summaryrefslogtreecommitdiff
path: root/ELECTRIC_MACHINERY/chapter10.ipynb
diff options
context:
space:
mode:
authornice2014-08-27 16:12:51 +0530
committernice2014-08-27 16:12:51 +0530
commit238d7e632aecde748a97437c2b5774e136a3b4da (patch)
treea05d96f81cf72dc03ceec32af934961cf4ccf7dd /ELECTRIC_MACHINERY/chapter10.ipynb
parent7e82f054d405211e1e8760524da8ad7c9fd75286 (diff)
downloadPython-Textbook-Companions-238d7e632aecde748a97437c2b5774e136a3b4da.tar.gz
Python-Textbook-Companions-238d7e632aecde748a97437c2b5774e136a3b4da.tar.bz2
Python-Textbook-Companions-238d7e632aecde748a97437c2b5774e136a3b4da.zip
adding book
Diffstat (limited to 'ELECTRIC_MACHINERY/chapter10.ipynb')
-rwxr-xr-xELECTRIC_MACHINERY/chapter10.ipynb575
1 files changed, 575 insertions, 0 deletions
diff --git a/ELECTRIC_MACHINERY/chapter10.ipynb b/ELECTRIC_MACHINERY/chapter10.ipynb
new file mode 100755
index 00000000..537bfc9f
--- /dev/null
+++ b/ELECTRIC_MACHINERY/chapter10.ipynb
@@ -0,0 +1,575 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 10: Introduction to Power Electronics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 10.5, Page number: 508"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from __future__ import division\n",
+ "%pylab inline\n",
+ "from pylab import *\n",
+ "import numpy as np\n",
+ "from math import *\n",
+ "\n",
+ "#Variable declaration:\n",
+ "w=2*pi*60 #frequency of voltage(Hz)\n",
+ "R=10 #ohm\n",
+ "C=0.01 #F\n",
+ "Vo=120*sqrt(2) #maximum voltage(V)\n",
+ "Nmax=800\n",
+ "tau=R*C #time constant(s)\n",
+ "\n",
+ "#Calculations:\n",
+ "# diode = 1 when rectifier bridge is conducting\n",
+ "\n",
+ "diode=1\n",
+ "t=[0]*801\n",
+ "vs=[0]*801\n",
+ "vrect=[0]*801\n",
+ "vR=[0]*801\n",
+ "iB=[0]*801\n",
+ "\n",
+ "t=[0]*801\n",
+ "for n in range(1,Nmax+2,1):\n",
+ " t[n-1] = (2.5*pi/w)*(n-1)/Nmax\n",
+ " vs[n-1]=Vo*math.cos(w*t[n-1])\n",
+ " vrect[n-1]=abs(vs[n-1])\n",
+ "#if the rectifier bridge is ON:\n",
+ " if diode==1:\n",
+ " vR[n-1]=vrect[n-1]\n",
+ " if (w*t[n-1])<=(pi/2):\n",
+ " iB[n-1]=vR[n-1]-Vo*C*w*math.sin(w*t[n-1])\n",
+ " elif (w*t[n-1])<=3*pi/2:\n",
+ " iB[n-1]=vR[n-1]/R+Vo*C*w*math.sin(w*t[n-1])\n",
+ " else:\n",
+ " iB[n-1]=vR[n-1]/R-Vo*C*w*math.sin(w*t[n-1])\n",
+ " if iB[n-1]<0:\n",
+ " diode=0\n",
+ " toff=t[n-1]\n",
+ " Voff=vrect[n-1]\n",
+ " else:\n",
+ " vR[n-1]=Voff*exp(-(t[n-1]-toff/tau))\n",
+ " iB[n-1]=0\n",
+ " if (vrect[n-1]-vR[n-1])>0:\n",
+ " diode=1\n",
+ "\n",
+ "\n",
+ "\n",
+ "#Results:\n",
+ "iR=(1/R)*np.array(vR)\n",
+ "plot(1000*np.array(t),vR)\n",
+ "xlabel('time [msec]')\n",
+ "ylabel('voltage [V]')\n",
+ "xlim(0,22)\n",
+ "ylim(0,180)\n",
+ "plot(1000*np.array(t),vrect,'--')\n",
+ "grid()\n",
+ "print \"The required plots are shown below:\"\n",
+ "show()\n",
+ "plot(1000*np.array(t),iR)\n",
+ "xlabel('time [msec]')\n",
+ "ylabel('source current [A]')\n",
+ "xlim(0 ,22)\n",
+ "ylim(-50,250) \n",
+ "plot(1000*np.array(t),1.5*np.array(iB),'--')\n",
+ "grid()\n",
+ "show()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Populating the interactive namespace from numpy and matplotlib\n",
+ "The required plots are shown below:"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEPCAYAAACk43iMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdcFGf+B/DP0q0B6U1ArJQFBFFR7IViL7FEc4hJvBhj\n1JiYX3I5TLnYgkajJiZGyemZaJSLBSXGsooVpCjYFVCWoiCCCFL3+f3hsRGVsrAzz7O7z/v18nXO\nssx8/N5kvzvPzDwjIYQQcBzHcTpJj3YAjuM4jh7eBDiO43QYbwIcx3E6jDcBjuM4HcabAMdxnA7j\nTYDjOE6HCdYEwsPDYW1tDU9PT+Vrp0+fhre3Nzw8PODl5YUzZ84of7Zs2TK4ubnB09MThw8fFioW\nx3Ec9wzBmsCsWbMQGxtb57UlS5ZgxYoVSEtLw/Lly7FkyRIAQGJiIqKjo5GamorY2FjMmTMHlZWV\nQkXjOI7j/kewJhAYGAgzM7M6rzk6OqK4uBgAUFRUBCcnJwBATEwMpk6dCn19fdjb28Pd3R3x8fFC\nReM4juP+x0DMjS1fvhz9+/fH4sWLoVAocPbsWQBAdnY2hgwZonyfg4MD5HK5mNE4juN0kqgnhmfP\nno1169bh7t27WLNmDcLDw8XcPMdxHPccUY8Ezp07hyNHjgAAJk2ahFmzZgF4+s0/KytL+T65XA5H\nR8cXft/e3h45OTnihOU4jtMSXl5eSElJeenPRD0ScHJywokTJwAAx44dg4uLCwAgJCQEO3fuRHV1\nNeRyOdLS0uDv7//C7+fk5IAQwv+o8CciIoJ6BnX98fcnOHeO14ulP7xemlGvixcv1vu5LNiRwLRp\n03DixAkUFBTA0dERn3/+OX788UfMnTsXVVVVMDY2xk8//QQA8PX1xfjx4yGVSqGnp4dNmzbB0NBQ\nqGg6JTMzk3YEtamsBIyMhN2GNtVLDLxeqmGxXoI1gV9++eWlr9d3SPLxxx/j448/FioOpwXEaAIc\np2v4HcNaLiwsjHYEtRGjCWhTvcTA66UaFuslIYRozENlJBIJNCgup2ZOTsDJk0//l+O4pmvos5Mf\nCWg5mUxGO4LaiHEkoE31EgOvl2pYrBdvApzGqKjg5wQ4Tt34cBCnMdq2BXJzgXbtaCfhOM3Ch4M4\nrcCvDuI49eNNQMuxOAbZHIQAVVWA0LePaEu9xMLrpRoW6yXqtBHqIM9/BAfL9rRjcCJRKAiuywvw\noLgcBq0soKfXinYkjtMqGndOAB+3hkGFDbyMxmHlq3MxxNuVdixOAOt+P4XIuA3IMjwMSAgk1a1B\nTB4g+8N02LazpR2PE0iNogZ7r+9FfHY8lg9b/sLPSytLoa+nDxMDEwrpNJdWnROo+rwEv4z9Lwz1\njTDs197w/XgR7j8spR2LU5Nbt4DgYOCfv+5Bb7t+iA+/BMWyQtSskqNi6SPYtLWhHZETSHx2PLw3\neWPF6RXoadvzpe+JvhqNLt92QfTVaJHTaTGiQZ6Pm5qeR3q8t5h09yomV69SCsW448eP047QZLt3\nE2JhQciqVYRUVNDJoEn1YoE66qVQKMjyuOXEepU1+SX1F6JQKBp8f9ydOOK61pW8ue9NUlFNaUdp\nJlr7V0Mf9Rp3JPAsDxdrXF6zCgvntsegQUBiIu1EXHNt2AAsXAgcPAgsXtz0q4BqFDWYf2g+soqz\nGn8zx6Q9V/fgl7RfcOGtC5jqMfXpsG8D+nfsj+Q5ybhXeg+jfxmNx5WPRUqqnTTunEB9cX//HXjr\nLeDQIcDXV+RgXIus+bYc364xwdGjwP9mF1fJqtOrsClxE06Hn4Z1W2v1B+QEpSAKPKl6gjZGbVT6\nvWpFNd7Y9wacXnHCZ4M/Eyiddmjos1NrmgAAREcD8+cDZ84AlpZP7zA1MAD09f/6Xz2NPvbRPkt+\n3oNvzn6D6x+dhLNzw98AG7JUthQHbhyALEyGtkZt1ZiQY1mNogYEBAZ6Gneho6h0pgkAwMqvqxGZ\n8AUUJz9CRWkr1NQA1dVATc3TPxLJ02bwbGN4/n+16WfJyTL06TOoWets5Ki8xfadu4Jxvw9E1LBY\nvD6sZYdvhBCE7wtHeXU5dkzY0eiQQn1kMhkGDRrUoiy6hNdLNbTq1dBnp9a1z8WL9LHhw2uoGbMY\n+Zs21PkZIYBCgTqN4dkG8fxrDf1M1fc3tq4nT4TJVVwMmJiovi6F4ulRk1BNihiU4Q/nCfhbx69b\n3ACApzv5xpCN6PtTX+y6vAtTPKa0eJ0cpwsEOxIIDw9HTEwMrKyskJqaqnz922+/xebNm6FQKBAU\nFIRVq1YBAJYtW4Zt27ZBX18fkZGRGDFixIthmzh30IPHxfD90Qdrg9dgbPex6vtH6ZDahqnORvfs\naz9mLUAp8nHsnf+o9YgjtyQX5q3NYaTP55dgkYIoMO/gPPxjwD9g186Odhyd0eBnp1CXJJ08eZIk\nJSURDw8P5WsHDhwgoaGhpKqqihBCSEFBASGEkAsXLhA/Pz9SXV1N5HI5cXZ2JhUvuUZQlbgnM08S\n+0h7UvSkqIX/Ek7dbj64Sewj7cmDsge0o3AiW39+PemzuQ+prqkWZP3yYjnZGL9RkHVrsoY+OwU7\nTRoYGAgzM7M6r23evBlLliyBgcHTUShzc3MAQExMDKZOnQp9fX3Y29vD3d0d8fHxLdu+UyBCuoTg\n46O6/chKFucq6dyhM9LmpqFDqw60o7yAxXqxTJV63S2+iwhZBKLGRkFfT1+QPG2M2uDLuC8RdydO\nkPW3FIv7l6jXyly7dg1//PEHvL290bdvX5w5cwYAkJ2dDQcHB+X7HBwcIJfLW7y9FcNWwMTAhE8/\nzSBTE1PaETiRffjnh3jX/110s+gm2DZMTUzxbfC3+HvM31GtqBZsO9pE1BPDCoUCJSUlSElJQUJC\nAiZOnIjMzEyV1hEWFgZnZ2cAgKmpKby9vZVn22u7bO3yxfMXMdp4tPJKked/rivLtVjJI+ZydU01\nhg0dptLv12IhvyYs12ro/XF34nDs+DGEjQ9r0vtbsjx+4Hisj1+PD3/8EGO6jaFeHxr7l0wmQ1RU\nFAAoPy/rJeQ4VEZGRp1zAkOHDiUymUy57OrqSnJycsjnn39OVq1apXw9NDSUnDp16oX1CRyX0zI1\nihriudGTpN1Lox1F5+29tpf89+p/RdteUk4SsV5lTYrLi0XbJssa+uwUdTgoNDQUx44dAwDcuHED\nZWVlsLa2RkhICHbu3Inq6mrI5XKkpaXB399fzGha6/lvH7QoiEL0bepJ9BDuE44Pj3zY5N9hpV6a\noqn1GtNtDMZ1HydsmGf42PpgktskxGe37NyiurG4fwnWBKZNm4aAgADcuHEDjo6O2Lp1K+bNm4f0\n9HR4eHhgwoQJiIqKgp6eHnx9fTF+/HhIpVIEBQVh06ZNMBT66SGcqKbtmYZDNw+Jvt25veYi7X4a\nzsvPi75tjq71IesxrNMw2jGYp3V3DDfkQs4FSK2l/BpykaXkpSD4P8G4Pf82Whu2Fn373yV8hwM3\nDyBmeozo2+Y4FmjV8wRa4qMjH+E/l/5DO4bO+ezEZ1jSbwmVBgAA4T7huHTvEhKyE6hsn+NYplNN\n4B8D/oGvTn2FGkUN7SiioT0GeTX/Ks5kncEc3znUMhgbGGN98HroSRrf3WnXS9M0VK+7xXdRWVMp\nXhgNwOL+pVNNYKDTQFi3scZvV36jHUVnrDm3Bm/7vY1WhnSfDTy2+1j42vE5xsVCCMGrv71K5TxQ\nfWhcnKAJdKoJSCQSfBDwAdacW0M7imhqryGmxdTEFHN7zaWaQRW066Vp6qvXmawzKCgrwKiuo8QN\nVI+PjnyETRc20Y7B5P6lU00AAEZ1HYX80nyck5+jHUUnrBy+ElZtrGjH4EQWeTYSC/osEGx6CFWF\ndgnFmnNr+NHAS+hcE9DX08euybvQzVy4W9dZwuIYJMt4vVTzsnrdKryFuLtxmOU9S/xA9ejfsT/a\nG7dHzA26V4ixuH/pXBMAAD87P5i1Mmv8jZxWelD2gM8rI6AN8Rsw22e2yo+LFJJEIsGCPguwLn4d\n7SjM0an7BDgOAAZFDcLCPgv5syYEEnMjBp7Wnuj4SkfaUeoory6H4xpHnH/jPDqZdaIdR1T8PgFO\nVKx/y57lPQs/JP1AO4bWCu0aylwDAAATAxN8GPAh7hbfpR2FKbwJaDkaY5ALYxfih0R2P2Qnu0/G\nOfm5l34YsDhmyzJNq9cH/T7AIOdB1LbPYr10ugnUKGpwIecC7RhapayqDDvSdiCocxDtKPVqbdga\nr3m+hs1Jm2lH4TjqdPqcQElFCTp+0xFX37kKm7Y2aluvLotKicLuK7txYPoB2lEalHY/DSO3j8Sd\nBXdgoCfqYzU4TnT8nEA92hm3w8QeExGVEkU7itbYkrwFs31m047RKA8rD8z1m4tHFY9oR9EKVTVV\nKC4vph2DawadbgIAMNtnNrambNXaq47EHIPMLMrElfwrCO0aKto2W+KTAZ+88JxjFsdsWVZbr9hb\nsRi/czzdMBqAxf1L55tAH4c+qFHUIDE3kXYUjXen6A7e6/0en6pbB21P3Y4p7lNox2iy7EfZGP3L\naK398qcKnT4nUOufx/+JkooSrAnSnTmFOE5disuL4fSNE9LfS3/hyIpVCqKA6zpXRL8aDR9bH9px\nBEflnEB4eDisra3h6en5ws8iIyOhp6eHwsJC5WvLli2Dm5sbPD09cfjwYaFivdQs71no37G/qNvk\nOG2x5+oeDHEZojENAHj66NEZnjOw/dJ22lGoE6wJzJo1C7GxsS+8npWVhT///BNOTk7K1xITExEd\nHY3U1FTExsZizpw5qKwUbx5yFzMXTHSbKNr2xMTiGCSLar8l8XqpRiaTYdulbZgpnUk7ispmSGdg\nR9oOUW9uZHH/EqwJBAYGwszsxfl5Fi1ahJUrV9Z5LSYmBlOnToW+vj7s7e3h7u6O+Hi2HhDNaa/I\nM5FYfXY17RgaqUZRgy4duiCkSwjtKCrrZtENju0dcSzjGO0oVIl6Ynjv3r1wcHCAVCqt83p2djYc\nHByUyw4ODpDL5WJG01oszl/OGm8bb/x6+VcAvF6qGjpkKH4Y/QOMDYxpR2mWaR7TcOruKdG2x+L+\nJdpdMmVlZfjqq6/w559/Kl9rzknesLAwODs7AwBMTU3h7e2tLGztoRZfFnf5vMF5BDoFovJ2JRN5\nVF0eOGAg7hTdwS/7f4FtO1vqefiyeMtexAtDBg9hJo+6lmUyGaKiogBA+XlZH0GvDsrMzMTo0aOR\nmpqK1NRUDBs2DK1bP33YuFwuh729Pc6fP48ffvgBrVq1wuLFiwEAo0aNwv/93/+hX79+dcOKMIuo\ngiia9CxaTSGTyZQ7iRBqFDWwW22H0+Gn0blDZ8G2I7S39r+FLh26oFdVL0HrpW2E3r+0Da16MXHH\nsKenJ+7du4eMjAxkZGTAwcEBSUlJsLa2RkhICHbu3Inq6mrI5XKkpaXB399frGhKJRUl6LS2Eyqq\nK0TftqY6dfcU7NrZaXQDAIDJbpP5s6c5nSRYE5g2bRoCAgJw48YNODo6YuvWrXV+LpFIlH/39fXF\n+PHjIZVKERQUhE2bNsHQ0FCoaPVqZ9wODu0dcDTjqOjbForQ3zp2X9mNST0mCboNMQxyHoQn1U/g\n00f7rxlXJ34UoBoW68VvFnvOmrNrkHY/DT+N/UnQ7WgDBVHAYbUDjv/tOLpZaP7jOgkhdb6ccPXL\nLcnF+4ffx46JO2hH4ZqAieEgTTGhxwTsu7GP+QejNFXtySIhJGQnwLy1uVY0AODpfyhC1kub/Pfa\nf6En0dOaemU/ykb01WjBt8NivXgTeI6TqROcTZ1xIvME7SjM87f3h+xvMtoxOAr2XN2DSW6aPwxY\nq7y6HHNj5kJBFLSjiI4PB73EmrNrYGJggrd7vS34tjhO0zwoe4BO6zoh7/08tDJsRTuO2rhvdMeW\nMVvQ26E37Shq19BnJ3+axkss7LuQdgSOY9ahW4cw2HmwVjUAABjTdQz2Xd+nlU2gIXw4SMuxOAbJ\nMplMhu8SvkNpZSntKMw6fPswRncdDUC79q8x3cZg3419gm6DxXrxIwGOe87uq7th184OY7uPpR2F\nST+N+Qk1pIZ2DLXzt/fH/dL7SH+Yjk5mnWjHEQ0/J8CprKi8CNmPsuFu5U47iiDWnluLS/cu8cuE\nddAft/6Ar50vLFpb0I6iVvwSUU6toq9G47MTn9GOIZjR3UbjwM0DqFFo37ddrmEjO4/UugbQGN4E\nGnA26yxkmTLaMVpEiDHI/Tf2K8eEtY1MJkMns06wamOF+Gw+nXljWBzjZhmL9eJNoAHpD9Pxzblv\naMdgSnl1OY5lHNPI+eNVMabrGOy9vpd2DI4THD8n0IDa66HvLb4HEwMT0bbLskM3D+GrU18hblYc\n7SiCyniYgQdPHsDPzo92FGak3kuFXTs7mLc2px2FUxE/J9BM5q3NIbWWavyQkDrF3IzBqC6jaMcQ\nnIuZC28Az5l7cC4SchJoxxAFIURnLkLhTaARo7qMwv7r+2nHaDZ1j0G6W7pjXPdxal0nS1gcs2VB\ncXkxUvJSMNBpYJ3XtbVeQ/49BEm5SWpfL4v14k2gEcFdghF7O5Z2DGa83ettrZkwjmu6YxnHEOAY\noHV3CdfH29obsbd04797fk6gEYQQ7L2+F2O6jdGqJ45xnCr+fuDv6GreFYv6LqIdRRR/3PoDX8Z9\nqTXnvvg5gRaQSCQY130cbwA6TBdnlnwWIQR/3P4DI11H0o4imgFOA5CSl4Ki8iLaUQQn2CdbeHg4\nrK2t4enpqXxt0aJFcHNzg5ubG0aNGoUHDx4of7Zs2TK4ubnB09MThw8fFiqWzmFxDJJlz9dr9dnV\n+EymvTfGNUVFTQVedXsVbpZuL/xMW/evVoat0L9jfxxNV+9TBlmsl2BNYNasWYiNrTumNnr0aKSl\npeHKlSvw8PDAl19+CQBITExEdHQ0UlNTERsbizlz5qCyslKoaBzXZD42Pjh06xDtGFSZGJhgxfAV\nOvfUtdAuobj+4DrtGIITrAkEBgbCzMyszmuDBw+Gnt7TTfbr1w/Z2dkAgJiYGEydOhX6+vqwt7eH\nu7s74uP53ZrqoK5nmm6I34CYGzFqWRfLnq9Xv479cP3BdeSX5tMJxDgWn5mrLvP85+HjwI/Vuk4W\n60VtoPuHH37A2LFPZ2nMzs6Gg4OD8mcODg6Qy+W0otVLg86hq93WlK1oa9SWdgzRGekbYZDzIBy+\nzYcoOe1EZSrpf/3rXzAyMsJrr72m8u+GhYXB2dkZAGBqagpvb29ld60dbxNi+WLeRcxcMxPrgteJ\nsj11LaekpGDBggUtWp97L3fcLLyJytuVkGXKmPr3qXv5ZfUa0WkEjmQcgX2hPfV8rC2rY//SpWWx\n6iWTyRAVFQUAys/LehEBZWRkEA8PjzqvRUVFkb59+5InT54oX/v888/JqlWrlMuhoaHk1KlTL6xP\n4LgNqqiuIO2XtSf5pfnUMjTH8ePHW7yOHZd2kDG/jGl5GA3wsnpdy79GBm4dKHoWTaCO/UuX0KpX\nQ5+dog4HxcbGYuXKldi3bx9MTP6aiyckJAQ7d+5EdXU15HI50tLS4O/vL2a0RhnpG2Gg00AcST9C\nO4pKar8ltIQuXR74snp1s+gGWZhM9CwseGv/W8gpyan35+rYv3QJi/USrAlMmzYNAQEBuH79Ohwd\nHbFlyxa8++67ePz4MYYPHw4fHx/MnTsXAODr64vx48dDKpUiKCgImzZtgqGhoVDRmm1Yp2E4lnGM\ndgxREUJwNOMohnUaRjsKJ7KCsgLsvLwTlq0taUeh6kzWGaQ/TKcdQzD8jmEVpN1Pw7hfx+HW/FvU\nMqhKJpO1+NtHVnEWHNo76MQlguqol7bYfWU3tqZsRcz0+q8K04V6LfpjETq06oB/DPhHi9dFq178\njmE1cbd0h76ePh6UPWj8zVrE8RVHnWgAXF3HMo5hiPMQ2jGoG+oyFEcz1HvTGEv4kYCKCCH8A5HT\nCT029MCOCTvgY+tDOwpVJRUlsI20Rf4H+Ro7gR4/ElAj3gB0V8bDDCRk68Z8+jklObhfeh9eNl60\no1DXzrgdvGy8cDrrNO0oguBNQMvVXjvMNU1D9UrKTUKELEK8MBRZt7HGhTcvNDpxoq7sX0Ndhqpl\nHiEW68WbAFevgrIC1ChqaMdgxmCXwTh19xQqa7R/Xit9PX24mLnQjsGMV91fRR+HPrRjCIKfE+Dq\nNe7XcZjqMRVTPabSjsIM3x98sTZoLfp37E87Csc1WUOfnfVOG7Fnz55GP3RbtWqFkJCQlifUMMXl\nxUjOS8Yg50G0owimRlGDk3dO4vtR39OOwpTaYQHeBDhtUe+RgLm5OcaMGVPvLxJCEBcXh9u3bwsW\n7nmsHAncKbqDXj/2wr3F95g/Udzc65ITcxLx+u+v4/Lcy+oPxbDG6nXo5iGsOL1CZ+8gfp4u3Ceg\nTizeJ1DvkUBQUBC2bt3a4IqbMwGcNnAydUI743a4nH8ZHlYetOMI4ljGMQx2Hkw7BnP6deyHUfmj\naMcQVOGTQnRo1YF2DE4k9R4JVFZWwsjISOw8DWLlSAAA3tz3JqTWUrzb+13aUQQR8p8QvNHzDUzo\nMYF2FE5EhBA4rHHAqVmn+IlhLdKs+wQcHBzwxhtv4OjRo8x88LJksMtgHM88TjuGYIwNjDHQaSDt\nGJzIbhXegp5ED86mzrSjMOnLk1+q/ZGTtNXbBK5cuQI/Pz988cUXcHBwwHvvvYdz586JmY1pgR0D\nceruKeYbZHOvS/7vlP/CvLW5esNoABav4xbTyTsnMcBpQJPPdelavRREgT9u/9Hs32exXvU2AQsL\nC/z973+HTCZDQkICXFxcsHDhQri6uuLjj9X7yDVN5PiKI972extPqp/QjsJxahN3Nw4DOg6gHYNZ\nA5wG4OSdk7RjqFWT7xMoKSlBdHQ0Vq9ejdzcXNy/f1/obC9g6ZwAx2mjTms74cD0A3CzdKMdhUlP\nqp7AcpUl8hbnadTjVps9d9CTJ0+wa9cuTJgwAZ07d8axY8ewYsUK5OTU/5AJjtMFO9N2YtvFbbRj\nqNXjysfo+EpH9LDoQTsKs1oZtoKPrQ/OZp2lHUVt6m0C06dPR8eOHbFr1y689tpryMzMxM8//4yg\noCAYGDT+aOLw8HBYW1vD09NT+VphYSGGDx8OqVSKkSNHoqioSPmzZcuWwc3NDZ6enjh8mD/UW11Y\nHINkWVPrJZFIsPvqbmHDiKytUVvIwmQq3fuii/vXgI4DcOLOiWb9Lov1qrcJBAUFIT09Hbt378bE\niRPRqpVqU6jOmjULsbGxdV6LiIhAaGgoLl26hODgYEREPJ2MKzExEdHR0UhNTUVsbCzmzJmDykrt\nn5+FRafvnsZ5+XnaMZgX2DEQcXfioCAK2lE4kS3quwgf9f+Idgy1qbcJmJmZoV27dg3+8oEDB+r9\nWWBgIMzMzOq8dvDgQcycORMAMGPGDMTEPH1iUUxMDKZOnQp9fX3Y29vD3d0d8fHxTf5HcPVT9e7E\n7y58h9T7qcKE0QBNrZdtO1tYtLZA2v00YQMxThfvFjZvbd7s8wEs1qvecZ0PPvgA9vb29T5EhRCC\n//u//8OoUU2/ezI/Px/m5k8vO7SwsFCeXM7OzsaQIX89wcjBwQFyubzJ66XpbNZZnJOfw8K+C2lH\nUYuTd07inwP/STuGRqi9UkRqLaUdheOard4mYGNjg/fff7/BX+7atavaA2kaYwNj/Jj0I7NNQJW5\nSu4U3UFlTSW6dOgibCiGqVKvAU4DsP/GfszznydsKIbxuYNUw2K96m0CQpzAsLS0REFBASwsLJCf\nnw8rKysAT7/5Z2VlKd8nl8vh6Oj40nWEhYXB2dkZAGBqagpvb29lUWszi7lco6hBdkk28kvzcTnh\nsujbb2w5JSWlye/ftHsTuj3upjzyYyG/2Muq1Mv8njmmtJmCWizkb+7y4duHUXClAHbt7ASrF18W\nr14ymQxRUVEAoPy8rBcRUEZGBvHw8FAuz5s3j6xZs4YQQsjq1avJu+++Swgh5MKFC8TPz49UVVWR\nrKws4uTkRCorK19Yn8Bxmy1oexCJvhJNO0aLvbnvTbLu3DraMTgK/H/0J7IMGe0YGqXoSRGprqmm\nHaNJGvrsFOzJYtOmTUNAQACuX78OR0dHbN26FZ999hliYmIglUpx6NAhfP755wAAX19fjB8/HlKp\nFEFBQdi0aRMMDQ2FiqZ2gR0DEXc3jnaMFhvbbSxGdxtNOwYnsseVj5F2Pw3+9v60o2iUwK2BSM5L\nph2jxfiTxdQg7k4cFh1ehIQ32XsIuYzBMUiW6WK9jqQfQYQsAqfDVX+Qui7Wq9ac/XPgbuWO+b3n\nN/l3aNWr2XcMA0+ni/jHP/6B8PBwAMDt27exf/9+9SbUcP72/vhpzE+0Y3Bcs8Td4fMFNUe/jv1w\nOkv1xsmaRo8Exo4di4CAAPz73//G5cuXUV5eDn9/f1y6dEmsjEqsHglwuq1aUQ1CCAz1NWcI81lD\n/z0Ui/osQmjXUNpRNMqtwlsY/PNgZC3MavzNlLXoSCA9PR1LlixRPmDGxMQEenqCnUrgOI0z7tdx\niL0V2/gbGTXVfSoCHANox9A4rmauqKypxN3iu7SjtEijn+ZGRkZ48uSv6ZLv3tXsf7Cuqb1sjGua\n5tTLz84PZ7LOqD+MSN70fRNmrcwaf+NL6PL+JZFIMLHHRMgfNf3GVhbr1WgTiIiIwNChQyGXy/H6\n66+jX79+WLZsmRjZOJEkZCdg/qGmn9zi6gpwDNCKsWFOdRtDN2r8UVSTrg66d+8e4uKeXgIZGBgI\na2trwYO9DOvnBAghUBAF9PX0aUdRyddnvsadojv4NuRb2lE00qOKR7CLtEPhkkIY6bP1XG6OA1p4\nTiAxMRHZ2dlwcXGBi4sLsrOzcfXqVVRVVak9qKZ799C72JK8hXYMlZ3JOqPx32Zoam/cHq4dXJGc\nq/nXjHO6p9Em8M4776B3795466238NZbb6FPnz6YPn06XFxcsHfvXjEyagwPKw+ckbM1NtzYGCQh\nBGflZ3kb8O1GAAAgAElEQVQT+J/mjtkGuQZp/AnC5mBxjJtlLNar0Sbg6OiI1NRUJCYmIjExEamp\nqejSpQtOnDiBJUuWiJFRY/R16KtxTxzKLMqEnkQPHV/pSDuKRlsxfAUmu0+mHUMlR9OPYtXpVbRj\ncJQ12gSuXLmC7t27K5e7deuGK1euwNXVVXnZKPeUh5UHckpyUFBWQDuKUmN3J56Vn0Vfh74qPU1K\nm+nS3a+Hbx9GeXV5i9ahS/Wqz8MnD/H7td+b9F4W69VoE+jUqRPmzZuHEydOQCaT4d1334WzszMq\nKyt5E3iOvp4+/O39cU5+jnaUJpvkNgkbQzfSjsFRcEbOzwWpQ5WiCmG/h2nsU+YabQK//vorbG1t\nsXLlSqxatQo2NjbYuXMnDAwMcOzYMTEyapTAjoFIf5hOO4ZSY2OQRvpGsGpjJU4YDcDimK0QKmsq\nkZyb3OJJ43SlXg2xamMFqzZWuHz/cqPvZbFejT4xvk2bNvjkk09e+rP27durPZCm++fAf/KhFY55\nKXkp6NyhM9oZN/wIWa5pAhwDcCbrDDytPWlHUVmTzgmMHj0aXbt2VV4m2qlTJzGyaSTWGgCLY5As\na0m9yqvLEXMjRn1hBHQm6wz6OvRt8Xr4/vVUgGNAk64MZLFejTaBmTNn4r333oOJiQlkMhnCw8Px\n2muviZGN4zSKBBK8uvtVlFaW0o7SqDDvMHw68FPaMbRGH4c+OC8/TztGszTaBKqrqzFs2DAoFAo4\nOTnh008/RWys5k6WpWsaGoMsLi8WL4iGaMmYrbGBMTytPHEh54L6AgnE1MQUdu3sWrweFse4aXC3\ndMc0j2mNzmjAYr0abQKtW7cGIQROTk7YuHEjoqOj8eDBgxZtNCIiAl27dkX37t0xadIklJWVobCw\nEMOHD4dUKsXIkSNRVFTUom1wDVMQBTqt64R7j+/RjqJVetv3xvlszfxGyDWfvp4+IgZFMDcc3BSN\nzh2UkJCAHj16ID8/H5988gnKy8uxePFiBAQ079KyW7duYcSIEbh27RqMjIwwZcoUjBgxAikpKXB1\ndcWCBQvwzTffICMjA2vXrq0blvG5g2rVKGoQdzcOg5wH0Y5Sr2sF1xD8n2BkvJdBO4pW2ZG6A7uv\n7Eb0lGjaUThOqUVzB2VkZKBt27ZwcXHBjh07EB0dDbm86VOnPq9Dhw4wNDREaWkpqqurUVZWho4d\nO+LgwYOYOXMmAGDGjBmIidGME2wvI5FIMHHXROSW5NKOUi91nRjk6urj0Afn5Oc04ssKxwFNaAIv\nmzb6X//6V7M32KFDB7z//vvo2LEj7OzsYGpqiuHDhyM/Px/m5uYAAAsLC9y/f7/Z26BNT6IHf3t/\nxGfH045S7xhkfHY8+jj0ETeMBmjpmK2LqQume05HZU2legIJQJ3ZWBzjZhmL9ar3PoFDhw7h4MGD\nyM7Oxvz585XfbMrKylo07nX79m188803yMzMxCuvvILJkydj+/btzV4fq2rHhsd2H0s7ykudzz6P\nWd6zaMfQOhKJBF+P+Jp2jHpV1lTCcpUl8t7PQyvDVrTjcAyotwnY2dnB19cXe/fuha+vr7IJtG7d\nGsuXL2/2BuPj4xEQEKD81j9hwgScPn0alpaWKCgogIWFBfLz82Fl9fK7WMPCwuDs7AwAMDU1hbe3\nt/La29ouy8Kyv70/Pt3yKUboj6Cep1btcuCAQOhL9FF8vRiyWzLq+VhbrsVKHnUuXy+4DqdXnNDK\nsBWvlwDLh24ewuDBgxHUOYhqvWQyGaKiogBA+XlZn0ZPDFdVVcHQUH0P0E5ISMCsWbOQkJAAExMT\nhIWFwdPTE3fu3FGeGF6zZg0yMjKwbt26umE15MQwABSUFaDzus4oXFIIPQl/JjPHhg3xG5Ccl4zN\nYzbTjqKVVp9djfSH6Vgfsp52lDoa+uys90jA07P+258lEgkuXbrUrDC9evXCpEmTIJVKoaenBx8f\nH8ybNw9lZWWYMmUKtmzZAhsbG+zatatZ62eFRWsLzJTORElFCV4xeYVaDpnsr2/6XOO0vV7xOfHo\n79hfbevT9nqpqrd9b/yS9ku9P2exXvU2gf379wu20aVLl2Lp0qV1XjMxMcGff/4p2DZp4I9r5FgT\nnx2PRX0W0Y6htXra9sTl+5fxpOqJxpxzadIzhnNycnDmzBlIJBL07dsXdnYtv9OwOTRpOIjTbfuu\n74OBngFCuoTQjqJUXl0Oz+88cfWdqzDQa3TuSK6Z/H7ww7rgdUxN092i+wT+/e9/o1evXti3bx9+\n//13+Pv7Y9u2bWoPyXHaJLckF7suszWkaWJggpvv3uQNQGC97Xtr1DNFGj0ScHNzw6lTp9ChQwcA\nQGFhIfr3748rV66IEvBZ/EhAdc+PQd4qvIXSylJ42XjRC8UwdY3ZXsy7iCm7p+DavGstD8UwFse4\nact4mAFjA+OXzs1Eq17NOjH8rNoGAABmZmb8g1iD/ZzyMwDwJiAwdyt3ZJdk4+GThzBrZUY7Dici\nFzMX2hFU0uhw0NChQxEUFISoqChs3boVoaGhGDZsmBjZtIIsU4bYW/RmXX3+W0d8TnyLnyalzdT1\nLc1AzwA9bXsycde4kPhRgGpYrFejTWDdunV4/fXXER8fjwsXLuD1119/4fp9rn53iu7g54s/044B\n4OnMofHZvAmIpY99Hz6jKMe8RpvA6tWrMXDgQGzcuBEbNmzA1KlTNXK6VFpozyH07F2Ktwpv4RXj\nV2Dd1ppaHtY9f1dnS7zp+yZedX9VbetriYyHGYI8+1qd9dIFLNar0SZQUlKCESNGoH///li/fj3u\n3ePzz6uim0U3FJQVIL80n3YUnJef50cBIurcoTO6W3SnHQMAsDFhI35N+5V2DJ2iKedOG20CS5cu\nxeXLl7Fhwwbk5uZiwIABGDp0qBjZtIKeRA+97HohISeByvafHYO0bWeLmdKZVHJoChbHbNXhfLYw\nXwC0tV4t9ajiEVzWukBBFHVeZ7FeTZ7UxsrKCjY2NjA3N0d+Pv1vtZrE396fieePDus0DKO7jaYd\ngxNZtaIayXnJ8LPzox1FZ7Q3bg8CgluFt2hHaVSjTWDjxo0YNGgQhg4dioKCAmzevLnZ8wbpqpnS\nmRjVdRSVbbM4BskybazX5fuX4dDeAaYmpmpftzbWS1162fV64XnTLNar0fsEsrKy8M0338Db21uM\nPFqph2UP2hE4HcavCKOjl10vJGQnYLrndNpRGtSkuYNYwe8Y5jRNaWUpArYEIHlOMrUpxfdc2QMD\nPQNmH3CkrY6mH0WELAKnwk/RjtLyO4Y5jmueNkZtUFxejJsPbqKbRTcqGSa6TaSyXV3na+eLGw9u\nQEEUTD9ThN1knFrUjkF+dOQjFJUX0Q2jAYQYs+1lT+/qMKGxOMbNClMTU+S+n1unAbBYL94EdEBx\neTHWx69HW6O2tKPopJedIOR0g76ePu0IjaLSBIqKijB58mR4eXmhR48eOHfuHAoLCzF8+HBIpVKM\nHDkSRUXa9a21qqYKA7YOQLWiWtTtDho0CMl5yfCy8eJTCDeBENdx07xPRGgsXvfOMhbrRaUJvPnm\nm5gwYQIuXryIy5cvw83NDREREQgNDcWlS5cQHByMiIgIGtEEY6hviLzHebhWIP7UwhdyLsDPll8j\nTouvnS8u3buEGkUN7Sgc9wLRm8CDBw+QkpKCadOmPQ2gp4f27dvj4MGDmDnz6d2sM2bMQExMjNjR\nBOdn5yf6sIBMJnvaBPiNQk0ixJhte+P2yFmUQ2VoYPmp5XhU8Uiw9bM4xs0yFuslehO4efMmLC0t\n8eqrr8LDwwOvv/46SkpKkJ+fD3NzcwCAhYUF7t+/L3Y0wfnZ+SExJ1H07fImQF8743aib/NRxSN8\ncfILtDZsLfq2ub/kluSi8Ekh7Rj1En2QWKFQICEhAWvXrkWvXr2wYMECfPHFF03+/bCwMDg7OwMA\nTE1N4e3trRxnq+2yrC7r39HH0cSjwP8eOyvW9teMXIOu5l2p//s1ZbkWK3mau7zlv1vg9NBJeS6I\n14vO8rbibfC184VbqRueJeT2ZTIZoqKiAED5eVkf0W8Wy8rKQmBgIDIzMwEAp06dwueff4709HSc\nO3cOFhYWyM/PR9++fXHrVt15NzT9ZrGSihLYRNqgaEkRDPUNacfhtFzkmUhkFmXi25BvaUfRad9f\n+B7ns89j69it1DK06EHz6ubo6AgLCwvcuHEDAHDkyBH06NEDwcHB2L59OwBg+/btCAkJETua4NoZ\nt8P1eddFvUrn+W9rXMO0qV6JuYmCDwNqU72E8uwlwizWi8o1gz/99BNee+01lJWVwcnJCf/5z39A\nCMGUKVOwZcsW2NjYYNeuXTSiCc6hvQPtCBwlpZWlUBCFaOcHLuRcwCeBn4iyLa5+ntaeuF14G6WV\npbSjvBSfO4jjRPLmvjfhbeONd/zfEXxbhBD8fPFnzJTO1IgblrSd/4/+iBwRiUCnQCrbZ2o4iON0\nlZ+dn2g3jUkkEoR5h/EGwIiJPSbiSfUT2jFeijcBLXY0/SjGLRtHO4ZGEXLMVhvnEGJxjJtFS/ov\nwQjXEUzWizcBChREgYrqCsG3c05+DiaGJoJvh2saTytPZBZl4nHlY9pROE6JNwEK3j7wNn6++LPg\n27mQewHjg8YLvh1tUnvNtRAM9Q3haeWJpNwkwbYhNiHrpY1YrBdvAhR42XiJMn0Ev1OYPcGdg5m+\ne5TTPbwJUCDGHEL3Ht/D48rHuHvxrqDb0TZCj9lGDIrAuO7CnqeJuxOHj49+LOg2arE4xs0yFuvF\nmwAFUmsprhVcQ3l1uWDbqL1RSCKRCLYNjk2n7p5CZU0l7Rjcc3JKchB3J452jBfwJkCBiYEJull0\nw6V7lwTbRlDnIOyatIvJMUiWaUO9LuSKNwyoDfUSS3F5MX4uFv5coKp4E6BkoNNA3C0WbqhGT6IH\ns1Zmgq2fYxc/F8SmruZdca/0HnOPeeVNgJJvgr7BJLdJgm+HxTFIlml6ve6X3kdxeTFczVxF2Z6m\n10tM+nr6cH7ozNzVYbwJcJzI8kvzcTzjuCDrTsxJhK+dLz8XxKiu5l2ZawJ87iCOE1lKXgpei34N\nl+deVvu6y6vLUVBWwCcqZNTPKT8j9nYsfpn4i6jbbeizkz95XAsVlRfhFeNX+LdBRrlbuiOzKBOl\nlaVoY9RGres2MTDhDYBhg5wHgYCtL7J8OEgLTd8zHfuu7wPAx2xVJUa9DPUN4WbphpS8FMG3JTS+\nf6kmIyUDYd5htGPUwZsARcXlxWq/aYwQgsTcp+PCHLt8bX2ZGxvmdBNvAhSlP0xH2O9hal2n/JEc\nEkhg384eAL+OW1Vi1aunbU8k5iaKsi0h8f1LNSzWi1oTqKmpgY+PD0aPHg0AKCwsxPDhwyGVSjFy\n5EgUFbF1La0Q3K3ckf4wHWVVZWpb54WcC/zqEA0w0GkgfG3Ve7RWVVOl1vVxuoFaE1i7di3c3NyU\nH1YREREIDQ3FpUuXEBwcjIiICFrRRGOkb4Qelj3UeudwUm5SnQ8XPmarGrHq1c2iG97t/a5a1znp\nt0nYf32/WtfZGL5/qYbFelFpAnK5HAcPHsQbb7yhvGzp4MGDmDlzJgBgxowZiImJoRFNdD1teqp1\nbLisqgy97XurbX2c5kjKTYK7lTvtGFwTzNk/h5nnSlBpAgsXLsSqVaugp/fX5vPz82Fubg4AsLCw\nwP3792lEE11PW/U2gciRkQjtGqpcZnEMkmWaWq/80nyUVJTAxdRF1O1qar1oqa1Xcl4yM1eHiX6f\nwIEDB2BlZQUfH59mHRqFhYXB2dkZAGBqagpvb29lYWvXp0nLxoXGcLFwYSYPX9bM5eS8ZDgXOePE\niRNM5OHLDS/72vri1wO/otqtWpD1y2QyREVFAYDy87I+ot8x/PHHH2Pbtm0wMDBAeXk5Hj16hAkT\nJuDMmTM4f/48LCwskJ+fj759++LWrVt1w/I7hlUmk8mUOwnXOE2t1/JTy5Ffmo/IkZGibldT60VL\nbb02J21G3N04/DxOnFlFG/rsFH046KuvvkJWVhYyMjLw66+/YsiQIdi2bRtCQkKwfft2AMD27dsR\nEhIidjSOE92SP5eo5bkS2Y+y0dO2pxoScWLoadsTiTlsXCJMde6gEydOIDIyEvv27UNhYSGmTJmC\ne/fuwcbGBrt27YKpqWmd9/MjAU7beH3vhc2jN6OXfa8Wr4sQwi8N1hCVNZUwXW6Kgg8L0NqwteDb\na+izk08gp0UO3z6MIS5DYKDHp4TSFOF7w+Fv74+/+/2ddhROZHF34uBv7w9jA2PBt8XUcBAnjIdP\nHmLironQk9T9v7T2ZBHXNGLXS9Onj+D7l2qerVegU6AoDaAxvAkwgBCC5aeWo1pR3ex1JOclw8va\n64UmwLFNW6aP4DQXHw5iRLf13bDn1T3wsPJo1u9HnonEneI7WBe8Ts3JOCGVVZXBYqUFij4qgpG+\nEe04nJbiw0EaoKU3jSXlJfGrQzRQa8PW2DFxBxRE0ex1JOUmtegoktNtvAkwoqXTRyTlvrwJ8DFb\n1dCo17ju42BiYNKs3y2rKkO/Lf1Qo6hRc6qm4fuXalisF28CjGjJkQAhBAM6DkAPix5qTsWxLvVe\nKrpbdGfiBCOnus9PfI6fkn6imoGfE2BE4ZNCOH/jjKKPivjJXa7Jvr/wPRKyE/DTWLofJFzzbEzY\niOTcZPw45kdBt8PPCWiADq064OsRX6OyppJ2FE6D1DcMyGkGFq4O402AIW/5vtXsseH6sDgGyTJN\nq1dyXjJ8bH2obV/T6kXb8/XysvbCtYJrqKiuoBMIvAlwHBNWnl6JXZd3qfQ7hBB0MusEL2svgVJx\nQmtl2AquHVyRej+VWgZ+ToDjGLD67GpkPMzAtyHf0o7Ciexvv/8NA50GItwnXLBt8HMCWux24W1s\nTd5KOwbXQj42PkjOS6Ydg6NgY8hGzPKeRW37vAloOFmmDMczj9f/cz5mqxJa9fKx9cHFexepXe/f\nXHz/Us3L6tXGqA3V2V95E2BM5JlIHEk/0uT386tDtIOpiSksW1viVuGtxt/McWrEmwBjHlU8gixT\n1uT3NzZdBH/qk2po1svHVvOGhPj+pRoW68WbAGNUuXO4RlGD1Hup8LbxFjgVJ4aNIRsxvvv4Jr03\npyQHv13+TeBEnC4QvQlkZWVhwIAB8PT0RLdu3bBy5UoAQGFhIYYPHw6pVIqRI0eiqKhI7GhMqL15\npClXQV1/cB227WzR3rh9ve/hY7aqoVkv67bWTZ7+4UTmCfx6+VeBEzWO71+qqa9eNYoaPCh7IG6Y\n/xG9CRgZGWHjxo1ITU1FYmIiNm/ejIsXLyIiIgKhoaG4dOkSgoODERERIXY0Jji0d4CCKJD7OLfR\n95qZmGH1iNUipOJYk5SbhJ42/FyQtjiSfgSTf5tMZduiNwFra2t4eDydM79t27aQSqXIzs7GwYMH\nMXPmTADAjBkzEBMTI3Y0JkgkkiYPCdm2s8XobqMbfA+LY5As05R6JeclM3FBgKbUixX11av2fBCN\n+6ConhPIzMxEQkIC+vfvj/z8fJibmwMALCwscP/+fZrRqNoQsgGBHQNpx+AYRQjhV4VpGas2Vmht\n2BqZRZmib5vaE8kfP36MSZMmYe3atWjfvv4x7eeFhYXB2dkZAGBqagpvb29ld60db+PLfy2npKRg\nwYIFzORhfZmFegUEBsBI36jen7t4u8DEwARXL1zFVVzV+Xpp0nJD9er4sCO27duGf/7tny3enkwm\nQ1RUFAAoPy/rRSiorKwkI0aMIKtXr1a+1qlTJ5Kfn08IIeT+/fvE1dX1hd+jFFejHT9+nHYEjUK7\nXvuu7SOjd4xu8D3yYjnZkrRFpEQNo10vTdNQvT499in55Ogngmy3oc9O0YeDCCGYPXs23NzcsHDh\nQuXrISEh2L59OwBg+/btCAkJETuaVqr9lsA1De16uVu5N3qvgH17e8zyoTfNwLNo10vTNFSvPg59\nqMwmKvoEcqdOncKAAQMglUqVt0ovW7YM/v7+mDJlCu7duwcbGxvs2rULpqamdcPyCeSU1sevh107\nO0zoMYF2FE6NCCEwW2GGm+/ehGUbS9pxOC3B1ARy/fv3h0KhQEpKCpKTk5GcnIygoCB06NABf/75\nJy5duoTDhw+/0AB0UUMNL+ZmDAz0Gj+lUztOyDUN7XpJJBKNunOYdr00DYv14ncMM2r/9f14/ffX\nX/ozQggScxL51SFaysfGp9nPm+Y4VfEmwCgXMxecl59/6c9ySnJAQGDfzr7R9fAxW9WwUC8/Oz/k\nPc6jHaNJWKiXJmGxXtQuEeUa1t2iO+SP5HhU8eiFaSFqbxSiOf0sJ5zpntMx3XP6S3+2I3UH2hm1\na/QmQY5rKn4kwCgDPQN4WnviYt7FF36WlJsEH5umPVeWxTFIlrFer+ir0Xhc+Zh2DCXW68WaxupV\nVVOFQzcPiRPmf3gTYFh9T5t62+9tLOizgEIijjZ+p7B205PoYfJvk1FcXizeNkXbEqcyHxsfXC+4\n/sLrlm0sYdPWpknrYHEMkmUs1+vhk4fIL8tHF/MutKMosVwvFjVWL309fUitpUjJSxEnEPg5AabN\n7jkb+hJ92jE4RqTkpcDbxht6Ev7dTZvVTiA50HmgKNvjexPDDPQMWnzyl4/ZqoaVelXVVCEhO6HO\na6qcCxILK/XSFE2pV33DwELhTYDjGFRDajAwamCdaQQmuU3Ce73fo5iKE4PYNwuKPm1ES/BpI57e\nKMYvDdUN0u+k2Dp2K3ztfGlH4URUUV2BRX8swvqQ9Wr7b52paSO4lvH63gu3Cm/RjsGJQJXnTXPa\nw9jAGBtCN4j2ZY83AcbVKGqQ8TADAPCo4hFuP7wNZ1PnJv8+H7NVDUv1EntsuDlYqpcmYLFevAkw\nrqSyBJ7feaJGUYOLeRfhYeXRpInjOM2nSRPJcZqLNwHGmZqYwrqtNW4W3nw6XYSKDxfn13GrhqV6\nedt4w9XMlXaMBrFUL03AYr14E9AAPjY+SM5N5neL6pj2xu2xfcLTBy2N2DbipTcOclxLMdUEYmNj\n4enpCTc3N6xYsYJ2HGbUjg3fKrwFH1vVrhNncQySZSzWq6K6AqfunkLHVzrSjvICFuvFMlXq9UPi\nD8rzgUJipglUVFTg7bffRmxsLC5duoTdu3cjOZmPhwJ/XSUSNysOvraqXS6YkiLe7efagMV6Xc6/\nDNcOrmhl2Ip2lBewWC+WqVKv45nHEXc3TsA0TzHTBM6fPw93d3fY29vDwMAAU6ZMQUxMDO1YTOhp\n2xPtjdtDIpGofNlYUVGRQKm0E4v1Ss5NZu5O4Vos1otlqtRLrIcLMdME5HI5HB0dlcsODg6Qy+UU\nE7HDuq01oqdE047BUcLPBekmsS4RZqYJ8LtghZGZmUk7gkZhsV4Hbx2Em6Ub7RgvxWK9WKZKvXxs\nfcSZLJAw4uTJkyQ0NFS5vHLlSvLll1/WeY+rqysBwP/wP/wP/8P/qPDHy8ur3s9eZuYOKi8vR/fu\n3XH69GlYWVkhICAAmzZtQs+e/DCY4zhOKMzcempiYoLvvvsOI0eOhEKhwMyZM3kD4DiOExgzRwIc\nx3Gc+Jg5MdwYfiOZapydnSGVSuHj4wN/f3/acZgTHh4Oa2treHp6Kl8rLCzE8OHDIZVKMXLkSH75\n4zNeVq+lS5fCwcEBPj4+8PHxQWxsLMWEbMnKysKAAQPg6emJbt26YeXKlQAY3ccEOcurZuXl5cTZ\n2ZnI5XJSVVVF/Pz8SFJSEu1YTHN2diYPHjygHYNZJ0+eJElJScTDw0P52rx588iaNWsIIYSsWbOG\nzJ8/n1Y85rysXkuXLiWRkZEUU7ErLy+PpKamEkIIKSkpIV26dCEpKSlM7mMacSTAbyRrHsJH+uoV\nGBgIMzOzOq8dPHgQM2fOBADMmDGD72PPeFm9AL6P1cfa2hoeHh4AgLZt20IqlSI7O5vJfUwjmgC/\nkUx1EolEedi5fv162nE0Qn5+PszNzQEAFhYWuH//PuVE7NuwYQN69OiBGTNmoLCwkHYcJmVmZiIh\nIQH9+/dnch/TiCbAbyRT3blz55CUlISjR49i69atOHLkCO1InJZ55513cPv2bVy5cgWurq6YP38+\n7UjMefz4MSZNmoS1a9eiffv2tOO8lEY0AQcHB2RlZSmXs7Ky6hwZcC+ysrICAFhaWmLSpElISEig\nnIh9lpaWKCgoAPD0qKC2htzLWVhYKOezmjNnDt/HnlNVVYWJEyfitddew7hx4wCwuY9pRBPo1asX\n0tLSkJ2djaqqKuzatQvBwcG0YzGrrKwMZWVlAIDS0lLExsbC3d2dcir2hYSEYPv2p/P3b9++HSEh\nIZQTse3ZoYw9e/bwfewZhBDMnj0bbm5uWLhwofJ1Jvcxyiemm+zgwYPE3d2d9OjRg3z11Ve04zAt\nPT2dSKVS4uXlRbp06UI+/fRT2pGYM3XqVGJra0sMDQ2Jg4MD2bJlC3nw4AEZNmwY8fT0JMOHDycP\nHz6kHZMZz9frp59+IjNmzCBSqZR0796djBw5ksjlctoxmREXF0ckEgnx8vIi3t7exNvbmxw6dIjJ\nfYzfLMZxHKfDNGI4iOM4jhMGbwIcx3E6jDcBjuM4HcabAMdxnA7jTYDjOE6H8SbAcRynw3gT4DiO\n02G8CXBap7i4GN99951yOScnB5MnT1b7dmrn01+6dKna192YwYMHo127dkhMTBR925x24U2A0zoP\nHz7Exo0blct2dnb47bff1L4diUSCRYsWUWkCx48fh5+fH59ckWsx3gQ4rfPRRx/h9u3b8PHxwZIl\nS3Dnzh3lE7GioqIwbtw4BAcHw8XFBevXr8fXX38NPz8/9OzZUzm51/Xr1zF48GB4eXmhd+/euHz5\n8ku39ewN90uXLsXf/vY3DB48GM7OzoiOjsbixYshlUoxdOhQVFRUAAA++OADuLu7w9vbG4sWLQIA\n5L3GSVMAAALhSURBVOXlYdSoUfDy8oK3tzdOnDgBACgpKcHUqVPh7u4OLy8v7N69W7C6cTqK8rQV\nHKd2mZmZdZ6AlZGRoVzeunUr6dy5M3ny5AnJz88n7du3J5s3byaEELJw4UKyatUqQgghAQEB5ObN\nm4QQQs6dO0f69ev3wnaWLl1Kvv76a+VyREQEGTBgAFEoFOTixYukVatW5PDhw4QQQsaPH09+++03\ncu/ePeLu7q78ncePHyt/furUKUIIIXfu3CGurq6EEELmz59PFi9erHx/cXGx8u+DBg0iiYmJzS0T\nxxFCCDGg3YQ4Tt1II9NhDR48GCYmJjAxMYGpqalyJkdPT0+kpKTgwYMHSEpKqnMe4cmTJ41uVyKR\nICgoCBKJBB4eHlAoFBg+fLhy3VlZWTA3N4ehoSFmz56NkJAQjB49GgBw5MgRZGRkKNdVUVGBR48e\n4ejRo9i7d6/ydVbnpOc0F28CnM4xNjZW/l1PT0+5rKenB4VCAUIILC0tkZycrPK6jYyMlOsyNDSs\nsx2FQgF9fX2cP38eR48exZ49e7BhwwYcO3YMEokECQkJMDB48T/Jxpoax7UEPyfAaZ1WrVopn6eg\nitoPWwsLC1haWuLAgQPK1+s7J6Cq0tJSlJSUIDg4GJGRkUhKSgIADBs2DN9//73yfbXbGz58ODZt\n2qR8/dGjR2rJwXG1eBPgtI61tTW8vb3h5uaGJUuWKJ9+BaDO32uXn/177fLOnTsRGRkJqVQKDw+P\nJp+QrW/dtcuPHj1CUFAQfHx8EBgYiDVr1gAAvv/+e/z555/w9PSEh4cH1q5dCwD44osvcPfuXbi5\nucHb2xtHjx5tRkU4rn78eQIc10yfffYZ2rZti/fff5/K9gcPHozIyEj07NmTyvY57cCPBDiumdq2\nbYsffviB2s1iGRkZdc47cFxz8CMBjuM4HcaPBDiO43QYbwIcx3E6jDcBjuM4HcabAMdxnA7jTYDj\nOE6H/T8o9Q6nwzgdWAAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x7f054c060710>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEPCAYAAACgFqixAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcVOW+P/DPDHJTGLzglfFIsUvljrfK1MRSEz2paWk7\nPF4qtTK3sml32afE+pVHzZ3urZ3cW819DtVGy3YZSJaKph3FVFKzixkUgwkoilyEAeb5/cGeSQSG\nWcDMetbM5/168ZI1lzVfP+J8Wc9azzM6IYQAERF5NL3aBRARkfrYDIiIiM2AiIjYDIiICGwGREQE\nNgMiIoILmkF+fj5GjRqFqKgo9O/fH6tWrQIApKSkwGg0Ii4uDnFxcdi1a5ftOStWrEB4eDiioqKw\ne/duZ5dIROTxdM6eZ1BYWIji4mJERkaivLwcgwYNwvbt2/HPf/4TgYGBSEpKavD4Y8eOYeHChTh8\n+DAuXLiAESNG4LvvvoOPj48zyyQi8mhOPzLo2bMnIiMjAQABAQGIjo5GQUEBAKCpPpSeno6ZM2fC\ny8sLISEhiIiIQHZ2trPLJCLyaC49Z5CXl4ejR49i5MiRAIANGzZg4MCBSExMRElJCQCgoKAARqPR\n9hyj0QiTyeTKMomIPI7LmkF5eTkeeOABrFu3DoGBgXjyySdx7tw5nDlzBmFhYVi8eLGrSiEioht0\ncMWL1NTUYNq0afjtb3+LKVOmAACCg4Nt9y9YsADx8fEA6o8E8vPzbfeZTCb07du3wf68O3ujtrTW\nBZUTEbmPmJgY5OTkNHmf048MhBB45JFHEB4ejqVLl9puLyoqsn3//vvvIyIiAgCQkJCAtLQ01NbW\nwmQy4fTp0xg2bFiDfdaW1mLPj3sghOCXg1/Lli1TvQZ7X5PfnYwdZ3aoXodW8pLti3lpI6+vvvqq\n2fdqpx8ZHDp0CKmpqYiOjkZcXBwA4NVXX8U777yDkydPwmw2o1+/fti8eTMAYPDgwZg6dSqio6Oh\n1+uxceNGeHt7N9rvkD5DnF26W8nLy1O7hGZdqrwEACitLlW5kl/JnJeMmJcyMubl9GYwYsQIWCyW\nRrdPmDCh2ec8//zzeP755+3u1+BraHNtJIdXPn8FH373IeJD49UuhchjcQayh5gzZ47aJTRLCIEA\nnwBcq72mdik2MuclI+aljIx5OX3SmTPodDposGxqxtLMpfi3oH/D0juWtvxgImo1e++dPDLwEFlZ\nWWqX0CwB+Rq7zHnJiHkpI2NebAYkBZ1Op3YJRB5Ns83gD5/+Qe0SNGX06NFql9Csrv5dpbsgQOa8\nZMS8lJExL5dMOnOGM8Vn1C6B2smLd72odglEHk+zRwZXq6+qXYKmyDhGeT0hBCrMFWqXYSN7XrJh\nXsrImJdmm4FME5So7QrKCnDr+lvVLoPIY2n20tLQtaHI/V2u2qVQOymrLkPvNb1R/ny52qUQuS23\nvLSUw0TupZNPJ1yrvYZaCxcgJFKDZpvB/jn71S5BU2Qco7S6WHkR5eZyBPoEStPkZc5LRsxLGRnz\n0uzVRJE9ItUugdpJSlYKBgQPQJBfEEqrStHVv6vaJRF5HM0eGZAyMl7XbGUdw+wV0AsVNXJcUSRz\nXjJiXsrImJdmjwzIveigw5FHj6hdBpHH4pGBh5BxjNKKaxNpH/NSRsa82AxIClybiEhdmp1n8Ltd\nv0PCLQkYFzZO7XKojV7Y+wJu7XYrZsXMUrsUIrdmb56BZs8ZlFwrwS9lv6hdBrWDl8e8rHYJRB5P\ns8NEBl+DNNeka4GMY5Q3MteZpVmfSAt5yYR5KSNjXpptBkG+QWwGbmbT8U1I3p2sdhlEHkmzzYBH\nBsrIeF3zjYJ8g6RZgFALecmEeSkjY16abgayvHFQ+2CDJ1KPZpvBjMgZWHbXMrXL0AwZxyitLlZe\nRFl1Wf1yFJI0eJnzkhHzUkbGvDR7NRHXr3Efz332HIaFDMOwkGEorZKjGRB5Gs0eGZAyMo5RWlln\nIAf5BUGvk+NHUua8ZMS8lJExLzn+55HH0+l0CO0cipyFOWqXQuSR2Aw8hIxjlFYyToKXOS8ZMS9l\nZMyLzYCkoAPXJiJSk9ObQX5+PkaNGoWoqCj0798fq1atAgCUlJRg7NixiI6Oxvjx43HlyhXbc1as\nWIHw8HBERUVh9+7dTe631lKL8A3hUv5WKSMZxyitgjsGI8AnQO0yGpA5LxkxL2VkzMvpC9UVFhai\nuLgYkZGRKC8vx6BBg7B9+3Zs2rQJYWFhWLJkCdauXYvc3FysW7cOx44dw8KFC3H48GFcuHABI0aM\nwHfffQcfH59fi/7XYkv+r/ij5A8l8Pf2d+ZfgYjILdhbqM7pRwY9e/ZEZGT9R1QGBAQgOjoaBQUF\nyMjIwKxZ9atUJiYmIj09HQCQnp6OmTNnwsvLCyEhIYiIiEB2dnaT++bEM8fJOEbZlNKqUlTXVqtd\nhmbykgXzUkbGvFx6ziAvLw9Hjx7FiBEjUFxcjG7dugEAgoODUVRUBAAoKCiA0Wi0PcdoNMJkMjW5\nP65P5H4efO9B7Mvbp3YZRB7HZc2gvLwc06dPx7p162AwGNpln1y+wHEyjlE2Jcg3SIqJZ1rJSxbM\nSxkZ83LJDOSamhpMmzYNDz/8MKZMmQIA6N69Oy5evIjg4GAUFxejR48eAOqPBPLz823PNZlM6Nu3\nb6N9zpkzB5euXMKfv/4zBt00CLGxsbaArYdg3NbedpBvELIPZaPnxZ5S1MNtbmt5OysrC1u3bgUA\nhIaGwi7hZBaLRcyaNUssWbKkwe2LFi0Sr7/+uhBCiD/96U/iqaeeEkII8eWXX4ohQ4aImpoakZ+f\nL/r16yfMZnOD51rLzi/NFxXmCmf/FdzCvn371C6hWUXlReJq1VUhhBBJmUli1cFVKlckd14yYl7K\nqJWXvbd8px8ZHDp0CKmpqYiOjkZcXByA+ktHly9fjhkzZmDLli3o1asXtm3bBgAYPHgwpk6diujo\naOj1emzcuBHe3t5N7ttoMDZ5O2lL8qfJGBM6BrNjZyPIj+eBiNSg2c9A1mDZ1Iz/+OA/cPdNd2N2\n7Gxs/HIjTFdN/ChMIidwy89AJvei09XPQF4wZIHKlRB5Ji5H4SGsJ5VkZF21VCYy5yUj5qWMjHmx\nGZAUuDYRkbo0fc7g4+8/xic/fIK/JPxF7ZKoDZI+ScKIfxuB+wfer3YpRG7Nbc8ZCCGQeyVX7TKo\njf40/k9ql0Dk8TQ9TCTTZ+bKTsYxyqZYhAW/lP2idhmayUsWzEsZGfPSdDPgchTup6auBqHrQtUu\ng8jjaPqcwY+Xf8Td/3M3cn/HoSJ34vv/fFH6bCn8OvipXQqRW1F1CWtn4pGBe5JlsToiT6LpZtDV\nvyuOzz+udhmaIOMYpVVRRRHKzeW2bRnOBcmcl4yYlzIy5qXpZqDX6dGvcz+1y6A2+l3m77Dzu522\nbYOvgUcGRC6m6WZAjrMubyujG8cwb+5yM2osNSpVU0/mvGTEvJSRMS9NzzMg92FdmwgAtj+wXcVK\niDwTjww8hIxjlFZcm0j7mJcyMubFZkBS4NpEROrSfDNYsHMBMs5mqF2G9GQco7Tq3rE7Ovl0UruM\nBmTOS0bMSxkZ89L8OYOquioUVxSrXQa1wfqE9WqXQOTxNH9kYPDhxDNHyDhG2ZzKmkoUVRSpWoOW\n8pIB81JGxry03ww4C9ntfPz9x3gy40m1yyDyKGwGHkLGMcrmyLAchZbykgHzUkbGvNgMSDoyLEdB\n5Gk03wxmxczCf93zX2qXIT0ZxyitCssLUWGusG3L0OBlzktGzEsZGfPSfDMI8AlAkF+Q2mVQGzyR\n8QQyf8i0bcswTETkaTTfDMgxMo5RWt24NlFnv87o6t9VpWrqyZyXjJiXMjLmxWZAUrh+baJOPp1w\n+onTKlZD5HnYDDyEjGOUVlybSPuYlzIy5sVmQFLg2kRE6rL7Gchr1qxpcQcBAQFYsGBBuxbVkus/\nx7PWUot+a/vBtNTUYKiBtGPBzgW4f+D9GP+b8WqXQuTW7H0Gst1m0Lt3byxcuLDZHQsh8Pbbb+Ps\n2bNtr1KBG/9C/q/449IfLqGjd0eX1kFEpCX2mgGEHcnJyfbudugxc+fOFT169BCRkZG225YtWyZC\nQkJEbGysiI2NFRkZGbb7Xn31VTFw4EARGRkpPvnkkyb3eWPZPVb3EL+U/dJirZ5s3759apegyIWy\nC6K0qlS119daXmpjXsqolZe9t3y75wxWr17d7H2FhYUtPgYA5s6di8zMzAa36XQ6JCUl4cSJEzhx\n4gQmTJgAADh27Bh27NiBU6dOITMzEwsWLIDZbLa7f0COSUrUvpJ2J+HDbz9Uuwwij6HoBPLly5ex\nadMm3H333YiNjXXoOSNHjkSXLl0a3S6aOFRJT0/HzJkz4eXlhZCQEERERCA7O7vF12AzaJmM1zXb\nE+QbpOq/qdbyUhvzUkbGvFpsBpWVlXj33Xdx3333ISYmBsnJyXjhhRdgMpna9MIbNmzAwIEDkZiY\niJKSEgBAQUEBjEaj7TFGo9Gh1+GMVfcT5Mv1iYhcyW4zeOihhxAZGYn9+/djyZIlyM3NRZcuXTB6\n9Gh4eXm1+kWffPJJnDt3DmfOnEFYWBgWL16seB9z5sxBSkoKUlJScHfh3bDkWmz3ZWVlNbiOl9tZ\nWLt2rVT1XL+9Y9cOZH6W2eD+S99csjV45iX/NvNStu2qvLKysjBnzhzb+6Vd9k42xMTEiNtuu02s\nXbtWnD9/XgghRGhoqOKTFrm5uQ1OIF+voKBA3HrrrUIIIV566SWxevVq230TJ04UBw8ebPScFsqm\nJsh8gm/SO5PER99+1OC2N7LfEAt3LlSpIrnzkhHzUkZzJ5BzcnLw1ltv4dKlS4iPj8fIkSNRVlaG\nCxcu2O8wLSgq+vVTrN5//31EREQAABISEpCWloba2lqYTCacPn0aw4YNa9NrUT0ZxyitRBPnj3oH\n9kaAT4AK1dSTOS8ZMS9lZMzL7jyDG3355Zd49913sX37dhiNRnzxxRctPuehhx7C/v37cfHiRfTs\n2RPLly/Hvn37cPLkSZjNZvTr1w+bN29GSEgIAODVV19Famoq9Ho91qxZg/HjG09EsnutLGnOpHcm\nYeGQhZh06yS1SyFya62edNYci8WCzz//HHfddVebi2sNNgPlsrKypPxtBAAmvjMRjw95XKpmIHNe\nMmJeyqiVl733TrvDRH/961+bfpJeb2sEzT2GSAmuTUSkLrtHBjfffDNee+21JjuJtcO88MILOHPm\njFOLbO61rXZ8swMZZzOw6b5NLq2D2se8D+chMToRY24ao3YpRG7N3pFBB3tPHDVqFHbu3Gl35+PG\njWt9Ze3EW++NC+VtO6lN6tkyeYvaJRB5PLvNYOvWrS4qo22C/NSdraoFWhzT/ab4GwwIHqDKarRa\nzEtNzEsZGfNyi88zMPgaOFvVDQ3921CUmcvULoPII7hNM+CRgX2y/RbiiCA/9ZYZ0WJeamJeysiY\nl0PN4Mcff3ToNrWovagZOQfXJyJyHYeawbRp0xrdNn369HYvprW6+HfBD0/9oHYZUrt+7RLZXCi/\ngMqayka3q3lkIHNeMmJeysiYl90TyN988w3OnDmD0tJS7NixA0II6HQ6VFRUoKxMnrFcvU6PLv6N\nl8kmbZj9z9lIuj2p0cde8siAyHXsNoPvv/8eO3fuRGlpaYNLTP39/bFpE6/p1xIZxyitmrvueWDw\nQHjpWr86blvInJeMmJcyMubl0HIUX3zxBYYPH+6KehzC5Sjcy7j/HYfk4ckYF6b+nBUid9bqSWdW\nN910E1JSUpCfnw+LxWLb6ZYtnCykFTJe12wlIF9jlzkvGTEvZWTMy6FmkJCQgHHjxmH8+PHQ6+vP\nOasxEYjcF9cmIlKXQ8NEcXFxOHHihCvqcUhThzqJOxLxQPgDmDxgskpVUWvN+mAW5g+aj5H9Rqpd\nCpFba/WqpVYTJ05EZmZmyw9UkV6nx5WqK2qXQa3wv1P/l42ASGUONYO1a9ciISEBfn5+CAwMRGBg\nIAwGg7NrU4SXIdon43XNLSk3l+NcyTlVXluLeamJeSkjY14ONYPy8nJYLBZUVVWhrKwMZWVluHpV\nrhm/XJLC/RwtOIpHdz6qdhlEHsGhZlBbW4tNmzZh2bJlAACTyYTs7GynFqYUm4F9sl254AiDr4Fr\nE2kE81JGxrwcagbz58/H8ePHkZaWBgAwGAxYuHChUwtTis3A/XA1WiLXcagZHDlyBG+88Qb8/f0B\n1DcD63wDWcyLm4d1965TuwxpyThGafVL2S+4VnOt0e1qfk6FzHnJiHkpI2NeDjWDDh06oK6uzrZ9\n+fJl1NbWOq2o1vDt4AvfDr5ql0Gt8Nsdv8Vh0+FGtwf51i9Ux9nmRM7nUDNYtGgRJk+ejKKiIrz4\n4ou444478PTTTzu7NmpHMo5RWjX3Zu/bwRcxvWJQY6lxcUVy5yUj5qWMjHm1OAPZYrEgIiICw4YN\nw6effgoASEtLQ0xMjNOLI8/R3Iz2o48ddXElRJ6pxSMDvV6PxYsXIyYmBsnJyUhOTmYj0CAZxyit\nZF2biBzHvJSRMS+HholGjx6NDz74gGO35DRcm4hIXQ6tTRQQEIDKykp4eXnBz8+v/ok6nWoTz5pa\nX6OmrgbdVnVD6bOlXERPY2a8NwNLb1+K2423q10KkVuztzZRi83AYrHg8OHDmvg8A/9X/HHpD5fQ\n0bujClUREcmtTQvVWc8ZaAEnnjVPxjFKR/xc+jOKKopc/rpazUstzEsZGfNy+jmDefPmoWfPnoiK\nirLdVlJSgrFjxyI6Ohrjx4/HlSu/rja6YsUKhIeHIyoqCrt371b0WkG+6k1SIudYfWg10k6nqV0G\nkdtzqBm8+eabmDZtGnx8fBSvWjp37txGy18vW7YMEydOxMmTJzFhwgTbmkfHjh3Djh07cOrUKWRm\nZmLBggUwm80O/2V4ZNA8Ga9rdkSQnzqr0Wo1L7UwL2VkzEvRqqU1NTWKVy0dOXIkunTp0uC2jIwM\nzJo1CwCQmJiI9PR0AEB6ejpmzpwJLy8vhISEICIiQtGCeGwG7of/pkSu4VAzOHDgQJNfrVVcXIxu\n3boBAIKDg1FUVD8mXFBQAKPRaHuc0WiEyWRyeL8ZD2cgPjS+1XW5MxnHKK3Ol51HVW1Vk/dZl6Rw\nNZnzkhHzUkbGvBz6DORVq1bZLtesqqpCdnY2Bg8ejL179zq1OHvmzJmD0NBQAEDnzp0RGxtrO/Sy\nBs3tX7dzcnKkquf67XEvj8OCwQvw1IynGt1v8DXg7PGzyArMcml9Mucl4zbzkjOvrKwsbN26FQBs\n75fNEq1gMpnEtGnTHH58bm6uiIyMtG3ffPPNori4WAghRFFRkQgLCxNCCPHSSy+J1atX2x43ceJE\ncfDgwUb7a2XZJKk7Nt0hDv7U+N9ZCCEO5B0QSZlJLq6IyD3Ze+90aJjoRn369MHJkydb81QAQEJC\nAlJTUwEAqampSEhIsN2elpaG2tpamEwmnD59GsOGDWv165A2CIhmJwqO7DcSa8avcXFFRJ7HoWGi\np556yva9xWJBTk6Ow+sTPfTQQ9i/fz8uXryIvn374qWXXsLy5csxY8YMbNmyBb169cK2bdsAAIMH\nD8bUqVMRHR0NvV6PjRs3wtvbuxV/LbpRVtavwywykm05Ctnzkg3zUkbGvBxqBoMHD7b95qbX6zF9\n+nSH/yLvvvtuk7dbV0C90fPPP4/nn3/eoX03RYjmf8skOQmueUWkOofWJiovL4e/vz+8vLwAAHV1\ndaiurkbHjuos+9DclOq002n46PuP8Pb9b6tQFbXW1LSpeHHUi4jrHad2KURurU3LUQDAmDFjGkz+\nqqqqwpgxY9qnunbUyacTrlRdafmBJJUPZnzARkCkMoeagdlstn3+MQB06tQJVVVNXxeuJk5Qap71\ncjMt+vL8l6ipc+2nnWk5LzUwL2VkzMvhz0D+6quvbNs5OTnQ61t1IZJTsRm4p8n/mIzCikK1yyBy\naw6dQF63bh0mTpxom7SQl5eHtDT5Fg9jM2iebFcuKKHGAoRazksNzEsZGfNyqBnceeedOHfuHE6e\nPAmdToeoqCj4+vo6uzbF2Azck8HXoMqSFESexOGxHl9fXwwdOhRDhgyRshEAQDf/bihM5nBCU2Qc\no7QquFqA6trqZu8P8nP9kYHMecmIeSkjY17yDfy3gU6nQwe9Qwc7JJHJ/5iMU0Wnmr3f4GtQZRlr\nIk/iVs2AmifjGKWVgP2pLjE9Y9DJu5OLqqknc14yYl7KyJiXQ79G19bWYuvWrcjPz8fy5cthMplw\n/vx5rhtE7cbechT/Oeo/XVgJkWdy6Mhg/vz5OH78uO0KIoPBgIULFzq1MGpfMo5RWsm4HIXMecmI\neSkjY14OHRkcOXIEX3/9NeLi6meJGgwGWCwWpxbWWkIICAjodRwB0xKuJ0WkLocnndXV1dm2L1++\njNraWqcV1RZT06Zi53c71S5DOjKOUVr1CewDHy8ftctoQOa8ZMS8lJExL4eODBYtWoTJkyejqKgI\nL774IrZt24bnnnvO2bW1SoBPAOcaaMzHv/1Y7RKIPJ5DRwaPPfYYXnnlFSxduhQGgwFpaWmYPXu2\ns2trFU48a5qMY5SOulp9FTkXclz6mlrOSw3MSxkZ83KoGfzf//0fbr75ZiQnJyM5ORlhYWE4fPiw\ns2trFTYD9/NN8TeYv3O+2mUQuTWHmsHChQsRGBho2+7YsSMef/xxpxXVFmwGTZNxjNJRavybajkv\nNTAvZWTMy6FmcOOVQ3q9XtoTyAZfA8rN5WqXQe0oyC+IM5CJnMyhZhASEoINGzagpqYGZrMZ69ev\nR58+fZxdW6s8MfQJ/CXhL2qXIR0ZxyitTFdNMNeZm71fjSMDmfOSEfNSRsa8HGoGW7duxe7du9Gt\nWzd0794de/bswd///ndn19YqnF+gPQlvJ+Dbi982e38n706orq12+QfcEHmSFi8traurw9NPP40P\nP/zQFfWQk8g4RmnV0tpEOp0O48LGobquGt5e3i6pSea8ZMS8lJExrxabgZeXF/Lz81FbW4sOHbgi\nKDmHvbWJACDj4QwXVULkmRx6d+/bty/uuOMO3HfffejYsSOA+t/WkpKSnFoctZ+srCwpfxsB5F2b\nSNa8ZMS8lJExL4eaQVhYGMLCwmCxWFBeXg4hhNRrydRaavm5Bhoj888TkSfQCRl/LWuBTqdr9rfJ\nyppKBK8KRuUfK11cFbXW+NTx+PO9f0b/4P5ql0Lk1uy9dzr063N8fHyTO927d2/bKnMC/w7+MNeZ\nUVNX47KTjdQ2nyR+onYJRB7PoWawevVq2/dVVVX44IMPoNfLeQmnTqeDwdeAMnMZuvp3Vbscacg4\nRqnEDyU/wFvvjX6d+7nk9bSel6sxL2VkzMuhZjBkyJAG2yNGjMDtt9/ulILag3WSEpuB+/jbsb+h\ni38XPDviWbVLIXJLDjWDkpIS2/cWiwVffvklCgsL2/zioaGhMBgM8PLygre3N7Kzs1FSUoIZM2ag\nsLAQvXv3RlpaGjp37qxov1yfqDHZfgtRyuBrQGmV65ak0Hpersa8lJExL4eawaBBg2xXe+j1ehiN\nRmzevLnNL67T6ZCVlYWuXX/9DX7ZsmWYOHEilixZgrVr12LZsmVYt26dov129uvM9YncTJBfEM6X\nnVe7DCK35dDAf15eHnJzc5Gbm4tz585h//79GDNmTLsUcOOZ7YyMDMyaNQsAkJiYiPT0dMX73D9n\nP4b3Hd4u9bkLGddCsWppbSLgX0cGLlysTua8ZMS8lJExL4eaQXV1NVauXIlJkyZh0qRJWL16Ncxm\n+/95HaHT6TB27FhER0dj/fr1AIDi4mJ069YNABAcHIyioqJW7Ze0457/uQc/Xv7R7mOCfIM49Efk\nRA4NE82bNw++vr5ISkqCEALvvvsu5s6di7fffrtNL3748GH06NEDxcXFuPfeezFgwACHnztnzhyE\nhoYCADp37ozY2FjbOJy163K74baVLPVYtyvOViD7UDYGTB7Q7OMLLxWif7f+Lq3PSu18tLJtJUs9\nsm9bOfP1srKysHXrVgCwvV82x6FJZxEREfj6669bvK0tVqxYAQDYtGkTjhw5guDgYBQXF+OOO+7A\nDz/80LBoOxMnSHv6r++Pj2Z+xElnRE5m773ToWEivV6PvLw823ZeXl6b5xlUVlaisrJ+lnBFRQUy\nMzMRERGBhIQEpKamAgBSU1ORkJDQptehejf+NiITGRu7zHnJiHkpI2NeDg0TrVy5Erfffjv696//\nze37779v89VEhYWFmDJlCnQ6HSorKzFz5kzcd999GDFiBGbMmIEtW7agV69e2LZtm+J9W4QFNXU1\n8O3g26YayXV4nodIXQ6vTVRZWYnTp09Dp9MhKioKfn5+zq6tWS0NE7114i18/vPn2DJ5iwurotYa\n8/cx2HTfJtzc5Wa1SyFya20eJtq2bRssFguGDRuGXbt24cEHH0R2dna7FtmeOOlMW/bO3stGQKQy\nh5rByy+/jICAABw4cAD79u3D/PnzsWjRImfX1mpsBo3JOEap1P68/bhWc80lr+UOebkS81JGxrwc\nPoEM1E8Ie/TRRzFp0iTU1tY6tbC2YDNwT4/ufBT5V/PVLoPILTnUDEJCQvDEE09g+/btmDhxIsxm\nM5uBxlivQdayIN8gl61P5A55uRLzUkbGvBxqBv/4xz8wevRoZGZmonPnzigpKcFrr73m7NpazeBr\nQI2lRu0yqJ2xyRM5j0PNwGAw4MEHH8Qtt9wCAOjVqxfGjRvn1MLaIsQQgrNPnVW7DKnIOEZplV+a\nj5q6lpt3kJ/rlqSQOS8ZMS9lZMxLzk+oIY9y19a7HDoX4OrF6og8CZuBh5BxjNJKwLEZyEP7DEVw\nx2AnV1NP5rxkxLyUkTEvh2YgEzmbDi3PQF40TN7LmYm0jkcGHkLGMUorrk2kfcxLGRnzcttmUFVb\n5dBJSZID1yYiUpfbNoPJ/5iMvbl71S5DGjKOUVoZDUZ00Ms1YilzXjJiXsrImJdc/wPbUaBPIK9J\n14iD8w7OU7GOAAAOOElEQVSqXQKRx3PbIwNOUGpIxjFKpUqrSnHgpwMueS13yMuVmJcyMubFZkCa\n8XPpz3gi/Qm1yyByS2wGHkLGMUqlXDkD2R3yciXmpYyMebltM+jq3xW1FnkX0yPlOAOZyHncthks\nuX0JXh7zstplSEPGMUqrn0t/dqhxB/oEotxcDouwOL0mmfOSEfNSRsa83PZqItKO4ZuH4/Cjh2E0\nGO0+zkvvhY7eHfHJvnJ8sc/Q6P4bpyo0NXWhpcdYt3NzgQMH2n+/zqpX7f2ePQucOqWdetXe7zff\nAAUFyp4zYwagd+Kv7w5/BrJMdDodXnhBwMcH8PaG7U9fX8DPr/kvLy/n1+aqNN3pde7JCEHq6CMI\nFEaUlQFlZcDVq/V/VlQAdXX1XxYLsEPMxsXU1/Hw/V1huK4f3FhnU3W3x2O4X/eoRYv7ffvttjcD\ne5+BrNlmkJIiYDYDNTWw/VldXf9VVdX469q1+jcT19TH11Hi24khCNuTjSB9CAIDgcBAwGCo/7Nj\nR6BDh/pG7uVV/58hJAR45BHn1kTkjtyyGWiwbFVlZWVJeQUDAPRZ0wdHHzuKEEOI2qXYyJyXjJiX\nMmrlZe+9021PIFuEBZevXVa7DHIQ1yYiUpfbHhmUXCtB2J/DcPkZNgTZ3bbpNnw08yP0DOipdilE\nbs3ee6fbXk1kXZtICMHfOiV35NEjapdA5PHcdpjI28sbvl6+qKypVLsUKch4XXNrfFP8Db69+K3T\nX8dd8nIV5qWMjHm5bTMAuCSFO9p+ZjveOfWO2mUQuR02Aw/hLld6GHwNKK1y/pIU7pKXqzAvZWTM\nS8pmkJmZiaioKISHh2PlypWt3k+IIQTXaq+1Y2WkNoOvAVfNbPBE7U26ZlBdXY3HH38cmZmZOHny\nJN577z2cOHGiVfvaN3sfYnvFtnOF2iTjGKXVT1d+Qp2lzqHHBvkGueTIQOa8ZMS8lJExL+mawZEj\nRxAREYGQkBB06NABM2bMQHp6utplkRMN/dtQXLp2yaHHcuiPyDmkawYmkwl9+/a1bRuNRphMJhUr\ncg8yjlG2Rt+gvhjaZ6jTX8dd8nIV5qWMjHlJN8+gvecEfH/pe9zS9ZZG+5374Vx88sMnjR6/ZfIW\n3Pubexvdzsc77/El10rg6+Xb6DFNGRA8ACvuWYG9uXuRuCOx0f3xN8Xj7fvfbnQ7H8/Hu9PjnUG6\nGciff/45Vq5ciY8//hgAsHr1apjNZvzxj3+0PUan02H27NkIDQ0FAHTu3BmxsbG2bmsdj7tjxB0w\n/JcBmXdmQqfTNbj/avVVDBk+BADwxedfAACGjxyOLn5dcORQ/SQod3r8oexDmPv4XGnquf7xRw8d\nRZBfUKN/P3vb5jozIodFNno9Xy9fnMo+1ebHHz12FA/Pf9hp+3e3x3998ms89uRj0tQj++NzcnKw\nZMmSVu/f0e2srCxs3boVABAaGorly5drZ6G6qqoqDBgwAIcOHUKPHj0wfPhwbNy4EYMGDbI9xtGF\n6r6/9D2G/m0oSp/lp2NxITFlmJcyzEsZGReqk64ZAMCuXbvw9NNPw2KxYNasWXjuueca3O9oM5jz\nzzn4+1d/h1gm3V+RiMjlNLc20YQJEzBhwoQ278fRcWgiIk8n3dVE7WnV2FU488QZtcuQgozXNcuM\neSnDvJSRMS8pjwzaS5BfEIL8gtQug4hIelKeM2gJP+mMiEg5j/ykMyIichybgYeQcYxSZsxLGeal\njIx5sRkQERHPGRAReQqeMyAiIrvYDDyEjGOUMmNeyjAvZWTMi82AiIh4zoCIyFPwnAEREdnFZuAh\nZByjlBnzUoZ5KSNjXmwGRETEcwZERJ6C5wyIiMguNgMPIeMYpcyYlzLMSxkZ82IzICIinjMgIvIU\nPGdARER2sRl4CBnHKGXGvJRhXsrImBebARER8ZwBEZGn4DkDIiKyi83AQ8g4Rikz5qUM81JGxrzY\nDIiIiOcMiIg8Bc8ZEBGRXao0g5SUFBiNRsTFxSEuLg67du2y3bdixQqEh4cjKioKu3fvVqM8tyTj\nGKXMmJcyzEsZGfNSpRnodDokJSXhxIkTOHHiBCZMmAAAOHbsGHbs2IFTp04hMzMTCxYsgNlsVqNE\nt5OTk6N2CZrCvJRhXsrImJdqw0RNjVulp6dj5syZ8PLyQkhICCIiIpCdna1Cde7nypUrapegKcxL\nGealjIx5qdYMNmzYgIEDByIxMRElJSUAgIKCAhiNRttjjEYjTCaTWiUSEXkMpzWDsWPHIioqqtHX\nRx99hCeffBLnzp3DmTNnEBYWhsWLFzurDPqXvLw8tUvQFOalDPNSRsq8hMoKCgrErbfeKoQQ4qWX\nXhKrV6+23Tdx4kRx8ODBRs8JCwsTAPjFL37xi18KvmJiYpp9L+4AFRQVFaFHjx4AgPfffx8REREA\ngISEBCxcuBBLlizBhQsXcPr0aQwbNqzR83/44QeX1ktE5O5UaQa///3vcfLkSZjNZvTr1w+bN28G\nAAwePBhTp05FdHQ09Ho9Nm7cCG9vbzVKJCLyKJqcgUxERO1LczOQMzMzERUVhfDwcKxcuVLtcqQX\nGhqK6OhoxMXFNTnk5unmzZuHnj17IioqynZbSUkJxo4di+joaIwfP17KywDV0lReN04izczMVLFC\nueTn52PUqFGIiopC//79sWrVKgCS/oy19wlhZ6qqqhKhoaHCZDKJmpoaMWTIEHH8+HG1y5JaaGio\nuHTpktplSOvAgQPi+PHjIjIy0nbbokWLxOuvvy6EEOL1118XixcvVqs86TSVV0pKilizZo2KVcnr\nwoUL4tSpU0IIIcrKysQtt9wicnJypPwZ09SRwZEjRxAREYGQkBB06NABM2bMQHp6utplSU9wJLBZ\nI0eORJcuXRrclpGRgVmzZgEAEhMT+TN2nabyAvgz1pyePXsiMjISABAQEIDo6GgUFBRI+TOmqWZg\nMpnQt29f2zYnpbVMp9PZDkfXr1+vdjmaUFxcjG7dugEAgoODUVRUpHJF8mtqEik1lJeXh6NHj2LE\niBFS/oxpqhnodDq1S9Ccw4cP4/jx49izZw/eeustfPbZZ2qXRG6Gk0hbVl5ejunTp2PdunUwGAxq\nl9MkTTUDo9GI/Px823Z+fn6DIwVqzDqfo3v37pg+fTqOHj2qckXy6969Oy5evAig/ijBmiE1LTg4\nGDqdDjqdDgsWLODP2A1qamowbdo0PPzww5gyZQoAOX/GNNUMhg4ditOnT6OgoAA1NTXYtm2bbcVT\naqyyshKVlZUAgIqKCmRmZtom+FHzEhISkJqaCgBITU1FQkKCyhXJ7fohjusnkVL9uZRHHnkE4eHh\nWLp0qe12KX/GVD6BrVhGRoaIiIgQAwcOFK+++qra5Ujtxx9/FNHR0SImJkbccsst4oUXXlC7JOnM\nnDlT9O7dW3h7ewuj0Si2bNkiLl26JO655x4RFRUlxo4dKy5fvqx2mdK4Ma/NmzeLxMREER0dLQYM\nGCDGjx8vTCaT2mVK4/PPPxc6nU7ExMSI2NhYERsbK3bt2iXlzxgnnRERkbaGiYiIyDnYDIiIiM2A\niIjYDIiICGwGREQENgMiIgKbARERgc2A3FhpaSn++7//27Z9/vx5PPDAA+3+Otb1/FNSUtp93y2J\nj49HYGAgjh075vLXJvfCZkBu6/Lly3jjjTds23369MH27dvb/XV0Oh2SkpJUaQb79u3DkCFDuIgj\ntRmbAbmtZ599FufOnUNcXByeeeYZ/PTTT7ZP6Nq6dSumTJmCCRMm4KabbsL69evx2muvYciQIRg0\naJBtEbHvvvsO8fHxiImJwW233Yavv/66yde6fiJ/SkoKZs+ejfj4eISGhmLHjh1ITk5GdHQ07r77\nblRXVwMAnn76aURERCA2NhZJSUkAgAsXLmDSpEmIiYlBbGws9u/fDwAoKyvDzJkzERERgZiYGLz3\n3ntOy408lMrLYRA5TV5eXoNP5MrNzbVtv/XWW+I3v/mNuHbtmiguLhYGg0Fs2rRJCCHE0qVLxerV\nq4UQQgwfPlycPXtWCCHE4cOHxZ133tnodVJSUsRrr71m2162bJkYNWqUsFgs4quvvhL+/v5i9+7d\nQgghpk6dKrZv3y4KCwtFRESE7Tnl5eW2+w8ePCiEEOKnn34SYWFhQgghFi9eLJKTk22PLy0ttX0/\nevRocezYsdbGRCSEEKKD2s2IyFlEC8tuxcfHw8/PD35+fujcubNt5cioqCjk5OTg0qVLOH78eIPz\nDNeuXWvxdXU6He69917odDpERkbCYrFg7Nixtn3n5+ejW7du8Pb2xiOPPIKEhAT8+7//OwDgs88+\nQ25urm1f1dXVuHr1Kvbs2YMPP/zQdrusa+KTdrEZkMfy9fW1fa/X623ber0eFosFQgh0794dJ06c\nULxvHx8f2768vb0bvI7FYoGXlxeOHDmCPXv24P3338eGDRuwd+9e6HQ6HD16FB06NP6v2VJzI2oL\nnjMgt+Xv72/7PAclrG+6wcHB6N69Oz7++GPb7c2dM1CqoqICZWVlmDBhAtasWYPjx48DAO655x68\n+eabtsdZX2/s2LHYuHGj7farV6+2Sx1EVmwG5LZ69uyJ2NhYhIeH45lnnrF9GheABt9bt6//3rqd\nlpaGNWvWIDo6GpGRkQ6fuG1u39btq1ev4t5770VcXBxGjhyJ119/HQDw5ptv4tNPP0VUVBQiIyOx\nbt06AMDLL7+Mn3/+GeHh4YiNjcWePXtakQhR8/h5BkRttHz5cgQEBOD3v/+9Kq8fHx+PNWvWYNCg\nQaq8PrkHHhkQtVFAQAD++te/qjbpLDc3t8F5CaLW4JEBERHxyICIiNgMiIgIbAZERAQ2AyIiApsB\nEREB+P84YbaUtpWtuAAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x2986d90>"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 10.6, Page number: 522"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from __future__ import division\n",
+ "%pylab inline\n",
+ "from math import *\n",
+ "\n",
+ "#Variable declaration:\n",
+ "w=2*pi*60 #Angular freq of voltage(rad/sec)\n",
+ "Vo=230*sqrt(2) #volt\n",
+ "R=5.6 #Resistance(ohm)\n",
+ "\n",
+ "#Calculations:\n",
+ "Ls=[0]*101\n",
+ "tc=[0]*101\n",
+ "Idc=[0]*101\n",
+ "for n in range(1,101,1):\n",
+ " Ls[n-1]=n*10**-3\n",
+ " Idc[n-1]=2*Vo/(pi*R+2*w*Ls[n-1])\n",
+ " tc[n-1]=(1/w)*acos(1-(2*Idc[n-1]*w*Ls[n-1])/Vo)\n",
+ "\n",
+ "#Results:\n",
+ "plot(1000*np.array(Ls),Idc,'g.')\n",
+ "xlabel('Commutating inductance Ls [mH]')\n",
+ "ylabel('Idc [A]')\n",
+ "title('Load current,Idc vs Commutating inductance,Ls')\n",
+ "show()\n",
+ "plot(1000*np.array(Ls),1000*np.array(tc),'g.')\n",
+ "xlabel('Commutating inductance L [mH]')\n",
+ "ylabel('tc [msec]')\n",
+ "title('Commutating Inductance,Ls vs time,tc')\n",
+ "show()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Populating the interactive namespace from numpy and matplotlib\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stderr",
+ "text": [
+ "WARNING: pylab import has clobbered these variables: ['fmod', 'sinh', 'trunc', 'tan', 'gamma', 'cosh', 'radians', 'modf', 'expm1', 'ldexp', 'linalg', 'random', 'frexp', 'ceil', 'isnan', 'copysign', 'cos', 'degrees', 'tanh', 'fabs', 'sqrt', 'hypot', 'power', 'log', 'log10', 'info', 'log1p', 'floor', 'fft', 'pi', 'exp', 'isinf', 'e', 'sin']\n",
+ "`%pylab --no-import-all` prevents importing * from pylab and numpy\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEZCAYAAACXRVJOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVOX+B/DPIKAog8CwCIJAGMoquKUFOgaGLJq54YaS\nll1LK7XlVr8EtCSXMrtlqZndQhJKK/cydRTFLVPR6pqaGGiyiorIIjy/P5TTsAyCMszAfN6vly9n\nhjnP+Z5nlu882zkyIYQAEREZPCNdB0BERPqBCYGIiAAwIRAR0R1MCEREBIAJgYiI7mBCICIiAEwI\nWhUXF4fo6Ghdh9HsPv/8cwQFBek6DIOUkJCAp59+Witly+VyZGRk3NO2SqUSq1evbtqAqMkZbEJw\ndXXFzp07tboPmUym1fK1JSYmBm+++abGv2dkZMDIyAiVlZXNGFXDXbt2DS+++CJcXFwgl8vh5OSE\nf/3rX8jLy9N1aPVq7A8IlUoFZ2fnao+99tprWLVqVVOHBgC4fv06XF1d72lbmUx235+Huo5XH7Sm\nZGewCaEp3qD64NatW7Ueq6io0EEk+qGsrAzBwcG4cOEC9u7di+vXr+PYsWNwdnbGkSNHdB0etUKt\n5bsEMOCEoElJSQmefvppWFtbQ6FQ4JlnnkFpaSkAoLCwEKGhobCxsYFcLkdISAguXLggbXv69Gn0\n6dMHFhYWeOyxx+76izQpKQmenp6Qy+Vwc3PD9u3bAdRuvaj/cqz6df7ZZ5/Bzc0NISEh+O9//4tH\nHnkEs2fPhp2dHebNm4eSkhJMnz4ddnZ2sLKywuTJk3Hz5k0At39pOTk54b333oODgwNsbGzwySef\nAABWrlyJpKQkLFq0CHK5HI8//vhd6yw7OxshISGQy+Xo168fzp07V+3vR48eRVBQEORyOezs7PDW\nW2/VKuPQoUNwcHCA+sL5b7/9Fj169AAA7N+/H35+fujQoQPs7Ozw4osv1hnLF198gZycHKSkpMDF\nxQUAYGtrizfeeANhYWEAgGPHjuGhhx6CXC5H165dkZycLG0fExODZ599FhEREbCwsEBQUBAuX76M\nF154AdbW1njggQdw+PBh6fmurq5YsmQJ/P39IZfLMXXqVGRnZyMsLAxyuRyBgYEoKCiQ6r3mL9yq\n13r79u1ISEhAcnIy5HI5AgICAACffvopunXrBnNzczg5OeH9998HANy4cQNhYWG4dOkS5HI5LCws\n8Pfff9f5Xvniiy/g6uoKCwsLzJ07V9r3jRs3MHr0aMjlcnh7e2PRokX1/gI3MjLCn3/+KdXTc889\nh6FDh0Iul8Pf3x9//PGH9NyNGzfCxcUF1tbWmDlzZrXXtWZLqGaLMzc3F2PHjoWVlRUsLS0xbNgw\nFBcX1zrey5cv49ChQ+jTpw86duwIa2trPPXUU9LntSrmFStWSHX41FNPVYtl6dKlcHNzg1wuR/fu\n3fHLL79IMYWHh8PS0hIODg5YuHChxnrRpKioCFFRUejYsSM6duyIXr16IScnp9HlNCthoFxdXcXO\nnTtrPT5nzhwxYMAAUVhYKAoLC4VSqRRz5swRQghRUFAgNm/eLG7duiWKi4vFxIkTRWhoqLRtjx49\nxGuvvSYqKyvF4cOHRceOHUV0dHSd+9+1a5ewsrISqampQgghsrOzxenTp+uMLS4uTkycOFEIIcT5\n8+eFTCYT06ZNE6WlpaKkpESsWbNGGBsbi08//VQIIURJSYl4+umnxYgRI8S1a9dEcXGxGD58uHjh\nhReEEELs3r1bGBsbi/nz54vKykqxdetWYWpqKgoKCoQQQsTExIg333xTY91VxVBRUSGEEGLYsGEi\nOjpalJWViTNnzghnZ2cRFBQkhBAiLy9PWFtbi+XLl4uKigpRXFwsjh49Wme57u7uYseOHdL9UaNG\niYULFwohhOjZs6dITEyUju/nn3+us4yoqCgxffp0jbGXlJQIR0dH8d577wkhhEhLSxNyuVwcP35c\nCCHE5MmThY2NjTh16pQoLS0VgwcPFi4uLmLdunVCCCHmzp0rHn74Yak8V1dX8cgjj4iCggJx8eJF\n0alTJxEQECB+++03afvXX39dqncnJ6dq8ai/1nFxcbXeLz/88IPIysqSYjU3NxcHDhwQQgihUqlq\nlVfXe+XZZ58V5eXl4sSJE8LU1FScPHlSCCHE888/Lx577DFRVFQkcnJyRM+ePYWzs7PGupPJZOLc\nuXNSPSkUCnHixAlx69YtMWHCBDFixAghhBAXL14U5ubmYvPmzUIIIZYvXy6MjY3F6tWra8WoHmfV\n+2ngwIEiJiZGFBUViYqKCpGWlqbxeI8dOyZ++eUXab++vr4iISGhWszDhw8XN27cEH/99ZewtbUV\nGzduFEIIsWbNGuHi4iJOnTolhBAiIyND/PXXX+LWrVuie/fuIiEhQVRUVIjMzEzxwAMPiG+//bbO\nelEqldKxqfvggw/E0KFDxc2bN4UQQpw8eVJcu3ZNY/3qA7YQali3bh3mzp0rZfW5c+di7dq1AAAr\nKytERESgTZs2MDMzw6uvvoq9e/cCAP744w/873//Q2xsLGQyGfr06YMnnnii2q8RdWvWrMEzzzyD\nwMBAAICdnR08PDzqfG5dZcydOxempqZo27YtAMDFxQVTp04FcLsJ++WXX2Lx4sWQy+UwMzPDK6+8\ngpSUFGl7ExMTvP7665DJZAgLC4OlpSV+++23evdZl5s3b2Lr1q2Ij4+HiYkJunbtiqlTp0rbf//9\n9/Dw8MD06dNhZGQEMzMz9OzZs86yxo0bh6+++grA7f7qbdu2Ydy4cQAAc3NznD17Fvn5+Wjbti16\n9epVZxkFBQWwtbXVGO/evXthZGSEWbNmAQD69++PJ554AuvWrZOeM2LECHh7e8PU1BTDhw9Hhw4d\nEBUVBQAYM2YMTpw4Ua3M5557DlZWVnB0dERQUBD69+8PT09Pafuaz9dECFGr3h977DF07txZinXI\nkCHSe66u16iux9544w0YGxvDz88P/v7+UjzffPMNXnvtNXTo0AG2trZ44YUXGvy6y2QyjBgxAn5+\nfmjTpg0mTJgglbt582b07NkTERERAIDp06fDycmp3hir/Pnnn0hLS8N//vMfdOjQAUZGRujfv7/G\n7fz9/aXWlKOjI6ZNmybVT5WXX34Z7du3h7OzMwYNGoT09HQAwGeffYbXXnsN3t7eAG5/hpydnbFv\n3z4UFxfj3//+N4yMjODk5ISnnnqq2uenIczNzZGfn4+zZ88CAHx8fCCXyxtVRnNjQqghOzsbXbp0\nke47OztLzbyrV68iJiYGnTt3hqWlJR555BGUlpZCCIGcnBxYW1tLX9AAqn0Iarp8+TIeeOCBBsVU\nV/+kg4ODxvu5ubkoLS1Fr169YGVlBSsrK4SFheHatWvScxQKBYyM/nn527dvX62p3VD5+fmoqKio\ndqxVX2AA8Pfff8PNza1BZY0fPx4bNmxAWVkZNmzYgF69ekldGCtXrsRvv/0GT09P9OzZE999912d\nZSgUCuTm5mrcR3Z2dq1ukS5dukivsUwmg52dnfQ3U1PTavfbtm1bq57s7e2r/V39vqmp6T3Va5Vv\nv/0WvXr1gqWlJaysrLBx40bcuHGjUWV06tRJuq3+Oufk5FR7rdRvN4T6cZqZmWksF6j/s6Du77//\nho2NDczNzRv0/F9//RWPPfYYbGxsYGlpiVdffbVW/Wg6fk2fwaysLFy6dEn67FhZWSEhIQGFhYUN\niqlKdHQ0goODMWbMGDg4OGD27NkoKytrVBnNjQmhBnt7+2rjApmZmdIXwuLFi3Hx4kWcOHEChYWF\n2L9/v/Srzs7ODgUFBSgpKam2rSaOjo5Sf2xNpqam1d7UjZ0do1AoYGJigjNnzuDKlSu4cuUKCgsL\nUVRU1KDtGzNAplAo0KZNG2RlZUmPqd/u3Lkzzp8/36CyPD094eLigm3btiEpKQnjx4+X/tatWzck\nJycjJycHb775JqKiouo8npCQEGzdulXjB8/e3r7W6/LXX39V+3K7X5p+AZuamqK4uFi6X1lZiStX\nrkj3a9Z7UVERxo0bh3nz5qGgoABXrlzBsGHDpPLrep0a89rZ2dnh4sWL0n311+1+2NvbVyu3Ztk1\n6yE/P1+67ejoiLy8vDpf27qO7ZlnnkGfPn2QlZWFwsJCLFy4sMGz3zR9Bh0cHODh4SF9dq5cuYJr\n165h69atDSq3irGxMebNm4fffvsNhw8fxg8//IA1a9Y0qozmZtAJoaysDCUlJdK/W7duISoqCm+9\n9RYKCwtx9epVzJ8/X/piKi4uhomJCeRyOa5du4b58+dLZXl4eKBbt2546623UFlZiZ9//hnff/+9\nxg9oTEwMVq5cibS0NAC3f7meOXMGANCjRw+sW7cOFRUVSE9PxzfffNOoD3q7du0QHR2NOXPmSL9q\nLl++3OBpttbW1tWSYlW8Tz75ZK3nmpmZITw8HPHx8SgrK8O5c+ewZs0aKd5hw4bh7NmzWLFiBSoq\nKlBcXCwN3NVl/PjxeP/995GamorRo0dLjycnJ0tfnnK5HEZGRnXWSXR0NOzs7DB27FjpGPLz87Fg\nwQJs27YNAwYMQGVlJZYtWwYhBA4ePIjvvvsOY8aMAdDwrrJ74enpiaKiImzduhWVlZVYtGhRtcSv\nUCiQmZkpxVBeXo7y8nLpeHfu3IkffvhBer61tTWuXLmC69evS481Jv5Ro0bhnXfeQVFREXJzc/Hh\nhx82+H1W337Cw8Nx9OhR6Qv0k08+qZYQ/P39sXfvXmRmZuLGjRt45513pL+5ubnhkUcewQsvvIAb\nN26goqIC+/fv13i8xcXFaNeuHdq2bYs///wTH3/88V3jror9ySefxMKFC6Wu0oyMDGRmZmLgwIGo\nrKzEhx9+iLKyMgghcPr0ael9q1KpqrWugduvlfp3SXl5Ofbu3Yvff/8dANChQweYmJjU2k7f6Hd0\nWhYeHo727dtL/+bNm4e3334bXbt2xQMPPAA3Nze4u7tjwYIFAIBZs2bh6tWrsLKyQr9+/RAcHFzt\nA5ScnIwffvgBlpaWeP311+udU65UKvHBBx8gJiYGcrkc/fv3l36tvP322/j111/RsWNHvP7661L/\ndZWaH9q6pr19+OGHsLKygqenJywsLDBw4ECcOnVKYxnqpk6dip9//hkWFhYYMWIEgNutnarxjprb\nr1ixApmZmVAoFJgwYQImT54s/c3a2hrbt2/HF198AUtLS7i5uVX7Uqtp3Lhx2Lt3L4KDg2FtbS09\nXjUW0aFDB8yYMQNffPEFOnToUGt7U1NT/PTTT3BxcZFmNvXo0QMXL17EQw89hLZt22LTpk1ISkqC\nhYUFJkyYgE8++QT+/v511mVddXu3L01N21tZWWHZsmWIjo6Go6MjTExMqnVfjR49Gjdv3kTHjh3R\nu3dvWFlZYfHixRgxYgSsra3x3//+F5GRkdLzfX19MWzYMDg5OcHa2hp///13nfFr8vbbb8Pc3BwO\nDg549NFHMXLkyHq/sBpaL507d0ZiYiKmT58Oa2tr/Prrr9XeO+Hh4Xj88cfRvXt39OrVC6GhodXK\nSklJwfXr19G5c2fY2NhgyZIldR7v5cuXsXjxYnz++eewsLBATEwMRo0aVe/xq8c9efJkzJgxQ5oR\nFh4ejvz8fLRp0wY//PADdu7cCXt7e1haWmLSpEnSD5LMzEw88sgj1cqdPn16te+SqVOnIisrC8OG\nDYO5uTkefPBB9O/fHzExMRrrVx/IhDZ/EuH2nPjevXvDyckJmzZtQkFBAaKiopCdnQ0HBwckJyfD\n0tJSmyHQfSorK0NAQADS09PRpk0bXYdDWrJ69WqsWrUKBw8e1HUoeu3pp5/GmDFjMHjwYF2H0uS0\n3kJYtmwZvLy8pKwcGxuLiIgIpKenIywsDLGxsdoOge6Tqakpfv31VyaDVuby5cvSmoqMjAwsWbKk\nQetODN2qVataZTIAtJwQsrKysHXr1mqLQbZu3Sp1pUycOBFbtmzRZghEpEFZWRkmT54Mc3Nz9OrV\nC4MGDcJLL72k67BIh4y1WfisWbOwePHiatMdc3NzoVAoAAA2Njb6v3KPqJXq0qWLNOhJBGixhbB5\n82bY2dkhICBAqzM3iIioaWithZCWloaNGzdi69atKCkpwbVr1xAdHQ1bW1vk5eXBxsYGubm51Rb9\nqOvatWutc+IQEVH93N3dpdXRjdYc58dQqVQiMjJSCCHEjBkzxNKlS4UQQrz33nti5syZdW7TTKG1\nCLGxsboOQW+wLv7BuvgH6+If9/PdqdUxBHVVs4zi4+MRFRWFzz77DJ06dWr0+UGIiEg7miUhDBw4\nEAMHDgRwe6HSjh07mmO3RETUCAa9UrmlUCqVug5Bb7Au/sG6+AfromlofaXyvZLJZJydRETUSPfz\n3ckWAhERAWBCICKiO5gQiIgIABMCERHdwYRAREQAmBCIiOgOJgQiIgLAhEBERHcwIRAREQAmBCIi\nuoMJgYiIADAhEBHRHUwIREQEgAmBiIjuYEIgIiIATAhERHQHEwIREQHQckIoKSlBnz59EBAQAA8P\nD8yaNQsAEBcXBycnJwQEBCAgIADbt2/XZhhERNQAWr+E5s2bN2FmZoZbt24hMDAQCQkJ2Lt3L+Ry\nOWbPnq05sDuXgZu2aRr+yP8D7U3aI2lkEizbWWozXCKiFk2vL6FpZmYGACgrK0NFRQXs7e0BoMEB\n/5H/B/Zc2INtZ7dh2qZpWouTiMjQaT0hVFZWwt/fH/b29hg0aBC8vLwAAB999BE8PT0xceJEFBQU\naNy+vUl7AEBvx95YOXSltsMlIjJYWu8yqnL16lWEhobinXfegY+PDxQKBYDb4wnnzp1DYmJi9cDu\nNHsKSwoxbdM0rBy6kt1FRER3cT9dRsZNHItGHTt2REREBA4ePAilUik9/swzz2DQoEF1bhMXFwcA\n8IIXjtser7YdEREBKpUKKpWqScrSagshPz8fpqamkMvluHnzJkJDQ/Hqq6+ib9++sLW1BQD85z//\nwe7du7Fhw4bqgd1HliMiMlR620K4dOkSJk2aBCEESkpKMH78eERERCA6Ohrp6ekoKyuDi4sLVq9e\nrc0wiIioAZptDKGx2EIgImo8vW0hNDWuSSAi0p4WdeoKrkkgItKeFpUQuCaBiEh7WtQYAtckEBHV\n737GEFpUQiAiovrp9bmMiIioZWBCICIiAC1s2mlNnIZKRNR0WnQLgdNQiYiaTotOCJyGSkTUdFr0\nLCNOQyUiqo7TTomICACnnRIRURNgQiAiIgAtfNqpOk5BJSK6P62mhcApqERE96fVJAROQSUiuj+t\nZpYRp6ASEXHaKRER3aGX005LSkrQp08fBAQEwMPDA7NmzQIAFBQUYPDgwfDz80NoaCgKCwu1FQIR\nETWCVlsIN2/ehJmZGW7duoXAwEAkJCRgw4YNcHd3x4svvoj3338f58+fx7Jly2oHdp8tBM46IiJD\npJctBAAwMzMDAJSVlaGiogJ2dnbYunUroqOjAQATJ07Eli1btLJvzjoiImocrSaEyspK+Pv7w97e\nHoMGDYK3tzdyc3OhUCgAADY2NsjJydHKvjnriIiocbS6MM3IyAjHjx/H1atXERoait27dzdq+7i4\nOOm2UqmEUqls8LZJI5M464iIWj2VSgWVStUkZTXbLKP58+fDxMQEq1atwqFDh2BjY4Pc3Fz0798f\nZ8+erR0YZxkRETWaXo4h5Ofn4/r16wBuDy7v2LEDvr6+CA8PR2JiIgAgMTER4eHh2gqBiIgaQWst\nhJMnT2LSpEkQQqCkpATjx4/H3LlzUVBQgKioKGRnZ6NTp05ISUmBpWXtLp2mbCFwxhERGQouTLsL\n5edK7LmwBwAw2ms0UkanNEm5RET6Ri+7jPQJZxwREd2dQbQQeJ4jIjIU7DIiIiIA9/fd2WoukNNQ\nHGAmIqqbQYwhqOMpLYiI6mZwCYEDzEREdTO4MQQOMBNRa8ZBZSIiAsBB5fvCQWYiotsMbgyhJg4y\nExHdZvAJgYPMRES3GfwYAgeZiag14aAyEREB4KByk+EAMxEZMoMfQ1DHAWYiMmRMCGo4wExEhoxj\nCGo4wExELR0HlbWA4wlE1BLximlawPEEIjI0Wk0ImZmZGDBgAHx9fdGtWzcsWrQIABAXFwcnJycE\nBAQgICAA27dv12YY94TjCURkaLTaZZSdnY3c3Fz4+PigqKgIPXv2xNdff43vvvsOcrkcs2fP1hyY\njruMOJ5ARC2R3q5DsLe3h729PQDA3Nwcfn5+uHjxIgDo/aIzy3aWSBmdouswiIiaTbONIWRkZODI\nkSMICgoCAHz00Ufw9PTExIkTUVBQ0Fxh3LNpm6ZB+bkS4WvDUVhSqOtwiIiaXLPMMioqKsKgQYPw\nxhtvYPjw4cjLy4NCoQBwezzh3LlzSExMrB6YTIbY2FjpvlKphFKp1HaoGik/V2LPhT0AgNFeo9l6\nICK9oFKpoFKppPvx8fH6O+20vLwckZGRGDJkCGbNmlXr75cuXcKgQYNw+vTp6oHp2bmMwteGY9vZ\nbejt2Bs7ondwXIGI9JLeTjsVQmDq1Knw8vKqlgxycnKk2+vXr4e3t7c2w2gSSSOTMNprNJMBEbVa\nWm0h7Nu3DwMGDICfnx9kMhkAYMGCBUhKSkJ6ejrKysrg4uKC1atXo3PnztUD07MWgjouWiMifcWV\nys2M4wlEpK/0tsuoteKiNSJqjdhCuAfqi9Ze2fEKu4+ISG+wy0iH2H1ERPqEXUY6xO4jImot2EK4\nTzznERHpE3YZ6RFOSSUiXWKXkR7hdRSIqKViQmhiHFMgopaKXUZNjFNSiUiXtDaG4Ovre9cCbG1t\nsWvXrnvaeX1aakJQxympRNTctHaBnIqKCmzbtq3ewocNG3ZPOzYE7D4iopak3hbCvn37EBgYWG8B\nqamp0kVvmjSwVtBCYPcRETW3Zp92+tdffyE5ORkvv/zyPe20IVpDQlDH7iMiag7NMu00JycHH330\nEQIDA6FUKnH58uV72qGhYvcREem7elsI165dw4YNG/DVV1/h7NmzGD58ONatW4eLFy9qP7BW1kKo\nuaKZC9iISBu01mVkZmaGwYMH4/XXX0e/fv0AAG5ubjh//vy9RdqYwFpZQqiJXUhEpA1a6zJKSEhA\ndnY2nn32Wbzzzjs4d+7cPe2EamMXEhHpmwYNKp87dw7r1q3DunXrcObMGcTHx+OJJ56Ah4eH9gJr\n5S0EzkAiIm1o1llGJ0+exFdffYXk5GStthhae0JQx+4jImoqzXpyO19fXyxYsKBBySAzMxMDBgyA\nr68vunXrhkWLFgEACgoKMHjwYPj5+SE0NBSFhYWNj7wVYfcREemDehNCZGTkXQuo7zmmpqZYvnw5\nTp48iaNHj+LTTz/FiRMnEBsbi4iICKSnpyMsLAyxsbGNj7wVSRqZhNFeo7Ejegde2fEKlJ8rEb42\nHIUlhp0oiah51dtl1LFjRwwYMKDeAk6dOtXgWUejRo3ClClTMHPmTBw+fBgKhQJ5eXno168fzp49\nWz0wA+oyUsfuIyK6H1o7l9H3339/1wLatm3boB1lZGTgyJEj+Oyzz5CbmwuFQgEAsLGxQU5OToPK\nMATsPiIiXak3ISiVyibZSVFREUaNGoVly5bBwsKiwdvFxcVVi6Wp4tFnSSOTuICNiBpMpVJBpVI1\nSVlavx5CeXk5IiMjMWTIEMyaNQsA4O7ujkOHDsHGxga5ubno378/u4w0YBcSETWG3l5CUwiBqVOn\nwsvLS0oGABAeHo7ExEQAQGJiIsLDw7UZRoum3oVkZmLGAWci0poGtRCKiopgZmaGNm3aALh9nYSS\nkhJ06NCh3u327duHAQMGwM/PDzKZDMDt1c99+/ZFVFQUsrOz0alTJ6SkpMDSsnpXCFsIt6kvYBu+\nbjhbC0RUL60vTOvTpw/27t0LMzMzAMCNGzcQHByMgwcP3tNOGxQYE0It4WvDse3sNvR27I0d0Ts4\nnkBEtWi9y6i8vFxKBgDQoUMHlJSU3NMO6d5xvQIRaVODEoKxsTFOnDgh3T9+/DiMjLQ6/EB1sGxn\niZTRKbBsZ4k/8v/Angt7sO3sNkzbNE3XoRFRK1DvtNMqy5YtQ0REBFxdXQHcXlOQnJyszbjoLmqu\nV+D0VCK6Xw2edlpaWor09HTIZDL4+fnB1NRUu4FxDKFeNS+4w+mpRARocVB5/fr1UuHq/1cZMWLE\nPe20QYExITSK+oCzl60XLhReYGuByABpLSHExMRAJpMhJycHaWlpePTRRwEAu3fvxsMPP4zNmzff\nW8QNCYwJoVE4PZWIAC2ey+jzzz8HAAwZMgSnT5+GnZ0dACA3NxeTJk26px2SdlQNOAN1L2Zja4GI\n7qZBU4XOnz8vJQMAsLW1xZ9//qm1oOj+qE9PvVB4gbORiKhBGjTLaMCAAQgLC0NUVBSEEPj666/v\nelps0h1NrQXORiKi+jRollFlZSWSk5ORmpoKIyMjBAYGIioqqtoAc5MHxjGEJsHZSESGpVmvqdxc\nmBC0g7ORiFo3rSUEc3Nzja0AmUyGa9eu3dNOGxQYE4JWcDYSUeumtVlGRUVF91Qo6S+OLxCRJjwh\nkQFTn43E8yMREROCAVM/WR7Ai/EQGTomBJJw/QKRYWNCIIl6i4GtBSLDw2mnVKf6ZiNVjTdw8JlI\n/2j9imlkeDS1FlYOXcnBZ6JWSqsJYcqUKbC3t4evr6/0WFxcHJycnBAQEICAgABs375dmyFQE6g5\nG4ndSUStk1a7jFJTU2Fubo5Jkybh5MmTAID4+HjI5XLMnj27/sDYZaS3NHUnuVm6oUvHLuxKItIh\nve0yCgoKgpWVVa3H+UXfsmnqTnKUO7IriagF08kYwkcffQRPT09MnDgRBQUFugiBmoh6d5JFWwsA\n1Vc+szuJqOXQ+iyjjIwMDB06VOoyysvLg0KhAHB7POHcuXNITEysHZhMhtjYWOm+UqmEUqnUZqh0\nn+o7syq7k4i0Q6VSQaVSSffj4+P192ynNROCukuXLmHQoEE4ffp07cA4htDiqZ9ZtW2bttifuR8A\nT6RHpE3gLVjbAAATsklEQVR6O4ZQl5ycHOn2+vXr4e3t3dwhUDPR1J3EmUlE+kmrLYRx48Zhz549\nyMvLg729PeLj47F7926kp6ejrKwMLi4uWL16NTp37lw7MLYQWhUudCNqHrxADrUo6l1JO6J3cOoq\nURNqUV1GRPUtdOPUVSLdYQuBdE69O2n8+vG8xCfRfWCXEbUaHGsguj9MCNQqcayBqPG0dk1lIl1K\nGplUbaGb+lhD2zZtpeTQc0VPJgeiJsAWArUYmsYaai56Y9cSGTJ2GZHB0ZQc2LVEho4JgQxazXMo\naTplBpMDGQImBCI17FoiQ8aEQKQBu5bI0DAhEDUAu5bIEDAhEN0Ddi1Ra8SEQHSf2LVErQUTAlET\namjXElsPpI+YEIi0iK0HakmYEIiaCQemSd8xIRDpyL0MTNt2sOVpvUlrmBCI9EBDu5ZszGyQdzMP\nAFsS1PSYEIj0TH1dS5btLPHTnz9xkJq0Qm8TwpQpU7BlyxbY2dnh5MmTAICCggJERUUhOzsbDg4O\nSE5OhqVl7Tc9EwK1JuoJAkCjB6nZzUQNpbcJITU1Febm5pg0aZKUEGbOnAl3d3e8+OKLeP/993H+\n/HksW7asdmBMCGQAGjpIrd7NxJYE1UdvEwIAZGRkYOjQoVJCcHd3x+HDh6FQKJCXl4d+/frh7Nmz\ntQNjQiADpGkcQr2biS0Jqk+LumJabm4uFAoFAMDGxgY5OTnNHQKR3rJsZ4mU0SkAql8xDkCDrh6n\n3pKYtmkaWxLUKHp9Cc24uDjptlKphFKp1FksRM1NPTkAqHZbPVmMXz8eAGq1JFYOXVmtJaF+qVG2\nJFoPlUoFlUrVJGXppMvo0KFDsLGxQW5uLvr3788uI6L7oGnAmmMShqlFjSGoDyovXboU58+fxwcf\nfFA7MCYEovvGMQnDo7cJYdy4cdizZw/y8vJgb2+PefPm4fHHH5emnXbq1AkpKSmcdkrUDJq6JcFk\noZ/0NiHcDyYEouZzLy2J+lZcv7LjFXZB6QgTAhE1mYa2JOpbcZ1zI0fjWWCZLLSLCYGImkVDV1zX\nd6I/TcmCXVBNgwmBiHSq5orr+k70pylZcLyiaTAhEJHeamiy4HhF02BCIKIWSZvjFYbaqmBCIKJW\n537HKxraBdXaEgcTAhEZjKbugmptYxdMCEREuLcuqKYYu9CnxMGEQER0F5qShfrtex270KfEwYRA\nRNRE7mXsQp8SBxMCEZGW1Td2AWgvcTR2QJwJgYhITzR14mjsgPiqYauYEIiIWpKGJo5GD4g/uYcJ\ngYiotWrUgPjEbUwIRESGrrCkEFZmVkwIRER0f9+dRk0cCxERtVBMCEREBAAw1tWOXV1dYWFhgTZt\n2sDExASHDx/WVShERAQdJgSZTAaVSgVra2tdhUBERGp02mXEQWMiIv2hs4Qgk8kwePBg+Pn54cMP\nP9RVGEREdIfOuowOHjwIOzs75ObmYsiQIejevTtCQkJ0FQ4RkcHTWUKws7MDANja2mLUqFE4cuRI\nrYQQFxcn3VYqlVAqlc0YIRGR/lOpVFCpVE1Slk4WphUXFwMA2rdvjxs3biA8PBxz5szBsGHD/gmM\nC9OIiBrtfr47ddJCyM7OxvDhwyGTyVBcXIyxY8dWSwZERNT8eOoKIqJWhKeuICKi+8aEQEREAJgQ\niIjoDiYEIiICwIRARER3MCEQEREAJgQiIrqDCYGIiAAwIRAR0R1MCEREBIAJgYiI7mBCICIiAEwI\nRER0BxMCEREBYEIgIqI7mBCIiAgAEwIREd3BhEBERACYEIiI6A6dJYTt27fD19cXXl5eWLhwoa7C\nICKiO3SSEEpLSzF9+nRs374d6enp+Oabb3Ds2DFdhNIiqFQqXYegN1gX/2Bd/IN10TR0khAOHToE\nb29vdO7cGcbGxoiKisKWLVt0EUqLwDf7P1gX/2Bd/IN10TR0khCysrLg7Ows3XdyckJWVpYuQiEi\nojt0khBkMlmDnhe+NhyFJYVajoaIiABAJoQQzb3T1NRULFy4EJs3bwYALF68GGVlZXjjjTf+Ccxa\nBlxp7siIiFo2d3d3nD179p621UlCKCkpQffu3bF//37Y2dnh4YcfxooVK9CzZ8/mDoWIiO4w1sVO\n27Vrh48//hihoaGorKxEdHQ0kwERkY7ppIVARET6R+9WKhvygrXMzEwMGDAAvr6+6NatGxYtWgQA\nKCgowODBg+Hn54fQ0FAUFhrOQHtFRQUCAgIwdOhQAIZbF4WFhRg9ejR69OgBT09PHDx40GDrIjY2\nFh4eHujevTtGjRqF4uJig6mLKVOmwN7eHr6+vtJj9R17QkICvLy84Ovrix9//PHuOxB6pKSkRLi6\nuoqsrCxRXl4uevfuLX755Rddh9VsLl++LE6ePCmEEOL69eviwQcfFMePHxczZswQS5cuFUIIsXTp\nUvH888/rMsxm9e6774rx48eLoUOHCiGEwdbFqFGjRFJSkhBCiIqKCnH16lWDrIszZ84INzc3UVpa\nKoQQYsyYMeLTTz81mLrYu3ev+OWXX4SPj4/0mKZj//nnn0Xv3r3FrVu3RFZWlnB1dZXqTRO9Sgh7\n9uwRERER0v3FixeL+fPn6zAi3Ro5cqTYsmWLeOCBB0ReXp4QQojc3Fzh7u6u48iaR2ZmpggODha7\ndu0SkZGRQghhkHWRl5cnunbtWutxQ6yL/Px84eHhIQoKCkR5ebmIjIwUP/74o0HVxfnz56slBE3H\nHh8fL5YsWSI9LyIiQqSmptZbtl51GXHB2j8yMjJw5MgRBAYGIjc3FwqFAgBgY2ODnJwcHUfXPGbN\nmoXFixfDyOift6kh1sWZM2dga2uLMWPGwMfHB5MmTcL169cNsi6sra0xZ84cdOnSBY6OjrC0tMTg\nwYMNsi6qaDr2ixcvwsnJSXpeQ75P9SohNHTBWmtXVFSEUaNGYdmyZbCwsNB1ODqxefNm2NnZISAg\nAMLA5z1UVlbiyJEjePnll3Hq1ClYW1tj/vz5ug5LJ86dO4f3338fGRkZuHTpEoqKipCYmKjrsFoN\nvUoITk5OyMzMlO5nZmZWazEYgvLycowcORITJkzA8OHDAQC2trbIy8sDcPvXgJ2dnS5DbBZpaWnY\nuHEj3NzcMG7cOOzatQvR0dEGWRfOzs7o3Lkz+vTpAwAYNWoUjh8/Djs7O4Ori8OHD+Phhx+GQqGA\nsbExRowYgf379xvk+6KKpmOv+X1aswemLnqVEPr06YNTp07h4sWLKC8vR0pKCsLCwnQdVrMRQmDq\n1Knw8vLCrFmzpMfDw8OlX0GJiYkIDw/XVYjNZsGCBcjMzMT58+exbt06PProo/jyyy8Nsi6cnZ1h\nY2ODP/74AwDw008/wdPTE2FhYQZXF127dsXBgwdx8+ZNCCHw008/wd3d3SDfF1U0HXt4eDiSk5Nx\n69YtZGVl4dSpU+jbt2/9hTX1gMf92rp1q/D29haenp5iwYIFug6nWaWmpgqZTCZ69Ogh/P39hb+/\nv9i2bZvIz88XISEhwtfXVwwePFhcuXJF16E2K5VKJc0yMtS6OH78uOjdu7fw8vISYWFhoqCgwGDr\nIjY2VnTt2lV4eHiIqKgocfPmTYOpi7FjxwoHBwdhYmIinJycxGeffVbvsb/99tvC09NTeHt7i+3b\nt9+1fC5MIyIiAHrWZURERLrDhEBERACYEIiI6A4mBCIiAsCEQEREdzAhEBERACYEg3H58mWMHTsW\nPj4+8PPzQ0hICE6fPq3rsPD999/j999/b/TzYmNjsXPnziaJISIiAteuXWvw8zMyMqqdfrgx9uzZ\ngwMHDtzTtvdLpVJJpxFvjLi4ODg5OSEuLq5R2ymVShw9elS6r15vqamp0mmZSX8wIRiAiooKDBky\nBJGRkTh16hTS09Px3nvvITc3V9eh4dtvv8Vvv/3W6OfFx8cjODi4SWLYsmVLs50zavfu3UhLS2uW\nfTUVmUyG2bNnNzohyGQyjecnCwoKwrZt25ogOmpKTAgG4Mcff4SdnR0mTpwoPebn54fAwEBUVlZi\n5syZ8PLygpeXF7744gsAt39NDhw4ECNHjkTXrl3x73//G19++SX69++Pbt264cyZMwCAmJgYPPvs\nswgMDIS7uztUKhWefPJJdO/eHePHj5f2Z25uLt3+5ptv8OSTT+LAgQPYtGkTXn75ZfTs2RN//vkn\nVq5cib59+8Lb2xtDhw5FUVER0tLSaj0vJiYG69evBwC4uroiLi4Offv2Rbdu3XDq1CkAQHZ2NgID\nA+Hv749p06bB1dUVBQUFteqn6vGMjAx4enriX//6F3x8fKBUKnHjxg0AwIEDB+Dp6Yk+ffpg+fLl\n0raff/45Zs6cKd2PjIzEnj17AADfffcd/Pz8EBAQgODgYFy4cAErVqzA0qVLERAQgH379mHTpk14\n6KGH4OvriwEDBuDvv/8GcPtX+ZQpUxASEgIXFxcsWbJE2seKFSvg5eWFgIAA6TW9fPkyIiMj0aNH\nD/j7+0sxNMTLL78Mb29v+Pv7Y/bs2XU+R339alxcHCZPnoxBgwbB1dUVGzZswEsvvQQ/Pz8EBwej\ntLS0zu3qK5P0hJZWWJMeeeedd8S///3vOv+2du1aERoaKoS4fVoIR0dHkZWVJXbv3i0sLS1Fbm6u\nKC0tFY6OjmLevHlCCCGWLVsmnnvuOSGEEJMnTxYTJkwQQgjx/fffC7lcLn7//XdRWVkpevXqJX7+\n+WchhBDm5ubSPr/55hsRExMjhBAiJiZGrF+/Xvrb1atXpdv/93//J53Pvebz1O+7urqKjz/+WAgh\nxPLly8XkyZOFEEI89dRTYvHixUIIIXbs2CFkMpnIz8+vVQeurq4iPz9fnD9/XhgbG0sXKRozZoxY\ns2aNEEIIDw8PkZaWJoQQ4rXXXpPOR79mzRoxY8YMqazIyEixZ88ecenSJdGpUyeRlZVV7bji4uLE\nu+++W+fxrlq1SiorNjZWBAYGioqKCpGXlyesrKxEaWmpOHr0qHjwwQel7ar+f+KJJ8S+ffuEEEJc\nuHChzusB7N69W7quRJXs7Gzh7e0t3S8qKqq1XVxcXLXz6sfGxooBAwaIyspKceLECWFmZiZ+/PFH\nKY6vv/5aCCHEwIEDRbdu3aTTsHh5eQlfX1+pnJrn9SfdYwvBANR3WvH9+/dj7NixAG6faz44OBgH\nDhyATCZDnz59YGNjA1NTU3Tt2hUhISEAAB8fH+ksijKZDBEREdLjnTp1Qvfu3SGTyeDt7V3tbIua\nCLVfiocOHUK/fv3Qo0cPrF27tto4h6jnF+Xjjz8OAOjZs6e0z7S0NIwePRoAEBISAisrq7vG4ubm\nBh8fHwBAr169kJmZidzcXJSUlKB///4AgHHjxt31ePbt24eQkBB07twZAKp1Sakfx9mzZ6FUKuHr\n64slS5ZIxyuTyRAeHg4jIyMoFAp06tQJ2dnZ2LlzJ6KioqTyqv7/6aefMGPGDAQEBODxxx9HaWkp\nrl+/ftfjVSgUMDExwdSpU7F+/XqYmJjcdRuZTIYhQ4ZAJpPBx8cHlZWVGDx4MADA19e32nsjKSkJ\nx44dw7Fjx7B161a2CvQcE4IB8PX1xS+//KLx7zU/pFUJpG3bttJjRkZG0n0jIyNUVlZKfzM1Na31\nnJrPU9/HzZs369wfAEyePBmrV6/GiRMnEBsbi/Ly8jqfV1PVftu0aVMttsZ+AanHX1VWzf2ql1mz\nLkpKSqRYG7LvGTNm4JVXXsHJkyexYsWKasdbVa81Y6mrXJlMhiNHjkhfvpmZmZDL5Xfdf5s2bXDo\n0CGMGjUK27Ztw5AhQ+66jXpsRkZG1ZKIkZFRtfg03Sb9xIRgAB577DFcvnwZa9eulR47efIk9u3b\nh6CgIHz99dcQQqCgoAC7du1C//79m/zDq1Ao8L///Q9CCHz33XfSl6yZmZnUTw8AZWVlsLOzQ0VF\nBdauXavxeQ3x8MMPS+MMO3fuxJUrV+4pdhsbG7Rv3x4HDx4EACQnJ0t/c3JywvHjxyGEwMWLF3H4\n8GHIZDIEBQVh165d0hWqqi58bmZmhuLiYmn7kpISdOrUCQCk8Rug7i9PmUyG4OBgpKSk4OrVqwAg\n/R8SEoJPPvlEem7VOMrd3LhxA9evX0dYWBjefffden84NJR67LzoVcvChGAA2rRpg+3bt2Pjxo3w\n8fFBjx498NJLL8He3h5RUVFwd3eHl5cXAgMDkZCQAEdHx3pniNT8m6bb6hISEhAaGoqgoCA4ODhI\nj0dFRWHevHnSYHF8fDx69eqFoKAgdO/eXePzNFGPbf78+fj222/h7++PlJQU2Nvbo127dnVuoyn+\nqvtr1qzBlClT0LdvX9y6dUt6fNCgQXB0dES3bt3wwgsvoFevXgAAe3t7LF++HEOGDEFAQIDUdTV0\n6FAkJSXB398f+/btw5tvvoknnngCDz30EBQKhVSupvoPCAjAnDlz0K9fPwQEBOD5558HAHzyySfY\nsWMHfH194ePjgw8++KDO49y5cyecnZ3h7OyMLl264MSJE1KMQUFBWLp0qca6bWyd3W070j88/TW1\nWmVlZTA2NoaRkREOHDiAp556Cr/++quuw2px4uPjYW5ujjlz5jRpuRkZGRg6dChOnjzZpOXSvTPW\ndQBE2nLhwgWMGTNG+kX/6aef6jqkFsnc3BwrV67E9evXG70WQZPU1FQ899xzsLW1bZLyqGmwhUBE\nRAA4hkBERHcwIRAREQAmBCIiuoMJgYiIADAhEBHRHUwIREQEAPh//r/1KyU0gnEAAAAASUVORK5C\nYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x2c18b90>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEZCAYAAACQK04eAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlUVEe+B/BvsxiRZlcQBEVxAQQB1+iAdkaMijqJC24x\nER0fGY1mRo3RIRpRRx2XxKcvzyROHM2iSYw5ZqIG4opx17gvmbhEHNC4gRCQHX7vDx5XQGgaoemG\n+/2cw7Fv9+2q6mr8dlH33mqNiAiIiEg1LEzdACIiqlsMfiIilWHwExGpDIOfiEhlGPxERCrD4Cci\nUhkGP9Wa//znP7Czs4O5nSGckJAALy8vUzdDdQ4ePAhfX19TN4MqwOA3gs2bN6Nr166wt7eHk5MT\nwsPDsX//flM3S6/ExERYWFigqKjI4Od4e3tj3759ynbLli2RkZEBjUZT6+2LiorCvHnzar3c6tDp\ndFi/fr1J21CeOX2oWVhY4JdfflG2w8LC8O9//9skdZN+DP5a9u677+KNN97AkiVLkJ6ejgcPHmD6\n9OmIj483ddMMUp3RukajqbPRvUajMcoHSnXbQPqZ8q89c/tL06wJ1Zq0tDTRarUSFxdX6T7Z2dky\nadIkcXJyEmdnZ4mOjpacnBwREdm/f7+0aNFCli9fLm5ubuLu7i7btm2TnTt3SocOHUSr1cr8+fOV\nsubPny8jRoyQcePGib29vQQGBsqVK1dkyZIl4ubmJm5ubrJ9+3Zl/1atWsmePXvKPH/cuHEiIuLl\n5SUajUa0Wq1otVo5duyYXLt2TUJDQ8XJyUns7e1l2LBhkpqaKiIi48aNEwsLC7GxsRGtVisrVqyQ\nGzduiEajkcLCQhER6dOnj8ybN09CQ0PF1tZWwsLC5N69e0r9H3zwgbi5uYmrq6ssWrToifaVFhUV\nJXPnzhURUer5+OOPpVWrVmJnZyfz5s1T9s3MzJQRI0aIVquVjh07yvLly8XT01N5XKPRyPXr15Xt\n8ePHK2WLiGzatEl8fX1Fq9WKt7e3fPfddxITEyOWlpbSuHFj0Wq1Mm3aNBERmTJlinh4eIitra0E\nBAQ80b+RkZHyyiuviL29vfj4+MiRI0eUx69duyYDBw4Ue3t7cXZ2lj/96U/KY2vWrFFeW+/eveXa\ntWsV9sv+/fvLvLbStm3bJm3bthVbW1txd3eXZcuWPbFPTk6OODg4yMWLF5X77t27JzY2NnL//n25\nffu2PP/886LVasXR0VF69eolRUVFT5QTFhYmGo1GbG1tRavVypYtW55oW6tWrWTFihUSFBQkWq1W\nJk6cKHfu3JEBAwaIVquV3/3ud5KSkqLsv3fvXgkODhY7Ozvp0KFDpf+vKqpbpOL3kYox+GtRXFyc\n2Nra6t1n5syZ0rt3b0lLS5O0tDTR6XQyc+ZMESn+T2xlZSVLliwREZH169eLi4uLvPLKK5KdnS2X\nLl0SGxsbuXr1qogUB0vjxo0lISFBCgsLJSoqSlq1aiXLly9Xnt+iRQulbm9vb9m7d6+yHRsbqwR/\nYmJimdAWEbl+/br88MMPIiLy8OFD6du3r7z66quVlldR8Ldt21Zu3rwp2dnZotPpZMaMGSIicurU\nKbG3t5cff/xRCgsL5a233hJra+sy5ZVWUfBPmTJF8vPz5dy5c9KoUSO5cOGCiIi8/vrrEh4eLhkZ\nGXL37l0JCgoSLy8vpazywR8VFaV8cOzbt0+cnJzk4MGDIiJy9+5d+fnnn0VERKfTyfr168u068sv\nv5SMjAwREXnvvffEyclJsrOzy7w/JR8Gf/3rX6Vz584iIpKXlydt27aVmJgYycvLk7y8PDl+/LiI\nFAdWu3bt5JdffhERkaVLl0pwcHCF/aIv+J2dneXQoUMiIpKRkSHnzp2rcL+JEyfKW2+9pWy/9957\nMnDgQBERmTFjhkyePFkKCgqkqKhIjh07VmEZIk/2a/m2eXt7y+9+9ztJTU2VW7duSfPmzSUkJEQu\nX74subm50q9fP4mJiRGR4g9FR0dHpe8SEhLEwcFBbt26ZVDd+t5HEuFUTy1KSUmBs7Oz3n2++OIL\nvP3223BwcICDgwPefvttbNq0SXnc2toac+bMAQCMGjUKqampmDp1Kho3bgx/f38EBATg3Llzyv69\ne/dGnz59YGFhgREjRiAlJQVvvPGG8vzbt28jJSWlwrZIqT+NpYI/k9u0aYOwsDAAgKOjI/7yl7/g\nhx9+MLA3iqdGJkyYgJYtW6Jx48YYOXKk0vatW7di6NCh6NKlCywsLPD222/DysrK4LIB4K233oKV\nlRU6deqE4ODgMmXHxMRAq9XC1dUV06dPN3gaYMOGDXj11VcRGhoKAHB1dUX79u2Vx8uXM3LkSGi1\nWgDAa6+9BktLS1y4cEF5PCwsDH379gUAjBs3DufPnwdQfODz0aNHWLx4MaytrWFtbY3u3bsDAP7x\nj39gzpw5aN26NQDgzTffxJUrV3D16tVq9Y9Wq8Xly5eRkZEBrVaLTp06Vbjf2LFj8cUXXyjbmzdv\nxtixY5Uyfv31V9y8eRMajQY9evSoVhvKe+211+Dk5AQPDw+EhYWhZ8+e8PPzQ6NGjfDiiy8q7+Fn\nn32GIUOGKH3Xp08fPPvss9ixY4dB9VT1Pqodg78Wubi4IDU1Ve8+d+/eRcuWLZVtLy8v3Lt3r0wZ\nJXPJzzzzDADAzc1NefyZZ55Bbm6usu3q6lrmsaZNmz7x/NL7l1bVnHVycjKGDRsGNzc3ODo6YsyY\nMXj06JHe55TXvHlz5baNjY3Slnv37sHDw0N5rFGjRmjatOlTl92kSZMyZXt6eiqPtWjRwuAy79y5\ngzZt2lT6ePk+W7RoEdq1awcHBwc4OTkhNTUVmZmZyuOl37smTZqgsLAQRUVF+PXXX+Ht7V1hHcnJ\nyfjzn/8MJycnODk5wcXFBQBw//59g18HAGzZsgXffvstWrVqhdDQUBw8eLDC/XQ6HbKysnDixAkk\nJibi3LlzGDp0KADgjTfeQMuWLREeHg5vb28sXry4Wm0or/zvcuntRo0aKe9hcnIyvvrqK6UPnJyc\ncPjw4Sr/f5Wo6n1UOwZ/LerZsycA6D2Q6+bmhps3byrbSUlJZcLbmBo1alQmuB88eKDcruhDYM6c\nObC3t8e1a9eQlpaGzz//vMxZPzU52Onm5obbt28r27m5uWXaUxOurq5ITk5WtkvfBor/qsrKylK2\nS9fr4eFR6dkh5V/vnj17sHbtWuzcuRPp6el4+PAhXFxcDPrrwsPDo8zvQWnu7u7YsGEDHj58qPw8\nevQIvXr1qrLc0nr06IHt27fjwYMHiIyMxMiRIyvcz9LSEiNHjsTnn3+Ozz//HEOGDIGtrS0AwM7O\nDqtXr8Yvv/yCuLg4rFmzBt9//3212qFPZX3l7u6OiRMnlumDjIwM5a/hquh7H4nBX6scHBywcOFC\nTJo0Cbt370ZRURHy8/MRFxeH2bNnAyiefvnb3/6GtLQ0pKenY9GiRcqf1cYWFBSEL774AoWFhTh/\n/jy2bt2qhJmjoyM0Gg1u3Lih7J+VlYVGjRrB1tYWd+/excqVK8uU5+zsXGb/ilT2H3vo0KHYtm0b\nTp8+jcLCQixevBgFBQXVLqciI0aMwNKlS5GZmYl79+5hzZo1ZR4PCgrCpk2bUFRUhH379pU51TYq\nKgrr1q3DkSNHABT/hVYyxVL+9T569AgWFhZwcHBAQUEBli9fbvCINCwsDLa2tpg3bx7y8vKQl5eH\n48ePAwCio6OxZMkSXLt2DQCQmZmJb775RnmuTqfDggULypSXm5uLnJwc5ScvLw9btmxR2qjVamFh\nUfl/95LpntLTPADw/fffIzExEUDxtI+lpWWl5Rjy+2Col19+Gdu2bcP+/fshIsjPz8fhw4eVwUJs\nbCyee+65SuvW9z4Sg7/WzZgxA8uXL0dMTAwcHR3h6uqKVatWYdCgQQCAxYsXo23btmjTpg1at24N\nHx8fLFmyRHl++VGlvlF1Rac46ttevHgxLl26BAcHB8TExGDUqFHKYw4ODpgxYwa6du0KZ2dnnDhx\nArGxsTh27Bjs7OwQERGBP/zhD2XKmzVrFubNmwdHR0e8++67VdZfur1du3bFsmXLMHDgQHh4eKBR\no0Zwd3eHpaWlQa9VX78sWbIE9vb2cHd3R9++fTF27Ngy+69evVqZRti4cSNeeOEF5TGdToc1a9Yg\nKioKdnZ26NmzpzJynDZtGj777DM4ODjgL3/5CwYNGoTf//73aNOmDby9vaHRaMpM4+l7f6ysrBAX\nF4eTJ0+iadOmcHd3x6effgqg+FhAdHQ0Bg4cCHt7e3To0KFM8CcnJytz1wBw69Yt2NjYoEmTJmjS\npAlsbW1x8+ZNfPTRR/D09IStrS3ee++9MseSyuvevbsynz9w4EDl/kuXLqF3796wtbVFt27d8Mc/\n/hH9+vWrsIy5c+di1KhRcHJyUgYVVf1VWNnvR7t27fD5558jJiYGDg4OaN68Of72t78pf3EmJSWV\n6YPydet7HwnQSHWGUtWUlpaG//qv/8KVK1eQl5eHf/7zn8p0CFFp2dnZcHJywrlz59ChQwdTN8ds\nJScnY/To0Th06JCpm2JSISEh2LdvH5ycnEzdlHrJqMEfGRmJYcOGYcyYMSgqKkJmZibs7e2NVR3V\nM/Hx8dDpdNBoNJg9ezbi4+Pr7EpPIjUz2lRPSkoKzp49izFjxhRXZGHB0KcytmzZgubNm8PZ2Rmn\nTp3C1q1bTd0kIlUw2oj/2LFjmDFjBjw9PXH58mV07twZa9euVc55JiIi0zDaiL+oqAgnT57ErFmz\ncPHiRTg7O2PRokXGqo6IiAxlrEuC//Of/0irVq2U7YMHD8rzzz9fZh8fHx8BwB/+8Ic//KnGj4+P\nT43yuXrXyFeDl5cXmjZtiitXrqB9+/bYs2cP/Pz8yuxz/fp1rqj3/2JjYxEbG2vqZpgF9sVj7IvH\n1NYX0dujcSXlCppYN0Ez22a4mXZTuf3J0E9qVLbRgh8A1q9fj5deeglZWVlo1aqV3vOIiYjUprJw\n3zx8M66kXMGBmwcAAE1tmuJB9gPldk0ZNfiDgoJw8uRJY1ZBRGR29AX6m7vfVB77Lfc3HE46DKBs\nuEdvj0YT6yYAgK4eXeHY2BF7ftnz+Db21Kh9Rg1+MpxOpzN1E8wG++Ix9sVj5tYXpcO9OoF+79E9\nZSTf3LZ4ocHy4b5uyDpl/4puO71SswvXjHoBV5WV1+E3OBERVZeh4R7pH/lEoN95dOeJQN/98m6M\n/Xos4q7FoatHV2yN3IpZu2c9Ee6OjR31tqum2cngJyLVq2xqxtBwr06gp+WkGRzwlWHwExEZQN+8\n+4tfvFjhgVRDw722At1QDH4iov/3NPPukf6RyMzLVAK99NSMKcNdHwY/EalOTadmys+7l5RZ3bl2\nU2HwE1GDZMypmZLyzTnc9WHwE1G9pZapmdrG4Ccis6f2qZnaxuAnIrPAqZm6w+AnIpMpHfacmqk7\nDH4iMipDR/Kcmqk7DH4iqrHaOMjKqZm6w+AnoqdS2TTN0x5kZcDXnZpmJ1fnJGrADF3vvfQqkeuG\nrMPYr8cq21WN5LdEbjHBK6Oa4IifqIF5mgOuPMhav3Cqh0iFavuAK8O9fmHwE6lETUfyJWUw6Os/\nBj9RA1X+TBuO5KkEg5+onjN0OQOO5KkEg5+ontE3kte3nEHJcxnwxOAnqgf0nTNv6HIGRCUY/ERm\nqrKw1zeSL32bYU+VYfATmdDTnFbJkTzVFIOfqI7VxgVSRDXB4CcyMp5WSeaGwU9kBIYejOVplWQK\nDH6iWvI0B2MZ8GQKZh/83t7esLe3h6WlJaytrXHixInHlTP4yYQMncLh/DyZG7MP/tatW+PUqVNw\ndnZ+snIGP9Wxp5nCYdiTuakX6/Ez3MmU9E3hAI/XoC/ZtyTsuc48NVRGH/G3adMGjo6OKCgoQHR0\nNKZOnfq4co74yQg4hUMNndmP+I8dOwZXV1fcv38fAwYMgK+vL8LDw41dLalMZaP66O3RaGLdBMCT\n3ybFUT2pldGD39XVFQDQrFkzjBgxAidPniwT/LGxscptnU4HnU5n7CZRA1B+VK/vawRL9mfYU32V\nkJCAhISEWivPqFM9WVlZAIAmTZrg0aNHiIiIwMyZM/GHP/yhuHJO9VA18MAsUTGzPqvnxo0bePHF\nF6HRaJCVlYXRo0dj4cKFjytn8FMVeG490ZPMOvirrJzBT1XQbdTxwCxROWZ/cJeoOsrP3fPALFHt\n44ifTE7f3P26Ies4hUNUDqd6qF4ydO6eYU/0JE71UL1g6OmXnLsnMj4GP9WJ0kHPi6qITItTPWQ0\npUf5+UX5/JISolrCOX4yK5XN3b/Q4QU0smzEoCeqBZzjJ5MydO5+44sbGfhEZsLC1A2g+q0k6OOu\nxT0xd39s0jFE+kfy7BwiM8OpHqo2zt0TmRbn+KlOcO6eyHxwjp/qBOfuiRoOzvFThaK3R0O3UYeI\nTRFIy0nj3D1RA8KpHlJwzRyi+oFz/FRrKlsCmSN7IvPCOX6qkdKjfGtLawBcM4eooeOIX+VKj/J5\nhg5R/cARP1WLvi864Rk6ROrA4FeZ8qtkbh6+mQdtiVSGUz0qoO9KW4Y9Uf3Ds3qoQrzSlqjh4hw/\nVYhX2hJRZXjlbgPBK22JyFCc6mkgSp+WySttiRo2zvGrGA/aEqkTg1/FePEVkTrx4K6K8eIrInoa\nDP56pvT0zvuD3ud6OkRUbQz+eqb0aZqzds/ClsgtJm4REdU3Rg/+wsJCdO3aFZ6enti+fbuxq2tw\n9K2ts27IOhO3jojqI6MH/+rVq+Hv74+MjAxjV9UgcW0dIqptRr2AKzk5Gd999x0mTZrEs3eqofTF\nWKXXyC8J+y2RWxj6RPTUjBr806dPx4oVK2BhwQuEq6NklB93LQ621ra86paIapXRpnp27NgBV1dX\nhISEICEhodL9YmNjlds6nQ46nc5YTTJbXCOfiPRJSEjQm6PVZbQLuGJiYvDpp5/CysoKOTk5+O23\n3zB8+HB88sknjyvnBVwAuNwCEVVPvbhy98CBA1i5cuUTZ/Uw+ItFbIpA3LU4LrdARAapN1fuajSa\nuqqqXuCFWERkKlyrx0TKT+/wQiwiMlRNs5On25gIL8QiIlPhkg11iNM7RGQOGPx1iOvsEJE5YPAb\nEdfZISJzxOA3Iq6zQ0TmiMFvROVH+CXr7BARmRKDv5bxAC4RmTsGfy3jAVwiMnc8j7+W8QAuEZk7\njvhrAad3iKg+0Rv8qampVRZgYWEBR0d1Bxynd4ioPtEb/O7u7vDw8NBbQEFBAZKSkmq1UfUNp3eI\nqD7Ru0hbcHAwzp49q7cAQ/aptPIGskhbWk4az88nojpj1PX4c3Jy0LhxY70FGLJPpZXX0+Avf0Uu\nw56I6pJRV+csCfQjR44gIyNDuT8zMxPHjh0rs4+alP5O3Ojt0aZuDhFRtRh0OufkyZNhZ2enbDdp\n0gSTJ082WqPMHef0iag+M+h0zqKiojLbFhYWKCgoMEqDzBVP2SSihsKgEX+LFi3wv//7v8jPz0de\nXh7ee++9Ks/2aWhKT++UnLLJ0Cei+sig4N+wYQN27doFFxcXNGvWDHv37sXHH39s7LaZFU7vEFFD\nwe/cNRBP2SQic1En37l76dIlhIaGwtfXFwBw+fJlLFiw4KkrrS+it0dDt1GHiE0RAMDpHSJqEAwK\n/okTJ+Kdd96BjY0NAMDPzw9btjT8ZQl42iYRNUQGBX9OTg569OihbGs0GlhaWhqtUeaC8/pE1BAZ\nFPzOzs64du2asr1jxw64uLgYrVHmYvPwzYj0j8Tul3dzioeIGgyDDu7+/PPPmDhxIk6fPo1mzZqh\nWbNm+PLLL9G2bduaVW5mB3e5FAMR1QdGXaunvAcPHgAAmjZt+tQVlqnczIJft1GnLK8c6R/J5ZWJ\nyCzVyVk977zzDh49egQXFxe8+eab6NSpE3bu3PnUlZorzukTkRoYFPwff/wxbG1tERcXh7S0NGze\nvBlz5841dtvqHOf0iUgNDFqrp+RPivj4eIwbNw4BAQEGFZ6Tk4OwsDAUFBTg0aNHGDRoEFatWvX0\nrTWC8vP6nN4hoobOoBF/cHAwIiIiEB8fj/79+yMzM9Ogwhs3bowffvgBZ86cweXLl3H06FHs37+/\nRg2ubTxXn4jUxqAR/4YNG3D69Gm0b98etra2SE1NxcaNGw2qoOSir7y8PBQWFsLNze2pG2sMnNcn\nIrUxKPitrKxgYWGBhIQEFBYWAig+qhwUFFTlc4uKitC5c2dcv34dkydPhr+/f81aXMs2D9/MNXiI\nSFUMCv6xY8fiypUr6NixIywsHs8ODRs2rMrnWlhY4OzZs0hPT0f//v2RkJAAnU6nPB4bG6vc1ul0\nZR6rC46NHTmvT0RmLSEhAQkJCbVWnkHn8fv6+uKnn36CRqOpUWWLFi2CtbU15syZU1y5ic7j54Va\nRFSf1cl5/D179sTPP/9c7cJTUlKU7+rNzs7G7t27ERgYWO1yahsP6BKRmhk01TN+/Hh0794dzZs3\nxzPPPAOg+BPn/Pnzep93+/ZtvPLKKxAR5OTkYOzYsRg0aFDNW11DPKBLRGpm0FSPj48PVq1ahYCA\ngDJz/N7e3jWr3ERTPfxSFSKqz+pkrZ7Q0FAcOnToqSuptHIzW6uHiKg+qJPgnzJlCn777TcMGjQI\njRo1Uio25KwevZXXUfDzYC4RNSQ1zU6D5vizsrJgbW2NXbt2lbm/psFfV0oO5gLFHwI8fZOI1Myg\n4Df0Kl1zxYO5RESP6T2dc926qkPSkH1MjatuEhE9pneOv02bNli5cmWFc0klc0zz5s3D5cuXn65y\nHtwlIqo2o87x9+7dG9u3b9dbwPPPP//UlRMRUd2r1lcv1nrlRhzx80weImqo6mTJhvqIyzIQEVWs\nwQY/z+QhIqpYg53q4bIMRNRQ1clUz+zZs5Genq5sp6enIyYm5qkrrQsl6+wz9ImIyjIo+L///ns4\nODgo2w4ODoiLizNao4iIyHgMunI3NzcX+fn5sLa2BlD8/bnZ2dlGbdjT4Jk8RERVMyj4R48ejeee\new4TJkyAiGDjxo0YM2aMsdtWbVyTh4ioagYf3N22bRv27t0LAOjXrx9eeOGFmldeywd3IzZFIO5a\nHLp6dOXyDETUYNXJssyzZ8/GsmXLqryv2pXXcvDzTB4iUoM6Cf6QkBCcOXOmzH3+/v5PvUaPUjnX\n6iEiqjajrtXz/vvvY+3atbh+/XqZL0nPyspCcHDwU1dKRESmo3fEn56ejocPH2LOnDlYtmyZ8glj\nY2MDNze3mlfOET8RUbXVyVSPsdS08Tx9k4jUSNWLtHEhNiKi6qvXwc+F2IiIqq9eT/Xw9E0iUiNV\nz/ETEamRquf4iYio+hj8REQqw+AnIlIZowZ/UlISevfujcDAQHTo0AHLly+vcZnR26Oh26hDxKYI\npOWk1UIriYjUxagHd+/evYv79+8jICAAmZmZ6Ny5M7766isEBQUVV/4UByh0G3XK0suR/pFcepmI\nVMesD+66ubkhICAAAKDVatGpUyfcvn27RmXy3H0iopqps9M5ExMT0adPH1y8eBF2dnbFlT/FpxbP\n3ScitTPq6py1JTMzE5GRkVi9erUS+iViY2OV2zqdDjqdTm9ZJV+iTkSkFgkJCUhISKi18ow+4s/P\nz8fgwYMxYMAATJ8+vWzlvICLiKjazPrKXRHB+PHj4eLiglWrVj1ZOYOfiKjazDr4Dx06hN69e6NT\np07QaDQAgKVLl2LAgAHFlTP4iYiqzayDv8rKGfxERNVm1qdzEhGR+amTs3pqit+0RURUe+rFiJ/f\ntEVEVHvqRfDzal0iotpTLw7u8mpdIqLHeFYPEZHK8KweIiKqFgY/EZHKMPiJiFSGwU9EpDIMfiIi\nlWHwExGpDIOfiEhlzHKtHq7NQ0RkPGY54ufaPERExmOWwc+1eYiIjMcsl2zg2jxERJXjWj1ERCrD\ntXqIiKhaGPxERCrD4CciUhkGPxGRyjD4iYhUhsFPRKQyDH4iIpVh8BMRqQyDn4hIZRj8REQqY9Tg\nnzhxItzc3BAYGGjMaoiIqBqMGvwTJkxAfHy8QftGb4+GbqMOEZsikJaTZsxmERGpmlGDPywsDE5O\nTgbtyzX4iYjqhtnM8XMNfiKiumE2wb95+GZE+kdi98u7uQY/EZERmfw7d2NjY5XbU3RTGPpEROUk\nJCQgISGh1soz+hexJCYmYsiQIbhw4cKTlfOLWIiIqs2sv4hlzJgx6NWrF65cuQIvLy9s2LDBmNUR\nEZEB+NWLRET1jFmP+ImIyPww+ImIVIbBT0SkMgx+IiKVYfATEakMg5+ISGUY/EREKsPgJyJSGQY/\nEZHKMPiJiFSGwU9EpDIMfiIilWHwExGpDIOfiEhlGPxERCrD4CciUhkGPxGRyjD4iYhUhsFPRKQy\nDH4iIpVh8BMRqQyDn4hIZRj8REQqw+AnIlIZBj8Rkcow+ImIVIbBT0SkMgx+IiKVMWrwx8fHIzAw\nEP7+/li2bJkxqyIiIgMZLfhzc3MxefJkxMfH4/z589i6dSvOnDljrOrqvYSEBFM3wWywLx5jXzzG\nvqg9Rgv+48ePo2PHjmjRogWsrKwwatQo7Ny501jV1Xv8pX6MffEY++Ix9kXtMVrwJycnw8vLS9n2\n9PREcnKysaojIiIDGS34NRqNQftFbIpAWk6asZpBRETlaEREjFHwwYMHsWzZMuzYsQMAsGLFCuTl\n5eGtt956XLmzBnhojNqJiBouHx8fXLt27amfb7Tgz8nJga+vLw4fPgxXV1f06tULH374ITp37myM\n6oiIyEBWxiq4cePGeP/999G/f38UFRXh5ZdfZugTEZkBo434iYjIPJnsyl01X9yVlJSE3r17IzAw\nEB06dMDy5csBAKmpqejXrx86deqE/v37Iy1NPQe9CwsLERISgiFDhgBQb1+kpaUhMjISQUFB8PPz\nw7Fjx1TbF/Pnz0f79u3h6+uLESNGICsrSzV9MXHiRLi5uSEwMFC5T99rX7p0Kfz9/REYGIhdu3ZV\nXYGYQE4bnqUJAAAMYElEQVROjnh7e0tycrLk5+dL165d5fTp06ZoikncuXNHLly4ICIiGRkZ0q5d\nOzl79qxMnTpVVq1aJSIiq1atktdff92UzaxT77zzjowdO1aGDBkiIqLavhgxYoRs3rxZREQKCwsl\nPT1dlX1x9epVad26teTm5oqIyMiRI+Wjjz5STV/88MMPcvr0aQkICFDuq+y1//jjj9K1a1cpKCiQ\n5ORk8fb2VvqtMiYJ/gMHDsigQYOU7RUrVsiiRYtM0RSzMHz4cNm5c6e0adNGHjx4ICIi9+/fFx8f\nHxO3rG4kJSVJ3759Zd++fTJ48GAREVX2xYMHD6Rt27ZP3K/GvkhJSZH27dtLamqq5Ofny+DBg2XX\nrl2q6osbN26UCf7KXvuCBQtk5cqVyn6DBg2SgwcP6i3bJFM9vLjrscTERJw8eRKhoaG4f/8+XFxc\nAABNmzbFvXv3TNy6ujF9+nSsWLECFhaPfx3V2BdXr15Fs2bNMHLkSAQEBOCVV15BRkaGKvvC2dkZ\nM2fORMuWLeHh4QFHR0f069dPlX1RorLXfuvWLXh6eir7GZKnJgl+Qy/uaugyMzMxYsQIrF69Gvb2\n9qZujkns2LEDrq6uCAkJgaj8PIOioiKcPHkSs2bNwsWLF+Hs7IxFixaZulkmcf36dfz3f/83EhMT\ncfv2bWRmZuKzzz4zdbMaDJMEv6enJ5KSkpTtpKSkMn8BqEF+fj6GDx+Ol156CS+++CIAoFmzZnjw\n4AGA4k93V1dXUzaxThw5cgTffvstWrdujTFjxmDfvn14+eWXVdkXXl5eaNGiBbp16wYAGDFiBM6e\nPQtXV1fV9cWJEyfQq1cvuLi4wMrKCsOGDcPhw4dV+XtRorLXXj5Py8+oVMQkwd+tWzdcvHgRt27d\nQn5+PrZs2YKBAweaoikmISL44x//CH9/f0yfPl25PyIiQhnVfPbZZ4iIiDBVE+vMkiVLkJSUhBs3\nbuCLL77A73//e3z66aeq7AsvLy80bdoUV65cAQDs2bMHfn5+GDhwoOr6om3btjh27Biys7MhItiz\nZw98fHxU+XtRorLXHhERgS+//BIFBQVITk7GxYsX0b17d/2F1fYBCUN999130rFjR/Hz85MlS5aY\nqhkmcfDgQdFoNBIUFCTBwcESHBwscXFxkpKSIuHh4RIYGCj9+vWThw8fmrqpdSohIUE5q0etfXH2\n7Fnp2rWr+Pv7y8CBAyU1NVW1fTF//nxp27attG/fXkaNGiXZ2dmq6YvRo0eLu7u7WFtbi6enp/zz\nn//U+9oXL14sfn5+0rFjR4mPj6+yfF7ARUSkMvzqRSIilWHwExGpDIOfiEhlGPxERCrD4CciUhkG\nPxGRyjD4G7A7d+5g9OjRCAgIQKdOnRAeHo6ff/7Z1M3Cv/71L/z000/V3m/+/PnYu3dvrbRh0KBB\n+O233wzePzExscwSudVx4MABHD169KmeW1MJCQnKUteV0el08PX1Vb4m1VBarbbM9saNGzFt2jQA\nwKpVq9CqVStlm8wLg7+BKiwsxIABAzB48GBcvHgR58+fx7vvvov79++bumnYtm0bLl++XO39FixY\ngL59+9ZKG3bu3Fln6yPt378fR44cqZO6noZGo8HmzZsxePDgaj+vsu3p06dj4cKFtdI+qn0M/gZq\n165dcHV1xbhx45T7OnXqhNDQUBQVFWHatGnw9/eHv78/PvnkEwDFo8M+ffpg+PDhaNu2LebMmYNP\nP/0UPXv2RIcOHXD16lUAQFRUFKZMmYLQ0FD4+PggISEBEyZMgK+vL8aOHavUV3pEuHXrVkyYMAFH\njx7F9u3bMWvWLHTu3Bm//PIL1q1bh+7du6Njx44YMmQIMjMzceTIkSf2i4qKwtdffw0A8Pb2Rmxs\nLLp3744OHTrg4sWLAIC7d+8iNDQUwcHBiI6Ohre3N1JTU5/on5L