diff options
author | hardythe1 | 2015-04-07 15:58:05 +0530 |
---|---|---|
committer | hardythe1 | 2015-04-07 15:58:05 +0530 |
commit | 92cca121f959c6616e3da431c1e2d23c4fa5e886 (patch) | |
tree | 205e68d0ce598ac5caca7de839a2934d746cce86 /ELECTRIC_MACHINERY/.ipynb_checkpoints/chapter3-checkpoint.ipynb | |
parent | b14c13fcc6bb6d01c468805d612acb353ec168ac (diff) | |
download | Python-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.tar.gz Python-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.tar.bz2 Python-Textbook-Companions-92cca121f959c6616e3da431c1e2d23c4fa5e886.zip |
added books
Diffstat (limited to 'ELECTRIC_MACHINERY/.ipynb_checkpoints/chapter3-checkpoint.ipynb')
-rwxr-xr-x | ELECTRIC_MACHINERY/.ipynb_checkpoints/chapter3-checkpoint.ipynb | 460 |
1 files changed, 0 insertions, 460 deletions
diff --git a/ELECTRIC_MACHINERY/.ipynb_checkpoints/chapter3-checkpoint.ipynb b/ELECTRIC_MACHINERY/.ipynb_checkpoints/chapter3-checkpoint.ipynb deleted file mode 100755 index abe5516c..00000000 --- a/ELECTRIC_MACHINERY/.ipynb_checkpoints/chapter3-checkpoint.ipynb +++ /dev/null @@ -1,460 +0,0 @@ -{ - "metadata": { - "name": "" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 3: Electromechanical-Energy-Conversion-Principles " - ] - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 3.1, Page number: 114" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from __future__ import division\n", - "import math\n", - "from sympy import *\n", - "\n", - "#Variable declaration:\n", - "I=10 #current in the coil(A)\n", - "Bo=0.02 #magnetic field (T)\n", - "R=0.05 #radius of the rotor(m)\n", - "l=0.3 #rotor length(m)\n", - "\n", - "\n", - "#Calculations:\n", - "q=symbols('q') #Direction of torque\n", - "F1=-2*I*l*Bo*sin(q) #Force on the coil(N)\n", - "T=F1*R #Torque scting in theta direction(Nm)\n", - "\n", - "\n", - "#Results:\n", - "print \"Force per unit length:\",T,\"Nm\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Force per unit length: -0.006*sin(q) Nm\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 3.2, Page number: 121" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from __future__ import division\n", - "from sympy import *\n", - "\n", - "\n", - "#Variable declaration\n", - "N=1000 #No of winding turns\n", - "g=2 #Air gap width(mm)\n", - "d=0.15 #Magnetic core width,d (m)\n", - "l=0.1 #thickness of core(0.1)\n", - "x,d=symbols('x d') #where h is height of plunger(m) \n", - " #Lx is inductance as a function of x(H)\n", - "i=10 #Current in the winding(A)\n", - "uo=4*3.14*10**-7 #permeability of free space(H/m)\n", - "\n", - "#Calculations:\n", - "Lx=(uo*N**2*l*d)/(2*g*10**-3)*(1-x/d)\n", - "Wfld=(1./2)*Lx*i**2\n", - "\n", - "\n", - "#Results:\n", - "print \"The magnetic energy stored, Wfld:\",\"236*(1-x/d) J\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The magnetic energy stored, Wfld: 236*(1-x/d) J\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 3.3, Page number: 124" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from __future__ import division\n", - "%pylab inline\n", - "import numpy as np\n", - "\n", - "#Variable declaration:\n", - "xdata=[0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0] #(cm)\n", - "Ldata=[2.8, 2.26, 1.78, 1.52, 1.34, 1.26, 1.20, 1.16, 1.13, 1.11, 1.10] #(mH)\n", - "I = 0.75 #(A)\n", - "\n", - "\n", - "#Calculations:\n", - "x=0.01*np.array(xdata)\n", - "L=0.001*np.array(Ldata)\n", - "length=len(x)\n", - "xmax=x[length-1]\n", - "a=polyfit(x,L,4)\n", - "xfit=[0]*102\n", - "Lfit=[0]*102\n", - "for n in range(1,102,1):\n", - " xfit[n-1]=xmax*(n-1)/100\n", - " Lfit[n-1]=a[0]*xfit[n-1]**4+a[1]*xfit[n-1]**3+a[2]*xfit[n-1]**2+a[3]*xfit[n-1]+a[4]\n", - "\n", - "#Plot the data and then the fit to compare (convert xfit to cm and Lfit to mH)\n", - "plot(xdata,Ldata,'o')\n", - "plot(100*np.array(xfit),1000*np.array(Lfit),'g.')\n", - "xlabel('x [cm] ')\n", - "ylabel('L [mH] ')\n", - "title('Inductance,L vs length,l')\n", - "grid()\n", - "print \"The required plots are shown below:\"\n", - "show()\n", - "\n", - "#set current to 0.75 A\n", - "I=0.75\n", - "F=[0]*102\n", - "for n in range(1,102,1):\n", - " xfit[n-1]=0.002+0.016*(n-1)/100\n", - " F[n-1]=4*a[0]*xfit[n-1]**3+3*a[1]*xfit[n-1]**2+2*a[2]*xfit[n-1]**1+a[3]\n", - " F[n-1]=(I**2/2)*F[n-1]\n", - "plot(100*np.array(xfit),F,'b.')