u9qNQeLFqMTO6menKwvN1nfVGZO6f0rCl/sG\n0P6JhV0DMqp/FGoaahASEAL93XosKVli9zV3HLfmrjWKTKeWfR5PcXExCgoK0NXVhfnz5+Opp57C\n6tWrAQCLFi3C2bNnMXHiRDQ2NsLf3x+hoaE4evQoVCpVdyMdNDw2g6ZWy4y2GUVFKB4xAhqVCh+s\n6o/OX1sZTYdtbJxJIBCagyN3zTS+sBl37Xr2CpJcY0OheBvsAV+KwdvZz2hsa0R5rfmhiwyOxPkW\n80OXPTYb566cY5Kb2K+55bj7d/ZOwyMFjhoe7s2ont0987ChuBi6P/5AYXw8fptexWg6UdlRVskE\n7DprUVHZvAkEQvXTCgsLodPpZMlQ4+pYfJ4Md0liy3upsaFIidQGQOxx7AFfisHb2c+I6R+Ds1fO\nQjNEA3WQGttPbIdmiAYl80uQ82kOin8ttnnNLcfNK6aGx1kcNTzsCtTZY7OxYXqh3dFWqMq02PAa\nO5zmbFVose4+n1cj5MlY3udJQ+PL4Rpv6psz4aDO3zrRFtvmdgMg9jj2gO/M4B1/OR7Dk4e7bAA2\nZm9EQUkBCmcVMue6cFYh1EFqNLQ2MPvs19xxXHhwODU8zuKwxvNxBnNDlMwvwZKT9qtOczUdseE1\ntpfT3t6O7du3uzQHR2jw4jM23HIylmOV6Ml40+DsKHL2jc9QOBs2ciYcFPZ7GBqHNPZ4nKsGwNnj\n2AO+M4N37oBcTL1lqssGQB2ksIfuKkotmeOThod7Q2gPHWImir73XiAmnw+yq+uIDa+JTRpwBrEh\nNKrPKA9XDQX3uKx1WZKGjeQMB7lqAJw9TqkDvlKghscFxJw89oD9eZQOgTXdo3dGTQ2KjUZoVCq8\n/1d/XCkz/4Lj6jp84TW5kwacCaFRYyMfzuoVrhoK7nFNpiaXjIE7w0HUACgTanhcQMzJYyWuoSpS\ni8TzV3eys9Hw8cfMRNGazKOMrtP/g1Vo7fyVmRgKwO4yBmwPR6qkAbaxqa01oKpKC8C7QmhicXeo\nzVXPwyG94uh54BppDAX3OEtfXDEGroaDfDlMCvh+/6jhcQExJ489d2e3OgMB29kTebofOLauU/Xb\ndFGhtYyMDJc9HKEQWni4AUaj1me9GrnnSkjteTikV+zYDs0UaQwF9zgl4OsDs6/3jxoeFxBz8vI+\n1eGrimqkjA3BxjtWYsCj3aM3twabRdcRylxjh9dWrlzpVNIADaHZx5nsKkcMiqueh7N6BYWiNKjh\ncQFRoTZWCvU1N7yH4TGTmSw29nydwPfeQ9Dk8z1mrnHDa2IKd4pNDPCVEBoXsQbFmewqRwyKpS1U\nr6D0dqjhcQFRoTZWCnVg6vsov9xdFueZgg5G1/F//69ovFIGwDa8xpcmLTa8xtaZHPFqvMndFxLe\n+QxKGkkD4uBSdpUjBsWdeNO1cwbaP+9GqYZH1iKh7uTzb6Pw655IxA9TIzPVHwCY5Q7668HoOkdr\nVMAV+5WluUsVWBIJhIwO28u5Oj2IWTLA8rq9ys1KQ2wmF9u46DbrbNJ1AdgYjcUjFuP9+veZ14Sy\nq9iVxLmvAcCG7O6TyLdNoVCUjc94PGx344drV+KIehwSIlS4fl2i1Vyd9vYGJnPtz39e4lSaNJ92\nk5kJ9Oun7PAZXzhMbCaXkPAuNl2XhrIoFPegVI/HdwwPK63tUOD7uFRuDrVFZUehz/NvW62nY9Fz\nnE2TZofUuNqNEgyOkNbCJ9CLzeQSEt6pQaFQlAU1PC7Ad/Ksyv8//wNqjh1BSEICXnimDy5va2Bq\nsPGlTYtNk+YmDeTkSJuR5kyc2RmtRUigF5vJReeCWOPLfQNo/7wdpRoer9Z4qqu7PY/I+zpxfuhQ\n4PJlDFwWgafCopgabOwVQ998Mxi//qrtMU1aaHVOoVU3pUZMaEys1tKTKM/WSbj7VEOhUChS4dUe\nz7B8HepaqhEWHILx97+AnVcum9fZ6b8Kna32KxJMn54lKk3aneE0qUNjQloLhULpPSjV4/FqwzP1\nn1qUnzYPyv+/vXMPiura8vCvQSSIIJHmJSRoVJBnd5MWUeQCikEglonQwRLwipRoSkMZU0llksqo\nM06i3uISnOQmWBMkXqIImprECCRIGtFgDA8RU97SUcGARl6CykNsYM0fbZ90Qzc2j6Yf2V/VKc7u\nszhnrbNhr957r7X3gbOfYeZ9eUAB7z/TVEKmMzPttAqTVu7lyGR/7GOjiwRPZWczqqGxK6fx/G/P\no/zTcrxd8jbWz1iPrP/Owj8L/qm1g/nyyy/x0ksvwcXFZWKMGQP37t1DfHw8mpub4eLigmPHjj01\nZH3Dhg1YtWoVYmNjJ0lLBsO4MVTHY6ZvBcbD+1/dgPQQcO64LYJ6BHCt6sfD7zvRe0X+ohUh04ow\n6aKiIlhbW0MikaCkpATvvGOHsDB5XEJn5x9Dd0VFgLW1PBenpARwd5cPp43W6aSeTEVYThiiv4rG\nX//3r9x556NOXGu/hjO3zqDoehGuVF4BIB8aE7oIufODqw7iSOwRSLwlKEkqQYGkANFu0bC+ZA13\nO3fkS/Ixfap8p1bF0Jg2vZqcnBzcuXNndMaMA+V97RXs3LkTMTExqKurQ1RUFHbu3PnU+/B4PPB4\nPB1oOHbU2WZKMPsYusCo53hWDLhjyq0mAA9wyfkauuGO6eLp8In5Gjebt3IrEkybJp/jEYvFyMnJ\n4b5ZK88RpabKezpyOSAnZ2yORnnCX+FcANWeTOrJVEyzeKLTLDHeevEtfN37tVa5KzZnbdBwswEi\nkQgrVqxATEwMurq6sHbtWtTU1EAgECA/Px88Hg/nz5/Hjh070N3dDXt7e+Tm5uL8+fOoqqpCQkIC\npk2bhoqKCuzduxeFhYV48OABgoKCkJ2dDTMz9d9JwsLCEBAQgIqKCty/fx+HDx/G3r17UVtbi7i4\nOOzbt0+rd1VYWIhffvkFAJCYmIigoCBkZmaqyAwODmLz5s0oLy/HnDlzYG5uzn17U2ebq6srfvrp\nJ6SkpMDW1hahoaEoLi7G5cuXtdKJwWBMEmQEaFJzU0YGhWZkUNQ//kEXf0mgs7liulgVSSkp6yk0\nNJSioqKoo6ODOjo6SCKRUEdHB23aRBQaShQVRRQRQQQQicVEHR3yQyKR/9SWTd9uotBDoRSVG0XB\nXwQTdoGwCyTJl1BUbhRhF0h8UEwRhyO4847eDuro7SBJvoQ6ekfxMCJqaGggX19friyVSmnGjBl0\n9+5dGhwcpMWLF5NUKqW+vj4KCAigtrY2IiLKy8ujhIQEIiIKCwuj6upq7h7379/nzpOSkuj48eMa\nnx8WFkbvvfceERFlZmaSi4sLtba2Ul9fH82aNYtaWlqIiCgkJISEQuGwo7S0lIiIbGxsVO47tExE\ndOTIEVq5ciURETU3N5OdnR2dOHFiRNvmz59PlZWVRET0/vvvk5+f31PfKYNhqhhqE2/UPZ5rwcE4\n0y3P10noy4araxU6HwKXLvFRVfWkd5Gaivz8fC6IQLmXs3q1fDhNee5Gmwg1TfMzytFk2izrMpZI\nMVIzXhsYGAgnJycAgFAoRGNjI+rq6nD9+nVEREQAAAYGBjiZoff57rvvkJ6ejv7+frS3t2PBggUj\n6vDyyy8DAHx9feHr6ws+nw8AmDdvHm7fvg0HBweUl5eP2rahnDt3DvHx8QAAR0dHLFu2DAA02tba\n2orHjx9DLBYDAOLj4/HNN9+MWw8GgzGxGLXjeWWvDK/cACynmcMzcya6+uXzOvb2dgDkAQTypFD1\ny9poO5w20hCasrMZmgsDaLesy3hzCSwtLblzc3NzDA4OAgAEAoFGB6CYK+nq6sL27dtRV1cHZ2dn\n7N69GzKZTKvnmZmZqTzbzMyMe3ZISAi6urq4Z0yfLp+LSk9Px7Jly+Dg4IC2tjbw+Xy0trbC0dFR\nrY7qHK0m21paWlTKmn53IjH1PJA/pX0qCYIOwK1bw8+PHAHeecfw5QwUo3Y8wa3PoPvSYwAD2Lvu\nGdyy48Pe3g5ZWf+jkp/ztF6OAm1zZpTnZ4Y6G13nu1hZWaGnp2dEGR6PB39/f/z222+4ePEiRCIR\n+vv7cePGDXh6esLKygrdT3qK/f39MDMzg52dHXp7e1FQUIDXXntt3HqePXuWO1f3zx0dHY3c3Fxs\n374dubm5iI6OHnaPpUuX4vDhw0hOTkZrayukUikSEhJGtG3q1Kmorq7Giy++iIKCgnHbYRRoaign\nojEbGAB27TKMRlQXcr29wIIFqtdUEgT5QFvb8PPUVKClxfDlDBSjcjxDVxCQrfkvYM0NmFtOQ3Mu\nUFXRBuA0wsP/D88/n4916+Ry2gYNaAoGGGkIbSKczWi+UTo5OUEoFMLb