7ExMT4efnhz/96U8ICAiATqfD\no0ePAABHjx6Fn58funXrhrVr1yrPLT2yBYDBgwfjwIEDAIBvvvkGnTp1QkhICPr27YubN2/iww8/\nxKpVqxASEoJDhw5h+/bt6NGjBwIDA9G7d2/8+uuvAIDY2FhMnDgR4eHhaNWqFVauXKnU8eGHH8Lf\n3x8hISHKe3rnzh0MHjwYQUFBCA4OVtrwNEpfx6nT6TBjxgw8++yz8PPzw8mTJzF8+HD4+Phg9uzZ\nBpVR0TaZESNdcUwm9ve//13mzJlT4WObNm2S/v37i0jx0ggeHh6SnJws+/fvF0dHR7l//77k5uaK\nh4eHLFy4UEREVq9eLa+99pqIiIwfP15eeuklERH517/+JXZ2dvLTTz9JUVGRdOnSRX788UcREdFq\ntUqdW7dulaioKBERiYqKkq+//lp5LD09Xbk9d+5cZW3x8vuV3vb29pb3339fRETWrl0r48ePFxGR\nSZMmyYoVK0REZPfu3aLRaCQlJeWJPvD29paUlBS5ceOGWFlZKV+MM3LkSNmwYYOIiLRv316OHDki\nIiJ//etflbXRN2zYIFOnTlXKGjx4sBw4cEBu374tzZs3l+Tk5DKvKzY2Vt55550KX+8//vEPpaz5\n8+dLaGioFBYWyoMHD8TJyUlyc3Pl1KlT0q5dO+V5Jf8OHTpUDh06JCIiN2/erHBt+v379yvfcVAZ\nnU4np06dKrMdExMjIsXvu7u7e5nfiXv37omIiKWlpbLkSHBwsLRs2VKmTZumlLNx48Yy/UTmw2hf\ntk6mpW/p68OHD2P06NEAitc979u3L44ePYpmzZqhW7duaNq0KYDihbLCw8MBAAEBAcr8ukajwaBB\ng5T7mzdvDl9fXwBAx44dkZSUhC5duuhtn5QaDR4/fhzz5s1DdnY2MjIylDrL71feCy+8AADo3Lkz\ntm7dCqB4tc+5c+cCAMLDw+Hk5KS3HQDQunVrBAQEAAC6dOmCpKQk3L9/Hzk5OejZsycAYMyYMdi+\nfbve13Po0CGEh4ejRYsWAFBmKqn067h27RpmzJiBlJQU5Ofno2XLlgCK+zUiIgIWFhZwcXFB8+bN\ncffuXezduxejRo1Syiv5d8+ePbhx44ZSbm5uLjIyMmBnZ1fla65KybRPQEAAAgICyvxO3Lp1C82a\nNYONjQ3OnDmjPOfjjz/Gjz/+WOO6yfg41dNABQYG4vTp05U+Xj5QSz4onnnmGeU+CwsLZdvCwgJF\nRUXKY40aNXpin/L7la4jOzu7wvoAYPz48Vi/fj3OnTuH+fPnIz8/v8L9yiup19LSskzb9H1Y6Cun\ndFnl6y1dZvm+yMnJUdpqSN1Tp07Fm2++iQsXLuDDDz8s83pL+rV8WyoqV6PR4OTJkzhz5gzOnDmD\npKSkWgl9AGXe98re3/Kq2+9kOgz+Bur555/HnTt3sGnTJuW+Cxcu4NChQwgLC8NXX30FEUFqair2\n7duHnj171vp/XBcXF/z73/+GiOCbb75RwtTGxkaZRweAvLw8uLq6orCwEJs2bap0P0P06tVLOQ6w\nd+9ePHz48Kna3rRpUzRp0gTHjh0DAHz55ZfKY56enjh79ixEBLdu3cKJEyeg0WgQFhaGffv2Kd9+\nVPJl2DY2NsjKylKen5OTg+bNmwOAcnwFqDg4NRoN+vbtiy1btiA9PR0AlH/Dw8PxwQcfKPuWHOcg\nqgqDv4GytLREfHw8vv32WwQEBCAoKAhvvPEG3NzcMGrUKPj4+MDf3x+hoaFYunQpPDw8oNFoKh1h\nl3+sstulLV26FP3790dYWBjc3d2V+0eNGoWFCxcqB20XLFiALl26ICwsTJkyqmi/ypRu26JFi7Bt\n2zYEBwdjy5YtcHNzQ+PGjSt8TmXtL9nesGEDJk6ciO7du6OgoEC5/7nnnoOHhwc6dOiAP//5z8q0\nlpubG9auXYsBAwYgJCQEkZGRAIAhQ4Zg8+bNCA4OxqFDhzBv3jwMHToUPXr0gIuLi1JuZf0fEhKC\nmTNn4tlnn0VISAhef/11AMAHH3yA3bt3IzAwEAEBAVizZk2Fr3Pv3r3w8vJSfo4fP15pX+rrW319\nWNW+ZF64LDM1KHl5ebCysoKFhQWOHj2KSZMm4dKlS6Zulll77rnnsHLlyiqPy1TXxo0bcerUKfzP\n//xPrZZLNccRPzUoN2/eRJcuXRAYGIhXX30VH330kambZPacnZ0RFRVV7Qu49Fm1ahX+/ve/w8HB\nodbKpNrDET8RkcpwxE9EpDIMfiIilWHwExGpDIOfiEhlGPxERCrD4CciUpn/A229Zlz8j32nAAAA\nAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x2981fd0>"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 10.7, Page number: 528"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from __future__ import division\n",
+ "%pylab inline\n",
+ "from math import *\n",
+ "\n",
+ "#Variable declaration:\n",
+ "R=12.5*10**-3 #ohm\n",
+ "L=1.2 #H\n",
+ "Vo=15 #volt\n",
+ "w=120*pi #angular freq(Hz)\n",
+ "Idc=35 #DC current(A)\n",
+ "\n",
+ "\n",
+ "#Calculations:\n",
+ "#for part (a):\n",
+ "theta=[0]*1301\n",
+ "t=[0]*1301\n",
+ "vL=[0]*1301\n",
+ "vs=[0]*1301\n",
+ "\n",
+ "Vdc_a=R*Idc #Dc voltage(V)\n",
+ "P=Vdc_a*Idc #Power\n",
+ "alpha_da = acos(pi*R*Idc/(2*Vo)) ; #delay angle\n",
+ "for n in range(1,1301,1): #loop for calculating load voltage\n",
+ " theta[n-1]=2*pi*(n-1)/1000\n",
+ " t[n-1]=theta[n-1]/w\n",
+ " vs[n-1]=Vo*sin(theta[n-1])\n",
+ " if theta[n-1]<alpha_da:\n",
+ " vL[n-1]=-vs[n-1]\n",
+ " elif (theta[n-1]<pi+alpha_da):\n",
+ " vL[n-1]=-vs[n-1]\n",
+ " elif theta[n-1]<2*pi+alpha_da:\n",
+ " vL[n-1]=vs[n-1]\n",
+ " elif theta[n-1]<3*pi+alpha_da:\n",
+ " vL[n-1]=vs[n-1]\n",
+ " elif theta[n-1]<4*pi+alpha_da:\n",
+ " vL[n-1]=-vs[n-1]\n",
+ " else:\n",
+ " vL[n-1]=vs[n-1]\n",
+ "\n",
+ "figure(1)\n",
+ "plot(1000*np.array(t),vL,'g.')\n",
+ "xlabel('time [msec]')\n",
+ "ylabel('Load voltage [V]')\n",
+ "grid()\n",
+ "show()\n",
+ "\n",
+ "\n",
+ "#part(b):\n",
+ "alpha_db=0.9*pi #delay angle\n",
+ "Vdc_b=(2*Vo/pi)*cos(alpha_db) #new dc voltage(V)\n",
+ "tau=L/R #time constant(s)\n",
+ "imo=Idc #Initial curent(A)\n",
+ "tzero=-tau*log((-Vdc_b/R)/(imo-Vdc_b/R))\n",
+ "for n in range(1,1301,1):\n",
+ " theta[n-1]=2*pi*(n-1)/1000\n",
+ " t[n-1]=theta[n-1]/w\n",
+ " vs[n-1]=Vo*sin(theta[n-1])\n",
+ " if theta< alpha_db:\n",
+ " vL[n-1]=-vs[n-1]\n",
+ " elif (theta[n-1]<pi+alpha_db):\n",
+ " vL[n-1]=vs[n-1]\n",
+ " elif theta[n-1]<2*pi+alpha_db:\n",
+ " vL[n-1]=-vs[n-1]\n",
+ " elif theta[n-1]<3*pi+alpha_db:\n",
+ " vL[n-1]=vs[n-1]\n",
+ " elif theta[n-1]<4*pi+alpha_db:\n",
+ " vL[n-1]=-vs[n-1]\n",
+ " else:\n",
+ " vL[n-1]=vs[n-1]\n",
+ "\n",
+ "#Results:\n",
+ "figure(2)\n",
+ "plot (1000*np.array(t), vL,'g.')\n",
+ "xlabel('time [msec] ')\n",
+ "ylabel('Load voltage [V]')\n",
+ "print \"part (a):\"\n",
+ "print \"\\n Vdc_a=\",round(1000*Vdc_a,2),\"mV\"\n",
+ "print \"\\n Power=\",round(P),\"W\" \n",
+ "print \"\\n alpha_d=\",round((180/pi)*alpha_da,1),\"degrees\"\n",
+ "print \"\\n part (b):\"\n",
+ "print \"\\n alpha_d=\",round((180/pi)*alpha_db,1),\"degrees\" \n",
+ "print \"\\n Vdc_b=\",round(Vdc_b,1),\"V\"\n",
+ "print \"\\n Current will reach zero at\",round(tzero,1),\"sec\"\n",
+ "grid()\n",
+ "show()"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Populating the interactive namespace from numpy and matplotlib\n"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stderr",
+ "text": [
+ "WARNING: pylab import has clobbered these variables: ['fmod', 'cosh', 'sinh', 'trunc', 'tan', 'gamma', 'degrees', 'radians', 'sin', 'expm1', 'ldexp', 'isnan', 'frexp', 'ceil', 'copysign', 'cos', 'tanh', 'fabs', 'sqrt', 'hypot', 'log', 'log10', 'pi', 'log1p', 'floor', 'modf', 'exp', 'isinf', 'e']\n",
+ "`%pylab --no-import-all` prevents importing * from pylab and numpy\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEPCAYAAAC3NDh4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlUVGeaP/DvLRYBgZSAiAICQQ2KbHFtFYNR2iXRJN2x\nXZO49JT2JK3GaDOZ7jlCnCx29MTkh0lMTKSnTTLqGO0mKqMmYsskGmVx47SJCiooyOK+oXJ/fyBF\n1a0qilrufe9b9/mc42lusT15+1qP93neRRBFUQQhhBBihY51AIQQQtSLkgQhhBCbKEkQQgixiZIE\nIYQQmyhJEEIIsYmSBCGEEJuYJok5c+agW7duSEpKMr6WnZ2NqKgopKWlIS0tDQUFBQwjJIQQbWOa\nJGbPnm2RBARBwOLFi1FaWorS0lKMGzeOUXSEEEKYJon09HR06dLF4nVa30cIIeqgyp7EmjVr0Ldv\nX8ycORONjY2swyGEEM1SXZJ4+eWXcfr0aZSXlyM+Ph4LFixgHRIhhGiWN+sApMLCwowfz5s3D6NG\njbL4msjISFy4cEHJsAghhHvx8fE4deqUQ9+juiRx6dIlhIeHAwC2bNmCxMREi6+5cOEC9S0eys7O\nRnZ2NuswVEGJsdC/o8fVu1dtfl6AgLL5ZUjulixrHPbQfdGmdSwM+QasK1kHEa6/dwyJHIKCmQXQ\n++ndEKFyBEFw+HuYJolp06Zh3759qK+vR3R0NHJycrB3714cPXoUTU1NiImJwWeffcYyRNWrrKxk\nHYJqyDkWHXmD8dX54pDhEPMEAdB9YaqyshIJuQk42XDSbT/zYPVBdP1zV5xacAox+hi3/Vw1Ypok\nvvrqK4vX5syZwyASQmwz5BvwacmnNj+/f/Z+jOg5QsGIiCO+PPYl7sXds/q5EL8QlMwrsflGf/bK\nWTy+9nE03rGcQHNfvI/Y92NxZP4RVfzDQC6qa1wTx8yaNYt1CKohx1i0lyB2TN8BcZmoygRB90WL\nhNwE3EuyTBD6TnpULqxEQ1ZDu08CMfoYNGQ1oHJhJcL8w6x+zaBPBrktXjUSeDx0SBAE6kkQ2dlK\nEGkRafjupe+4q0drja3+0abnN2Fy4mSnfmbRuSKkr083ey28czhql9Q69fOU5sx7Jz1JcK6wsJB1\nCKrhzrGwlSDWT1qPknklqk8QWr8vEnIT2hJERdvr+2fvdzpBAMCIniNQubASAloawH7efvjxtz+6\nEqrqUZIgxIrPSz+3eG39pPWYlTZL+WCIQwz5BqtNanf1jmL0MahYWIGooCj88+V/enzjmspNhEhY\nK1NQguCHkGM5zZMmF7SgchMhLjIrUzw0pMcQShCc0L9jWQakBOEaShKc03rt2ZSrY2GtTNHZqzMK\nXuBvu3ot3hfWngA3Pb8J98/cZxSRZ6AkQchD1voQJ145ofomNWlJ8NIEMSBigEtNatKCehKEwPq/\nQqlMwQ/vN7zxQHxgvBYgoDGrkRK8BPUkCHGCtX+Fbnp+EyUITujf0ZslCAAom19GCcJNKElwTou1\nZ1ucHYsNRzeYXes76bkvU2jlvrCW4HdM32G2TYZWxkIulCSIpiXkJuD2/dtmr5XNL2MUDXGUtI80\npMcQjO89nlE0nol6EkTTpHPqM3pmYO/svYyiIY6wtrPr5azLVGZqB/UkCHFAQm6CxWtbp21lEAlx\nxk8NP5ldZ/TMoAQhA0oSnKN6axtHxsLamoj9s/d7zJuMp98X+nf0Zmd7CBBsJnhPHwu5UZIgmiRt\nVof4hdBsJo5Im9U0m0k+1JMgmmNth9fKhZUev1Gbp5CuaQnxC0FDVgPDiPhBPQlCOkD6FBHmH0YJ\nghPWpryWzCthFI02UJLgHNVb23RkLKxNeT1sOCxTROx46n0hnfI6PGq43QTvqWOhFEoSRFOszYih\npwg+GPINFiurv5nxDaNotIN6EkQzpL0IHXRoyGqghicnAt4MMHsKpDUtjqOeBCHtkPYiRseNpgTB\nCUO+wSxBtDfllbgXJQnOUb21TXtjIe1F6KDDpt9sUiAqNjztvpD2IsbEjelwgve0sVAaJQmiCdJe\nBD1F8MNaL8KTE7zaUE+CeDzqRfCNehHuQz0JQqygXgS/qBfBHiUJzlG9tY21sZC+yXh6L6KVp9wX\n0gTvSC+ilaeMBSuUJIhHo6cIvmkxwasN057EnDlzsH37doSHh+PYsWMAgMbGRkyZMgW1tbXo3r07\nNm7cCL3e/C819SRIR5meF0G9CL5Iz4sIDwhH7dJahhHxj7uexOzZs1FQUGD22rJly/DUU0/h6NGj\nGD9+PJYtW8YoOsI76XkRYQFhlCA4Ip2R9uO//MgoEm1jmiTS09PRpUsXs9d27NiBF154AQAwc+ZM\nbN++nUVo3KB6axvpWGj5TYb3+yIhN8HsvAhXNmHkfSxYU11Poq6uDqGhoQCAsLAwXLp0iXFEhEfu\nfJMhypMmeE/chJEXqksSxDEZGRmsQ1AN07HQ+psMz/eFId9gluBD/EJcSvA8j4UaeLMOQKpr166o\nr69HWFgY6urqEB4ebvXrZs2ahdjYWACAXq9Hamqq8WZofbyka21eP/3W0xArRCAOAICg6iBUlFUg\nJiNGFfHRdfvXf9n2F+ABjP//9b7WG4WFhaqJj6frwsJC5OXlAYDx/dJRzFdcV1ZWYuLEicbZTb//\n/e8RHx+PRYsW4b333kNFRQU++OADs++h2U1tTP/yaF3rWHRf2R01N2uMr0/oNQHbZ2irt8XzfaHL\n0RmfJNwxI43nsXA3Z947mT5JTJs2Dfv27UN9fT2io6PxxhtvICcnB1OmTMHnn3+OiIgIbNpE86KJ\nYy7dbOtjBXoH4otff8EwGuIIaS+J1rWwx/xJwhn0JEFskc6tj+gcgYtLLjKMiDjC3U8RxBx36yQI\ncTdpw/rAbw8wioQ4yqJh7R9CCUIFKElwrrVJRR42rN04K4ZnPN4X0i1UBkcOdsvP5XEs1ISSBPEY\nu0/vNrseGjWUUSTEUdY2YqRekjpQT4J4DKpn80s6Iy0zLhO7XtzFMCLPRD0Jolk0K4Zv0hlptNur\nelCS4BzVW1v81PATUNHyMW0pzdd9Ycg3oBnNxusA3wC3JniexkKNKEkQ7lns00S7vXJF2rAe2GMg\no0iINdSTINzzXe6Le833jNeVCys1O6uJR9RLUg71JIgmmSaIIZFDKEFwhHpJ6kdJgnNar7eaHSxU\nAZy/ep5dMCrCy31huvhRrl4SL2OhVpQkCNfOXD5jdv393O8ZRUKcQSus1Y+SBOe0vLulId9gVmoa\nnj6cSk0P8XBfSI+XddcKaykexkLNKEkQbklnxYR1DmMUCXGGtNREK6zViZIE57Rcb71z/47xYy/B\nC78N+S3DaNRF7feFdDM/Oactq30s1I6SBOGS9E0mPTodgb6BDCMijpA+Bf74Lz8yioTYQ+skCJcC\n3gww2xDumceewbap2xhGRBwh5AjGj0P8Q9DwhwaG0WgHrZMgmiEtNeU9m8cuGOIQQ77B7NpX58so\nEtIRlCQ4p8V6q3QB1pOxT0Lvp9fkWNii5rGQlprkPhhKzWPBA0oShDumayO84KX5zfx4Y/oUGOYf\nRtOWVY56EoQ7pvXs4dHDUTSniGE0xBHSM8gn9JqA7TO2M4xIW6gnQTyedAFWxeUKRpEQZ9DaCP5Q\nkuCc1uqt7W3DobWxaI9ax4LFNhxqHQteUJIg3LDYhiOKtuHgiVLbcBD3op4E4Yb0HGRaG8EX03M/\nvOCF+qx62tBPYdSTIB7N9BzkIJ8gWhvBEelTYHrPdEoQnKAkwTkt1VtNz0H29/G3eJPR0ljYo7ax\nyD+Zb3b9iP8jiv1utY0FbyhJEC5I69l0DjJf6CmQX9STIFygc5D5Zcg34NOST43X4QHhqF1ayzAi\n7aKeBPFISm4rTdxPWmqip0C+qDZJxMbGIjk5GWlpaRg8mKbK2aKFemtHt5XWwlh0lJrGwrTUFOgd\nqPgCOjWNBY+8bX1iy5Ytdh9N/P39MWHCBFkCEwQBhYWFCAkJkeXnE37QXj/8MuQbzCYcBHYKpKdA\nztjsSYSGhmLSpEk2v1EURezfvx+nT5+WJbC4uDgcPnwYoaGhFp+jnoR2SOvZmXGZ2PXiLoYREUeY\nnvshQEDFwgpK8gw5895p80li3LhxWL9+fbvfPGPGDId+mSMEQUBmZibu378Pg8GAV155RbbfRdRL\nWs8O8A1gFAlxhulTYKh/KCUIDtlMEvYSBAB88YV8tcUDBw4gPDwcdXV1GDduHBISEjBmzBjj52fN\nmoXY2FgAgF6vR2pqKjIyMgC01SC1cG1ab1VDPO6+vnTzEvBwD7+gPi1TJ219fetraoqf1XVZWRkW\nLVrENJ75x+e3TDh4+P/f4MzBTOJZvXq1pt8f8vLyAMD4fukom+Wm8PBwTJo0CdOmTcOTTz4JQRCs\nfZki3n77bQDA66+/DoDKTaYKCwuNN4enkZaaIjpH4OKSiza/3pPHwlFqGAu1bMOhhrFQC7dOgS0v\nL8fAgQOxfPlyREVFYeHChThwQN4TpFrdunULt27dAgDcvHkTBQUFSExMVOR388aTb37TWU0CBLsn\nmHnyWDhKDWNhug3H0OihzBrWahgLntlMEmFhYZg/fz4KCwtx6NAhxMXF4dVXX0V8fDz+/d//Xdag\namtr8Ytf/AKpqalIS0vDE0880W4TnXgmqmfzS3qONZ37wa8OrZPo0aMH5s6di/nz5yMwMBDr1q2T\nNai4uDgcOXIEZWVl+Omnn/DGG2/I+vt4ZlqP9yTSBXRpEWl2v8dTx8IZrMdC+hRoeu6H0liPBe/a\nTRK3b9/Gpk2b8Ktf/Qq9evXCd999hxUrVuDChQtKxUc0imY18Y2eAj2Hzcb19OnTsXv3bjzxxBOY\nNm0aJkyYAH9/f6Xjs4oa157PK8fLuAgryCcI5xafo0VYnKBzrNXL7esk1q5di6CgIJcDI8QR0lW6\nnX07U4LgiOkRs17wonOsOWez3NSlSxe7CeKbb75xe0DEMZ5Yb3V0VlMrTxwLZ7EcC7XMampF94Vr\nbD5JLF26FJGRkRBF0eoaCVEU8frrr+Ppp5+WNUCiPVTP5hfNavI8NnsSGRkZdhfQhYSEYMuWLbIE\n1h7qSXgu2quJb7RXk7q5tSdBj2iEBZrVxDd6CvQ8qj1PgnSMpyXzxtuNxo+DfYMdOubS08bCFSzG\nQrq2ZXCkOs6BofvCNZQkiGoY8g1oam4yXg+JHMK86Uk6znTCQZBPEM1q8hB0xjVRje4ru6PmZo3x\n+pnHnsG2qdsYRkQcYXoOOZ1jrU6ynHF9/fp1/OlPf8KcOXMAAKdPn0Z+fr6d7yLEcabHXAb5BDlU\naiJsSUtNKd1SGEZD3Mlukpg5cyaCgoJw8OBBAEBkZCT++Mc/yh4Y6RhPqreaLqDz9/F3uNTkSWPh\nKqXHQs0TDui+cI3dJHHmzBlkZWXB19cXAODn5wedjloZxL0SchPMrgf2GMgoEuIMegr0XHbf7X19\nfXH79m3j9blz52QNiDjGU/bKd8dWDp4yFu6g5FiofRsVui9cY3OdRKtly5Zh9OjRqKqqwosvvoi9\ne/fik08+USI2ohGGfIPZVg7pPdNV9SZD2ufsNiqED3afJCZNmoStW7fio48+wqRJk3D48GGMHz9e\nidhIB3hCvVVaz37E/xGnfo4njIW7KDkWal9AR/eFa+w+SRQXF0MQBMTFxQEAqqur0djYiF69esHH\nx0f2AInnc2UBHWHP0cOhCF/srpMYOnQoiouLkZycDAA4duwYEhMTUVdXhzVr1uCZZ55RJFBTtE7C\ns5jOr8+IycDeWXsZR0Q6Snp2BK1tUTdZ1klER0fj2LFjKC4uRnFxMY4dO4bevXtj3759yMrKcjpY\nQgDL+fU/NfzEMBriKNMJB96CNz0FeiC7SaK8vBwJCW3TEx977DGUl5cjPj7eOC2WsMN7vdWdZyHz\nPhbupMRYSCccjIgeocoJB3RfuMZuT+LRRx/FK6+8gsmTJ0MURWzZsgWxsbFoamqiJEFcpvamJ7HN\nXRMOiLrZ7UncvHkTq1evxvfft/wLb9iwYVi0aBH8/f1x48YNBAcHKxKoKepJeAY6C5lvdA45f5x5\n76QN/ggzvst9jeUKL3ihPque3mQ4IuS0HUpGG/rxQZbGdXl5OSZOnIg+ffogLi4OcXFxePTRR50O\nkrgXz/VWd5+FzPNYuJvcY8HTNip0X7jGbpJ44YUXsHDhQvj5+aGwsBBz5szBjBkzlIiNeDA6C5lv\n7thGhfDBbrkpJSUFR44cQf/+/XH8+HEAwKBBg3Do0CFFArSGyk38Mz07gs5C5o/Z2paeGdg7m9a2\n8MCtZ1y3CggIgCiKiImJwYcffoiIiAg0NDQ4HSQhgPmuocOih1GC4EhCboLZ2haa1eTZ7JabPvjg\nA9y8eRO5ubkoKirChg0bsGHDBnvfRhTCY71Vumuou0pNPI6FXOQcC94W0NF94Rq7SaKiogKBgYGI\ni4vDl19+ia+//hpVVVWyBlVQUICkpCT069cPK1askPV3EeW5cwEdUZ7phIMhUXQOuaez25NIS0tD\naWmp2WutfQo53L17FwkJCSgqKkK3bt3wi1/8Ap988gnS0to2DqOeBN9M69lh/mGo+0Md44hIRxny\nDfi05FPjdY/AHqh+rZphRMQRbu1J7Ny5Ezt27EB1dTUWLFhg/MG3bt2CIAi2vs1lBw8eRGJiIiIj\nIwEAU6ZMwfbt282SBOGXdK8m2jWUL/QUqD02y009evTAgAED4OfnhwEDBhj/jB07Frt375YtoKqq\nKkRHRxuvo6KirJa3ur7bFWevnJUtDl7wVm+V8yxk3sZCTnKNBY/bqNB94RqbTxIpKSlISUnBjBkz\nFD03oqNPKfVf1CN+ZzyWDFuCiLAIpKamGo8pbL0p6Fp91423G4GHfergx1rOjnDXz2+lpv9eVtdl\nZWVu//lfXv+y5Snw4f9/gzMHq+a/t73rsrIyVcWj5HVhYSHy8vIAALGxsXCGzZ5EUlKS7W8SBBw9\netSpX2jP/v37sWLFCnzzzTcAgHfffRdNTU344x//aPb7kd3yMe33ww9pPTszLhO7XtzFMCLiiIA3\nA3D7fst597RXE5/c2pPIz8+39SlZDRo0CMePH0d1dTXCw8OxadMmrF271ubXl1wsUTA64go5S01E\nfqalJn8ff0oQGmGzJxEbG2v84+vri8OHD6O4uBi+vr5OP7Z0hJ+fHz766COMHTsWKSkp+NWvfoXH\nH3/c5tc33G7QdG9CWmpRM9MFdEE+QW6fX8/TWMjN3WMhnXCQ0i3FrT9fTnRfuMbuOon/+q//wqBB\ng/D3v/8d27Ztw+DBg/HXv/5V1qDGjx+P48ePo7y8HK+//nq7X3uv+R6GfTZM1niIe5guoKN/ifKF\nngK1y+46iX79+qGoqAghISEAgMbGRowYMQLl5eWKBGiNaU8CADIfzcSuF6i2rWbSfgT1kvjSaXkn\nNDU3AQCCfYNx9tWzlOQ5JMtW4QCMCQIAunTpooqFbD66thlXZTVluHLnCsNoiD2m8+uDfIJo11CO\nGPINxgQBAEMiaZW1lthNEqNHj8a4ceOQl5eH9evX46mnnsKYMWOUiK1dnX06Gz+uu1WHWdtmsQuG\nIV7qrUo0PXkZCyW4cyx4LzXRfeEau7vAfvDBB/jqq69QVFQEQRDw4osvYsqUKUrE1q6BkQOx58we\n4/WtplsMoyHtke4aquYDaogluSccEHWz25NYtWoVpk6datwmQw0EQcDl25fRZUUX42udvDqhZkkN\nPQarEB1Tyjc6ptRzyNKTuH79On75y19ixIgRyM3NRW2tOm4QvZ8eof6hxuu7D+5ixhY6MU9tDPkG\ns11D03umU4LgCE/HlBJ52E0S2dnZOHHiBNasWYOLFy9i5MiRGD16tBKx2VVsKDa71uLCOrXXW6X1\nbDkPqFH7WCjJXWPhCceU0n3hmg7NbgKA8PBwREREIDQ0FHV16tjaOUYfAwFtj8L3mu/RLCeVoXo2\nv+gpkAAdSBIffvghMjIyMHr0aNTX12PdunWy7dvkjOBOwcaPG243aG6WU+umXmql5AI6tY+Fktwx\nFko+BcqJ7gvX2J3ddP78eaxevRqpqalKxOOwQZGDzGY53Xtwr52vJkoy5BvMrqmezZfG243Gj4N9\ng+kpUKPsPkm8/fbbqk0QALB58mazktOhC4c0VXJSc71V6QV0ah4LpbljLExLTY93f5zbUhPdF67p\ncE9CrfR+ejzSqe0xWMsL69SGdg3ll3RDv58afmIYDWGJ+yQBtCysM6WlhXVqrbeyWECn1rFgwdWx\n8KRjSum+cI1HJInNkzebXR+7dIxRJKSVJ0yd1DIejykl8rCZJAIDAxEUFGT1T3BwsK1vY0Lvp4e3\n0NaD19IZE2qtt5rWs4dGD1Wk1KTWsWDBlbGQPgUOjhzshojYofvCNTZnN924cQMA8Kc//Qk9e/bE\n1KlTAQAbN27E+fPnlYnOAcN7Dse+s/sAtJ0xUf1aNeOotEk6q6nicgWjSIgz6CmQmLK7d9OAAQNQ\nXFxs9zUlWdt/5MqdK2Z7OYX6h+LUglPULGXA9CxkAQIqFlZQuYIjpns1DY8ejqI5RQyjIe4ky95N\nzc3N+Oqrr/DgwQM0Nzfjv//7v1VxnoSUdJaTFhfWqQXVs/lFT4FEym6S2LhxI/Ly8tClSxfo9Xrk\n5eVh48aNSsTmsEGRg8yutbCwTm31VunUSSXr2WobC5acHQvTVda8z2pqRfeFa+yuuO7Tpw/+93//\nV4lYXLZ58maErAgxvkm1LqyjkpNy6AQ6vpnutTUsehg9BRL7PYkbN25g7dq1OHnyJO7fv298/fPP\nP5c9OFvaq6t1eacLrtxtW3H9zGPPYNvUbUqFpnm6HJ0xSdPZA3yRnkPeI7AHTf7wMLL0JKZNm4Yr\nV65gz549eOKJJ1BVVYXAwECng5SblhfWsSYtNaV0S2EYDXGUJy2gI+5jN0mcOXMGy5cvR1BQEF56\n6SXs3LkThw8fViI2p2htYZ2a6q2sz0JW01iw5sxYeOqEA7ovXGM3SXTu3BkA4O/vjxMnTqCxsRFV\nVVWyB+YsLS+sY43OjuCX9CkwLSKNYTRETewmiblz5+LatWtYvnw5MjMz0bdvX2RlZSkRm9OG9xxu\n/Lh1YZ2nUsu+NIZ8g9nZEZ19Oys+YUAtY6EGjo4F66dAOdF94Rq7jWs1std8oYV1yqMFdHzzyvEy\nJvkgnyCcW3yO/r54IFka142Njfjd736H/v37o3///nj55Zdx+fJlp4NUgpYW1qml3qqGerZaxkIN\nHBkLNTwFyonuC9fYTRIzZsxA9+7d8fe//x1/+9vfEBERgenTpysRm0ukC+tolpN8qJ7NN+mspgO/\nPcAwGqI2dstNSUlJOHbMfIZQcnKybOdcZ2dnY926dejatSuAlpPxxo0bZ/Y1HXlkkpacIjpH4OKS\