\n", - "xlabel('x [cm]')\n", - "ylabel('Force [N]')\n", - "title('Force, F vs length,l')\n", - "grid()\n", - "\n", - "#Results:\n", - "show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Populating the interactive namespace from numpy and matplotlib\n", - "The required plots are shown below:" - ] - }, - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n" - ] - }, - { - "output_type": "stream", - "stream": "stderr", - "text": [ - "WARNING: pylab import has clobbered these variables: ['Polygon', 'poly', 'sign', 'flatten', 'conjugate', 'diff', 'tan', 'Circle', 'roots', 'plot', 'eye', 'trace', 'floor', 'diag', 'invert', 'nan', 'sqrt', 'source', 'add', 'zeros', 'take', 'var', 'pi', 'plotting', 'product', 'seterr', 'power', 'multinomial', 'transpose', 'test', 'beta', 'ones', 'sinh', 'vectorize', 'cosh', 'trunc', 'cos', 'prod', 'tanh', 'mod', 'det', 'sin', 'binomial', 'solve', 'log', 'exp', 'reshape', 'gamma', 'interactive']\n", - "`%pylab --no-import-all` prevents importing * from pylab and numpy\n" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1YVHX+N/D3gA5ggIMPYAKFmWk8KSP+6jZEvNhEIYMW\nWRNDIV1Y+612WZvdJT50ZbXZuura1i23pq2Bm+G1rYYPkDFoZqmAqHlvFokw+jPFQB5iEGLuP4hp\nhuFhGL7DnJl5v67LaznMmcOXz57mw/fz+Z5zZFqtVgsiIqJfOFl7AEREJC1MDEREZICJgYiIDDAx\nEBGRASYGIiIywMRAREQGmBjI4tatW4eUlBRrD8MupKamYvXq1Vb52QEBATh69KhJ+/L/c9vGxEAm\n6cuHQmcymUzIGJycnPD9998LOZYoA/0BKJPJhMWzJ10loL787IEYI1kOEwOZZKA+kHojtesxrRET\nqcWgK7YwRuoeEwP12a5duxAREYEXXngBw4cPh6+vL/7973/rXv/mm28wZcoUeHp6YubMmaiurta9\nplKp4O/vb3A8/dlIa2srVq1aBV9fX3h4eECpVEKtViMyMhIAMHHiRHh4eOCjjz5CbW0tYmJiMGLE\nCHh4eOA3v/kNrly5ojtuVFQU1qxZg2nTpsHd3R2RkZG4efOm7vX8/HwolUp4eHjA19cX7733HgCg\nqakJS5cuhbe3N7y8vLBo0SI0NTV1GQtTPwCXLl2KF154weB78fHx2Lx5M4D2mYePjw88PDwwbtw4\nk2dnH374ISZMmABPT08olUqcPn1a91pAQAA2btyIsLAw3HXXXUhISDD4PdatW4dhw4bhnnvuwfbt\n2+Hk5ITy8nJkZWUhJycHGzZsgIeHB+Lj43XvKS0t7fZ4ZD+YGMgsp06dQnBwMG7duoXVq1fj97//\nve61efPm4dFHH8Xt27fx2muvYffu3T3+Za0/G1m/fj0OHTqEL7/8EvX19cjJycGQIUNw7NgxAMC5\nc+dQX1+PpKQkaLVaLF++HD/88ANu3LiBu+++GxkZGQbH3rNnD7Kzs1FdXQ1nZ2f8+c9/BtCevBIT\nE7FmzRrU19fj4sWLmDJlCgDg2WefxY0bN1BeXo5r166hrq4OL730Ur/ilZycjA8//FC3XVNTg4KC\nAjz55JM4f/483nvvPZSVlaG+vh5FRUUYO3Zsr8f8/PPPsWzZMuzduxd1dXX405/+hPj4eDQ3N+vi\nmpubi08//RRqtRqXLl3C9u3bAQD/+te/sH37dhQXF+O7777DyZMnde9JT0/HggUL8OKLL6K+vl6X\n9LVabbfHI/vCxEBmuffee7Fo0SIAwMKFC1FdXY2rV6/i0qVL+M9//oO1a9dCJpNhypQpeOKJJ0w+\n7s6dO/HGG2/oZhUTJkzAsGHDutzXy8sLcXFxcHZ2hpubG1588UVdAgHaP+TS0tJwzz33wNXVFb/7\n3e9QVlYGAMjOzsZjjz2GhIQEAMDQoUMREhKCO3fuYPfu3Xjrrbfg4eEBNzc3rFy5Env37jUrTh0i\nIiIgk8lw/PhxAEBubi6mTp2KUaNGwc3NDc3Nzbh48SJaWlowevRoBAQEdHusjiS6Y8cO/OEPf0Bo\naCiA9uTj6elpEINly5Zh+PDh8PLywpw5c3S//0cffYQlS5ZgzJgxkMvlWLt2rdHP6Twbkslk3R6P\n7AsTA5ll1KhRuq+HDBkCAGhubsaNGzcwbNgwuLi46F738/MzueTyP//zP7jvvvtM2vf27dtITU2F\nr68vFAoFHnnkETQ3Nxv8LP1xdnwAd/ycMWPGGB3z5s2baG5uxuTJk+Hl5QUvLy/Mnj0bdXV1Jo2p\nOzKZDE8++ST27NkDAMjJycGCBQsAAPfffz82btyI1atXw8fHB3PnzoVare71mGq1Ghs3btSN08vL\nC2q12qB01/n3v3Pnju739PX11b2m/3VPuosn2RcmBhLK29sbP/74IzQaje57VVVVur9y5XI5fvrp\nJ91rbW1tqKmp0W2PHj3a5JVHb731Fq5evYqysjLU1tbixIkT0Gq1JiUhX19fXL582ej7w4cPx+DB\ng/Htt9+ipqYGNTU1qK2tRUNDQ5fH6Uvzef78+cjNzcWVK1dw6tQpJCYm6l576qmncOLECVRWVsLF\nxcWoH9GVu+++G+vWrdONs6amBg0NDZg/f36v7/X29sbVq1d1250TkSm/V2/lQbJdTAwk1AMPPIDx\n48dj/fr1aGtrw5kzZwwa0w8++CAaGhpw8OBBtLW1YcOGDWhsbNS9npaWhlWrVqGqqgoAcPHiRfz4\n448AgGHDhhl8mP/0008YPHgwPDw8UFdXh1dffdVoPN0lifnz5yMvLw/79++HVqtFbW0tzp8/D1dX\nV6SkpOD5559HbW0tAOD69esGzWAnJydduUar1aKtrQ3Nzc3QaDTQaDTd/hU9adIkjBgxAkuWLMGs\nWbPg6ekJAPj2229x/PhxtLa2Qi6Xw8XFBU5OXf+nqZ/4lixZgnfffRelpaUAAI1Gg/z8/G6TmH48\n5s6dix07duDy5cu4c+cOXnvtNYP9hg0bZtDI7+lY3cWFbBcTA/VZV0tX9bc//PBDHDlyBAqFAi+/\n/LLBOn8vLy9s2bIFKSkpGD16NAYPHmywSikzMxOPPvqoblVTSkqKbvaRmZmJefPmwcvLC7m5uVix\nYgVu374NLy8vPPzww4iOju5xXPrjHj9+PHJzc7FmzRp4eHggODgYJSUlAIC3334bXl5eePDBB+Hp\n6Ynp06fjwoULANpnPx4eHggJCdEdc8+ePXBzc8OQIUMwZMgQjBs3rtvYJScn47PPPkNycrLuexqN\nBitWrICXlxdGjBiBa9eu4c033+w19pGRkXjrrbewaNEieHh44N5778W2bdu6/Wtd/71PPPEE0tLS\noFQqcf/99+sa787OzgCAxYsX48yZM/D09MRvf/vbXo/XVVw4a7BdMks9qEej0WDatGlobW1FY2Mj\n4uLisGnTJqP9li9fjqNHj8LFxQU7duxAWFiYJYZDJER2djYuXrxo9Be2rSsvL8cDDzyAhoYGuLm5\n9fn99hoXR2WxxAC0rwd3c3NDa2srIiIi8MYbb2DGjBm61/ft24fdu3fj448/RmlpKdLS0nD27FlL\nDYeI9HzyySeYNWsWmpqasHjxYty+fRtHjhyx9rBIAixaSur4y+POnTv4+eef4ePjY/D6wYMHdWWG\nsLAwtLa2mrQag4j6b8uWLRg2bBhGjx6NhoYG3QV+RIMsefC2tjYolUqUl5dj6dKlCAwMNHhdrVYb\n1Jf9/PygVqvh5+dnyWEREYCCggJrD4EkyqIzBicnJ5w9exZqtRrHjh2DSqUy2qeri2iIiMh6LDpj\n6DB06FDExcXhyy+/RFRUlO77fn5+qKqqwkMPPQQA3c4WfH19ce3atYEYKhGR3Rg7diy+++67Pr/P\nYjOGW7duob6+HkB7E7qgoEC3lK1DbGwssrOzAQAlJSVwdnbu8grMa9eu6dZv81///61du9bqY7CX\nf4wl4ynlf+Xl5WZ9fltsxnDt2jUsXLgQWq0WGo0GycnJiIuLw7Zt2wAAGRkZSExMRGFhIYKCguDi\n4oKdO3daajikp6KiwtpDsBuMpViMpzRYLDGEhITorsjU1/nul2+//balhkBERGbglc8OKDU11dpD\nsBuMpViMpzRY9AI3UWQyGWxgmEREkmLuZydnDA6oq2XDZB7GUizGUxqYGIiIyABLSUREdoqlJCIi\nEoKJwQGxjisOYykW4ykNNpMYYmIykZd3rPcdiYioX2ymx4AFsxFQ/CDe/ks84uIirT0kIiLJs/8e\nw7hDqAiuwtatvFUwEZEl2U5iuBoOfJIFjcbZ2iOxeazjisNYisV4SoPtJIbdBYBGAVfXn609EiIi\nu2Y7PQZoMXbsy9iyZRZ7DEREJjC3xzAgD+oRISZmNZYtY1IgIrI0myklHT78Kv7d9gGidkUhNjsW\ntZpaaw/JZrGOKw5jKRbjKQ02kxgA4NKtSyi6UoRD3x1C+oF0aw+HiMgu2UyPQavVIjY7Foe+O4Tw\n0eEoSCmAwlVh7aEREUmWuT0Gm0oMtZpapB9IR9acLCYFIqJe2P8FbgAUrgrsTdqrSwrpB9LZczAD\n67jiMJZiMZ7SYFOJoTP2HIiIxLOpUlJn7DkQEXXPIXoMnbHnQETUPYfoMXTWuedApmEdVxzGUizG\nUxps5srn3qQfSMelW5cwZPAQ5CTmMFkQEZnJpktJ+qJ2RaHoShEAICkwCXuT9g7E0IiIJMshS0n6\nhgweAgAIHx2OrDlZVh4NEZHtspvEkJOYg6TAJK5OMgHruOIwlmIxntJgNz2GjkY0ERH1j8V6DFVV\nVViwYAFqampw584dLF68GCtXrjTYR6VSIT4+Hvfddx8AIDExEZmZmcaD7GOdjI1oIiIJPo9BLpfj\nnXfeQXBwMBoaGqBUKhETE4OJEyca7Dd9+nTs379f6M/uuCIaaE8SnEkQEZnOYj0GHx8fBAcHAwDc\n3d0RGhqKa9euGe1niQkLG9E9Yx1XHMZSLMZTGgak+VxRUYHTp08jIiLC4PsymQwnT55ESEgIoqOj\nUVZWJuTnsRFNRGQ+i1/H0NDQgBkzZmDVqlVISEgwem3QoEFwdXVFfn4+MjIycPnyZeNBmlkn68Ce\nAxE5Isn1GACgpaUFiYmJSE5ONkoKQHuJqcPMmTMhl8tx/fp1jBo1ymjf1NRUBAQEAAAUCgUmTZqE\nqKgoAL9OP7vbPnXiFMqulwFj2pPEMyOf6XF/bnOb29y2xW2VSoVdu3YBgO7z0hwWmzFotVosWrQI\nw4cPx6ZNm7rcp7q6GiNGjAAAFBcXIz4+HpWVlXByMqxw9XfGwLuwGlKpVLqTivqHsRSL8RRLcjOG\nEydO4IMPPkBoaCjCwsIAAK+//joqKysBABkZGdizZw+ystqbw3K5HDk5OUZJQYScxBzehZWIyER2\nc68kIiIyJLkZg1SxEU1E1DO7uVeSqfg4UK4VF4mxFIvxlAaHSwy8+I2IqGcO12Pg40CJyFE45DOf\n+4v9BiKyZw7/oB5zOGq/gXVccRhLsRhPaXDoxMB+AxGRMYcuJbHfQET2jD0GAdhzICJ7wh6DAI7S\nc2AdVxzGUizGUxqYGPSw50BExFKSga56Dnl5x/C3v+WjuXkQXFxasXz5TMTFRVp8LERE/cV7JQmg\ncFXong+dfiAdJy+dQvl/6tF0rBjQtCeK8vJVAMDkQER2i6Wkbly6dQkXGsrQ5Pc98Niv/Yby8tew\ndWuBFUfWf6zjisNYisV4SgMTQzc6+g24Gg58Ythv0GicrTAiIqKBwR5DN2o1tZjwwlT8sP0LXRmp\nQ0zMahw+/OqAjoeIqK/YYxBM4arAjln/B88eegvlgTeB4ZeAliEIKJ6AZcuMn19NRGQvWErqQVxc\nJLZsiYHX/UeAgCJg3CH4LS21+cYz67jiMJZiMZ7SwMTQi7i4SDw8OQhA+/UNB9L/ZeURERFZFnsM\nJuh8fQNvnUFEtoD3ShpAUbuiUHSlCACQFJiku/aBiEhKeK+kAWTrt85gHVccxlIsxlMamBjMkJOY\ng6TAJBSkFLCMRER2h6WkfmK/gYikiqUkK3GUW3UTkeNgYugnW+w3sI4rDmMpFuMpDUwM/aTfb1hZ\nsBJRu6IQmx2LWk2ttYdGRGQW9hgE4jJWIpIS9hgkwBbLSkREnVksMVRVVSEyMhIhISEYP348NmzY\n0OV+y5cvR1BQEJRKJUpLSy01nAHReRlr+oF0SZaWWMcVh7EUi/GUBovdXVUul+Odd95BcHAwGhoa\noFQqERMTg4kTJ+r22bdvHyorK/H111+jtLQUaWlpOHv2rKWGZHH6T4ADfl2xBLQva2VpiYhsgcVm\nDD4+PggODgYAuLu7IzQ0FNeuXTPY5+DBg0hJSQEAhIWFobW1FWq12lJDGnBSLS1FRUVZewh2g7EU\ni/GUhgHpMVRUVOD06dOIiIgw+L5arYa/v79u28/Pz64SA6+QJiJbZPEH9TQ0NCApKQlbtmyBh4eH\n0eudO+YymazL46SmpiIgIAAAoFAoMGnSJN1fFx11SSlu703aC5VKhb988Rc0jG7AkMFD8MzIZ+Au\nd7fa+DZv3mwz8ZP6tn5NXArjsfVtxrP/8du1axcA6D4vzWHR5aotLS147LHHMGvWLKxYscLo9cWL\nF2P27NmYO3cuACA4OBhHjhyBr6+v4SBtZLlqT6S0lFWlUulOKuofxlIsxlMsyS1X1Wq1WLx4MQID\nA7tMCgAQGxuL7OxsAEBJSQmcnZ2NkoK9kFK/gf/hicNYisV4SoPFZgyff/45IiMjERoaqisPvf76\n66isrAQAZGRkAAD++Mc/orCwEC4uLti+fTuUSqXxIO1gxqD/sJ+VBSt54z0isjg+qMeGWLusxOm6\nOIylWIynWJIrJVH3pFRWIiLqjDMGK+AzpIloILCUZMOsXVoiIvvEUpIN0y8tuQ12s/j9lfTXilP/\nMJZiMZ7SwMQgAfpXSF+pvcInwhGRVbGUJDGx2bE49N0hhI8O5600iKhf2GOwE7zegYhEYY/BTnTc\nulvhqtDdtlt0WYl1XHEYS7EYT2mw+E30yHz6TelE+SLExGSiuXkQXFxasXz5TMTFRVp5hERkj1hK\nkrCOslKifBFWPf8FygNvAsMvAS1DEFD8IN7+SzyTAxF1iz0GOxYTk4n8/PVAahQQ0H69Ay4kIaZ+\nPA4fftWqYyMi6WKPwY41N/9S8WtpLy3hajjQ6oYvJ+w263oH1nHFYSzFYjylgYnBBri4tLZ/sS8H\nuJAE7C4AFFdw2+sKr3cgIuFYSrIBeXnH8OyzR1Be/prue25LxqLJ73uEjw5H4MhAXKm9wmWtRGSA\nPQY7l5d3DFu3FkCjcYar689IW/ow9t15H1lzspDwzwTea4mIjDAxOLC+Xi3Ne96Lw1iKxXiKxeaz\nA9O/11LHbbwtfSM+IrJfPc4YQkJCej3AyJEj8dlnnwkdVGecMfQNb+NNRID5n509Xvn8888/49Ch\nQz0e+PHHH+/zDyXL6uo23mxME5Gpeiwlbdu2Dffeey8CAgK6/ff3v/99oMZKJurtNt5cKy4OYykW\n4ykNPc4Ypk2b1usBTNmHBlbHjfgA4+dLpx9Ix6kTpzD66mjOIIioSyb3GDrXqmQyGc6dO2fZ0XXz\ns8l0nZ8vzf4DkeOwSI/hwIEDuq/j4uJw8OBBfkDbGP3ZA8D+AxH1rsceg34vQS6XG/UbyPbkJOZg\nunY6HyMqCGviYjGe0sDrGByMwlWBdVHroHBVdDl74LUPRNRjj6G4uFhXo1qwYAFycnKg1Wohk8kA\nAEqlcmAGyR6DRej3H3hbDSL7Y5FbYkRFRemSgH5C6FBYWNjnH2gOJgbL63xbDT5vmsj28V5JZLKu\n7kfD1Uvm4b19xGI8xbLIqqQOzc3NOHDgAKqqqqDVanWzh+eee67H9z399NPIy8uDt7c3zp8/b/S6\nSqVCfHw87rvvPgBAYmIiMjMz+/xLUP+ZsnqpoUYDz4IItP3kzudOE9kxk2YM0dHRGDp0KEJCQuDk\n9Gu/eu3atT2+7/jx43B3d8fChQu7TQx//etfsX///p4HyRnDgOuu/4AfxwB19/C500Q2wKIzhps3\nb+Lo0aN9Pvi0adNQUVHR4z78wJemrq6extVw4GcX3XOnK5rdsXVrARMDkZ0xabnqzJkzUVBQIPyH\ny2QynDx5EiEhIYiOjkZZWZnwn0HG+rpWPCcxByNvBLY/UrTZs/2bV8OBT7JQdu9Bh17mynX3YjGe\n0mDSjGHq1KmIj49HW1sbBg8eDKD9Q72urq5fP3zy5MlQq9VwdXVFfn4+EhIScPny5S73TU1N1V1U\np1AoMGnSJF2TquNk4rZp22fPnu3b/l+exb2nlLipUbQ/d/q/EoCTfwJaFGi+qxpFqhIAgLJaiXuG\n3oOmb5uwevpqPDbzMUn8vtzmtqNsq1Qq7Nq1CwD6dRGyST2GgIAA7N+/H8HBwQY9BlNUVFRgzpw5\nXfYYOhs/fjyKioowatQow0Gyx2B1XT13euzYl6H4789QXPcVwkeHw8XZBSeqTgDgSiYiKbBoj2HM\nmDEICQkxuo6hv6qrqzFixAgA7RfTNTY2wtvbW+jPIDE6+ghbt67WPXd62bJZeCR6pa5JnbwvGQDv\nw0Rk60yaMSxatAgVFRWYNWsW5HJ5+xtNWK46f/58FBUVobq6Gj4+PnjllVfQ0tICAMjIyMDWrVuR\nlZUFAJDL5di0aRMiI40bmZwxiKWy0Frxnq6kVrgq7PKCOUvF0lExnmJZfMYwZswY3LlzB3fu3DH5\n4Hv27Onx9WXLlmHZsmUmH4+krafnQOgnivQD6SwzEUkYr3wmi+h8JbX+LTcCRwbiSu0Vu5s9EEmN\nuZ+dPXaS161b1+sBTNmHHE/H7KHjQ7+7x40qtykderkrkRT1OGPw8/PDc88912PGycrKwjfffGOR\nwXXgjEEsa9dx9WcPnVcy2VovwtqxtDeMp1gW6TEsWbIE9fX1PR4gPZ0PeKG+yUnM6XIlU+dehHJb\n+3URtpIkiOwFewxkVT31IvRnE2MUY3RJYpH7f+O9d06iuXkQb+ZH1APedpvsgn6iSN6X3GWSuKti\nAhpvTQOGX+LN/Ih6YJHmM9mnjkvopUi/aa3fsPZ0ab9Hk2f93Wj858n2pBBQBIw7hIqZ/0LK0RSr\nNLClHEtbxHhKg9mJYfPmzSLHQWSkqyQRcnYhoFEALXp3fG0YjZqhlVzlRCSI2aUkf39/VFVViR5P\nl1hKog4xMZnIz18PuNYCj6UDn2QBicnAOPtY5UQkEktJ5BCWL5+JsWNXtc8acvcCGgUCiicgwivK\noOTUscrp0q1LvGaCqI9MuiUG2RdbXive9c38EhAX91cAhkthFa4Kg1tzuDi7dLsUdmXByj7NLPLy\njuFvf8vHDz+o4ePjx5VRgtjyuWlPekwM7u7u3d5R9aeffrLIgIh6ExcX2e2HcOdnV3d3zYR+kkg/\nkI4bjTdMvn7C8BbkKgBRKC9fpRsbka3jclVyGN0thS1IKeh2aWznPsXIu0Zi/zEVam8EtT+0SPNr\n0oiJWY3Dh1+11q9HZITXMRD1QecL63pKGvpXY49wG4Hqpur2g/w4Bqi7p32F1L4cTH9oM1Sqddb7\npYg6YWIgk7GO27OersZWuCrw6fefti+T/dkF+PkEMAbAhST4jfwWY/9rqG5mwTvI9h3PTbEs+jwG\nIkfSU58CAOZkPQH1P5WomPz/2v8LuhqOgAt+cF9yqcuZRU+N7v4mkI4mOG8PQiJxxkBkhry8Y/jr\nOwdwPuAgQipi8dwzc/D32j8bzSy66lnoN7r1E4j+/aBMWSnV9XO4V2HLlhgmBwLAUhKR1emXoACY\n1Og2NYHoJ42OWcaF0ircyioGHl2pu28U9uUgZvrGAW2Cc9YiXUwMZDLWccUxJZY9NboB0xKIftIw\naIBfSALcb7TfNwoAfhyDobI2TJ0SaFSmElnC6iB61sJzUywmBjIZ/+MTR2QsTV0p1THL8Ky/G3V/\nv6i7JYiuIX6PcQIxt4Sln0C6SjQfFR4RunSX56ZYTAxEdqyrWUaifBFWPf8Fyq++oLtvlNtTk9Hk\n971RmcrcEpZ+Aukp0XReujtqYTTG/y8Pk5ILG/GWw8RA5IDy8o5h69YC3e1B0pY+jH133jcqU5lb\nwtJPIN0lms4zFVxIgpf/V6gZWgnA9OTSn1lMQ40Gt7IeQcW4el2/xd1JjYCJTvAfNXrAlgxLLTkx\nMZDJOF0Xxx5iaWoPRP/rjv3mZD0B9bu/LN39pZwVcHwahqd/geK6r0xOLrrXjn6K8EfMm8UY9Vsa\nRwB39b9cZsp+CleFpFaJdSSo/PzXmBjINPbwYSYVjGXXS3cfiQ41Obnov5bw5wR8/L8/7vMsxr1u\nNBre+dqw36JRAGPFlct62k/hqvi139I4ElBcaS+rNY6E1xgVHp4c1GvpTFRZzTBBccZARHair7OY\n6p33oPDQXwyf0wHAZ8lU/OetL/pdLuttP/3bpujPVPS/7inRiCyrGSxjPvB/mRiIyDF1XcZ5GVu2\nzEJcXGS/ymWm7Ndx2xT9mUrnWUtPiUb04gBdWW1XkXmfnVobYCPDtBmFhYXWHoLdYCzF6k88P/mk\nSBsTk6mdPn2tNiYmU/vJJ0XiBtaLmqYabcSWKG3AhOe0cK3RYm6SFq412oAJK7QRW6K0NU01uv2S\n9iZpa5pqDL7u6bXZH8zWYh204VnhRtu/+cdvjL72fP7u9jEsmG32ZydnDA6IdXFxGEuxbD2enVeJ\nLVv2aL8bz32d7RgsY9Z4Sa+U9PTTTyMvLw/e3t44f/58l/ssX74cR48ehYuLC3bs2IGwsDDjQTIx\nEBGZrCNBHTmyXnqJ4fjx43B3d8fChQu7TAz79u3D7t278fHHH6O0tBRpaWk4e/as8SCZGIiI+szc\nz04nC4xFZ9q0afDy8ur29YMHDyIlJQUAEBYWhtbWVqjVaksOidA+XScxGEuxGE9psGhi6I1arYa/\nv79u28/Pj4mBiMjKrP6gns7THJlM1uV+qampCAgIAAAoFApMmjRJ16Tq+CuD26Ztd3xPKuOx5e2o\nqChJjcfWtxnP/m2rVCrs2rULAHSfl+aw+KqkiooKzJkzp8sew+LFizF79mzMnTsXABAcHIwjR47A\n19fXcJDsMRAR9Zkkewy9iY2NRXZ2NgCgpKQEzs7ORkmBxOv4C4P6j7EUi/GUBouWkubPn4+ioiJU\nV1fD398fr7zyClpaWgAAGRkZSExMRGFhIYKCguDi4oKdO3dacjhERGQCXuBGRGSnbLKURERE0sPE\n4IBYxxWHsRSL8ZQGJgYiIjLAHgMRkZ1ij4GIiIRgYnBArOOKw1iKxXhKAxMDEREZYI+BiMhOscdA\nRERCMDE4INZxxWEsxWI8pYGJgYiIDLDHQERkp9hjICIiIZgYHBDruOIwlmIxntLAxEBERAbYYyAi\nslPsMRARkRBMDA6IdVxxGEuxGE9pYGIgIiID7DEQEdkp9hiIiEgIJgYHxDquOIylWIynNDAxEBGR\nAfYYiIg+uZ3lAAAJAklEQVTsFHsMREQkBBODA2IdVxzGUizGUxqYGIiIyAB7DEREdkqSPYbDhw8j\nJCQEgYGBePPNN41eV6lUGDp0KMLCwhAWFob169dbcjhERGQCiyWG5uZmLF26FIcPH8a5c+eQm5uL\n0tJSo/2mT5+O0tJSlJaWIjMz01LDIT2s44rDWIrFeEqDxRLDV199haCgIPj6+mLQoEGYN28e8vLy\njPZjiYiISFoslhjUajX8/f11235+flCr1Qb7yGQynDx5EiEhIYiOjkZZWZmlhkN6oqKirD0Eu8FY\nisV4SsMgSx1YJpP1us/kyZOhVqvh6uqK/Px8JCQk4PLly5YaEhERmcBiicHPzw9VVVW67aqqKoMZ\nBAC4u7vrvp45cybkcjmuX7+OUaNGGR0vNTUVAQEBAACFQoFJkybp/rroqEty27TtzZs3M36CtvVr\n4lIYj61vM579j9+uXbsAQPd5aQ6LLVfVaDSYMGECTpw4AW9vb0ydOhXbtm2DUqnU7VNdXY0RI0YA\nAIqLixEfH4/Kyko4ORlWuLhcVSyVSqU7qah/GEuxGE+xzP3stOh1DIcOHcILL7yAtrY2pKSk4KWX\nXsK2bdsAABkZGdi6dSuysrIAAHK5HJs2bUJkZKTxIJkYiIj6TJKJQRQmBiKivpPkBW4kTfp1XOof\nxlIsxlMamBiIiMgAS0lERHaKpSQiIhKCicEBsY4rDmMpFuMpDUwMRERkgD0GIiI7xR4DEREJwcTg\ngFjHFYexFIvxlAYmBiIiMsAeAxGRnWKPgYiIhGBicECs44rDWIrFeEoDEwMRERlgj4GIyE6xx0BE\nREIwMTgg1nHFYSzFYjylgYmBiIgMsMdARGSn2GMgIiIhmBgcEOu44jCWYjGe0sDEQEREBthjICKy\nU+wxEBGREEwMDoh1XHEYS7EYT2lgYiAiIgPsMRAR2Sn2GIiISAiLJobDhw8jJCQEgYGBePPNN7vc\nZ/ny5QgKCoJSqURpaaklh0O/YB1XHMZSLMZTGiyWGJqbm7F06VIcPnwY586dQ25urtEH/759+1BZ\nWYmvv/4aO3bsQFpamqWGQ3rOnj1r7SHYDcZSLMZTGiyWGL766isEBQXB19cXgwYNwrx585CXl2ew\nz8GDB5GSkgIACAsLQ2trK9RqtaWGRL+ora219hDsBmMpFuMpDRZLDGq1Gv7+/rptPz8/ow99U/Yh\nIqKBZbHEIJPJTNqvc8e8u/fFZseiVsO/JkSoqKiw9hDsBmMpFuMpDYMsdWA/Pz9UVVXptquqqgxm\nB/r7PPTQQwDaZxB+fn7GB/MCDj11CF5PeVlquA7n/ffft/YQ7AZjKRbjKc7YsWPNep/FEsOUKVNw\n4cIFXL16Fd7e3ti7dy+2bdtmsE9sbCw++OADzJ07FyUlJXB2doavr6/RsbQ/8hoGIqKBYrHE4Orq\ninfffRcxMTFoa2tDSkoKlEqlLjlkZGQgMTERhYWFCAoKgouLC3bu3Gmp4RARkYls4spnIiIaOJK6\n8pkXxInTWyxVKhWGDh2KsLAwhIWFYf369VYYpW14+umn4ePjg5CQkG734Xlput7iyXPTdFVVVYiM\njERISAjGjx+PDRs2dLlfn89PrURoNBptQECAVq1Wa1taWrTh4eHakpISg31yc3O18fHxWq1Wqy0p\nKdFOnDjRGkOVPFNiWVhYqJ0zZ46VRmhbjh07pi0pKdEGBwd3+TrPy77pLZ48N013/fp17fnz57Va\nrVZbX1+vHTdunPbs2bMG+5hzfkpmxsAL4sQxJZaA8VJh6tq0adPg5dX9ijiel33TWzwBnpum8vHx\nQXBwMADA3d0doaGhuHbtmsE+5pyfkkkMvCBOHFPiJJPJcPLkSYSEhCA6OhplZWUDPUy7wfNSLJ6b\n5qmoqMDp06cRERFh8H1zzk+LrUrqK9EXxDkyU2IyefJkqNVquLq6Ij8/HwkJCbh8+fIAjM4+8bwU\nh+dm3zU0NCApKQlbtmyBh4eH0et9PT8lM2PoywVxHbq9IM7BmRJLd3d3uLq6AgBmzpwJuVyO69ev\nD+g47QXPS7F4bvZNS0sLEhMTkZycjISEBKPXzTk/JZMY9C+Ia2lpwd69ezF79myDfWJjY5GdnQ0A\nPV4Q5+hMiWV1dbXu6+LiYjQ2NsLb23ugh2oXeF6KxXPTdFqtFosXL0ZgYCBWrFjR5T7mnJ+SKSXx\ngjhxTInlnj17kJWVBQCQy+XIycmBk5Nk/k6QlPnz56OoqAjV1dXw9/fHK6+8gpaWFgA8L83RWzx5\nbpruxIkT+OCDDxAaGoqwsDAAwOuvv47KykoA5p+fvMCNiIgMMA0TEZEBJgYiIjLAxEBERAaYGIiI\nyAATAxERGWBiICIiA0wMRERkgImByAQVFRVwc3ODUqkUcrwZM2bAw8MDxcXFQo5HJBITA5GJ7r//\nfpSUlAg5VmFhIcLDw3mzPZIkJgZyeKdPn8bEiRPR3NyMxsZGBAcH4+LFi72+b9u2bQgMDERYWJju\nfvepqal45plnEBERgbFjx0KlUiEtLQ0TJkxAcnKypX8VIiEkc68kImuZMmUKHn/8cWRmZqKpqQkp\nKSkIDAzs8T0lJSXYuHEjzpw5A09PT9TV1QFov51xXV0dPv/8c+zfvx+PP/44Tp06hfHjx2PKlCk4\nc+YMwsPDB+LXIjIbEwMRgDVr1iA8PBxubm7YunVrr/sfPXoU8+bNg6enJwDo/hcA4uLiAADBwcEY\nNWoUJkyYAAAICgpCVVUVEwNJHktJRGi/1XNjYyMaGhrQ1NTU6/4ymazbx0/K5XIAgJOTE1xcXHTf\nd3JyQltbm5gBE1kQEwMR2m9PvH79eiQnJ+PFF1/sdf/o6Gjs3bsXt2/fBgDd/xLZA5aSyOH94x//\ngIuLC5588km0tbVh6tSpUKlUiIqK6vY9YWFheP755/Hwww/D1dUVoaGheP/99wEYPjax86ojrkIi\nW8DnMRCZoKKiAnPmzMH58+eFHXPGjBnYuHGjsGsjiERhKYnIBIMGDcLt27eFXuB2+fJlDB48WMjx\niETijIGIiAxwxkBERAaYGIiIyAATAxERGWBiICIiA0wMRERk4P8Dh4QQJ+0nzZ8AAAAASUVORK5C\nYII=\n", - "text": [ - "<matplotlib.figure.Figure at 0x3dc9590>" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEZCAYAAACw69OmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9YVHW+B/D3CCoa2iiEGEOi3J6b/BJIumqa7BrRDNtq\nsS7pyoZ50Ut7+x2P6yMbuQutkJtpezO9t5UnUbsT3d1KZFrdmLAs7QpKVFfXX8WACIioFeAo3/sH\nOyPjDDIMZ+acGd6v5+GR75nvzHzn43nmw/l+zvcclRBCgIiIaJCGyT0AIiLyDUwoREQkCSYUIiKS\nBBMKERFJggmFiIgkwYRCRESSYEIh8hLDhg3DyZMnPf6+RqMR4eHhTvePiIjA3/72NzeOiJSKCYUU\nKyIiAqNHj8aYMWMwZswYjB07Fk1NTXIPy2rYsGEIDAy0jm/8+PFyD0kSg01cKpUKKpVKwhGRt/CX\newBEfVGpVNi1axd+/OMfu/waV65cgb+/+3bz2tpaTJkyxW2vLxeudyZX8AiFvE5nZyeys7Mxfvx4\nBAUFYcWKFejq6gLQMz2j0WhQXFyMsLAwLFu2DFevXsXq1asRFhaGMWPGICEhASaTCQBw+PBhzJkz\nB2PHjsWkSZPw5ptvSjrWrq4uqNVqfPnll9ZtLS0tGD16NFpbW3HmzBmkpqZizJgxGDduHO6++26n\nvsw7OjqQk5ODkJAQjBs3Do888gg6OjpsYvDyyy9j4sSJCA4Oxuuvv2597tmzZzFv3jyMGTMGd911\nF/Ly8jBnzhwAwD333AMAmDZtGsaMGYO3337b+ry+Xo/IggmFFM3Rl2teXh6OHTuGU6dO4eTJkzh2\n7BhWr15tffzs2bP44YcfUF9fjy1btuB3v/sdKioq8Nlnn+HSpUvYuXMnRo8ejfb2dqSmpuLf/u3f\ncPHiRVRUVOCZZ55BdXX1oMbX28iRI5Geno6dO3dat+n1eiQnJyM4OBjr1q1DZGQk2tvb0dbWhpdf\nftmp6aInn3wSzc3NOHHiBBobG3Hx4kWsWrXKLgaNjY3Ytm0bnnzySZw/fx4AsHz5ctx2221oa2vD\nW2+9he3bt1vfs6qqCkDPkdelS5ewcOFCAEBTU1Ofr0dkJYgUatKkSSIwMFCo1WqhVqvFgw8+KIQQ\nIiwsTOzdu9fa78MPPxShoaFCCCEqKyvFqFGjhNlstj5+2223CYPBYPf6JSUlYs6cOTbbli9fLlat\nWuXU+FQqlRg7dqx1fE8++aTDfnv37hWRkZHW9qxZs8S2bduEEEI8//zzYsGCBeLEiRNOvd+JEydE\nV1eXCAgIsHnO/v37xcSJE4UQ12Jw9epV6+MhISHi448/Fj/88IPw9/cXp06dsj62Zs0aMXv2bLv3\nsbjR6zkSEREh/va3v/X7ecj3sIZCiqVSqfDuu+/a1VDOnj2L2267zdoODw9Hc3OztR0UFGRTNzlz\n5ozDOofJZMKBAwcwbtw467YrV65gyZIlTo+xpqam3xpKcnIyfvjhBxw8eBAhISE4cuQIHnzwQQDA\nc889h7y8PNx7773o7u5Gdna2zdGWIy0tLejq6sKdd95p3SaEwJUrV6ztoKAgDBt2bQJi9OjR6Orq\nwrlz53D16lWEhYVZH+v9e1/6ej2i3phQyOtMmDAB33zzDW6//XYAQH19PUJCQvrsf+utt+LkyZPW\n/hYTJ07Evffei/LycreO18/PDz//+c+xc+dOhISE4IEHHsBNN90EABgzZgw2bNiADRs24Ouvv0Zy\ncjKmT5+O1NTUPl8vKCgIw4cPx9///ncEBwcPaCxBQUHw8/NDQ0MDIiIiAMBaTyIaLNZQyOtkZGSg\noKAA7e3tuHDhAn73u99h8eLFffZfunQpVq9ejfr6egDAV199hba2Njz44IM4fPgwysrKcPXqVXR3\nd6OmpgZHjx4FAJSUlGDy5MmSjHnx4sV46623sGPHDpuxfvDBBzh9+jQAIDAwEH5+fjZHAo4EBAQg\nMzMTzz77LNrb2wH01DicWfsxatQo6HQ6/Pa3v4XZbMbJkydRUlJiU7cZP348Tp065fRnkzJO5N2Y\nUMjrFBYW4p/+6Z8wZcoUTJ48GZGRkXjxxRetj19f1M7Ly0NKSgqSkpIwduxYZGZmorOzE+PGjYPB\nYMDrr79uPWPs6aefRmdnJ4CeI5/Zs2f3OY6BrLW46667EBgYiDNnzkCr1Vq3f/nll7jnnntw0003\nISkpCcuWLUNKSkq/7/fHP/4R48aNw9SpUzF27FjMnTsXdXV1To1t8+bN+OabbzB+/HgsWrQIixYt\nsklieXl5yMjIwLhx41BWVtbvupL+4kRDiJwFnIqKChETEyOmTp0q1q5d67DP448/LqKiokRCQoKo\nrq62bl+6dKkICQkRMTExnhouDTH33Xef+L//+z+5h+F2eXl54uGHH3b5+UMlTtQ/2RJKZ2eniIiI\nECaTSZjNZjF9+nSbhCGEEGVlZWL+/PlCCCGqq6vFtGnTrI9VVVWJ6upqJhSiATp69Kj4+uuvhRBC\nHD58WEyYMEHs2LFD5lGRL5BtyuvAgQOIjo5GWFgY/P39kZGRYVcc3b17NzIzMwEACQkJuHLlirWA\nOGfOHJuzc4jIORcuXIBOp0NgYCBSU1OxYsUKLFq0SO5hkQ+Q7Swvk8lkc8E5jUYDo9HYbx+TyQSN\nRuOpYRL5nKSkJFkuMkm+T7YjFGcLmuK6lci86BwRkTLJdoSi0Wisp3ECPWeKXH+JbEuff/mXfwGA\nAR+dhIWFobGxUZoBExENEZGRkTh+/PiAnyfbEUpSUhLq6urQ0NAAs9kMvV5vczolAOh0Omzfvh0A\nUF1dDT8/P6dW9Vo0NjZC9Jx4wB8JfvLz82Ufgy/9MJ6MpVJ/Tpw44dL3umwJJSAgAJs2bUJqaiqm\nTZuGhx56CImJidi8eTM2b94MAEhPT0dYWBiio6Pxr//6r9i6dav1+YsWLcKsWbNw7NgxhIeH2zxG\n7mFZgEfSYDylw1gqg6yXXtFqtXZHJStWrLBp//GPf3T43N5XbyUiIvlxpTw5LSsrS+4h+BTGUzqM\npTKohBA+e2s2lUoFH/54RERu4ep3J49QyGnXrxOiwWE8pcNYKgMTChERSYJTXkREZINTXkREJCsm\nFHIa56mlxXhKh7FUBiYUIiKSBGsoRERkgzUUIiKSFRMKOY3z1NJiPKXDWCoDEwoREUmCNRQiIrLB\nGgoREcmKCYWcxnlqaTGe0mEslYEJhYiIJCFrQjEYDIiNjUVUVBSKiooc9nniiScQHR2NxMRE1NTU\nDOi5JK3k5GS5h+BTGE/pMJbKIFtC6erqQk5ODgwGA2pra1FWVmaTMADgnXfewbfffosvv/wSb7zx\nBpYuXer0c4mIyLNkSygHDhxAdHQ0wsLC4O/vj4yMDJSXl9v02b17NzIzMwEACQkJuHLlCkwmk1PP\nJelxnlpajKd0GEtlkC2hmEwmhIeHW9sajQYmk8mpPg0NDf0+10KnA9rbJR48ERHZ8ZfrjVUqlVP9\nBruOpKIiC3ffHYGFCwG1Wo34+HjrfKvlrxq2nWtbtillPN7etmxTyni8uZ2cnKyo8Xhb22g0oqSk\nBAAQEREBV8m2sHHfvn0oKirCrl27AAAvvfQSLl++jNWrV1v7LFu2DFqtFj/72c8AADExMfjggw9w\n8uTJfp8L9CSt6dMF9uwB1GoPfTAiIi/ndQsbk5KSUFdXh4aGBpjNZuj1emi1Wps+Op0O27dvBwBU\nV1fDz88PYWFhTj3XgslEOpa/aEgajKd0GEtlkG3KKyAgAJs2bUJqaiq6u7uRmZmJxMREbN68GQCw\nYsUKpKeno7KyEtHR0Rg5ciS2bt16w+c6wmRCROQZvJYXERHZ8LopLyIi8i2yTXmR9+l9RhINHuMp\nnetjuXw5cOwYMHo0cMstwDffACdOAJMmAWPHXtvmycf76rtjh+9MzTOhEJHiDDQhHDkCnDt37fGL\nF4FPPul5reBgoLW153fLcrXe2zz5uKO+iYnAbbfZJx9vTDSsoRCRx/WXMPpKCBZ9fUlbhIYCTU3A\n9Ok9X8p791573d7bPPl4X31HjnT8WRcuBPR69/0f3IjL353Ch/n4xyNSrOxsIebOFUKrFeKXv+z5\nXaMR4u67e7bdfbcQQM9PcPC13y0/oaE9/06fLsS99/b8Pnas/ba+Hj99WoiFC4U4f77nZ+FCx9s8\n+XhffbVax5/r/Hn5/v9c/e706W9cJhRpVVZWyj0En+Ir8bQkDykTxkATwty5lTaPe5O+ko+cXP3u\n5JQXOY1FZGl5WzwdTVONHm07PWXR35RTWRmQmwts2XLttV966dq2gdYOvC2WSufqdycTChHZsSQP\nZ+oaluThzoRBnsWE4gATCpHzeh+BOHvU0Tt5MGH4DiYUB5hQpMVpBWnJGc/+jkCcPepQSvLgvikt\nV787uQ6FaIjo6wjEsh4iNLTn3xsddfQ+jVWuU1pJuXiEQuTD+koi/R2BKOGog+TDKS8HmFBoqLIk\nktpa4Pz5nm29ayCse9CN8OKQ5Ha854S0pI7n8uVAcnLPba+/+gr46KNryWT6dOCzz3pWX+/Z01M3\n0euv/evtyYT7pjKwhkLkxW40pQUA8fFARASwdat9DYRIapzyIvJCzk5pcSqLXOF1U15tbW1ISUlB\nXFwcUlNT0d7e7rCfwWBAbGwsoqKiUFRUZN3+9ttvIzo6Gn5+fqiurvbUsIlk48qUFpMJeZJsCSU/\nPx9paWmora2FVqtFfn6+XZ+uri7k5OTAYDCgtrYWZWVlqKmpAQDExsbiz3/+M+655x5PD33I4jy1\ntJyJp6MkUlHRs34E6JnSWrCASYT7pjLIVkPZvXs3Dh48CABYsmQJZsyYgQ0bNtj0OXDgAKKjoxEW\nFgYAyMjIQHl5ORISEnDHHXd4fMxEntLXlBbAKS1SLtkSSktLC4KCggAAwcHBaG5ututjMpkQHh5u\nbWs0Gv4lIiOuRJbW9fG80aVPHCURFtiv4b6pDG5NKCkpKWhqarLbXlhY6NTzVSrVoMeQlZWFiIgI\nAIBarUZ8fLx157MkJ7bZlqu9bh3w3XfJGD0aqK83oq4OAJL/cTRiRGQkEBubjK1bgcOHjXjsMUCt\nVs742faNttFoRElJCQBYvy9d4tJF7yUwZcoU0dLSIoQQorm5WURGRtr1qaqqEmlpadZ2cXGxKCgo\nsOmTnJwsDh065PA9ZPx4PslX7t+hBNnZQkybVinGjXN8jxBvvbeHXLhvSsvV707ZivI6nQ6lpaUA\ngNLSUuh0Ors+SUlJqKurQ0NDA8xmM/R6PbRarV0/wVODycscO9ZzH3SepUW+RLZ1KG1tbcjIyMDZ\ns2cRGhoKvV4PtVqNxsZGZGdno7y8HABQUVGB3NxcdHd3IzMzE6tWrQIA/PnPf8YTTzyB1tZW3Hzz\nzUhISEBFRYXNe3AdCilJ7xqJ2dxz+ffrFx4SKQGv5eUAEwrJra9C+/z5wIgRPEuLlImXrye3M/Ke\nE07r77TfkpKeIrulwE6Dw31TGXhxSCI3OHbsxivZeVRCvohTXkQSYY2EfAVrKA4woZC7sUZCvsjr\nLg5J3seyEIqusUxt9b6+lqVG0t9pv4yndBhLZWBCIXKB5aKNX37Z02aNhIhTXkRO62t6S6MBvviC\nSYR8B08bJnIzy/QWYHsKMI9IiHpwyoucNhTnqXvfj2T48J5tUk1vDcV4ugtjqQw8QiG6gd5HJfPn\n9yQRXj6eyDHWUIgcsNRLvvwSaG3l1BYNLayhEEmo95GJRsNkQuQM1lDIab4+T91XvcRdZ3D5ejw9\nibFUBiYUon/ovUjxppu4poRooFhDoSHN0fW3WC+hoY7X8nKACYUc4fW3iG7M667l1dbWhpSUFMTF\nxSE1NRXt7e0O+xkMBsTGxiIqKgpFRUXW7c888wyioqIQFRWFn/zkJzh37pynhj5k+co89WCuvyUl\nX4mnEjCWyiBbQsnPz0daWhpqa2uh1WqRn59v16erqws5OTkwGAyora1FWVkZampqAAAPPPAA6urq\n8NVXXyEmJgYFBQWe/gjkZXj9LSL3km3KKzIyEgcPHkRQUBBaW1sxY8YMHD9+3KZPVVUViouLsWvX\nLgDAunXr0NnZiby8PJt+77//PrZt2wb9dSvNOOVFvSUn254KzOtvETnmdVNeLS0tCAoKAgAEBwej\nubnZro/JZEJ4eLi1rdFoYDKZ7Ppt2bIF8+fPd99gyWt5+lRgoqHMrQsbU1JS0NTUZLe9sLDQqeer\nVKp++xQWFmLEiBH4xS9+4fDxrKwsREREAADUajXi4+Ot9562zLuy7Vz7lVde8br4HTwIHDnS0777\nbiPmzgX+8pdkqNXyj88b46nUdu8aihLG421to9GIkpISALB+X7pEyGTKlCmipaVFCCFEc3OziIyM\ntOtTVVUl0tLSrO3i4mJRUFBgbZeUlIiZM2eKjo4Oh+8h48fzSZWVlXIPYcC0WiEAIaZPF+L8eblH\nY8sb46lUjKW0XP3ulG3KS6fTobS0FABQWloKnU5n1ycpKQl1dXVoaGiA2WyGXq+HVqsF0HP2V3Fx\nMd577z0EBAR4dOxDleUvG6XrPc21aZNyi+7eEk9vwFgqg2xF+ba2NmRkZODs2bMIDQ2FXq+HWq1G\nY2MjsrOzUV5eDgCoqKhAbm4uuru7kZmZiVWrVgEAbr/9dly+fBnjx48HAMycOROvvfaazXuwKD80\n9S6+L1zIqwITDRQXNjrAhCIto9Go6L8Eve0KwUqPpzdhLKXFqw3TkMcrBBPJi0co5NV4LS4i6XHK\nywEmFN/Xu17Ca3ERScPrFjaS9+l9rr+c+lqs6OlrcQ2WUuLpCxhLZWBCIa/D+5YQKROnvMjr6HQ9\nyYS1EiL3YA3FASYU32IpwA8fDgQGAlu3MpkQuQNrKOR2cs9TW6a69u7tSSrenkzkjqcvYSyVgetQ\nSNF6nxbcuwC/ZYu84yIie5zyIkXjacFEnseV8uSTRo/u+ddyWjATCZFy3TChPP744/2+wM0338zb\n7w4RnrpeUu9prk2bgNxc3zwq4fWnpMNYKsMNE8p7772H3/72txBCOLzZlRACa9euZUIhSfW+Jldu\nLq8WTOQtbphQnnrqKTzyyCM3fIHz589LOiBSLnf/Bdj7asGA7xff+Re1dBhLZWBRnhSjdwFeo+F9\n34nk4pai/Jo1a274hs8///yA3xCwvbnWxIkT8d///d9QO/jmMBgMyM3NxdWrV/HII49g5cqVAIC8\nvDy8//77uHr1KsaPH4+SkhJMmTLFpbGQ89w9T927AD8UVsBz3l86jKUy3HBh40033YTAwECbH5VK\nhT/96U8oKipy+U3z8/ORlpaG2tpaaLVa5Ofn2/Xp6upCTk4ODAYDamtrUVZWhpqaGgDAr3/9axw5\ncgR1dXVYuHDhDRMfKZu33K6XiPrn9JTXxYsXsXHjRrzxxhv4+c9/jmeffRYhISEuvWlkZCQOHjyI\noKAgtLa2YsaMGTh+/LhNn6qqKhQXF2PXrl0AgHXr1qGzsxN5eXk2/X7/+9/jwoULWLt2rf2H45SX\n4vF2vUTK47Z1KOfOncP69euxfft2/PKXv0R1dTXGjRvn0iAtWlpaEBQUBAAIDg5Gc3OzXR+TyYTw\n8HBrW6PR2FxeYfXq1di2bRtGjx6Nzz77bFDjIfn0nuby5QI80VBwwymv5557DnfddRfGjBmD2tpa\nrFmzxulkkpKSgtjYWLuf9957z6nnOzpNubfCwkJ8++23yMrKwtNPP+3Ua9LgSHW9JE5z9eD1p6TD\nWCrDDY9QXn75ZYwYMQIFBQV2a01UKhUuXrzY53P37NnT52O33HILWltbERwcjJaWFodTZxqNBvX1\n9dZ2fX29zRGLxeLFi3Hffff1+V5ZWVmIiIgAAKjVasTHx1uLd5adkG3n2ocPH5bk9Y4dS/7HNJcR\njzwCGI3K+HzeGk+22R5s22g0oqSkBACs35eukOW04ccffxyRkZF46qmnsH79epw6dQobN2606dPZ\n2Yk77rgDn3zyCUJCQjBr1ixs3rwZiYmJOHXqFCZPngwAePXVV1FVVYW3337b7n1YQ1GW3utMWluH\nztlcRN7Gq+6H0vu04dDQUOj1eqjVajQ2NiI7Oxvl5eUAgIqKCuTm5qK7uxuZmZlYtWoVAOChhx7C\niRMnYDabMXnyZPzXf/0XJk6caPc+TCjKwnUmRN7BLQklMTER1dXVN3wBZ/rIhQlFWsZBnuvPOy3a\nGmw86RrGUlpuOcvr66+/Rmxs7A1f4MKFCwN+Uxo6hsqFHomonyOU06dP9/sC/v7+0Gg0Uo5JMjxC\nkR/XmRB5H7ccoQym2k8EcJ0J0VDCe8qT0yynGfaH60yc42w8qX+MpTLwjo0kOd7PhGhocvq04b//\n/e84efIkUlNT0dHRAbPZjLFjx7p7fIPCGoo8eDYXkXdz9bvTqSmvjRs34uGHH8Zjjz0GAGhqasJP\nf/rTAb8Z+TbLVJfZDCxYwGRCNNQ4lVA2bdqE/fv3W49IJk+ezDs1DkH9zVNbprr27gWGD2cy6Q/n\n/aXDWCqDUwllxIgRGDlypLXd3d2Ny5cvu21Q5J14RhfR0OZUDeXf//3fMXHiRLz55pt4/fXXsXnz\nZoSFheEPf/iDJ8boMtZQ3I8LF4l8j1uv5XXlyhW89tpr+Otf/woASE1Nxa9+9SsMG6bss46ZUNyP\nCxeJfI9bE8r333+PgIAA+Pn5AQCuXr2Krq4ujLbMcSgUE4q0HF0viWd0uY7Xn5IOYyktt57llZyc\nbFMz6ezsxI9//OMBvxn5nh07uHCRiHo4dYQSHx9vvRnQjbYpDY9Q3KN33WTHDiYSIl/j1iMUf39/\nHDlyxNo+fPiw4usn5D6W04MrKnqSCxER4GRC2bBhA9LS0jB79mzMnj0bP/nJT/Dqq6+6e2ykMJZz\n/Xl6sDS4dkI6jKUy9JtQuru78fnnn+PEiRNYv3491q9fjxMnTuDuu+92+U3b2tqQkpKCuLg4pKam\nor293WE/g8GA2NhYREVFoaioyO7xP/zhDxg2bBja2tpcHgs5b906roQnor45VUOZOXMmPv30U8ne\ntPc95V955RWcOnUKGzZssOnT1dWFO+64Ax9//DEmTJiAmTNnYsuWLUhISAAA1NfXIzs7G0ePHsWh\nQ4cwfvx4u/dhDUVaPEWYaGhwaw1lxowZePLJJ7Fv3z5UV1fj0KFDg7rt7+7du5GZmQkAWLJkifUe\n8r0dOHAA