2xurVq1CdHS02kivqVOn\noqCgAFu2bEFfXx/6+/uRlpYGT09PJCUlITk5Gba2tqioqEBycjIWLFgAd3d3LFq0SGtdtI0yU2ff\n7t27ER8fj+zsbDg7O6vNp4qPj0dpaSk8PT3xwgsvYMmSJU+1LTs7G4mJibC1tcXixYthZWWlWbEJ\n+GYbZgiNqKaGcgIaszBDakR1IBcGADdvql5TbjDs7P7Iq1A+P3hQvoSJMcgZIvqdYtIOhZrOqZsI\nG0IJCVG0Or6Dqn8JIakUJJWCli51JgAkFospOFhGgDxwQBEsoC5oQDkwoKO3Q2MwQENHw5gCARhK\nKEd1rF+v/ryjQ7PcSNeUznvu3OHkPvLwoNc9PDTfLzSUuD8UPl/9uURi+HJRUX9EyQyNmNF0jclp\nvqbcYGg6JzIKOUNt4g1TqyEoXl6OnzNJ3UGn5oHWHVxNtbVRJJWCKivFlJj4gPj8Xyki4vGwvyNl\nRopCU440G2vU2ViQSqU6f4ZaxtnIaysnPXly/I2tlg1xXlAQCaytyQOg5QA1z5w5+gZ7FI2Z1BAa\nUR02ZtKTJw2mEdWFnPTkybGFsxoJzPGMA8XLW/Mf/yYPn/7oI2pe+xqlpKwnsZhPkZERKr2c1atV\n/440ORvnvzmrhDjrC60dz0Q7iuBgjY3y1lmzSAjID3NzEgKUM0ZnIFU8b7zfRCerwR5FYyYNDdV/\nI6pD9PalaJIwdfuY4xkHipf3t9BvKUMgpY8CpZRwpppCQ0MJAAEgZ+dqrk1Zf1x1CC30UKhaZzOp\nQ2jKDb4OHMWYehTOzsbTyI90zQAbbAbDEDBUx2NUa7Wd/GgVbKwagUeWsK37O1affYCmJivY2log\nIvMgyq/cgtB7GnoHVTc1U17vTF3I86gZy6S08hLXEol2k6BD5ZRXK1WeSCwpUd2rQdOE41A55UXo\nFHYpwv06O/8oK18bqxyDwZh0DHWtNp26w6KiIvL19SUvLy/au3evWpk33niDvL29SSQSUU1NjVoZ\nhZovh/JJIAAFBoLOnVmlMrzGf1t9r2ZU8zXa9kLG27sY0lOQBgRo16NoaJjY3sAkYcrDGaZsjgdT\njAAACU1JREFUGxGzz9jRcRM/ZnSm1aNHj2j27NnU1NREMpmMxGLxMMdy/PhxWr16NRER1dTUkEAg\nUK/kk5fHt88hQErAKVq1ah25vS6PcrN9PYpCvxghCm2iHcpYhqGUnQaRigPI+PBDg3IUE01GRoa+\nVdAZpmwbEbPP2DFUx6OzPJ4LFy7Ax8cHrq6uAOQ5GadOnYJIJOJkCgsLkZSUBABcImBTUxPc3NzU\n3vNB2LeATTsgm4aBRzlwD3gNTbfP4AGA975yx6e/8+HxnB0szv078m+1AIfWjS4hTNv4fYX804aX\nRtoxTqnc2denek2DnLHS2dmpbxV0hinbBjD7GLpBZ46nqakJzz33HFd2c3MbtgS5OpmRHE/W1Z8w\n+2EzeiyAr95JxbavbsCqHrCwscUiG2dM+dcF4F+nde9QAM2OwsScBoPBYEw0OnM82u6bQkMmvjT9\nXss0M/g/OxUBT7aRiSjmwUxpWwQ435JfmAyHMsE0NDTo7N6GgCnbZ8q2Acw+ho7Q1RheeXk5xcTE\ncOX9+/fTnj17VGQ2btxIBQUFXNnHx4eampqG3Wvuk5BpdrCDHexgh/bH3LlzddXEjwud9XgWLlyI\nX3/9Fbdv34ajoyPy8/ORlZWlIqNYKDIuLg41NTUwNzfn5oSUuW6I4YAMBoPBGBM6czzPPPMMPvvs\nM0RGRmJwcBBJSUkICAjgnM/mzZsRGxsLqVQKHx8fWFpa4tChQ7pSh8FgMBgGglEkkDIYDAbDdDDT\ntwIjUVxcDD8/P3h7e2Pfvn36VmfCmT17Nvz9/SESiRAYGKhvdcbNxo0b4eTkBD8/P+6ze/fuYcWK\nFfD390dkZKRRh6+qs2/Xrl1wc3ODSCSCSCRCcXGxHjUcH42NjfjLX/4CPz8/eHp6Yv/+/QBMow41\n2WYq9ffo0SMsXLgQIpEIHh4eePPNNwEYcN3pe5JJE9okoBo7s2fPpvb2dn2rMWGUl5dTTU0N+fr6\ncp9t27aNS9LLyMigtLQ0fak3btTZt2vXLkpPT9ejVhPH3bt36fLly0RE9PDhQ5o/fz7V1taaRB1q\nss2U6q+np4eIiGQyGS1atIh+/PFHg607g+3xKCegTpkyhUtANTXIhEY6Q0JC8Oyzz6p8ppwknJiY\naNR1qM4+wHTq0MnJCb6+vgCA6dOnw9/fH7dv3zaJOtRkG2A69afY9PDx48cYGBiAo6OjwdadwToe\nTcmlpgSPx+O6wZ988om+1dEJra2tsLe3BwDw+Xy0GPB2vGPl008/hZeXFxITE3Hv3j19qzMhNDQ0\noLKyEkuXLjW5OlTYFhISAsB06m9wcBBCoRBOTk4IDw+Hj4+PwdadwToebRNQjZmff/4ZNTU1KC0t\nxaFDh3D69Gl9q8QYJVu3bsWNGzdw5coVzJ07F2lpafpWadx0dXUhLi4OmZmZsLW11bc6E0pXVxck\nEgkyMzNhY2NjUvVnZmaG2tpaNDU1oby8HFKpVN8qacRgHY+bmxsaGxu5cmNjo0oPyBRwdHQEADg4\nOCAuLg6VlZV61mjicXBwQNuT5YtaW1s5m00FPp8PHo8HHo+HzZs3G30dymQyxMbGIiEhAa+88goA\n06lDhW3r1q3jbDO1+gOAGTNmICYmBhcuXDDYujNYx6OcgCqTyZCfn4+oqCh9qzVh9PT0oKenBwDQ\n3d2N4uJi+Pj46FmriUeRJAwAubm5iI6O1rNGE4vy0MWJEyeMug6JCCkpKfD29uaiogDTqENNtplK\n/bW3t+Phw4cAgN7eXpSUlMDPz89w606voQ1PobCwkHx8fMjLy4s+/PBDfaszody8eZP8/f1JIBDQ\n/Pnz6YMPPtC3SuNm7dq15OLiQhYWFuTm5kbZ2dnU3t5OERER5OfnRytWrKAOI97eYah9X3zxBSUm\nJpK/vz8tWLCAIiMj1S75ZCycPXuWeDweCQQCEgqFJBQKqaioyCTqUJ1thYWFJlN/dXV1JBQKSSAQ\nkKenJ+3evZuIyGDrjiWQMhgMBmNSMdihNgaDwWCYJszxMBgMBmNSYY6HwWAwGJMKczwMBoPBmFSY\n42EwGAzGpMIcD4PBYDAmFeZ4GAwGgzGpMMfDYOiIjz/+GL29vWqvKfZiqqmp4T5ra2uDhYXFsC3i\nw8PDYWNjg+rqap3qy2BMFszxMBhDGBgYGLGsLZmZmdyySEPh8XgoKytDQEAA91lBQQFWrlyJo0eP\nqshKpVKIxeI/xcK5jD8HzPEwTJasrCx4e3tDJBJxe5Js2LABJ06c4GSmT58OACgrK0NISAheffVV\n+Pn54cyZM1zZ398fAwMD2LZtGwQCAby8vHDgwAHu98LCwrB27Vp4eHhAIpGAiHDgwAHcuXMH4eHh\nWL58uVb65uXlYc+ePWhpaeH2imEwTJEp+laAwdAFNTU1SE9PR1VVFWxtbfHgwQMAw7fbUC5fvHgR\nV69ehaurK8rKylTKBw4cgIuLCy5duoS+vj4sWbKEW7S2trYWV69ehaOjI4KDg1FeXo60tDRkZGSg\nrKwMM2fOfKq+jY2NaGlpgUAgQFxcHI4dO4YdO3ZM4BthMAwH1uNhmCSlpaWIj4/n9pPRZl+ZwMBA\nuLq6qi3/8MMPOHz4MEQiEYKCgtDZ2YmbN2+Cx+MhMDAQTk5O4PF4EAqFKtt5aMuxY8cQFxcHAJBI\nJMOG2xgMU4L1eBgmCY/HU7ulsZmZGQYHBwHId2x8/Pgxd83a2lpFdmj5888/R3h4uMpnZWVlsLS0\n5Mrm5ubc/UfD0aNH0dzczC1h//vvv+P69euYN2/eqO/FYBg6rMfDMEmWL1+O/Px83L9/HwC4n25u\nblx02KlTpyCTybS6X2RkJLKysjinUl9frzFiTYGVlRW6u7ufeu9r166hu7sbTU1NqK+vR319Pd59\n913W62GYLMzxMEwSkUiEt956C0FBQRCJRNyWxlu2bMH3338PkUiEiooKLrgAUJ3vUexKqWDr1q1w\ndXWFj48PBAIBkpOTIZPJhskpk5KSolVwQV5eHtasWaPyWWxsLPLy8kZtN4NhDLD9eBgMPTBnzhxU\nVVXB3t5eK/nw8HCkp6erhF8zGMYK6/EwGHrAwcEBERERKgmkmggPD0d9fT0sLCwmQTMGQ/ewHg+D\nwWAwJhXW42EwGAzGpMIcD4PBYDAmFeZ4GAwGgzGpMMfDYDAYjEmFOR4Gg8FgTCr/D5eEOnUTMe26\nAAAAAElFTkSuQmCC\n", + "text": [ + "<matplotlib.figure.Figure at 