ni+4PmKD7yu6ouVljvKa1KXwxXdsS5h+Guj/UMY6IyEWWcpO3tze+/75tvvQPP/wAb2+7C7WdJggC\nFi9ejNLSUpSWllokiI6iWU7KoVlN/KKnQGKP3SSxdu1azJ49GzExMYiJicHs2bOxdu1aWYNyVy9d\nC7OcWNdb1VTPZj0WatLRsfDkWU2t6L5wjd0kMXjwYJw8eRKHDh3CoUOH8M9//hP/93//J2tQa9as\nQd++fTFz5kw0NjY6/XOkJY+7D+7iyp0rNr6aOIPq2Xyjp0Bij1NTYKOjo106eCgzMxM1NTUWr7/5\n5psYNmwYQkNDAbT0J06fPo0NGzaYfZ0gCHjppZcQGxsLANDr9UhNTTXOh279l0NGRgb07+hx9Z9X\nW74xrqVevihikfHz0q+na8eudTk6iBUP69n9WurZaoqPrm1ff3n9y5a9mh7uBh7Rv6Vvp5b46Nr1\n68LCQuTl5QEAYmNjkZOT43ClhkmS6KgLFy5g1KhROHnypNnrjjRfMv+aiT1n9rRdx2Vi14u73Bqn\nVkk3hKOx5QutbdEeWRrXSrt0qe3xd8uWLUhMTHTp53n6Xk6t/2pgQW31bJZjoTYdGQs1rG1RAt0X\nrrE5TSkwMBCCIFj93K1b8q05eO2113D06FE0NTUhJiYGn332mUs/r3WW032xZZvz1llOnvoXQklU\nz+ZXQm4Cs8OhCF88clsOqYy8DOw7u894Tfvku05aaqJ1KHzxXe6Le80tJzd6wQv1WfUetcqaWOcR\n5SY50Cwn96NZTXxrTRAAMDR6KCUIYpMmkoQn7+XEqt6qxno21Z7btDcWhnyD2XXF5QqZo2GL7gvX\naCJJALSXkzvRKl2+0Ql0xBGa6EkAlns5+ep8Ubu0lh6znWA6dRKgvZp4Iu0l0V5N2kI9iXZI93Jq\nam7ymJKT0kxLTV6CF81q4oh02jLNaiL2aCZJAOZ7OQGeUXJSut4qnTr5ZOyTqnkao9pzG1tjYTpt\nOdA7EF/8+guFImKH7gvXaCpJSEsi/zj3D5rl5KAzl88YP/aCFzb9ZhPDaIijTDdjDPANUE2CJ+ql\nqSSh99Mj1D/UeH33wV3M2DKDYUSua92vRSlqnjqp9FiombWxSMhNMLse2GOgQtGwRfeFazSVJACg\n2FBsdn34wmFGkfBH+ibj6VMnPc1PDT8ZP9ZBp4lSE3Gd5pKEdD7/lbtXuC45KVlvNS01AVDd1Emq\nPbeRjoV02nJYQJiqngLlRPeFazSXJACgi1/bVNimB03cl5yUYMg3mJWahkcNV8UCOtIxpmsjAODH\nf/mRUSSEN5pMEqXzSs2uSy6WMIrEdUrVW6VTJ8M6hynyex1Btec20rEwnbYc5h+mqQRP94VrNJkk\nYvQxdP61g2jHV37RCnniCk0mCcDy/Ouh64YyjMZ5StRbpedY+/v4q7KeTbXnNqZjIS01sT73Q2l0\nX7hGs0lCumbC9E2QmJOWmrQyddJT0Ap54grN7N1kjfcb3nggPgAA+Oh88PPvf9ZUrbajvHK8jEk0\n0DsQ5187r8onCWIpITcBJxvajv+lI2a1jfZuctCIniOMH/NccpJTQm6C2VNWYKdAShAcka6NoBXy\nxFGaThLpsktgAAASc0lEQVTSklPjnUbu1kzIXW+Vro1Q8+FCVHtu0zoWpg3rEP8QTSZ4ui9co+kk\noffT05oJO0zXRgyJHELlOI5IV8jTjq/EGZruSQDA2StnEft+rPE6PCActUtr3fKzeSetZ9PZ4HzR\n5eiMTxI66NCQ1aDJJwnShnoSTvC0bTrcSe3bcBDbtLwNB3EvzScJgO9tOuSqt/K4DQfVntv8Zdtf\nzK61vA0H3ReuoSQBy2069pzZo/mnCekCLDVuw0Fsa3rQZPw4xD9E9QmeqJfmexKtfN7wwX3xvvF6\nQq8J2D5ju1t/B0+EHMH4sZfghfo/1FO5ghPSXlJE5whcXHKRYURELagn4QLp0aZaPmdCOism1D+U\nEgRHTNdGAOqetkzUj5LEQ9I1E7w0sOWot0ob1rzUs6n2bNKwfngelNZ2fLWG7gvXUJJ4iNZMtOCx\nYU3aSHtJhw3afSIm7kE9CRPSNRO+Ol/ULq3VVKkl4M0A3L5/23j9zGPPWDxlEfUy7SWF+Ieg4Q8N\nDKMhasNNT2Lz5s1ITEyEl5cXSkrMD/x5++230a9fPyQlJWHXLmU3IpOeM9HUrL2nCdMEQTuG8kXa\nS/LV+TKKhHgSJkkiKSkJW7duxciRI81eLy4uxtdff41jx46hoKAA8+bNQ1NTk42fIg/eGtjurLfy\n3rDWeu3ZrGFdQQ3rVlq/L1zFJEkkJCSgT58+Fq9v374dU6dOhZeXFyIjI5GYmIgff1S2aSotrdTd\nqtPMqXXSWTG8NKxJS4I3XWEd3CmYeknELVTVuK6urkZUVJTxOioqClVVVYrGIG1gixAx7LNhisbg\nCHed32uxjQOHs2K0fJaxdEba0RVHGUWiPlq+L9zB2/6XOCczMxM1NTUWr7/11luYOHGiXL/WLUrn\nlZo1sO8+uIsrd65wVXpxFM2K4Rvt1kvkIluS2L17t8PfExUVhfPnzxuvq6qqEB0dbfVrZ82ahdjY\nWACAXq9Hamqq8V8MrTVIZ68ryirQubozbkbeBAA0lDdg3PJxOPDmAbf8fHdem9ZbXfl5t3++DcS1\n/JygC0GoKKtATEYM8/8+R65bX1NLPEpd91zYE7gK4/9/p4pPYfWN1Vi0aJEq4mN9vXr1are+P/B0\nXVhYiLy8PAAwvl86iukU2FGjRmHlypUYMGAAgJbG9fz58/HDDz+gpqYGI0aMwM8//wwfHx+z75Nr\nCqypzL9mYs+ZPcZrtW4hXlhYaLw5nOUp2zi4Yyx4ZLolOABULqxERVmFJsfCGq3eF9Y4897JJEls\n3boVCxYsQH19PR555BGkpaVh586dAFrKURs2bIBOp8OqVaswduxYy6AVSBJX7lxBlxVtvQkBAioW\nVnjkY7y1NxlP/O/0RNIEH+Yfhro/1DGMiKgZN0nCVUokCQAIWRGCy3cuG695/Rd2e+hNhm+U4Ikj\nuFlMxwvpFuK1N2tVNx3WtB7vDOm0V54b1q6OBW+kM9JC/Nq2BNfaWLSHxsI1lCTaEaOPsZgOO3Td\nUIYRuZd0bj2P0161TDojbWiU59ybRD2o3GSHdD8nH50PLi295BHTYalUwS9DvgGflnxqvKYzrElH\nULlJBjH6GHgJXsbre8338JtNv2EYkXtInyJMSxVE/T4v/dzsenTcaEoQRBaUJDpgRM8RZte7K3ar\npjfhbL1V2ovwhFKFVmrPhnwDHogPzF7b9JtNZtdaGYuOoLFwDSWJDtg2dRsECGav8dybkD5F6KDD\nF7/+gmFExBHSXkRGzwx6iiCyoZ5EBx2tPYqUj1OM1zz3JqS9iCPzjyC5WzLDiEhHSXsRAgQ0ZjVy\neR8S5VFPQkbJ3ZItehM8njVhbdokJQh+SJ8ixsSNoQRBZEVJwgHS3sTOUzuZ9yYcrbdKG56e0Ito\n5em1Z0O+wexQKB10Fr2IVp4+Fo6gsXANJQkHSM+a4G3dREJugkXDk3oR/JA+RYQFhNFTBJEd9SQc\nlJGXgX1n97XFwtGeTqbnHwPA/tn7LZ6OiDpJt08BaF0LcRz1JBTA69OE9GhSL3hRguCIdMpyRs8M\nShBEEZQkHKT30+OJmCfMXmO5p1NH663SN5mS+SUyRMOWp9aepZMNdNBh67St7X6Pp46FM2gsXENJ\nwgnbpm6Dj67tjAsRIvr8vz64cucKw6hs07+jpxlNHKPV1YQl6kk4SbqnEwBkxmVi14u72ARkg3Re\nPUC1bJ7o39Hj6t2rZq9dzrpMSYI4hXoSCpLuEAsAeyr2qO5pQjojhvZo4os0QeyfvZ8SBFEUJQkX\nSM+bECEqvvlfe/XWhNwEs3n1AFAyz/N6Ea08rfasf8c8Geg76Ts82cDTxsIVNBauoSThghh9DIZH\nDzd7bXfFbhytPcooInPSKZM0I4YfCbkJFk8RZfPLGEVDtIx6Ei66cucKQlaEmDWG1bCfDtWy+WWt\njzQ8ajiK5hYxioh4CupJMKD301v8C49F2cmUtX+FUi2bH9LZTAIEfDPjG0bREK2jJOEGyd2SLd6A\nlSo7Wau3SstMQ3oM0cTCOU+oPVvbOqVsfpnDCd4TxsJdaCxcQ0nCTcrmWdaLUz5OUXyRne9yX4vX\nCl4oUDQG4hxrW28MjxpOa1oIU9STcCPpmRMA4KvzRe3SWkVKPdb6ELQ/Ez+ke2upobdFPAv1JBiz\nVnZqam7Cc189J/vvttaHWD9pPSUITlh7AnSmzESIu1GScLOyeWUWR50WnitE0Tl5ZqYUFhZaLVME\n+wZjVtosWX6nWvFae/Zd7ot7zffMXtsxfYdLZSZex0IONBauoSThZjH6GFQsrLB4PX19uiyJYuX3\nKy0SBAAc/Z061mqQ9unf0VskiPWT1mN87/GMIiLEHPUkZFJ0rgjp69MtXnfnedLW5tMD1IfghbUe\nUkp4Csp+R4vmiDyoJ6EiI3qOwP7Z+y1eT/k4xS1PFLYSxI7pOyhBcMBaggjQBaBwdiGbgAixgUmS\n2Lx5MxITE+Hl5YWSkra9hCorK+Hv74+0tDSkpaXhX//1X1mE5zYjeo7AkMghFq+nr0/H0HVDnd4M\nUP+Ovi1BmFS2Nj2/SdNlCl5qz7ocnUWCAIDy35e7rVHNy1gogcbCNUySRFJSErZu3YqRI0dafK5X\nr14oLS1FaWkpPvzwQwbRuVfBzAKE+odavH6w+iC6/rmrw+sofJf7mr/B1LT8z/pJ6zE5cbIroXKv\nrEzdZZqE3AQIOYLZFi6tjsw/4tZ9tdQ+FkqisXANkySRkJCAPn36sPjVitP76XFqwSmLbcUB4L54\nH7Hvx2LgJwPtPlXo39FDyBEsmpy405IgtDaTyZorV9S1TXsrQ74Buhyd1QkGOujc2qdqpdaxYIHG\nwjXerAOQqqysRGpqKgICAvCf//mfePLJJ1mH5DK9nx5nFp7Bc189h8JzhRafL75YjC4rWpLIkMgh\nKJhZAL2f3mrdWmp60nRKECqly9FZfWpolRyejH2z99FaCKJqsiWJzMxM1NTUWLz+1ltvYeLEiVa/\np0ePHqiurkZwcDBKS0vx9NNP48SJE9Dr+f9LpPfTY+/svTZnPbU6WH3QmDDa80inR3Bk/hEsW7TM\nnWFyrbKyktnvtjWRwBa5n/5YjoXa0Fi4SGQoIyNDLC4utvn5X/7yl+IPP/xg8Xp8fLwIgP7QH/pD\nf+iPA3/i4+Mdfp9mXm4STebsNjY2Qq/XQ6fTobKyEsePH0evXr0svufUqVNKhkgIIZrFpHG9detW\nREdH48CBA3jqqacwfnzLtM3vvvsOycnJSE5OxsSJE/HBBx8gLCyMRYiEEELA6YprQgghyuBuxXVB\nQQGSkpLQr18/rFixgnU4TMXGxiI5ORlpaWkYPHgw63AUNWfOHHTr1g1JSUnG1xobG5GZmYnk5GSM\nHTtWM1MfrY1FdnY2oqKijAtTCwq0cabI+fPnMXLkSCQlJeGxxx7Dn//8ZwDavDdsjYXD94bDXQyG\n7ty5I8bGxopVVVXivXv3xIEDB4olJSWsw2ImNjZWbGhoYB0GE//4xz/EkpISsX///sbXXnnlFfG9\n994TRVEU33vvPXHBggWswlOUtbHIzs4WV61axTAqNmpqasRjx46JoiiK169fF3v37i2WlZVp8t6w\nNRaO3htcPUkcPHgQiYmJiIyMhLe3N6ZMmYLt27ezDospUaPVwvT0dHTpYj5VeMeOHXjhhRcAADNn\nztTMvWFtLABt3hvdunVD//79AQCBgYFITk5GdXW1Ju8NW2MBOHZvcJUkqqqqEB0dbbyOiopCVVUV\nw4jYEgTB+Aidm5vLOhzm6urqEBrasgVKWFgYLl26xDgittasWYO+ffti5syZaGxsZB2O4iorK3Ho\n0CGMGDFC8/dG61ikp7es0XLk3uAqSQiCYP+LNOTAgQMoKSnBt99+i/Xr12PPnj2sQyIq8fLLL+P0\n6dMoLy9HfHw8FixYwDokRd24cQPPP/883n//fQQHB7MOh6kbN25g8uTJeP/99xEUFOTwvcFVkoiK\nisL58+eN1+fPnzd7stCa8PBwAEDXrl3x/PPP49ChQ4wjYqtr166or68H0PJU0To+WhQWFgZBECAI\nAubNm6epe+PevXv49a9/jRkzZuDZZ58FoN17o3Uspk+fbhwLR+8NrpLEoEGDcPz4cVRXV+PevXvY\ntGmTcY2F1ty6dQu3bt0CANy8eRMFBQVITExkHBVbEyZMwIYNGwAAGzZswIQJExhHxI5pOWXLli2a\nuTdEUcTcuXPRr18/vPrqq8bXtXhv2BoLh+8NGZrqstqxY4eYmJgo9u3bV3zrrbdYh8PMmTNnxOTk\nZDElJUXs3bu3+B//8R+sQ1LU1KlTxe7du4s+Pj5iVFSU+Pnnn4sNDQ3imDFjxKSkJDEzM1O8fPky\n6zAVIR2Lzz77TJw5c6aYnJwsJiQkiGPHjhWrqqpYh6mI/fv3i4IgiCkpKWJqaqqYmpoq7ty5U5P3\nhrWx2LFjh8P3Bi2mI4QQYhNX5SZCCCHKoiRBCCHEJkoShBBCbKIkQQghxCZKEoQQQmyiJEEIIcQm\nShKEEEJsoiRBPNbVq1fx0UcfGa8vXLiAyZMnu/33tO7Pn52d7fafbc+oUaMQFBSE4uJixX830QZK\nEsRjXb58GR9++KHxukePHti8ebPbf48gCFi8eDGTJLF3714MHDiQNr8ksqEkQTzWv/3bv+H06dNI\nS0tDVlYWzp49azy9LS8vD88++yzGjx+PuLg45ObmYuXKlRg4cCAef/xx42ZwJ0+exKhRo5CSkoIh\nQ4bgxIkTVn+X6cYF2dnZeOmllzBq1CjExsbi66+/xpIlS5CcnIzRo0fj7t27AIClS5ciMTERqamp\nWLx4MQCgpqYGTz/9NFJSUpCamop9+/YBAK5fv46pU6ciMTERKSkp+J//+R/Zxo0QM0rsIUIIC5WV\nlWantVVUVBiv169fL/bq1Uu8ffu2WFdXJwYHB4vr1q0TRVEUX331VfHdd98VRVEUhw0bJv7888+i\nKIrigQMHxOHDh1v8nuzsbHHlypXG62XLlokjR44Um5ubxSNHjoj+/v7irl27RFEUxeeee07cvHmz\nWFtbKyYmJhq/58aNG8bPFxUViaIoimfPnhXj4+NFURTFBQsWiEuWLDF+/dWrV40fZ2RkiMXFxc4O\nEyHt8madpAiRi2hnW7JRo0bBz88Pfn5+0Ov1xp1Bk5KSUFZWhoaGBpSUlJj1MW7fvm339wqCgHHj\nxkEQBPTv3x/Nzc3IzMw0/uzz588jNDQUPj4+mDt3LiZMmICJEycCAPbs2YOKigrjz7p79y6uXbuG\nb7/9Fn/729+Mr2v9jASiHEoSRLM6depk/Fin0xmvdTodmpubIYoiunbtitLSUod/tq+vr/Fn+fj4\nmP2e5uZmeHl54eDBg/j222+xZcsWrFmzBt999x0EQcChQ4fg7W35V9Ne0iNEDtSTIB7L39/feOaG\nI1rfjMPCwtC1a1d88803xtdt9SQcdfPmTVy/fh3jx4/HqlWrUFJSAgAYM2YMPv74Y+PXtf6+zMxM\nrF271vj6tWvX3BIHIfZQkiAeq1u3bkhNTUW/fv2QlZVlPI0LgNnHrdemH7deb9y4EatWrUJycjL6\n9+/f4YaxrZ/den3t2jWMGzcOaWlpSE9Px3vvvQcA+Pjjj7F7924kJSWhf//+eP/99wEAy5cvx7lz\n59CvXz+kpqbi22+/dWJECHEcnSdBiItycnIQGBiI1157jcnvHzVqFFatWoXHH3+cye8nno2eJAhx\nUWBgID755BNmi+kqKirM+h6EuBM9SRBCCLGJniQIIYTYREmCEEKITZQkCCGE2ERJghBCiE2UJAgh\nhNj0/wELMsFZawmOEgAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x1e16bd0>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "part (a):\n",
+ "\n",
+ " Vdc_a= 437.5 mV\n",
+ "\n",
+ " Power= 15.0 W\n",
+ "\n",
+ " alpha_d= 87.4 degrees\n",
+ "\n",
+ " part (b):\n",
+ "\n",
+ " alpha_d= 162.0 degrees\n",
+ "\n",
+ " Vdc_b= -9.1 V\n",
+ "\n",
+ " Current will reach zero at 4.5 sec\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEPCAYAAAC3NDh4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8U2W+P/BP0oUWC54utEhb0lrASGnayiIDBYpQgSqo\nMy5sKsv9FeaqgIrDeGfmZQszI4zyErxFwY3eO6gjXJaZsnQEtRUGQehCUe6tLC1SEChd2Fra0J7f\nHzUnOSdJ0ywnZ/u+Xy9e5jltkofHQ755nu+z6FiWZUEIIYQ4oJe6AoQQQuSLggQhhBCnKEgQQghx\nioIEIYQQpyhIEEIIcYqCBCGEEKckDRLz5s1DTEwMUlJSuGu5ubmIi4tDeno60tPTUVRUJGENCSFE\n2yQNEnPnzrULAjqdDi+99BLKy8tRXl6OyZMnS1Q7QgghkgaJMWPGIDw83O46re8jhBB5kGVOYt26\ndbj33nsxe/ZsNDQ0SF0dQgjRLNkFieeeew6nT5/GiRMnkJSUhEWLFkldJUII0axAqSsgFBUVxT1e\nsGABxo8fb/c7sbGxuHDhgj+rRQghipeUlIRTp0659RzZBYnLly8jOjoaALB161YkJyfb/c6FCxcU\nm7cw5htRVV/lk9faP3c/9n20D7m5uT55PaXLzc2ltvgZtYUVtYWVTqdz+zmSBokZM2agpKQEV65c\nQXx8PPLy8vDVV1+hsrISbW1tMBgM+PDDD6Wsok8xKxlcbb3qs9cbs3EMIv4ZgSW/XQImhPHZ6ypV\nTU2N1FWQDWoLK2oL70gaJD799FO7a/PmzZOgJuILXhEMc4fZ4c8y+megcEah0w/6ykuVGLp+KG7j\ntt3PGloaEP1GNE6+cBIGxuDTOhNCiOwS12rErGQcBojhdw1H47JG7J+7v8uegCnGBPNrZhxbeAyB\nwrieBpg7zBj4nwPRdKvJ11VXlDlz5khdBdmgtrCitvCOTomHDul0OsXkJJz1IPbP3Y+M/hkeveae\nk3uQ/Um23fUgfRD1KAghTnny2Uk9CRE56kEEIAA1i2s8DhAAMGXgFBxbeKyzUG29rvUeRXFxsdRV\nkA1qCytqC+9QkBCJMd9ol6TWQ4/Ti0/75Ju+KcZkDRQ2zB1mPLn5Sa9fnxBCABpuEkVOYQ7eL3uf\ndy0AAT4LELYqL1UidX2q3XVvhrMIIerkyWcnBQkRBC4PRDvbzrtWs7hGtFyBs0Ah5nsSQpSHchIy\nELwi2C5A7J+7X7QP6+LiYqdDT4lrE3G26awo7ytHNPZsRW1hRW3hHQoSPmTMN9olqjc/vtkvwz6m\nGBPuj72fd40FixHvjxD9vQkh6kXDTT7iKA8xtO9QHF1w1G91aLrVhOg3ou0C1bGFx2CKMfmtHoQQ\neaKchIQc5SEalzX6fbuMs01nkbA2we465ScIIZSTkEhOYY5dgDi28JhfAoRwvNXAGBzmJ0Z+MFL0\nukiNxp6tqC2sqC28Q0HCBz4q/4hXHh03WtLhHVOMCaPjR/OuXbp5SVNJbEKIb9Bwk5cc7ewqxTCT\nUNOtJoSv4h8NG6wPxqVXLkleN0KINGi4SQLCAOFqsz5/YUIYjDOM411r62jDrK2zJKoRIUSJKEh4\ngVnJDwZMD8bvq5y7Gm/dMX0HgvRBvGt7z+xV7d5ONPZsRW1hRW3hHQoSHsopzLHrRVQsrJCoNo4x\nIQxOvnCSd83cYabeBCGk2ygn4SHhlNfRcaNxYP4BCWvkXMSqCDTeauTKOuhQvbiapsQSojGUk/AT\nY77Rbsrrzlk7JaqNa+ULynllFqwmpsQSQrxHQcIDVfVVvLKUyerujLcaGINdEluNU2Jp7NmK2sKK\n2sI7FCTcZMw38soBCFDEltw7pu/glak3QQjpDspJuEmfpwcL63sraV+kzIJMlJwt4cqUmyBEWygn\nITJjvpEXICJCIhQTIAD7KbHUmyCEuEJBwg3CXETZgjKJamLlzniroymxaspN0NizFbWFFbWFdyhI\ndJMwFxGIQEUO0xgYAwJ0AVyZehOEkK5QTqKblJyLEKLcBCHaRDkJkSg9FyFEuQlCSHdRkOiGH+p/\n4JXlkIuw8GS81VFuor6lXvF7OtHYsxW1hRW1hXcoSLiQU5hj14tQw7CMMDdBezoRQhyRNEjMmzcP\nMTExSElJ4a41NDQgKysLJpMJkyZNQlOTtN9uN1Vu4pVHxslrWCYzM9Pj5woXAe47s0/RvQlv2kJt\nqC2sqC28I2mQmDt3LoqKinjXXnvtNTz00EOorKzElClT8Nprr0lUu85eRMvtFq6shx4f/+pjyerj\na8JV2HTeBCFESNIgMWbMGISH809P2717N55++mkAwOzZs7Fr1y4pqgbAvhcxIXGCLA4UsuXNeKuj\ng4mU3JugsWcragsragvvyC4nUVdXh8jISABAVFQULl++LFldhL2IzU9ulqwuYqHeBCGkK7ILEnIh\nXDwX1TNKdr0IwPvxVke9iaMXjnr1mlKhsWcragsragvvBEpdAaE+ffrgypUriIqKQl1dHaKjox3+\n3pw5c5CQkAAAYBgGaWlp3M1g6V56U646WgUk/vxm1cDax9dy7+2L15dTeWm/pSgpLuH+vpe/v4y/\n7fwbpj88XRb1ozKVqexZubi4GAUFBQDAfV66S/IV1zU1NZg6dSqOHz8OAHjhhReQlJSEJUuW4K23\n3kJ1dTXefvtt3nPEXnGdU5iD98ve58pRoVGo+02daO/njeLiYu7m8Ibw9Lp+Yf1w/uXzXr+uP/mq\nLdSA2sKK2sJKcSuuZ8yYgVGjRqGqqgrx8fHYuHEj8vLysGvXLphMJuzZswfLly/3e72ECeujOcoc\nfnGH8PS61vZWxSawCSG+I3lPwhNi9yR0eTrucURoBOp/Uy/ae8kJs5LB1darXDl7QDZ2zZJudhkh\nxLcU15OQI2HCOlgfLFFN/G947HBeWakJbEKI71CQEBDu03To3w5JVJPusSSpfGHLE1t45brmOkWd\nNeHLtlA6agsragvvUJCwIdztNSo0ShX7NHUXE8IgPMS6uJF2hyWEUE7CRvCKYJg7zFy5ZnGNpoIE\nAJxtOouEtQlcOTggGJeWXpLlGhFCiHsoJ+El2wBxf+z9mgsQQOfusLa9ibZ2WoFNiJZRkPiZMGF9\n7uo5iWriHjHGW4XTYZWSwKaxZytqCytqC+9QkPiZMGF9cP5BiWoiPWEPSmkJbEKI71BOAspaYe0v\naliBTQjho5yEh7S4wtoVWoFNCAEoSADgbwkeEaqs40nFGm81MAbc2eNOrlzfUi/7BDaNPVtRW1hR\nW3hH80EipzCHV9bSCmtXhCuwy34qk6gmhBCpaD4n0fNPPXk9CS2ujXCm6VYTwldZp8NGhkbi1KJT\ntGaCEIWinISbhGdYa22FtStMCKO4ISdCiG9pOkgUVhXyyiNiR0hUE8+JPd6qpCEnGnu2oraworbw\njqaDxOWb1vOzwwLD8PGvPpawNvIk3PSvvqWe1kwQoiGazUkI10ZE94zGpVcueVs1VcosyETJ2RKu\n3PeOvvhp6U8S1ogQ4gnKSbhBONQ0rN8wiWoifzum7+CVO9AhUU0IIf6m2SChlqEmf4y3MiEMAnQB\nXLmxpVGWQ0409mxFbWFFbeEdTQaJnMIc3rfhsB5hNK3ThYz+Gdxjc4cZoz4cJWFtCCH+osmchO3a\nCB10qF5cTVNfXaA1E4QoH+Ukusl2bUR4aDgFiG6gNROEaJPmgoTatuHw53ir3NdM0NizFbWFFbWF\ndzQXJIQ7vh76t0MS1UR5hGsmzB1m2hmWEJXTXE5Cn6cHi87n0rkR7mNWMrjaepUrP3LPI3ZTZAkh\n8kQ5CReM+UYuQADK3IZDasIhp+a2ZolqQgjxB00FiTONZ7jHAQhQ7NoIW/4ebxUOOX3949eyGXKi\nsWcragsragvvaCpImDvM3OOR8SNp+qYHmBAGkaGRXLm1vZVmORGiYprJSRjzjaiqr+LKdGaz5842\nnUXC2gSuTPteEaIMlJPogu1QEwAcnH9Qopoon3BdSVNrk2yGnAghviXbIJGQkACTyYT09HSMGOFd\ngjmnMIc31DQ6brRqFtBJNd4aHmJdfd3W3iaLIScae7aitrCitvBOoLMfbN261WXXJDQ0FNnZ2aJU\nTKfTobi4GBEREV6/lnDH16g7orx+Ta0rX1DOG3KS28I6QohvOM1JREZGYtq0aU6fyLIs9u/fj9On\nT4tSscTERBw9ehSRkZF2P3N3XC0gL4Db0K9XUC/8+NKPlLT2gaDlQbjN3u58rA/CyRdOqqaHRoga\neZKTcNqTmDx5MjZu3Njlk2fNEm+IQafTISsrC7dv30ZOTg6ef/55j1/LdsfX0KBQChA+Mrr/aO4w\nIsvOsDQZgBB1cRokXAUIAPj4Y/HWGRw6dAjR0dGoq6vD5MmTYTQaMXHiRO7nc+bMQUJCAgCAYRik\npaUhMzMTgHUMMjMzE8Z8I1D985MSOw8Xsv258PeVVrYdb/X3+++YvqNzZ9if23dQ5iC///1ty5Zr\ncvr/I1W5oqICS5YskU19pCyvWbPG6eeD2svFxcUoKCgAAO7z0l1Oh5uio6Mxbdo0zJgxAw888AB0\nOp1Hb+ALr7/+OgDg1VdfBeBelyl4RTCXtA5AAK4su6KqnkRxcTF3c0ghcHkg2tl2AECPgB64uPSi\nZO0rdVvICbWFFbWFlU+nwJ44cQLDhg3DihUrEBcXh8WLF+PQIf9shtfc3Izm5s7tHm7evImioiIk\nJye7/TrCWU1j+o9RVYAAIPnNb9ueUi+sk7ot5MSdtjDmG8GsZNDnjT6yPHHQW3RfeMdpkIiKisLC\nhQtRXFyMI0eOIDExES+++CKSkpLwH//xH6JW6tKlS/jFL36BtLQ0pKenY9y4cV0m0Z0Rzmq6M/RO\nJ79JPFWaU8or0ywn5TnTeAZXW6/iSvMVOnGQ2OnWOol+/fph/vz5WLhwIcLCwvDBBx+IWqnExEQc\nO3YMFRUV+OGHH7B8+XKPXsf2HOteQb1Q8GiBj2ooH7bj8VIwMAYE6qyprfqWesm+jUrdFnLiTlvY\n9rYHRQ4SoTbSovvCO10GiZaWFmzevBm//OUvMWDAAHz55ZdYtWoVLly44K/6eYVmNfnH6P6jucd0\n/rXyBOgCuMff1H5Dq+cJj9PE9cyZM7F3716MGzcOM2bMQHZ2NkJDQ/1dP4e6k3wR7tWUPSAbu2bt\nErtqmiQ8/zrTkImv5nwlYY2IO6L+EoX6lnquTP9W1Mvn6yQ2bNiAXr16eV0xKahxW3C5YkIYBOgC\nuFlOlm+j1HNThtKcUlo9T5xyOtwUHh7uMkDs3LnT5xXyBS3MarKQy3irHGY5yaUt5MCdtpBTXkkM\ndF94x2lP4pVXXkFsbCxYlnW4RoJlWbz66qt4+OGHRa2gJ2hWk//Rt1Flo9XzxBmnOYnMzEyXC+gi\nIiKwdetWUSrWFVfjarRXkzRoLyflorySNvg0J6HkLhrNapIGfRtVLsorEWdke56Ep3IKc3jlYf2G\nSVQT/5BTMN8xfQevnBzt/ip5b8ipLaTmSVsI80pzdszxXYUkRPeFd1QXJDZVbuIe9wrqRbOa/IgJ\nYRCkD+LKFRcraM69gghXzze3NUtUEyInqjvjWp+nB4vOn9HZy/4XvjIcTa3WwPDIPY/Y9TCIfMlp\nw0bie6KccX39+nX8/ve/x7x58wAAp0+fRmFhoYtnScOYb+QCBKD+oSY5GhbLb3P6NqoscpjKTOTF\nZZCYPXs2evXqhcOHDwMAYmNj8bvf/U70inlCiwvo5DbeuuWJLbzy1z9+7bchJ7m1hZQ8bQs1bthI\n94V3XAaJM2fOYNmyZQgODgYAhISEQK+XXypDSwvo5IwJYRAZaj1ylr6NKouBMUAH69R3c4eZ8koa\n5/LTPjg4GC0tLVz5xx9/FLVCntLqAjo57pUv1bdRObaFVLxpi949enOP61vqFT/Lie4L77gMEq+9\n9homTJiA2tpaPPPMMxg9ejR3UpycaGFbcKWgb6PKNjx2OK9MeSVtcxkkpk2bhu3bt+Pdd9/FtGnT\ncPToUUyZMsUfdXOLVhfQyXW8VYpvo3JtCyl40xZS5pXEQPeFd1wGidLSUpw/fx6JiYlITEzE+fPn\n8b//+78wm82unuo3WltApwTCb6PmdvncL6RrjvJKSh9yIp5zuU5i5MiRKC0thclkAgAcP34cycnJ\nqKurw7p16/DII4/4paK2hHN9e/6pJ1pud+ZNaK8meWi61YSIVRHclOQ+Pfvghxd+oP8vCnG26Sxv\nw8asxCx8/szn0lWI+IQo6yTi4+Nx/PhxlJaWorS0FMePH8fAgQNRUlKCZcuWeVxZX7p1+xb3WEtD\nTXLGhDC4s4d18kBdcx19G1UQYV7p+OXjEtaGSMllkDhx4gSMRiNXvueee3DixAkkJSVx02KlpPUF\ndHIeb/X3wjo5t4W/+aItbI81VfIZE3RfeMdlkLj77rvx/PPPo6SkBMXFxXjhhReQkJCAtrY2WQQJ\nLS6gUwphApS+jSoLnV1OgG7kJG7evIk1a9bg4MGDAIBRo0ZhyZIlCA0NxY0bN9C7d++uni4K23E1\nXZ61Szw6fjQOzDvg9/oQ5+iMCeUSnjERGRqJU4tO0XCugnmSk1D0Bn85hTl4v+x97