0dHRCAsLg7+/PzIyMmz6PfPMMyguLnZ5DDRwnOoiohtx6vL1NTU1UKlUqK2ttdleWVnp\n0pu2tLQgKCgIABAcHIzm5ma7PiaTCeHh4da2RqOxzpO+++670Gg0iIuLc+n9yXm9z+j65S+NCAxM\n5kp4iXDthHQYS2VwKqG4UvBKSUlBU1OT3fbCwkKnnq9SqWzalsOvjo4OvPjii9izZ4/dYyS93vc2\n+eEHgLVPIuqLUwmlra0Nq1evxr59+wAAc+fORUFBAcaNG9fnc3p/4V/vlltuQWtrK4KDg9HS0oKQ\nkBC7PhqNBvX19da25YjlxIkTOH36NKZNm2bdfuedd+LgwYMOXycrK8t6K2O1Wo34+HjrXzKWRMl2\n3+2ODgBIxvTpwHPP2f4lqITxeXPbsk0p4/HmdnJysqLG421to9GIkpISAIO79btTRXmtVouZM2di\nyZIlEEJgx44d2L9/PyoqKlx6095F+fXr1+PUqVPYuHGjTZ/Ozk7ccccd+OSTTxASEoJZs2Zh8+bN\nSExMtOk3efJkFuXdqL29Z9qL01xEQ4fL353CCTExMXbbYmNjnXmqQ+fOnRP33nuviI2NFSkpKeL8\n+fNCCCEaGhqETqez9tu9e7eIjo4WU6dOFS+++KLD15o8ebI4d+6cw8ec/Hh0nexsIebOFUKrFeIf\n/zVCCCEqKyvlGpJPYjylw1hKy9XvTqemvPz9/bF//37MmjULAPDpp5/C39/129GPHz/e4ZTYrbfe\nanMml1arhVarveFrnTx50uVxkGO96ybLl/P0YCJyjlNTXgcPHkRmZiY6OzsBAKNGjcK2bduQlJTk\n9gEOBqe8XMMrCBMNbW65fP23336L2267zdq2nN7rqPitREwoA2M5RXj4cCAwENi6lcmEaChyy8LG\n+fPnW39PT09HSEiI1yQTGrj+7glvOSuEpMF4SoexVAanLxnMWoXv40p4IhqMG055JSQkoKamxu53\nb8Epr4HhKcJEBLiphuLn52e9zW9HRwdGjRpl84YXL150Yaiew4TSP94si4iu55YaytWrV3Hp0iVc\nunQJV65csf5+6dIlxScTcs5AbpbFeWppMZ7SYSyVgbddHOJYNyEiqTi1DsVbccrLsd7TXJs2Abm5\nrJsQ0TWufne6vtydvFbvlfC5uVwJT0TS4JTXEOTqNBfnqaXFeEqHsVQGJpQhaMeOnlv48rIqRCQl\n1lCGEJ4iTETOcOs95ck3DOQUYSKigWJCGUIGe4ow56mlxXhKh7FUBiaUIYS1EyJyJ1kSSltbG1JS\nUhAXF4fU1FS0t7c77GcwGBAbG4uoqCgUFRVZt7/wwgvQaDRISEhAQkICDAaDp4budZYvB5KTe+5x\nAvScIuxqMul9L3QaPMZTOoylMsiSUPLz85GWloba2lpotVrk5+fb9enq6kJOTg4MBgNqa2tRVlZm\nvTilSqXCM888g5qaGtTU1OD+++/39EfwGqybEJGnyJJQdu/ejczMTADAkiVLbG77a3HgwAFER0cj\nLCwM/v7+yMjIsOnHs7ecI+WlVThPLS3GUzqMpTLIklBaWloQFBQEAAgODrbeCbI3k8mE8PBwa1uj\n0cBkMlnb//Ef/4GpU6diyZIlaGtrc/+gvRTrJkTkKW679EpKSgqamprsthcWFjr1fJVK1edjv/rV\nr/D8888D6KmnPPHEEygtLXXYNysrCxEREQAAtVqN+Ph463yr5a8aX2vv2JGMY8eAjg4jfvMbQK+X\n5vUt2+T+fL7StmxTyni8uZ2cnKyo8Xhb22g0oqSkBACs35eukGVhY2RkJA4cOIDg4GC0tLRg5syZ\nOH78uE0+olbsAAAPXUlEQVSfffv2oaioCLt27QIAvPTSS7h8+TJWr15t06+xsRE/+tGPcPToUbv3\nGaoLG5OTr12ra+FCXquLiAbGqxY26nQ66xFFaWkpdJZTkHpJSkpCXV0dGhoaYDabodfrodVqAcBm\niuydd95BdHS0ZwbuJdx1SXrLXzQkDcZTOoylMshyteE1a9YgIyMDf/rTnxAaGgr9P/6EbmxsRHZ2\nNsrLyxEQEIBNmzYhNTUV3d3dyMzMRGJiIgDg2WefRW1tLS5fvoxJkybhjTfekONjKNaOHbyVLxF5\nHq/l5SN4nS4ikopXTXmR9LjehIjkxoTiIzxxK1/OU0uL8ZQOY6kMTCg+gutNiEhurKF4OdZOiEhq\nrKEMUaydEJFSMKF4OU/UTiw4Ty0txlM6jKUyMKF4OdZOiEgpWEPxQqybEJE7sYYyhLBuQkRKxITi\nhTxZN+mN89TSYjylw1gqAxOKF2LdhIiUiDUUL8G6CRF5CmsoPo51EyJSOiYULyFX3aQ3zlNLi/GU\nDmOpDEwoXoJ1EyJSOtZQiIjIhlfVUNra2pCSkoK4uDikpqaivb3dYT+DwYDY2FhERUWhqKjI5rFX\nX30V06ZNQ2xsLHJzcz0xbFksX95zj3idDugjTEREiiBLQsnPz0daWhpqa2uh1WqRn59v16erqws5\nOTkwGAyora1FWVkZampqAADl5eX44IMPcOjQIXzxxRf49a9/7emP4DFKKsZznlpajKd0GEtlkCWh\n7N69G5mZmQCAJUuWoLy83K7PgQMHEB0djbCwMPj7+yMjI8Pa7z//8z+xcuVK+Pv7AwCCgoI8N3gP\nU0IxnojIGbIklJaWFmsSCA4ORnNzs10fk8mE8PBwa1uj0cBkMgEAjh49ig8++ADx8fGYOXMm9u/f\n75mBy0BJxfjk5GR5B+BjGE/pMJbK4O+uF05JSUFTU5Pd9sLCQqeer1KpbNq9C0Td3d24dOkSDh8+\njM8//xzp6en45ptv7J4DAFlZWYiIiAAAqNVqxMfHW3c+y2Gy0to7diTj2DGgo8OI3/wG0OuVNT62\n2Wbbt9pGoxElJSUAYP2+dImQwZQpU0RLS4sQQojm5mYRGRlp16eqqkqkpaVZ28XFxaKgoEAIIcS8\nefOE0Wi0PhYZGSnOnDlj9xoyfbxBmztXCKDnZ+FCuUdzTWVlpdxD8CmMp3QYS2m5+t0py5SXTqdD\naWkpAKC0tBQ6nc6uT1JSEurq6tDQ0ACz2Qy9Xg+tVgsASEtLw4cffggAOHbsGH744QeEhIR47gO4\nGesmROSNZFmH0tbWhoyMDJw9exahoaHQ6/VQq9VobGxEdna2tfheUVGB3NxcdHd3IzMzE6tWrQIA\nmM1mPProo9azvl5++WXcd999du/jretQ2tt7zujaskX+ugkRDT2ufndyYSMREdnwqoWNZM8bFjBa\ningkDcZTOoylMjChKISSFjASEbmCU14KodP1JJPp05Wx5oSIhi7WUBzwpoTCQjwRKQVrKF5OrQb0\nemUnE85TS4vxlA5jqQxMKDLzhmI8EZEzOOUls+TknmI80HPNLr1e1uEQEXHKy1txVTwR+QomFJkp\n6WrC/eE8tbQYT+kwlsrgtqsNU9+WL+9ZdzJ6dE9C4TQXEfkC1lBkwLoJESkZayhehHUTIvJFTCgy\n8Ka6SW+cp5YW4ykdxlIZWEORgWURIxGRL2ENxUOuL8R705EJEQ0trKEoHK8mTES+TpaE0tbWhpSU\nFMTFxSE1NRXtfVxzxGAwIDY2FlFRUSgqKrJuf/jhh5GQkICEhARMnjwZCQkJnhq6y3yhEM95amkx\nntJhLJVBloSSn5+PtLQ01NbWQqvVIj8/365PV1cXcnJyYDAYUFtbi7KyMustf9966y3U1NSgpqYG\n6enpSE9P9/RHGDBvLcQTETlLlhpKZGQkDh48iKCgILS2tmLGjBk4fvy4TZ+qqioUFxdj165dAIB1\n69ahs7MTeXl51j5CCEyaNAmVlZWIjIy0ex8l1VCIiLyFV9VQWlpaEBQUBAAIDg5Gc3OzXR+TyYTw\n8HBrW6PRwGQy2fTZt28fJkyY4DCZKAWvJkxEQ4XbThtOSUlBU1OT3fbCwkKnnq9Sqfrts3PnTixe\nvPiGfbKyshAREQEAUKvViI+PR3JyMoBr867ubB88CBw50tNesMCIF15w7/u5s/3KK694PH6+3GY8\npWv3rqEoYTze1jYajSgpKQEA6/elS4QMpkyZIlpaWoQQQjQ3N4vIyEi7PlVVVSItLc3aLi4uFgUF\nBda22WwWEyZMEA0NDX2+j0wfz4ZWKwQgxPTpQpw/L/doBqeyslLuIfgUxlM6jKW0XP3ulGXKS6fT\nobS0FABQWloKnU5n1ycpKQl1dXVoaGiA2WyGXq+HVqu1Pr53715MnToVt956q8fG7QpfKsZb/rIh\naTCe0mEslUGWonxbWxsyMjJw9uxZhIaGQq/XQ61Wo7GxEdnZ2SgvLwcAVFRUIDc3F93d3cjMzMSq\nVausr7F06VLMnDkTy2+wqINFeSKigXP1u5Mr5clpRqORfwlKiPGUDmMpLa86y4uIiHwPj1CIiMgG\nj1CIiEhWTCjktN7n+tPgMZ7SYSyVgQmFiIgkwRoKERHZYA2FiIhkxYRCTuM8tbQYT+kwlsrAhEJE\nRJJgDYWIiGywhkJERLJiQiGncZ5aWoyndBhLZWBCISIiSbCGQkRENlhDISIiWcmSUNra2pCSkoK4\nuDikpqaivb3dYT+DwYDY2FhERUWhqKjIuv2TTz5BfHw8YmJiMG3aNOzfv99TQx/SOE8tLcZTOoyl\nMsiSUPLz85GWloba2lpotVrk5+fb9enq6kJOTg4MBgNqa2tRVlaGmpoaAMDKlStRVFSEuro6rF27\nFitXrvT0RxiSDh8+LPcQfArjKR3GUhlkSSi7d+9GZmYmAGDJkiXWW/72