0x3a59f50>" + ] + } + ], + "prompt_number": 4 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter9.ipynb b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter9.ipynb new file mode 100755 index 00000000..3cdb1b6c --- /dev/null +++ b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/chapter9.ipynb @@ -0,0 +1,390 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:934a14335227a49c83c2d399431a59d2d79025dde47942572f3e87ac684c8499" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 9: Single- and Two-Phase Motors" + ] + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 9.1, Page number: 459" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "from sympy import *\n", + "import math\n", + "\n", + "#Variable declaration:\n", + "Zmain=4.5+3.7j #main winding impedance(ohm)\n", + "Zaux=9.5+3.5j #auxilliary winding impedance(ohm)\n", + "f=60 #frequency(Hz)\n", + "\n", + "\n", + "#Calculations:\n", + "phy_main=math.degrees(math.atan(Zmain.imag/Zmain.real))\n", + "phy=phy_main-90\n", + "w=2*pi*60\n", + "Xc=symbols('Xc')\n", + "a=solve((3.5+Xc)/9.5-math.tan(math.radians(float(phy))), Xc)\n", + "C=-1/(w*a[0])\n", + "\n", + "\n", + "#Results:\n", + "print \"The starting capacitance:\",round(float(C)*10**6,0), \"uF\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The starting capacitance: 176.0 uF\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 9.2, Page number: 467" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import cmath\n", + "from math import *\n", + "\n", + "\n", + "#Variable Declaration:\n", + "R1_m=2.02 #resistance of main winding(ohm)\n", + "X1_m=2.79 #resistance of main\n", + "R2_m= 4.12 #Rotor resistance ref. to stator(ohm)\n", + "X2_m=2.12 #Rotor reactance ref. to stator(ohm)\n", + "Xm=66.8 #Magnetising reactance(ohm)\n", + "s=0.05 #slip\n", + "Pcu=24 #copper loss(W)\n", + "Pw=13 #friction & windage loss(W)\n", + "V=110 #line-to-line voltage(V)\n", + "p=4 #no.of poles\n", + "fc=60 #frequency(Hz)\n", + "\n", + "#Calculations:\n", + "X22=X2_m+Xm\n", + "Q2_m=X22/R2_m\n", + "Rf=(Xm**2/X22)*(1/(s*Q2_m+1/(s*Q2_m)))\n", + "Xf=(X2_m*Xm/X22)+Rf/(s*Q2_m)\n", + "Zf=Rf+1j*Xf #forward field impedance(ohm)\n", + "\n", + "Rb=R2_m*(Xm/X22)**2/(2-s)\n", + "Xb=(X2_m*Xm/X22)+Rb/((2-s)*Q2_m)\n", + "Zb=Rb+1j*Xb #bachward field impedance\n", + "Zt=0.5*(Zf+Zb)+R1_m+1j*X1_m\n", + "I=V/abs(Zt) #Stator current(A)\n", + "pf=cos(cmath.phase(Zt)) #power factor\n", + "Pin=V*I*pf\n", + "Pg_f=I**2*0.5*Rf #power absorbed by forward field(W)\n", + "Pg_b=I**2*0.5*Rb #power absorbed by backward field(W)\n", + "Pmech=(1-s)*(Pg_f-Pg_b)\n", + "Pshaft=Pmech-(Pcu+Pw)\n", + "ws=(2/p)*120*pi\n", + "ns=(120/p)*fc\n", + "n=(1-s)*ns #Rotor speed(rpm)\n", + "wm=(1-s)*ws\n", + "Tshaft=Pshaft/wm #shaft torque(Nm)\n", + "eff=Pshaft/Pin\n", + "\n", + "#Results:\n", + "print \"Stator current:\",round(I),\"A\", \"\\nPower factor:\",round(pf,3)\n", + "print \"Power output:\",round(Pshaft),\"W\", \"\\nSpeed:\",n,\"rpm\"\n", + "print \"Shaft torque:\",round(Tshaft,3),\"Nm\",\"Efficiency\",round(eff*100),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Stator current: 4.0 A \n", + "Power factor: 0.621\n", + "Power output: 147.0 W \n", + "Speed: 1710.0 rpm\n", + "Shaft torque: 0.823 Nm Efficiency 60.0 %\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 9.3, Page number: 474" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "import math\n", + "import cmath\n", + "\n", + "\n", + "#Variable declaration:\n", + "f=60 #freq(Hz)\n", + "omeag=2*pi*f\n", + "s=0.05 #slip\n", + "R1=0.534 #resistance of main winding(ohm)\n", + "X1=2.45\n", + "Xm=70.1\n", + "R2=0.956\n", + "X2=2.96\n", + "Valpha=230\n", + "Vbeta=210*cmath.exp(1j*80*pi/180)\n", + "\n", + "#Calculations:\n", + "Vf = 0.5*(Valpha - 1j*Vbeta)\n", + "Vb = 0.5*(Valpha + 1j*Vbeta)\n", + "Zf=R1+1j*X1+1j*Xm*(R2/s+1j*X2)/(R2/s+1j*(X2+Xm))\n", + "If=Vf/Zf\n", + "Zb=R1+1j*X1+1j*Xm*(R2/(2-s)+1j*X2)/(R2/(2-s)+1j*(X2+Xm))\n", + "Ib = Vb/Zb\n", + "Ialpha=If+Ib\n", + "Ibeta=1j*(If-Ib)\n", + "Pgf=2*((Vf*(If.conjugate())).real-R1*abs(If)**2)\n", + "Pgb=2*((Vb*(Ib.conjugate())).real-R1*abs(Ib)**2)\n", + "Pmech=(1-s)*(Pgf-Pgb)\n", + "\n", + "\n", + "#Results:\n", + "print \"(a) Positive seq components:\", round(Vf.real,1)+1j*round(Vf.imag,1),\"V\"\n", + "print\" Negative seq. components:\", round(Vb.real,1)+1j*round(Vb.imag,1),\"V\"\n", + "\n", + "print\"\\n(b) Positive stator currents:\",round(If.real,1)+1j*round(If.imag,1),\"A\"\n", + "print\" Negative stator