nq/sH50foHM\nZBZkcmdMAPT/SGmYlQyutl7lyrRho7KJkrg+ceIEpk6dikGDBnHTYO+++26PK+lLttuC66DDwfkH\nJayNNOQ+3ir8QGltbxVtzr3c28KffNUWalhYR/eFd1wGiaeffhqLFy9GSEgIiouLMW/ePMyaJY+9\neGxnNUWGRtIwhgwJZzmpYZsHLaG8EnEZJG7fvo2JEyeio6MDBoMBf/jDH1BUVOSPunUppzCHN6tp\nROwICWsjHSXsS+OvhXVKaAt/8VVbMCEMAnXWU47b2XbFrb6m+8I7LoNEz549wbIsDAYD3nnnHWzb\ntg319fX+qFuX6AQ65djyxBbenPsjF44o7oNGy2xnOdU119GuvhrjMki8/fbbuHnzJvLz83HgwAFs\n2rQJmzZtcvU00dECuk5KGG/118I6JbSFv/iyLYR5JaWdMUH3hXdcBonq6mqEhYUhMTERn3zyCbZt\n24ba2lpRK1VUVISUlBQMHjwYq1atcvg7tkNNqTGpotaHeI9OrFMu4ZCTkhfWEfe5nAKbnp6O8vJy\n3rXU1FQcO3ZMlAq1trbCaDTiwIEDiImJwS9+8Qu89957SE9Pt1ZapwNyrc+haXnyJ5xz3/eOvvhp\n6U8S1oi4g6Yyq4MnU2ADnf1gz5492L17N86fP49FixZxL9zc3Nz5IS2Sw4cPIzk5GbGxsQCAp556\nCrt27eIFCVt0doQyWL6NWhbWWb6N0ow0ZdgxfQcvyA+KHCRhbYg/OR1u6tevH4YOHYqQkBAMHTqU\n+zNp0iTs3btXtArV1tYiPj6eK8fFxXU5vHVH8B2azUcAyhpvFXubByW1hdh83RZMCMPby+mb2m8U\nM/mA7gvvOO1JpKamIjU1FbNmzUJQUJDfKtTtXsp2AAzw1MinsGbNGqSlpXFT3Sw3BZXlVea+jVYD\nAJA8Idmnr28hl7+vlOWKigqfvz4TwqC+pR6oBlrRecbEjuk7ZPH37apcUVEhq/r4s1xcXIyCggIA\nQEJCAjzhNCeRkpLi/Ek6HSorKz16Q1f279+PVatWYefOnQCAN954A21tbfjd737He3/kAvvn7kdG\n/wxR6kHEYbvNA+3lpCx0xoTy+XTvppqami6f6GlUcuXWrVswGo3417/+hejoaIwaNQobNmzAfffd\nx/2OTqdDTWMNfbgoUNZfs7DvzD6uTAlQZQlcHoh2th0A0COgBy4uvajp4V6l8eneTQkJCdyf4OBg\nHD16FKWlpQgODhYtQABASEgI3n33XUyaNAmpqan45S9/yQsQFhQgOgmHWuROuM2DLxOgSmsLMYnV\nFrYBobW9VREL6+i+8I7LdRL//d//jeHDh+Mf//gHduzYgREjRuCvf/2rqJWaMmUKvvvuO5w4cQKv\nvvqqqO9F/EvJCVAClOaU8spKW1hH3OdyncTgwYNx4MABREREAAAaGhqQkZGBEydO+KWCjnjSZSLy\nEfWXqM4E6M9onYuy6PP03GLWrLuz8PnTlJdQClG2CgfABQgACA8Ppw9o4hXht1Fafa0svXtYDxor\nrimm1dcq5zJITJgwAZMnT0ZBQQE2btyIhx56CBMnTvRH3Ug3KHG81cAYeENOX//4tU+GnJTYFmIR\nsy1sd/VVwrGmdF94p1sb/D3zzDP49ttvcfToUTzzzDN4++23/VE3omJKTICSTsLJB2IeJEWk5zIn\nsXr1akyfPp3bJkMOKCehfMI597SXk7LQsabKJEpO4vr163jwwQeRkZGB/Px8XLp0yeMKEmJhYAy8\nMybMHWb6NqogajjWlHSPyyCRm5uL77//HuvWrcNPP/2EsWPHYsKECf6oG+kGJY+32iZAfXGsqZLb\nwtfEbgslHWtK94V3ujW7CQCio6PRt29fREZGoq6uTsw6EY2gb6PKRWdMaIfLnMQ777yDzZs34/Ll\ny3jiiSfw1FNPYfDgwf6qn0OUk1AH4RkTtM2DstAZE8rj0/MkLM6dO8ftskqILzEhDCJDI7mFda3t\n1p1FifwJz5hIjk6WsDZELC6Hm15//XUKEDKm9PFWXy6sU3pb+JI/2kJ4drlcF9bRfeGdbuckCBGD\ncJaTnBOgxJ7SFtYR97nMScgR5STUJWh5EHesKZ0xoSzCvFKmIRNfzflKwhqRroi2dxMhYhL7WFMi\nHtrVV/2cBomwsDD06tXL4Z/evXs7exrxMzWMtwoT1Z5u86CGtvAVf7aF3LdYofvCO05nN924cQMA\n8Pvf/x79+/fH9OnTAQCfffYZzp0755/aEU2wJEAt2zxYFtbRLCdlKM0p5W2xQmdMqIvLnMTQoUNR\nWlrq8po/UU5CfYTHmtL5ycpCeSVlECUn0dHRgU8//RTt7e3o6OjA3/72N/qAJj6npG0eiD3KK6mX\nyyDx2WefoaCgAOHh4WAYBgUFBfjss8/8UTfSDWoZbxVu89DOtrudl1BLW/iCv9tCODQop4V1dF94\nx2WQGDRoEP75z3/i2rVruHbtGoqKijBw4EB/1I1ojO230brmOtklQIlzTAiDIH0QV664WEGznFTC\nZU7ixo0b2LBhA6qqqnD79m3u+kcffSR65ZyhnIQ6Cefc0xkTyhK+MhxNrdbAQGdMyI8oOYkZM2ag\nqakJ+/btw7hx41BbW4uwsDCPK0mIM7SzqLINix3GK9OuvurgMkicOXMGK1asQK9evfDss89iz549\nOHr0qD/qRrpBbeOt3iRA1dYW3pCiLYSTD3x1drm36L7wjssgcccddwAAQkND8f3336OhoQG1tbWi\nV4xok3B4YlDkIIlqQtxl2dXXQo4L64j7XOYkNmzYgBkzZuDw4cN49tln0dbWhry8PDz33HP+qqMd\nykmoW+DyQLSz7QDojAmlobPL5c2Tz07a4I/ITtRforgzJgAge0A2ds3aJWGNiDv0eXqw6Pz3GRka\niVOLTlGQlwlREtcNDQ349a9/jSFDhmDIkCF47rnn0NjY6HEliW+pcbxVeMZEd7d5UGNbeErKtvD1\n2eXeovvCOy6DxKxZs3DXXXfhH//4B/7+97+jb9++mDlzpj/qRjTKwBholpOC0dnl6uJyuCklJQXH\nj/O3SDCZTKisrBSlQrm5ufjggw/Qp08fAJ0n402ePJn3OzTcpH50frJy0dnl8iXKcFNgYCAOHjzI\nlb/55hsEBro8GttjOp0OL730EsrLy1FeXm4XIIg20Cwn/8gpzEFmQSayP8722XRVmuWkLi6DxIYN\nGzB37lwYDAYYDAbMnTsXGzZsELVS1EvoPrWOt3pymI1a28IT3W2LwqpClJwtwZ5TezB3x1yfvb+n\neSUx0H3hHZdBYsSIEaiqqsKRI0dw5MgR/N///R/+9a9/iVqpdevW4d5778Xs2bPR0NAg6nsR+ZL7\nYTZqcPnmZe7xTfNNn72u8Oxyc4dZFgvriPs8mgIbHx/v1cFDWVlZuHjxot31P/3pTxg1ahQiIzu7\nqrm5uTh9+jQ2bdrE+z2dTodnn30WCQkJAACGYZCWlobMzEwA1m8OVFZ2OTEtsXPOfTUAAH2HdM65\nl0v9lF7+5PoneL/sfa59+6V05n189fqPHnq08yCpn1//kcmdeznJ5e+vhXJxcTEKCgoAAAkJCcjL\ny/PPOglvg0R3XbhwAePHj0dVVRXvOiWutYMOsxFPzz/1RMvtFgCADjpUL672advSQVLyI0ri2t8u\nX7Z2f7du3YrkZPnsSy9Hlm8NauXOXk5qbwt3dKctbt2+xT2ODI30efCVy15OdF94x+k0pbCwMOh0\nOoc/a24Wb97zyy+/jMrKSrS1tcFgMODDDz8U7b2I/O2YvoM3nZJmOfmGMd/IrYoGgBGxI3z+HpZZ\nTpbV85a8Eq2eVxbaloPIHu3l5HvBK4Jh7jADAAIQgCvLrojSprSXk7yoYriJECGa5eR7lgABACPj\nR4oWdGn1vPJRkFA4LYy3dnfOvRbaoru6aoucwhxeubqxWtS6eHNGiC/QfeEdChJE9ujbqG9tqrRO\nKddBh4PzD3bx296j1fPKRjkJogjCvZxobNszOYU5nWsjfhYVGoW639SJ/r62eSUxptuS7qGcBFEt\n4bfRDnRIVBNlK6wq5JXFmNXkiG3OgwXr9yEn4jkKEgqnlfFW4V5OjS2NdkNOWmmL7nDWFrbbcIQF\nhuHjX33sl/oI80qt7a1+WzNB94V3KEgQxcjon8E9liIBqga2PbCewT39NpXYwBhwZ487ubIcDiMi\n3UNBQuEs+7VogXDISfhtVEtt4YqjtjDmG3nlYf2G+ak2naQ6jIjuC+9QkCCKwYQwdt9Gac1E9/1Q\n/wP3WA+934aaLITbdJScLaGdYRWAgoTCaW28Vfht1HbNhNbaoivCtsgpzOFtwxHVM8rvq9aZEIY3\nlbmto80vQ050X3iHggRRFOG3UTqnoHts10YAwLf/71tJ6mG7sA6g86+VgNZJEMVhVjKd5xT87JF7\nHrHLVxCnRcWkAAATWElEQVQ+fZ6e60n4a22EI3T+tbRonQTRBKkSoEolHGpK75suWV3o/GvloSCh\ncFocbxUOOe2r3oezTWc12RbO2LaFcKipZ3BPP9eGT7hm4uiFo6K+H90X3qEgQRRH+G2UVvB2zfZw\noQBdAAoeLZCuMoDddhxNrU2UV5IxChIKp9U54MJvo4MiB2m2LRyxtIXwcKEHEh6Qxfh/eIg1L9HW\n3ibqkBPdF96hIEEUycAYeNt0lJwtoZ1hHRCujdj85GYJa2NVvqCcV953Zh/1JmSKgoTCaXm8Vbhp\n3NBXh0pYG3mx3Be2vYiI0AhZ9CIA++3fxVwzoeV/I75AQYIolnDIidZM8Am34fDXjq/dRWsmlIHW\nSRBFE66ZyB6QjV2zdklYI/mwXRuhhx71y+pl05MA7NdMBOuDcemVS7Kqo9rQOgmiOV1t06FlctiG\nwxWptukg7qEgoXBaH2/lrZmopiEni//a8V+8slTbcLjijyEnrf8b8RYFCaJotDOsY23tbdzjiNAI\n2R4VKtxOxbIwksgHBQmFozngNkNOiZ3/0fp0SmO+kWsLoHOsX64cLYwc+cFIn74H/RvxDgUJonjC\nbTraOsRdnCV3tmsjAODQvx2SqCbdI5ylVt9Sr+kgLzcUJBSOxls7v42OM4wDqq3XtJrA5hLWP7dF\nVGiUbIeaLIQLI80dZp8msOnfiHcoSBBVEI5t17fUa3JsW7iZ39EccTfP8xXb88sBWjMhJ7ROgqhG\nZkEmSs6WcOW+d/TFT0t/krBG/qfL03GPI0IjUP+beglr033CNRM66FC9uFr2vSClUcw6iS1btiA5\nORkBAQEoK+MPC7z++usYPHgwUlJS8Pnnn0tRPaJQjnoTWhrbFq6wlnPCWsgfCWziGUmCREpKCrZv\n346xY8fyrpeWlmLbtm04fvw4ioqKsGDBArS1tTl5FQLQeKutikMVdmPbWkpg8xLW1fJPWAuJlcCm\nfyPekSRIGI1GDBo0yO76rl27MH36dAQEBCA2NhbJycn49lt5LgIi8iQc29bKdFjhluC9e/RW3FCN\nowS2loK8XMkqcX3+/HnExcVx5bi4ONTW1kpYI/mjOeBWmZmZdkNOWtnq4UzjGV65clWlRDXxjjDI\n+2KWGv0b8Y5oQSIrKwspKSl2fwoLC8V6S0Ks02FtaGGmjLnDzD2+P/Z+xfUiLGiWmvwEuv4Vz+zd\nu9ft58TFxeHcuXNcuba2FvHx8Q5/d86cOUhISAAAMAyDtLQ07huDZQxSC2Xb8VY51EfKsuXa0n5L\nUVJcwq06/qr4K+zsuxMPP/iwrOrrq3L/xf2Bq+D+vqdKT2HNjTVYsmSJLOrnTpkJYZDakopjF48B\niZ3BL/3VdGx7apvHr79mzRpNfz4UFBQAAPd56S5Jp8COHz8eb775JoYO7TwsprS0FAsXLsQ333yD\nixcvIiMjAydPnkRQUBDveTQF1qq4uJi7ObTOti2ClgfhNnub+5matxC33RIcAGoW16C6olqx94Vw\nOmyQPgiXX7ns8S629G/ESjFTYLdv3474+HgcOnQIDz30EKZMmQIAGDp0KB577DGYTCZMnjwZGzZs\nsAsQhI9ufivbthDuLqrWBLYwYW1ZYa3k+4IJYXyawFZyW8gBLaYjqiT8NgqoszfhqBeh1HyELeHC\nSDqQyDcU05MgvmM7Hq91tm3hKIF99IIytqjoLuHBQhEh1i3BlX5fOJql5mlvQultITUKEkS1hB80\ndc11qpopI9ynaWScelYoayHIKwUNNxFVi1gVgcZbjVxZLfs55RTm4P2y97myHM+w9hbt5+R7NNxE\niED5gnJe+eLNi6i8pMyFZrY+Kv+IV56QOEFVAQLo7E2Eh1iDBAsWg/5zkConIMgZBQmFo/FWK0dt\nYWAMvA8aABj+3nA/1UgcOYU5aGfbedc2P7mZV1bLfSEM8p7kJtTSFlKhIEFUT/hBY+4wKzo3IcxF\nZPbPVF0vwsJRkKfchH9RToJoQviqcN4whVJzE8JchA46NCxrUG2QAICzTWeRsDaBK1NuwnOUkyDE\niYoFFbzypZuXFNmbEPYiJiZOVHWAAOx7E3TWhH9RkFA4Gm+16qotHH3QjHh/hB9q5Ts5hTloud3C\nlfXQ2+UiLNR2X3gzAUFtbeFvFCSIZgg/aC43X1ZUb0LYi4jqGaX6XoSFGicgKAXlJIimCDf+U8p2\nD8Z8I6rqq3jX1LIFR3cJcxMAcGzhMZhiTNJUSIEoJ0GIC6UL+EdkerPdgz/xjiZF54wmLQUIoLM3\nIQzmaevTaN2EyChIKByNt1p1py1MMSbFTakU7tGkhx7bZ2zv8jlqvS+EExBYsC6DvFrbwl8oSBDN\ncZSbkPMqbC2sru4uA2PA6Hj+NvB7z+yl3oSIKCdBNEm4pxMgzzF+ZiWDq61XedcalzVqNkgAjreB\nz0rMwufPfC5RjZSDchKEdJOwNwFAlnPvhQFi/9z9mg4QgP2eTgCwt3qvomaqKQkFCYWj8VYrd9rC\n0bCF3BbYMSv5wYDpwSCjf0a3nqv2+8JRkHe27kXtbSE2ChJEs3bO3Mkry2mXUWO+0a4XUbGwwslv\na4+BMeDYwmO8a3LPLSkV5SSIpgmPyQSkH98W7s8EAKPjRuPA/AMS1Ui+hOteAHnmluTCk89OChJE\n05puNSH6jWiYO8y861J+0AQuD+RtBa6FTfw8VXmpEqnrU3nXlLJAUgqUuNYgGm+18qQtmBAGJ184\naXddqmEnY77R7qyIioUVbn/gaeW+MMWY7HJLbR1teHLzk1xZK20hFgoSRPMcJbHbOtrw2KeP+bUe\njrbeGB03mradcGHnzJ0I0gfxru2t3kv5CR+h4SZC4HzYyZ97A+nydPwyDTN1m6N9nQDKTwjRcBMh\nHnI27JS6PtUv30iDVwTbXfNkmEmrHPUGAWDgfw6UxWw1JaMgoXA03mrlbVsYGAP2z91vdz11faqo\n6yeCVwTb9WB2z9ztVQ9Gi/fFzpk7ERkaybtm7jDDsNhAgcILFCQIsZHRP8PhN9LEtYmiBApmJWMX\nIDZO24gpA6f4/L3UjglhcGrRKejAH7a71nrN7/klNaGcBCECzvITQfogXH7lss+GgBzty5QanYqK\nX9OiOW84mhYLdG5p0t0V62pFOQlCfMCSnxB+IzV3mBH9RrRPehSOAkRPfU8Uzy32+rW1zhRjsluN\nDQBjNo7BnpN7fPIe+jw9dHk66PJ0PntNuZIkSGzZsgXJyckICAhAWVkZd72mpgahoaFIT09Heno6\n/v3f/12K6imKFseenfFlWxgYA6oXV9tdN3eYkbA2watktj5PbxcgAODECyd81kvR+n1hijFZ80s2\n/xuzP8kGs5LxONAb843Q5el453tkf5LtTVVlT5IgkZKSgu3bt2Ps2LF2PxswYADKy8tRXl6Od955\nR4LaKUtFBQ1NWPi6LRztD2SRuj4VIz8Y6VZC1NEHjMWxhcd8OlWT7ovO/NL+ufuBi/zrV1uvehTo\nmZWM3ToWoHOSgZpJEiSMRiMGDRokxVurTlMTzdqwEKMtnA1dAMDh84cRviocB37sek+lnMIc6PP0\nDj9g9NCLshaD7otOGf0zMHPgTIc/S12fijtfv9Nlr4JZyUCXp3PY+3tj4huqn2QQKHUFhGpqapCW\nloaePXvij3/8Ix544AGpq0Q0zhIo0tanOewFjNk4hntsmxzV5+kd/j73utEmlMwtobUQIhsYORD7\n5+7n/X+yuNZ2jVuEd2ePO7kenaPV70Ibp23EnPQ5ItRYXkQLEllZWbh48aLd9T//+c+YOnWqw+f0\n69cP58+fR+/evVFeXo6HH34Y33//PRiG/hE5U1NTI3UVZEPMtjDFmNCwrAGPffoYin8sdvp7jj6I\nHBH7A4buC6uamhpk9M/oMtAD1mGo7tDUTClWQpmZmWxpaanTnz/44IPsN998Y3c9KSmJBUB/6A/9\noT/0x40/SUlJbn9OSz7cxNrM2W1oaADDMNDr9aipqcF3332HAQMG2D3n1KlT/qwiIYRoliSJ6+3b\ntyM+Ph6HDh3CQw89hClTOhM/X375JUwmE0wmE6ZOnYq3334bUVFRUlSREEIIFLrimhBCiH8obsV1\nUVERUlJSMHjwYKxatUrq6kgqISEBJpMJ6enpGDHC8SHwajVv3jzExMQgJSWFu9bQ0ICsrCyYTCZM\nmjRJM9NAHbVFbm4u4uLiuIWpRUVFEtbQf86dO4exY8ciJSUF99xzD/7yl78A0Oa94awt3L433M5i\nSOjWrVtsQkICW1tby5rNZnbYsGFsWVmZ1NWSTEJCAltfXy91NSTx9ddfs2VlZeyQIUO4a88//zz7\n1ltvsSzLsm+99Ra7aNEiqarnV47aIjc3l129erWEtZLGxYsX2ePHj7Msy7LXr19nBw4cyFZUVGjy\n3nDWFu7eG4rqSRw+fBjJycmIjY1FYGAgnnrqKezatUvqakmK1eho4ZgxYxAeHs67tnv3bjz99NMA\ngNmzZ2vm3nDUFoA2742YmBgMGTIEABAWFgaTyYTz589r8t5w1haAe/eGooJEbW0t4uPjuXJcXBxq\na2slrJG0dDod14XOz8+XujqSq6urQ2Rk53kCUVFRuHz5ssQ1kta6detw7733Yvbs2WhoaJC6On5X\nU1ODI0eOICMjQ/P3hqUtxozpXMfjzr2hqCCh0+lc/5KGHDp0CGVlZfjiiy+wceNG7Nu3T+oqEZl4\n7rnncPr0aZw4cQJJSUlYtGiR1FXyqxs3buDxxx/H2rVr0bt3b6mrI6kbN27giSeewNq1a9GrVy+3\n7w1FBYm4uDicO3eOK587d47Xs9Ca6OhoAECfPn3w+OOP48iRIxLXSFp9+vTBlStXAHT2Kizto0VR\nUVHQ6XTQ6XRYsGCBpu4Ns9mMX/3qV5g1axYeffRRANq9NyxtMXPmTK4t3L03FBUkhg8fju+++w7n\nz5+H2WzG5s2buTUWWtPc3Izm5mYAwM2bN1FUVITk5GSJayWt7OxsbNq0CQCwadMmZGerewvnrtgO\np2zdulUz9wbLspg/fz4GDx6MF198kbuuxXvDWVu4fW+IkFQX1e7du9nk5GT23nvvZf/85z9LXR3J\nnDlzhjWZTGxqaio7cOBA9g9/+IPUVfKr6dOns3fddRcbFBTExsXFsR999BFbX1/PTpw4kU1JSWGz\nsrLYxsZGqavpF8K2+PDDD9nZs2ezJpOJNRqN7KRJk9ja2lqpq+kX+/fvZ3U6HZuamsqmpaWxaWlp\n7J49ezR5bzhqi927d7t9b9BiOkIIIU4pariJEEKIf1GQIIQQ4hQFCUIIIU5RkCCEEOIUBQlCCCFO\nUZAghBDiFAUJQgghTlGQIKp19epVvPvuu1z5woULeOKJJ3z+Ppb9+XNzc33+2q6MHz8evXr1Qmlp\nqd/fm2gDBQmiWo2NjXjnnXe4cr9+/bBlyxafv49Op8NLL70kSZD46quvMGzYMNr8koiGggRRrd/+\n9rc4ffo00tPTsWzZMpw9e5Y7va2goACPPvoopkyZgsTEROTn5+PNN9/EsGHDcN9993GbwVVVVWH8\n+PFITU3F/fffj++//97he9luXJCbm4tnn30W48ePR0JCArZt24alS5fCZDJhwoQJaG1tBQC88sor\nSE5ORlpaGl566SUAwMWLF/Hwww8jNTUVaWlpKCkpAQBcv34d06dPR3JyMlJTU/E///M/orUbITz+\n2EOEECnU1NTwTmurrq7myhs3bmQHDBjAtrS0sHV1dWzv3r3ZDz74gGVZln3xxRfZN954g2VZlh01\nahR78uRJlmVZ9tChQ+zo0aPt3ic3N5d98803ufJrr73Gjh07lu3o6GCPHTvGhoaGsp9//jnLsiz7\n2GOPsVu2bGEvXbrEJicnc8+5ceMG9/MDBw6wLMuyZ8+eZZOSkliWZdlFixaxS5cu5X7/6tWr3OPM\nzEy2tLTU02YipEuBUgcpQsTCutiWbPz48QgJCUFISAgYhuF2Bk1JSUFFRQXq6+tRVlbGy2O0tLS4\nfF+dTofJkydDp9NhyJAh6OjoQFZWFvfa586dQ2RkJIKCgjB//nxkZ2dj6tSpAIB9+/ahurqae63W\n1lZcu3YNX3zxBf7+979z17V+RgLxHwoSRLN69OjBPdbr9VxZr9ejo6MDLMuiT58+KC8vd/u1g4OD\nudcKCgrivU9HRwcCAgJw+PBhfPHFF9i6dSvWrVuHL7/8EjqdDkeOHEFgoP0/TVdBjxAxUE6CqFZo\naCh35oY7LB/GUVFR6NOnD3bu3Mldd5aTcNfNmzdx/fp1TJkyBatXr0ZZWRkAYOLEiVi/fj33e5b3\ny8rKwoYNG7jr165d80k9CHGFggRRrZiYGKSlpWHw4MFYtmwZdxoXAN5jS9n2saX82WefYfXq1TCZ\nTBgyZEi3E8bOXttSvnbtGiZPnoz09HSMGTMGb731FgBg/fr12Lt3L1JSUjBkyBCsXbsWALBixQr8\n+OOPGDx4MNLS0vDFF1940CKEuI/OkyDES3l5eQgLC8PLL78syfuPHz8eq1evxn333SfJ+xN1o54E\nIV4KCwvDe++9J9liuurqal7egxBfop4EIYQQp6gnQQghxCkKEoQQQpyiIEEIIcQpChKEEEKcoiBB\nCCHEqf8PfsUAKezuFf4AAAAASUVORK5CYII=\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x2983e10>"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 10.8, Page number: 533"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from __future__ import division\n",
+ "from sympy import *\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration:\n",
+ "f=60 #Hz\n",
+ "Vrms=35 #rms voltage of waveform\n",
+ "Ra=3.5 #Armature resistance(ohm)\n",
+ "La=0.175 #H\n",
+ "no=8000 #No load speed(r/min)\n",
+ "Va=50 #armature voltage(V)\n",
+ "\n",
+ "#Calculations:\n",
+ "Edc,alphad=symbols('Edc alphad')\n",
+ "Vdc=Edc #at no load, Vdc=Edc\n",
+ "Edc=round(float(2*sqrt(2)*(Vrms/math.pi)),2)*cos(alphad)\n",
+ "n=Edc*float(no/50)\n",
+ "\n",
+ "#Results:\n",
+ "print \"Speed at no-load =\",n,\" r/min (where 0 <= alphad <= pi/2)\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Speed at no-load = 5041.6*cos(alphad) r/min (where 0 <= alphad <= pi/2)\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 10.9, Page number: 537"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from __future__ import division\n",
+ "from math import *\n",
+ "\n",
+ "#Variable declaration:\n",
+ "Vll_rms=460 #rms voltage,line-to-line(V)\n",
+ "R=68 #resistance of load\n",
+ "Im=2.5 #magnet current(A)\n",
+ "\n",
+ "#Calculations:\n",
+ "Vdc_max=3*sqrt(2)*Vll_rms/pi\n",
+ "Idc_max=Vdc_max/R\n",
+ "Vdc=Im*R\n",
+ "alpha=acos(pi*Vdc/(3*sqrt(3)*Vll_rms))\n",
+ "\n",
+ "#Results:\n",
+ "print \"(a) Maximum dc voltage:\",round(Vdc_max),\"V\"\n",
+ "print \"\\n Maximum dc current:\",round(Idc_max,1),\"V\"\n",
+ "print \"\\n(b) Delay angle alpha:\",round(math.degrees(round(alpha,1)),1),\"degrees\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) Maximum dc voltage: 621.0 V\n",
+ "\n",
+ " Maximum dc current: 9.1 V\n",
+ "\n",
+ "(b) Delay angle alpha: 74.5 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 10.10, Page number: 541"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from __future__ import division\n",
+ "from math import *\n",
+ "\n",
+ "#Variable declaration:\n",
+ "T=20*10**-3 #Time period(sec) \n",
+ "p=4 #no. of poles\n",
+ "delta=0.44 #ON- time fraction\n",
+ "Vo=125 #DC supply voltage(V)\n",
+ "\n",
+ "\n",
+ "#Calculation:\n",
+ "fc=1/T\n",
+ "ns=(120*fc/p)\n",
+ "Va_peak=(4*Vo*sin(delta*pi))/pi\n",
+ "Vll_rms=sqrt(3/2)*Va_peak\n",
+ "\n",
+ "#Results:\n",
+ "print \"(a) Frequency:\",fc,\"Hz\"\n",
+ "print \"\\n Synchronous speed:\",ns,\"r/min\"\n",
+ "print \"\\n(b) Rms amplitude of line-to-line voltage:\",round(Vll_rms,0),\"V\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) Frequency: 50.0 Hz\n",
+ "\n",
+ " Synchronous speed: 1500.0 r/min\n",
+ "\n",
+ "(b) Rms amplitude of line-to-line voltage: 191.0 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 10.13, Page number: 547"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from __future__ import division\n",
+ "from math import *\n",
+ "\n",
+ "#Variable declaration:\n",
+ "Vo=48 #Load voltage(V)\n",
+ "R=3.7 #Resistance of load(ohm)\n",
+ "L=.32 #Inductance of laad(H)\n",
+ "D=0.8 #Duty cycle\n",
+ "f=1000 #Hz\n",
+ "\n",
+ "#Calculations:\n",
+ "iL_avg=(2*D-1)*Vo/R\n",
+ "T=1/f\n",
+ "tau=L/R\n",
+ "iL_min=((-Vo/R)*(1-2*exp(-T*(1-D)/tau)+exp(-T/tau)))/(1-exp(-T/tau))\n",
+ "iL_max=(Vo/R)*(1-2*exp(-D*T/tau)+exp(-T/tau))/(1-exp(-T/tau))\n",
+ "\n",
+ "#since T/tau << 1, so using 10.32 in e.g. given.\n",
+ "del_iL=(2*Vo)*T*D*(1-D)/(R*tau)\n",
+ "\n",
+ "\n",
+ "#Results:\n",
+ "print \"Avg load current:\",round(iL_avg,2),\"A\"\n",
+ "print \"Minimum load current:\",round(iL_min,2),\"A\"\n",
+ "print \"Maximum load current\",round(iL_max,2),\"A\"\n",
+ "print \"Current ripple:\",round(del_iL,2),\"A\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Avg load current: 7.78 A\n",
+ "Minimum load current: 7.76 A\n",
+ "Maximum load current 7.81 A\n",
+ "Current ripple: 0.05 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file