currnets:\",round(Ib.real,1)+1j*round(Ib.imag,1),\"A\"\n", + "\n", + "print\"\\n(c) Positive currents:\",round(Ialpha.real,1)+1j*round(Ialpha.imag,1),\"A\"\n", + "print\" Negative currnets:\",round(Ibeta.real,1)+1j*round(Ibeta.imag,1),\"A\"\n", + "\n", + "print \"\\n(d) Power to forward field:\",round(Pgf,0),\"W\"\n", + "print \" Power to backward field:\",round(Pgb,0),\"W\"\n", + "print \" Pmech:\",round(Pmech,0),\"W\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "(a) Positive seq components: (218.4-18.2j) V\n", + " Negative seq. components: (11.6+18.2j) V\n", + "\n", + "(b) Positive stator currents: (9.3-6.3j) A\n", + " Negative stator currnets: (3.7-1.5j) A\n", + "\n", + "(c) Positive currents: (13-7.8j) A\n", + " Negative currnets: (4.8+5.6j) A\n", + "\n", + "(d) Power to forward field: 4149.0 W\n", + " Power to backward field: 15.0 W\n", + " Pmech: 3928.0 W\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 3, + "metadata": {}, + "source": [ + "Example 9.5, Page number: 483" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "%matplotlib inline\n", + "import cmath\n", + "from math import *\n", + "from matplotlib.pyplot import *\n", + "\n", + "#Variable declaration:\n", + "Lmain=0.0806 #main winding inductance(H)\n", + "Rmain = 0.58 #main winding resistance(ohm)\n", + "Laux = 0.196 #auxilliary winding inductance(H)\n", + "Raux = 3.37 #auxilliary winding resistance(ohm)\n", + "Lr=4.7*10**-6 #rotor inductance(H)\n", + "Rr=37.6*10**-6 #rotor resistance(ohm)\n", + "Lmain_r=0.588*10**-3 #main inductance ref. to rotor(H)\n", + "Laux_r = 0.909*10**-3 #aux inductance ref. to rotor(H)\n", + "p=2 #poles\n", + "Vo=230 #terminal voltage(V)\n", + "w=120*pi #angular frequency(Hz)\n", + "C=35*10**-6\n", + "Prot=40 #Windage losses(W)\n", + "Pcore=105 #Core loss(W)\n", + "n=3500 #rpm\n", + "\n", + "\n", + "#calculations and Results:\n", + "Xc=-1/(w*C)\n", + "speed=[0]*102\n", + "for cal in range(1,3,1):\n", + " if cal==1:\n", + " mmax=2\n", + " else:\n", + " mmax=102\n", + " for m in range(1,mmax,2):\n", + " if cal==1:\n", + " speed[m-1]=3500\n", + " else:\n", + " speed[m-1]=3599*(m-1)/100\n", + " \n", + " ns=(2/p)*3600\n", + " s=(ns-speed[m-1])/ns\n", + "\n", + "#for part (a):\n", + " Kplus=s*w/(2*(Rr+1j*s*w*Lr))\n", + " Kminus=(2-s)*w/(2*(Rr+1j*(2-s)*w*Lr))\n", + " A1=Lmain-1j*Lmain_r**2*(Kplus+Kminus)\n", + " A2=Lmain_r*Laux_r*(Kplus-Kminus)\n", + " A3=Laux-1j*Laux_r**2*(Kplus+Kminus)\n", + " M=[[0]*2,[0]*2]\n", + " M[0][0]=Rmain + 1j*w*A1\n", + " M[0][1] = 1j*w*A2;\n", + " M[1][0] = -1j*w*A2;\n", + " M[1][1] = Raux + 1j*Xc+ 1j*w*A3\n", + " V=[[Vo],[-Vo]]\n", + " M1=inv(M)\n", + " I=dot(M1,V)\n", + " Imain=I[0][0]\n", + " Iaux=I[1][0]\n", + " Is=Imain-Iaux\n", + " magImain=abs(Imain)\n", + " angleImain=math.degrees(cmath.phase(Imain))\n", + " magIaux=abs (Iaux)\n", + " angleIaux=math.degrees(cmath.phase(Iaux))\n", + " magIs=abs(Is)\n", + " angleIs=math.degrees(cmath.phase(Is))\n", + " Vcap=Iaux*Xc\n", + " magVcap=abs(Vcap)\n", + " \n", + " #for part (b):\n", + " Tmech=[0]*102\n", + " Pshaft=[0]*102\n", + " Tmechl = (Kplus-Kminus).conjugate()\n", + " Tmechl=Tmechl*(Lmain_r**2*Imain*((Imain).conjugate())+Laux_r**2*Iaux*((Iaux).conjugate()))\n", + " Tmech2 = 1j*Lmain_r*Laux_r*((Kplus+Kminus).conjugate())\n", + " Tmech2 = Tmech2*((Imain).conjugate()*Iaux-Imain*((Iaux).conjugate()));\n", + " Tmech[m-1] = (p/2)*(Tmechl+Tmech2).real\n", + " Pshaft=((2/p)*(1-s)*w*Tmech[m-1])-Prot\n", + " \n", + " #for part (c):\n", + " Pmech=[0]*102\n", + " Pmain = (Vo*(Imain.conjugate())).real\n", + " Paux = (-Vo*(Iaux.conjugate())).real\n", + " Pin = Pmain+Paux+Pcore\n", + " eta = Pshaft/Pin;\n", + " if cal==1:\n", + " print \"part (a):\"\n", + " print \"\\nImain=\",round(magImain,1),\"A at an angle\",round(angleImain,1),\"degrees\"\n", + " print \"\\nImain=\",round(magIaux,1),\"A at an angle\",round(angleIaux,1),\"degrees\"\n", + " print \"\\nImain=\",round(magIs,1),\"A at an angle\",round(angleIs,1),\"degrees\"\n", + " print \"\\nVcap=\",round(magVcap,0),\"V\"\n", + " print \"\\npart (b):\"\n", + " print \"\\nTmech=\",round(Tmech[0],2),\"Nm\"\n", + " print \"\\nPshaft=\",round(Pshaft),\"W\"\n", + " print \"\\npart (c):\"\n", + " print \"\\nPmain=\",round(Pmain,0),\"W\"\n", + " print \"\\nPaux=\",round(Paux,0),\"W\"\n", + " print \"\\nPin=\",round(Pin,0),\"W\"\n", + " print \"\\nEfficiency=\",round(eta*100,1),\"%\"\n", + " else:\n", + " \n", + " plot(speed,Tmech,'g.')\n", + " xlabel('speed (rpm)')\n", + " ylabel('Tmech (Nm)')\n", + " title('Electromagnetic torque vs speed')\n", + " show()" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "part (a):\n", + "\n", + "Imain= 15.9 A at an angle -37.6 degrees\n", + "\n", + "Imain= 5.2 A at an angle -150.8 degrees\n", + "\n", + "Imain= 18.5 A at an angle -22.7 degrees\n", + "\n", + "Vcap= 394.0 V\n", + "\n", + "part (b):\n", + "\n", + "Tmech= 9.75 Nm\n", + "\n", + "Pshaft= 3532.0 W\n", + "\n", + "part (c):\n", + "\n", + "Pmain= 2893.0 W\n", + "\n", + "Paux= 1043.0 W\n", + "\n", + "Pin= 4041.0 W\n", + "\n", + "Efficiency= 87.4 %\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEXCAYAAABGeIg9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVNX7B/BzBwYRGWQRRgRhWJUdXMBcxxTD3CVUTCRE\n6WupuaZWJmYqmWZq+s0dtXCrVCxB00TNBUJBBFQEGRAdERGUfZm5vz/8Xn8Tw+7s83m/Xvclc+4s\nzxyEh3Oec+5QNE0TAAAASSxlBwAAAKoHyQEAAKQgOQAAgBQkBwAAkILkAAAAUpAcAABACpKDBoiO\njv5g0KBBl5Udhzp79913Tx88eDBE2XFAy/D/XTGQHNQEj8cTGBgYVHI4nDLmmDdv3hZZPb9AIOCx\nWCyxWCzW+P8TkZGRkSEhIQcl206fPv1uw7bWYLFY4gcPHtjLLjoA1aCr7ACgdSiKon///ffRb7/9\n9l/yfB2apqmmzolEIh0dHR2RPF9fHTXXZ82pr6/X1dXVrZd1PACyoPF/JWqju3fv9vT39//TzMys\nuGfPnnePHTsWxJyrqqrquGjRoo08Hk9gbGxcOnjw4EvV1dX6gwcPvkQIIcbGxqVGRkYvr1+/3i86\nOvqDAQMGXFm4cOF3Xbp0ebZq1aqVL1++NJo+ffoBCwuLpzweT7BmzZrPmV+Okvc3MTEpcXR0zL56\n9Wr/ffv2hdnY2ORzudzCAwcOTGdi+eOPP0b5+PikdO7c+YWNjU3+qlWrVkq+jwMHDky3tbXN69Kl\ny7Ovv/76Cx6PJ/jrr7/eJuTVX/+TJk06Ghoaut/IyOilu7t7+o0bN3ozj338+HG3wMDAXy0sLJ7a\n29s/2Lp161xCCImPjw9Yt27d8iNHjkzmcDhlPj4+KYQQwufzE/bs2RPOPH7Xrl2zXF1dM42MjF66\nubllpKSk+DTsZ6bPvLy8bnE4nDKmn3ft2jXLycnpvpmZWfG4ceNOCoVCS+YxLBZLvH379o+cnJzu\n9+jR4x4hhHz77bdLunXr9tja2rpg7969MyRHIw3jajil0tz3WtKRI0cm9+3b9x/Jtk2bNi0YN27c\nSUJejZzc3NwyjIyMXlpbWxds3LhxUWPPk52d7ThkyJCLxsbGpebm5kVTpkw5LPnetm7dOtfBwSHH\n3Ny86NNPP10vmTj37t07w9XVNdPU1PR5QEBAfH5+vk1r3kdxcbHZ2LFjYzt37vzCz88vMScnx6Gx\n2EDGaJrGoQYHj8fLPXfu3LDGzu3bt++DgQMHXqZpmpSXl3eytrZ+GB0dHSoSiVgpKSneXbp0KcrM\nzHShaZp89NFH24YOHfrX48ePLUUiEevatWv9ampq9AQCgS1FUWKRSMSSfF5dXd26H3744WORSMSq\nqqrSDwkJOTB+/Pjj5eXlnQQCga2zs/O9PXv2zJC8f3R0dKhYLKa++OKL1VZWVgVz5szZWltbyz57\n9qw/h8N5WVFRYUDTNElISBiSnp7uRtM0SUtL8+ByuU9OnDgxjqZpkpGR4WpoaFh25cqV/rW1tezF\nixd/y2aza8+fP/82TdNk5cqVkfr6+lVxcXEBYrGYWr58+dp+/fpdo2maiEQiVq9evW6sXr36i7q6\nOt0HDx7Y2dvb55w5c2YETdMkMjJyZUhIyAHJPuTz+ReY93H06NEgKyurguTk5N40TZOcnBz7vLw8\nm8b6nqIocU5Ojj1z+/z582936dKlKCUlxbumpkZv7ty5WwYPHnxR8v4jRow4U1JSYlxdXd0hLi4u\ngMvlPsnIyHCtqKgwCA4OjpF8Tsm42vq9ljwqKys7cjicl/fv33dk2vr06fPPkSNHJtE0Tbp27Sr8\n+++/B9A0TUpLSzvfvHnTp7H3O2XKlENr165dTtM0qamp0bty5Up/yff29ttvny8pKTHOz8/v7uzs\nfG/37t3hNE2TEydOjHN0dLx/9+7dHiKRiPX1119/3r9//yuteR+TJ08+PHny5MOVlZUd09PT3ays\nrAoGDRp0Sdk/k5p+KD0AHK07bG1tBYaGhmXGxsYlzMH84En+wjh8+PDkhj84ERERO1atWvWlSCRi\ndezYsTItLc2j4fPn5ubyGksONjY2eczt+vp6HT09vZo7d+70ZNp27NgRwefzLzD3d3JyymLOpaWl\neVAUJX769Kk502ZmZvbs1q1bno29x08++eT7BQsWfEfTNFm1atWXU6dO/Zk5V1lZ2VFPT69GMjn4\n+/ufZc5nZGS4duzYsZKmaXL9+nU/ybhpmiZr165dHhYWtpd57LRp0w5Knpf8JTxixIgzW7Zsmdua\n70vD5DBjxow9S5cujWJul5eXd2Kz2bVMcqEoSnzhwgU+cz4sLGzv8uXL1zK3s7KynFqbHJr7XjcW\n67Rp0w5+9dVXK5jX4XA4L6uqqvRpmiY2NjZ5O3bsiHjx4oVRc+93+vTp+yMiInYUFBRYNdYXTAKm\naZps37599rBhw87RNE0CAgLiJN+HSCRiGRgYVOTl5dk09z7q6+t12Gx27b1795yZc5999tkapg9w\nyO/AtJKaoCiKPnny5LiSkhIT5ggPD9/T8H55eXm2iYmJfiYmJiXMERMTM7WwsJBbXFxsVl1dre/g\n4JDT2tft3r37Q+brZ8+edamrq2Pb2trmMW02Njb5jx49smJuc7ncQubrjh07VhFCiLm5eZFkW3l5\nuSEhhCQmJvoNHTr0goWFxVNjY+PSHTt2fFhcXGxGyKtpIWtr6wLJx5mZmRVLxib5WgYGBpXV1dX6\nYrGYlZeXZ/v48eNukn2wbt265U+fPrVozXsuKCiwbksfSRIKhZaS/dOpU6cKMzOzYsk+kuxToVBo\nKXnbxsYmv7Wv1dz3urH7T506NebQoUPBhBASExMzdcKECcf19fWrCSHk119/DTx9+vS7PB5PwOfz\nE65fv96vsedYv379pzRNU76+vknu7u7p+/btC5M83/C9PH78uBsT6yeffLKZiZP5Xj569Miquffx\n7NmzLvX19brt7SNoPxSkNYyNjU3+kCFDLp49e3ZEw3NisZilr69fnZ2d7ejp6ZkmeY6iqEYvzyvZ\n3qVLl2dsNrtOIBDwXFxc7hBCSH5+vo3kL/G2mDp1asy8efO2nDlz5h09Pb3aBQsWbGKSQ7du3R7f\nu3evB3Pfqqqqjsy5lnTv3v2hnZ1dblZWlnNj51kslrilx2dnZzu25b0wunXr9lggEPCY2xUVFZ2K\ni4vNrKysHjFtkn1qaWkplJx7l/yakFfJpaKiohNz+8mTJ12Zr5v7Xjdm+PDh54qKisxv3brldfjw\n4Snff//9fOZcnz59kk+cODFeJBLpbN26de6kSZOONoyFkFcJeefOnRGEEHLlypUBw4cPPzdkyJCL\n9vb2D5j4Jf9vMO/bxsYmf8WKFauDg4MPNXzOvLw826beh0gk0tHV1a3Pz8+3YWo0jcUFsoeRgxqh\nW7EqZtSoUX9kZWU5//TTT9Pq6urYdXV17H/++afv3bt3e7JYLPGMGTP2Lly48DuhUGgpEol0rl27\n9lZtba2eubl5EYvFEjdX7NPR0RFNmjTp6Oeff76mvLzcMC8vz3bTpk0Lpk2b9lN73k95ebmhiYlJ\niZ6eXm1SUpJvTEzMVOZcYGDgr6dOnRrDxBcZGRnZmvdPCCG+vr5JHA6nbP369Z9WVVV1FIlEOunp\n6e7Jycl9CHn1C04gEPCaer6ZM2fu3rBhw+KbN2/2ommays7OdmzqFxKXyy2U7LPg4OBD+/btC7t1\n65ZXTU1Nh88++2xtv379rjf11+6kSZOORkdHf3Dnzh2XyspKg4ZFeW9v79TffvttYlVVVcfs7GxH\nyeJ0c9/rxl6LzWbXBQUFHVu8ePGGkpISE39//z8JIaSuro79888/v//ixYvOOjo6Ig6HU9bUqrRj\nx44FFRQUWBPyavECRVG0ZLLdsGHD4tLSUuOHDx9237Jly7zJkycfIYSQ//znPz+uXbv2s8zMTFdC\nCHnx4kVnpug8evTo35t6Hzo6OqKJEyf+FhkZGVlVVdUxMzPTdf/+/aFN/TEDMqTseS0crTt4PF5u\nx44dKw0NDcuYY+LEib/SNE2io6NDJeds79275zxq1Kjfzc3Nn5qZmT0bNmzYOWaev6qqSn/+/Pmb\nrKysCjp37lw6ZMiQhOrq6g40TZMvv/xylbm5+VMTE5Pn169f92v4vDRNk5KSEuNp06YdNDc3f9q9\ne/f81atXfyEWi6nG4rh//74ji8USST7e2tr6IVPE/OWXXwJtbW0FHA7n5ejRo0/NnTt3i2ShODo6\nOtTGxibPzMzs2erVq7+wsrIqYIqmDYvKubm5PBaLJWJqJo8fP7YMDg6O6dq1q9DExOT5W2+9dZWp\nVxQXF5sOHDjwsomJyfPevXsn07T03P6PP/74YY8ePe4aGhqWeXh4pKWmpno19n358ccfP7S0tHxs\nbGxccuzYsfeYNgcHh2xTU9PiMWPGxD569Kgbc38WiyWSrFHQNE2ioqKWdu3aVWhlZVWwd+/eMMma\nw7Nnz8xGjBhxhsPhvBw4cODlyMjIla39Xjd2XL58eSBFUeI5c+ZsZdpqa2vZAQEBcSYmJs+NjIxe\n+Pr6JkoWmiWPTz/99BsrK6sCQ0PDMgcHh+xdu3bNZM5RFCXeunXrHHt7+xwzM7Nnixcv/layhnXw\n4MFpHh4eaUZGRi+6d++eHx4evrs176OoqKjL6NGjTxkZGb3w8/O7vmLFiq9QkJb/QdE0EjCoPmaU\nkZ2d7Sg5p6+JWCyWODs725GZqlEX6ho3NE5u00oPHz7sPnTo0Atubm4Z7u7u6Vu2bJlHCCHPnz83\n9ff3/9PZ2TlrxIgRZ0tLS43lFQOot1OnTo2prKw0qKio6LR48eINnp6eaZqeGABUhdySA5vNrtu0\nadOCjIwMt+vXr/fbtm3bx3fu3HGJiopa5u/v/2dWVpbzsGHDzkdFRS2TVwyg3mJjY8daWVk9srKy\nepSTk+Nw+PDhKcqOSRHUdT5dXeOGxilsWmn8+PEn5syZ88OcOXN+uHjx4hAul1v45MmTrnw+P6Gp\nAhoAACiHQpKDQCDgDRky5GJ6erq7jY1NfklJiQkhr1bfmJqaPmduE4K/PgAA2otu53W+GiP3pazl\n5eWGgYGBv27evPkTDodTJnmOoii6sWSg7Cp9a46VK1cqPQbEiTgRJ2JkDlmTa3Koq6tjBwYG/hoS\nEnJw/PjxJwh5tS6c2cgjFAotLSwsnsozBgAAaDu5JQeapqnw8PA9rq6umfPnz/+eaR87dmzs/v37\nQwkhZP/+/aFM0gAAANUht8tnXLlyZcBPP/00zdPTM425LPK6deuWL1u2LGrSpElH9+zZE87j8QRH\njx6dJK8Y5InP5ys7hFZBnLKFOGVLHeJUhxjlQeU2wVEURataTAAAqo6iKEKrU0EaAADUD5IDAABI\nQXIAAAApSA4AACAFyQEAAKQgOQAAgBQkBwAAkILkAAAAUpAcAABAitwunwEAoEgRpyJIVnEWMWAb\nkJjAGGKsjw+ZfBNIDgCgVppKAlnFWeRi3sXX9zkadFSZYao9TCsBgFphkkBcdhyJOBXxut2AbUAI\nIaRvt75k55idygpPYyA5AIBaaSoJxATGkCDXIHI25CymlGQAV2UFALVSWl1KIk5FkJ1jdiIJSJD1\nVVmRHABAJaHA3Da4ZDcAaIWmagugGEgOAKCSUGBWLkwrAYBKklVtQVump1BzAABoA340//X+hyDX\nII3d/4CaAwBAG2B6qn0wcgAAjaYtS18xrQQAAFJknRxwbSUAUBptKRarI9QcAEBpsJdBdSE5AIDS\noFisulBzAACl0ZZisSKgIA0AAFKwzwEAAOQOyQEAAKQgOQAAgBTscwAAucN+BvWDkQMAyB32M6gf\nJAcAkDvsZ1A/WMoKAHKH/Qzyh30OAAAgBfscAABA7rBaCQC0ElZQNQ8jBwDQSlhB1TwkBwDQSlhB\n1TwUpAFAK2naCiqsVgIAlYV5fOXBaiUAUFmYx9ccSA4AIDOYx9ccmFYCAJnRtHl8dYKaAwAASEHN\nAQAA5A7JAQAApMgtOcyYMWMvl8st9PDwuM20RUZGRlpbWxf4+Pik+Pj4pMTHxwfI6/UBAKD95JYc\nwsLC9jX85U9RFL1w4cLvUlJSfFJSUnwCAgLi5fX6AADQfnK78N6gQYMuCwQCXsP21hRMIiMjX3/N\n5/MJn8+XZWgA8Iaw2U35EhISSEJCgtyeX66rlQQCAW/MmDGnbt++7UEIIatWrVq5b9++sM6dO7/o\n06dP8saNGxcZGxuX/isgrFYCUHn8aD65mHeREEJIkGsQORp0VMkRgVqvVpo9e/Z/c3Nz7VJTU70t\nLS2FixYt2qjI1wcA2cBmN82n0ORgYWHxlKIomqIoeubMmbuTkpJ8Ffn6ACAbMYExJMg1iJwNOYsp\nJQ2l0OQgFAotma+PHz8+QXIlEwCoD2N9Y3I06CgSgwaTW0E6ODj40MWLF4c8e/asS/fu3R+uWrVq\nZUJCAj81NdWboijazs4ud8eOHR/K6/UBAKD9cPkMAAANoNYFaQAAUA9IDgAAIEVuNQcAUH/Y7Ka9\nMHIAgCbhk920F5IDADQJm920F1YrAUCT8Mlu6gOfBAcAAFKwlBUAAOQOyQEAAKQgOQAAgBQkBwAA\nkIJNcACAzW4gBSMHAMBmN5CC5AAA2OwGUrDPAQCw2U0DYBMcAABIwSY4AACQO6xWAgCQgJVbr2Dk\nAAAgASu3XsHIAUCL4K/ilmHl1isYOQBoEfxV3LKYwBgS5BpEzoac1erk2ezI4enTpxbHjh0LunTp\n0mCBQMCjKIq2tbXNGzx48KWgoKBjFhYWTxUVKAC8OfxV3DJjfWNyNOiossNQuiaXsoaHh+/Jyclx\nGDlyZJyvr2+SpaWlkKZpSigUWiYlJfnGx8cHODo6Zu/evXumTAPCUlYAucF+Bs2lsH0OaWlpnp6e\nnmnNPbg192lzQEgOAABthk1wAAAgReGb4E6dOjXGx8cnxcTEpITD4ZRxOJwyIyOjl7IKAAAAVE+L\nIwcHB4ec48ePT3B3d09nsVhiuQeEkQMAQJvJeuTQ4j4Ha2vrAjc3twxFJAYAkA3sZ4A31WJy+Oab\nb5aOHDkybujQoRf09PRqCXn11/3ChQu/k394ANAezH4GQl4lCizNhLZqMTmsWLFiNYfDKauurtav\nra3VU0RQAPBmsJ8B3lSLNQd3d/f09PR0dwXFg5oDgAxgP4P2UfhqpXfffff0mTNn3pHVCwKA/DG7\nfJEYoL1aHDkYGhqWV1ZWGujp6dWy2ew6Ql79df/y5UsjuQSEkQMAQJthExwAAEhR2FLW/Px8m+Ye\naGNjky+rIACgfbBkFeSlyZGDu7t7OkVRUieLiorMi4qKzEUikY5cAsLIAaDV+NH810tWg1yDsGRV\niyls5NBwhZJAIOBFRUUtO3fu3PDPP/98jawCAID2w5JVkJcWVytlZWU5f/DBB9EBAQHxvXv3vnHn\nzh2XuXPnblVEcADQPHwwDchLk9NKt2/f9lizZs3nGRkZbp9++un6qVOnxujo6IjkHhCmlQAA2kxh\nq5V0dHRE1tbWBaNHj/694XWVKIqit2zZMk9WQTR8biQHAIC2UVjNYc+ePeH/e8F//aamaZpqrFAN\nAACaA/scANQAlqxCSxR2+YwZM2bs/eeff/o2dT4xMdEvLCxsn6wCAYCmMVdZjcuOIxGnIpQdDmiB\nJqeVFixYsOnbb79dcv369X49evS4Z2lpKaRpmnry5EnXe/fu9ejfv//VxYsXb1BksADaCktWQdFa\nnFaqqanpkJKS4pOXl2dLURRta2ub5+XldUtfX79aLgFhWglACq6yCi3BtZUAAECKwi/Z3V4zZszY\ny+VyCz08PG4zbc+fPzf19/f/09nZOWvEiBFnS0tL8ScQAIAKkltyCAsL2xcfHx8g2RYVFbXM39//\nz6ysLOdhw4adj4qKWiav1wdQRxGnIgg/mk/e/fldUlpdquxwQIvJLTkMGjTosomJSYlkW2xs7NjQ\n0ND9hBASGhq6/8SJE+Pl9foA6girkkBVtPgZ0vfu3euxYcOGxQKBgFdfX69LyKu6wF9//fV2W1+s\nsLCQy+VyCwkhhMvlFhYWFnIbu19kZOTrr/l8PuHz+W19KQC1hFVJ0FoJCQkkISFBbs/fYkHa09Mz\nbfbs2f/t1avXTebaShRF0b17977R0pMLBALemDFjTt2+fduDEEJMTExKSkpKTJjzpqamz58/f276\nr4BQkAYthlVJ0F4Ku3wGg81m182ePfu/sngxLpdb+OTJk65du3Z9IhQKLS0sLJ7K4nkBNAXz2c8A\nytZkzeH58+emxcXFZmPGjDm1bdu2j4VCoeXz589NmaM9LzZ27NjY/fv3hxJCyP79+0PHjx9/or2B\nAwCA/DQ5rcTj8QTNXWAvNzfXrrknDg4OPnTx4sUhz54968Llcgu/+uqrL8eNG3dy0qRJR/Pz8214\nPJ7g6NGjk4yNjf+1JAPTSqANcK0kkDVsggPQAPh4T5A1hW+C27Zt28eSReSSkhKT7du3fySrAAC0\nEVYlgaprceTg5eV169atW16Sbd7e3qmpqanecgkIIwfQAliVBLKm8NVKYrGYJRaLWcynwYlEIp26\nujq2rAIA0EZYlQSqrsXk8M4775yZMmXK4Q8//HAHTdPUjh07PgwICIhXRHAAAKAcLU4riUQinZ07\nd0acP39+GCGE+Pv7/zlz5szdzIY4mQeEaSXQIFiVBIqilNVKlZWVBvn5+TY9e/a8K6sXbjIgJAfQ\nIFiVBIqi8NVKsbGxY318fFKYqaSUlBSfsWPHxsoqAABNhlVJoK5aTA6RkZGRiYmJfswVVn18fFIe\nPHhgL//QANRfTGAMCXINImdDzmJKCdRKq66t1HAXM7NyCQCah1VJoK5aHDm4ubll/Pzzz+/X19fr\n3r9/32nu3Llb+/fvf1URwQEAgHK0mBy2bt06NyMjw61Dhw41wcHBh4yMjF5+//338xURHIC6wCe4\ngabBtZUAZACrkkDZFL5D+p9//um7du3azxp+ElxaWpqnrIIAUHdYlQSapsWRg7Ozc9aGDRsWu7u7\np0sWonk8nkAuAWHkAGoI10oCZVP4JrgBAwZcuXLlygBZvWBLkBwAANpO4cnh7NmzI44cOTJ5+PDh\n5/T09Gr/FwQ9ceLE32QVxL8CQnIAFYbLYYCqUnjNYf/+/aH37t3rUV9frys5rSSv5ACgyrKKs14X\nniNORaDwDBqrxeSQnJzc5+7duz2b+8hQAG2BwjNoixb3OfTv3/9qZmamqyKCAVB1uBwGaIsmaw71\n9fW6urq69T179rybk5PjYGdnl9uhQ4caQuS7lBU1B1AFqC2AulFYzcHX1zfp5s2bveLj4wNk9WIA\n6gK1BdB2TSYHJgPJaz8DgCpDbQEa0rbRZJPTStbW1gULFy78rrFhCkVR9MKFC7+TS0CYVgIVgE1t\n0JCqXyJFYdNKIpFIp6ysjCOrFwJQJ7jUNjSkbaPJJkcOPj4+KSkpKT4KjgcjB1AobZsqgPZT9dGk\nwj8mFECTMYXnuOw4EnEqQtnhgApjRpOqmBjkocnkcO7cueGKDARAGbRtqgCgtfB5DqDVVH2qAKC1\nFH7hPUVDcgB5QG0BNB1qDgDtgNoCQNsgOYBWQG0BoG0wrQRaAbUF0HSoOQA0A7UF0FaoOQA0A7UF\nANlAcgCNgtoCgGxgWgk0CmoLoK1QcwAgqC0ANISaAwBBbQFA3pAcQC2htgAgX5hWArWE2gLAv6Hm\nAFoFtQWA1kHNAbQKagsAyoHkACoNtQUA5cC0Eqg01BYAWgc1B9BIqC0AvBnUHEAjobYAoFqQHEAl\noLYAoFqUMq3E4/EERkZGL3V0dERsNrsuKSnJ93VAmFbSaE1NH6G2APBmNKLmYGdnl3vjxo3epqam\nz6UCQnLQaPxoPrmYd5EQQkiQaxA5GnRUyREBaAaNqTnI8k2A+sD0EYB60FXGi1IURQ8fPvycjo6O\n6MMPP9wxa9asXZLnIyMjX3/N5/MJn89XcITwppqaPooJjMH0EYAMJCQkkISEBLk9v1KmlYRCoaWl\npaWwqKjI3N/f/8+tW7fOHTRo0GVCMK2kKTB9BKBYGjGtZGlpKSSEEHNz86IJEyYclyxIg2bA9BGA\nelN4cqisrDQoKyvjEEJIRUVFp7Nnz47w8PC4reg4QL5iAmNIkGsQORtyFtNHAGpI4dNKubm5dhMm\nTDhOCCH19fW677///s/Lly9f9zogTCupFexsBlANGrGUtTlIDuoFtQUA1aARNQfQHKgtAGgmjByg\nVbCzGUC1YVoJlALTRwCqDdNKoBSYPgLQLhg5wL9g+ghAPWFaCeQK00cA6knWyUEp11YC5WtqhIDp\nIwAgBDUHrdXUJ69hZzMAEIKRg9ZqaoRgrG+MqSQAQM1B06HADKAdUJCGNkGBGUA7YJ8DtAkKzADQ\nHhg5aAhMHwFoN0wrQaMwfQSg3bDPQcthfwIAKAJqDmoG+xMAQBEwclAz2J8AAIqAmoOKQoEZANoC\nBWktgQIzALQFCtIaBgVmAFBFKEgrGQrMAKCKMHJQMhSYAUAVoeagICgwA4A8oSCtplBgBgB5QkFa\nxaHADACaAAVpGUOBGQA0AUYOMoYCMwBoAtQc2gkFZgBQJShIqwgUmAFAlaAgrWAoMAOANkJBugUo\nMAOANsLI4X/aOkJAgRkANBlGDv+DEQIAwP/TupEDRggAAC3TupEDRggAAC3TupEDRggAAC3T2H0O\n2KQGANoEm+BaCZvUAECbYBOchKZGB4RgkxoAwJtQ64J0U8VlQlBgBgB4E2oxcmjPJSxQYAYAaD+1\nGDlg+SkAgGKpZHJ49+d3SWl16evbLS0/RWIAAJAtlUwOGCEAACiXSi5l7buzLxIBAEAbaMU+h5Kq\nEiQGAIA2kHVyUMlpJXVIDAkJCcoOoVUQp2whTtlShzjVIUZ5UEpyiI+PD+jZs+ddJyen+998881S\nZcTwptTlPwzilC3EKVvqEKc6xCgPCk8OIpFIZ86cOT/Ex8cHZGZmuh46dCj4zp07LoqOAwBAFiJO\nRRB+NF+U5AZhAAANk0lEQVRqlaW6U3jN4dq1a2+tWrVqZXx8fAAhhERFRS0jhJBly5ZFEfKq5kAi\nX92XXvkqNmrV/0+j6RJdUreyTqqdTdikdmXt69uS5/SIHqlZWSPV3oF0INUrq6Xa9Yk+qVpZJdXe\nkXQklSsrX7UPpQjhv2o3IAakYmWF1P07UZ1I+ZflUu2GLENStqJMqp2jwyEvv3gp1W6ka0RefP5C\nqr0zuzMp/axUqt1Yz5iULC+RitO0gykpXlYsdf8u+l1I0dIiqXaLjhak8NNCqfauBl2JcIlQqr1b\np27k0eJHUu3Whtbk4aKHUu02HBuStzBPKk47IzvyYMEDqfs7dnYk9+ffl2rvYdyD3P3krlS7q6kr\nyZibIdXu0cWDpH2cJtXubeFNUmanSLX36dqH/PPhP1Jx9uvWj1ybdU3q/gOtB5LL4Zel2ofaDCV/\nhf0l1T6CN4KcCT0j1T7KYRT5fdrvUu3jnceT48HHpdonuUwiRyYdkYpzmvs0cjDwoNT9w73Cye7x\nu6XaP+r9Edk2eptU+0K/hWRjwEap9s8GfEbWDF8j1b56yGryBf8LqfYNwzeQRQMWScW5feR2Mtt3\n9uv7ST4memw0CfUJlWo/9t4x8p7be4QQQlirWIQmr35nxE2NIwFOAYQQQvRW65E6cR2hCEUuh10m\nA2wGEEIIMY4yJuW15YRFsciNiBvEg+tBCCGk5w89yZPyJ4StwybJs5LJvu/3kcjIyCY346rKddxk\nXXMgNE0r9Dh27Nh7M2fO3MXcPnjw4LQ5c+ZsZW4TQmgcOHDgwNH2Q5a/qxV++QyKoujmzss08wEA\nQLsovOZgZWX16OHDh92Z2w8fPuxubW1doOg4AACgaQpPDn369Em+f/++k0Ag4NXW1uodOXJk8tix\nY2MVHQcAADRN4dNKurq69T/88MOcd95554xIJNIJDw/f4+LickfRcQAAQDMUXZBu7oiLiwvo0aPH\nXUdHx/tRUVFLlR2Pra2twMPDI83b2zulb9++STRNk+LiYtPhw4f/6eTklOXv73+2pKTEmLn/2rVr\nlzs6Ot7v0aPH3TNnzoyQV1xhYWF7LSwsCt3d3W8zbe2JKzk5ube7u/ttR0fH+/PmzdusiDhXrlwZ\naWVlVeDt7Z3i7e2dcvr06ZHKjDM/P787n8+/4OrqmuHm5pa+efPmearYn03FqWr9WVVVpe/r65vo\n5eWV6uLikrls2bJ1qtifTcWpav3JHPX19Tre3t4po0ePPqWo/pT5m3iTN+/g4JCdm5vLq62tZXt5\neaVmZma6KDMmHo+XW1xcbCrZtmTJkvXffPPNpzRNk6ioqKVLly6NommaZGRkuHp5eaXW1tayc3Nz\neQ4ODtkikYglj7guXbo06ObNmz6Sv3TbEpdYLKZomiZ9+/ZNSkxM9KVpmowcOfJ0XFxcgLzjjIyM\nXLlx48aFDe+rrDiFQmHXlJQUb5qmSVlZmaGzs/O9zMxMF1Xrz6biVLX+pGmaVFRUGNA0Terq6nT9\n/PyuX758eaCq9WdTcapif9I0TTZu3Lhw6tSpP48ZMyaWphXz864yl89ISkrydXR0zObxeAI2m103\nZcqUwydPnhyn7LjoBqunYmNjx4aGhu4nhJDQ0ND9J06cGE8IISdPnhwXHBx8iM1m1/F4PIGjo2N2\nUlKSrzxiGjRo0GUTE5OS9saVmJjoJxQKLcvKyji+vr5JhBAyffr0A8xj5BknIY2vSFNWnF27dn3i\n7e2dSgghhoaG5S4uLncePXpkpWr92VSchKhWfxJCiIGBQSUhhNTW1uqJRCIdExOTElXrz6biJET1\n+rOgoMD69OnT786cOXM3E5si+lNlksOjR4+sunfv/pC5bW1tXcD851cWiqLo4cOHn+vTp0/yrl27\nZhFCSGFhIZfL5RYSQgiXyy0sLCzkEkLI48ePu0muulJ0/G2Nq2G7lZXVI0XFu3Xr1rleXl63wsPD\n95SWlhqrSpwCgYCXkpLi4+fnl6jK/cnE2a9fv+uEqF5/isVilre3dyqXyy0cOnToBTc3twxV7M/G\n4iRE9fpzwYIFm7799tslLBZLzLQpoj9VJjm0tP9BGa5cuTIgJSXFJy4ubuS2bds+vnz58iDJ8xRF\n0c3Fraz31FJcyjR79uz/5ubm2qWmpnpbWloKFy1atFHZMRFCSHl5uWFgYOCvmzdv/oTD4ZRJnlOl\n/iwvLzd87733ftm8efMnhoaG5arYnywWS5yamupdUFBgfenSpcEXLlwYKnleVfqzYZwJCQl8VevP\n33//fbSFhcVTHx+flMZGNITIrz9VJjmo4v4HS0tLISGEmJubF02YMOF4UlKSL5fLLXzy5ElXQggR\nCoWWFhYWTwmRjr+goMDaysrqkaJibUtc1tbWBVZWVo8KCgqsFR2vhYXFU+Y/88yZM3czU2/KjLOu\nro4dGBj4a0hIyMHx48efIEQ1+5OJc9q0aT8xcapifzI6d+78YtSoUX/cuHGjtyr2Z8M4k5OT+6ha\nf169erV/bGzsWDs7u9zg4OBDf/3119shISEHFdKfsi6ctPeoq6vTtbe3z8nNzeXV1NToKbsgXVFR\nYfDy5UsOTdOkvLy8U//+/a+cOXNmxJIlS9YzK6nWrVu3rGEhqKamRu/Bgwd29vb2OUwhSB5Hbm4u\nr2FBuq1x+fr6Jl6/ft1PLBZT8iqkNYzz8ePHlszX33333YLg4OAYZcYpFoupkJCQA/Pnz98k2a5q\n/dlUnKrWn0VFRV2YlTOVlZUdBw0adOncuXPDVK0/m4pTKBR2VaX+lDwSEhKGMKuVFNGfMn8Db3Kc\nPn16pLOz8z0HB4fstWvXLldmLA8ePLDz8vJK9fLySnVzc0tn4ikuLjYdNmzYucaWkK1Zs+YzBweH\n7B49etyNj49/R16xTZky5ZClpeVjNptda21t/XDv3r1h7YmLWdrm4OCQPXfu3C3yjnPPnj0zQkJC\nDnh4eKR5enreGjdu3IknT55wlRnn5cuXB1IUJfby8kplli/GxcUFqFp/Nhbn6dOnR6paf6alpXn4\n+Pjc9PLySvXw8Ehbv379kvb+3CgjTlXrT8kjISFhCLNaSRH9qXKfBAcAAMqnMjUHAABQHUgOAAAg\nBckBAACkIDkAAIAUJAeAVuDz+Qk3btzo3di5yZMnH8nJyXGQx+sOGzbsfFlZGUcezw3QHCQHgFZo\nahdqdna2Y0VFRScHB4echufEYvEb/3xNmTLlMHPpFgBFQnIAtVRRUdFp1KhRf3h7e6d6eHjcPnbs\nWBAhhPB4PMHSpUu/8fT0TPPz80tk/qIvKioyf++9937x9fVN8vX1Tbp69Wp/5nlmzJix18/PL7FX\nr143Y2NjxxJCSFVVVccpU6YcdnV1zZw4ceJvVVVVHelGLl9w+PDhKZIfVmVoaFi+ePHiDd7e3qnX\nrl17q6l4Pvjgg+iPPvpo+1tvvXXNwcEhJyEhgR8aGrrf1dU1MywsbB/zfGPHjo09fPjwFPn2JkAj\n5LVhAwcOeR6//PJL4KxZs3Yyt1+8eGFE068us85sWDxw4EAIs6M0ODg45u+//x5A0zTJy8uzcXFx\nyaRpmixfvnztTz/99D5N06SkpMTY2dn5XkVFhcHGjRsXhoeH76bpVxumdHV1627cuNGrYRwBAQFx\nku0URYmPHTv2HnO7qXhCQ0Ojmd23J0+eHMvhcF6mp6e7icViqnfv3smpqalezHPY2dk9KC8v76Ts\nPsehXYfSA8CBoz1HVlaWE4/Hy126dGnU5cuXBzLtPB4vNzc3l0fTNKmtrWWbmZk9o2mamJubP2V2\nFnt7e6dYW1s/LC8v79S7d+9kd3f320y7ra2t4M6dOz3Hjx9//MKFC3zmeXv16nWjseTg4uKSKXkJ\nC11d3TrJy6Y0Fc8HH3ywLyYmJpimaZKTk2Pv5OSUxTxm+vTp+0+cODGOud2vX79rd+7c6ansPseh\nXYfCPyYUQBacnJzup6Sk+Pzxxx+jvvjii6+HDRt2fsWKFasb3o+pE9A0TSUmJvrp6enVNrzPb7/9\nNtHJyel+w3a6iatgNnc/fX396tZeqZeJhcViiTt06FDDtLNYLHF9ff3rn02apilVuIopaBfUHEAt\nCYVCS319/er333//58WLF29ISUnxYc4dOXJkMvNv//79rxJCyIgRI85u2bJlHnOfW7dueRFCyDvv\nvHNGsp15nsGDB1+KiYmZSggh6enp7mlpaZ6NxWFra5snFAotm4u1sXjaorCwkKvsKxSD9sHIAdTS\n7du3PZYsWfIti8USs9nsuh9//PE/zLmSkhITLy+vW/r6+tWHDh0KJoSQLVu2zPv444+3eXl53aqv\nr9cdMmTIxe3bt3+0YsWK1fPnz//e09MzTSwWs+zt7R/ExsaOnT179n/DwsL2ubq6Zrq4uNzp06dP\ncmNxDBw48O/k5OQ+vXv3vkFI45/h0Vg8De/b8HHM7SdPnnQ1MzMr7tSpU8Wb9hlAW+DCe6BR7Ozs\ncm/cuNHb1NT0uSJe78GDB/Zz587d+scff4ySRzw7d+6MqKio6LRgwYJNbxYpQNtgWgk0iqLn5u3t\n7R9wOJyypjbBvWk8R44cmTxr1qxdb/IcAO2BkQMAAEjByAEAAKQgOQAAgBQkBwAAkILkAAAAUpAc\nAABACpIDAABI+T9crBvDDQoKmwAAAABJRU5ErkJggg==\n", + "text": [ + "<matplotlib.figure.Figure at 0x2854950>" + ] + } + ], + "prompt_number": 4 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file diff --git a/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/screenshots/capture1.png b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/screenshots/capture1.png Binary files differnew file mode 100755 index 00000000..1196a40b --- /dev/null +++ b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/screenshots/capture1.png diff --git a/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/screenshots/capture2.png b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/screenshots/capture2.png Binary files differnew file mode 100755 index 00000000..56b278d5 --- /dev/null +++ b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/screenshots/capture2.png diff --git a/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/screenshots/capture3.png b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/screenshots/capture3.png Binary files differnew file mode 100755 index 00000000..a8df3c9e --- /dev/null +++ b/ELECTRIC_MACHINERY_by_Fitzgerald_Kingsley_and_Umans/screenshots/capture3.png |