duDAAURHRyMsLAz+/v7I\nyMiw9gsPD8eFCxcAAO3t7Zg0aZLnBj+E9XUkSa5hPKXDWCqDvxxv2tLSgqCgIABAcHAwmpub7fqY\nTCaEh4db2xqNxnpYu3btWsyePRvPPfccuru78emnn3pk3ERE1De3JZSUlBQ0NTXZbS8sLHTq+SqV\nyqbd+4yDZcuWYePGjXjwwQfx9ttv49FHH8WePXsGN2Dq1+nTp+Uegk9hPKXDWCqEkMGUKVNES0uL\nEEKI5uZmERkZadenqqpKpKWlWdvFxcWioKBACCHETTfdZN3e3d1t0+4tMjJSAOAPf/jDH/4M4MfR\nd7IzZJny0ul0KC0txVNPPYXS0lLodDq7PklJSairq0NDQwNCQkKg1+uxefNmAMCkSZPw0UcfYe7c\nufjwww8xefJkh+9z/Phxt34OIiK6RpaFjW1tbcjIyMDZs2cRGhoKvV4PtVqNxsZGZGdnW4vvFRUV\nyM3NRXd3NzIzM7Fq1SoAwP79+/HYY4/BbDZj5MiReP3113HXXXd5+mMQEVEvPr1SnoiIPMcnVsr3\ntQCytyeeeALR0dFITEy0rmchx/qLp9FoxM0334yEhAQkJCSgoKBAhlF6h0cffRQTJkxAbGxsn324\nbzqnv1hyvxyY+vp63HPPPYiNjcU///M/o7i42GG/Ae2fLlVeFKSzs1NEREQIk8kkzGazmD59uqiu\nrrbpU1ZWJubPny+EEKK6ulpMmzZNjqF6BWfiWVlZKR544AGZRuhdqqqqRHV1tYiJiXH4OPdN5/UX\nS+6XA9PU1CS++OILIYQQly5dErfffrs4fPiwTZ+B7p9ef4RyowWQFr0XUiYkJODKlSswmUxyDFfx\nnIknAF5000lz5szBuHHj+nyc+6bz+oslwP1yICZMmICYmBgAQGBgIOLi4tDY2GjTZ6D7p9cnFEcL\nIK//wM70oR7OxEqlUuHTTz9FbGws5s2bhyNHjnh6mD6D+6Z0uF+67vTp0/j8888xe/Zsm+0D3T9l\nOW1YStcvgOzL9X+5OPu8ocaZuNx5550wmUwICAjAX//6VyxYsACnTp3ywOh8E/dNaXC/dM13332H\nhQsXYsOGDRgzZozd4wPZP73+CEWj0aC+vt7arq+vt8mojvqYTCZoNBqPjdGbOBPPwMBABAQEAADu\nu+8+jBgxwuFVEah/3Delw/1y4MxmM9LT07F48WIsWLDA7vGB7p9en1B6L4A0m83Q6/XQarU2fXQ6\nHbZv3w4AqK6uhp+fH8LCwuQYruI5E8/W1lbr74cOHcL333+PkJAQTw/VJ3DflA73y4ERQmDZsmWI\niorC008/7bDPQPdPr5/yCggIwKZNm5CammpdAJmYmGhdVb9ixQqkp6ejsrIS0dHRGDlyJLZu3Srz\nqJXLmXju3LkTW7ZsAQCMGDECO3bswLBhXv+3iVssWrQIH330EVpbWxEeHo41a9bAbDYD4L45UP3F\nkvvlwHzyyScoLS1FXFwcEhISAAAvvvgivv32WwCu7Z9c2EhERJJg+iYiIkkwoRARkSSYUIiISBJM\nKEREJAkmFCIikgQTChERSYIJhYiIJMGEQuQBfn5+SExMxJkzZwb9Wr/4xS8QFBSEd955R4KREUnH\n61fKE3mD0aNHo7q6WpLX2r59O5YuXcqLSJLi8AiFaIA+//xzTJs2DV1dXfj+++8RExODr776akCv\n8Ze//MV6yYt58+YBAF544QU88sgj+NGPfoSIiAj8z//8D5577jnExcVh3rx56OrqsnkNXuSClIZH\nKEQDlJSUhJ/+9KfIy8tDR0cHMjMzERUV5fTzz5w5g5ycHPzv//4vwsLCcPHiRetjp0+fhtFoxBdf\nfIEZM2bg3Xffxbp16/DQQw/h/fffx89+9jN3fCQiSTChELng+eefx/Tp0zFq1Ci8+uqrA3ruxx9/\njHvvvdd61daxY8cC6LnPxP333w+VSoWYmBh0d3cjJSUFABAbG2tzGXEiJeKUF5ELWltb8f333+O7\n775DR0fHgJ6rUqn6nK4aMWIEAGDYsGEYPny4dfuwYcPQ3d3t+oCJPIAJhcgFK1asQEFBARYvXoyV\nK1cO6LmzZ8/Ghx9+aL2Vant7uzuGSORxnPIiGqA333wTI0eOxMMPP4zu7m7MmjULRqMRycnJTj0/\nNDQUr732Gu6//34MHz4cwcHB2LNnDwDb26tefxYXz+oipeP9UIg8YMyYMbh06ZJkr5eVlYUHHngA\n6enpkr0m0WBxyovIA8aOHSvpwsZ9+/Zh1KhREoyMSDo8QiEiIknwCIWIiCTBhEJERJJgQiEiIkkw\noRARkSSYUIiISBL/D5upbph/P2HSAAAAAElFTkSuQmCC\n", - "text": [ - "<matplotlib.figure.Figure at 0x48a36d0>" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 3.4, Page number: 128" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from __future__ import division\n", - "from sympy import *\n", - "\n", - "#Variable declaration:\n", - "Lo=10.6*10**-3 #Initial inductance(H)\n", - "L2=2.7*10**-3 #H\n", - "\n", - "\n", - "#Calculations:\n", - "theta,i=symbols('theta i')\n", - "L=Lo+L2*cos(2*theta)\n", - "i=2 #Coil current,A\n", - "def T(theta):\n", - " return i**2*diff(L,theta)/2\n", - " \n", - "\n", - "#Results:\n", - "print \"Torque,Tfld =\",T(theta),\" N.m\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Torque,Tfld = -0.0108*sin(2*theta) N.m\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 3.6, Page number: 134" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from __future__ import division\n", - "\n", - "#Variable declaration:\n", - "r1=2.5*10**-2 #radius of rotor(m)\n", - "h=1.8*10**-2 #Axial length(m)\n", - "g=3*10**-3 #Air gap length(m)\n", - "Bag=1.65 #Magnetic field(T)\n", - "uo=4*pi*10**-7 #permeability of free space(H/m)\n", - "\n", - "#Calculations:\n", - "H=Bag/uo\n", - "Ni=2*g*H\n", - "T=uo*(Ni)**2*h*(r1+0.5*g)/(4*g)\n", - "\n", - "#Results:\n", - "print \"The maximum torque:\", round(T,2),\"Nm\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The maximum torque: 3.1 Nm\n" - ] - } - ], - "prompt_number": 29 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 3.7, Page number: 140" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from __future__ import division\n", - "%pylab inline\n", - "from matplotlib import *\n", - "\n", - "#Variable declaration:\n", - "i1=0.8\n", - "i2=0.01\n", - "\n", - "\n", - "#Calculations & Results:\n", - "def df(f,x,h=0.1e-10):\n", - " return ( f(x+h/2) - f(x-h/2) )/h\n", - "\n", - "\n", - "\n", - "def l11(x):\n", - " return (3+cos(2*x))/1000.0\n", - "\n", - "def l12(x):\n", - " return (0.3*cos(x))\n", - "\n", - "def l22(x):\n", - " return (30+10*cos(2*x))\n", - "\n", - "def g(x):\n", - " return ((i1**2)/2)*df(l11,x) + ((i2**2)/2)*df(l22,x) + (i1*i2)*df(l12,x)\n", - "\n", - "def r(x):\n", - " return ((i1**2)/2)*df(l11,x) + ((i2**2)/2)*df(l22,x)\n", - "def s(x):\n", - " return (i1*i2)*df(l12,x)\n", - "\n", - "x=linspace(-pi,pi,100000)\n", - "\n", - "\n", - "plot(x,r(x))\n", - "plot(x,s(x))\n", - "plot(x,g(x))\n", - "grid()\n", - "annotate(\"Total torque\",xy=(-0.5,0.003))\n", - "annotate(\"Reluctance torque\",xy=(-2,-0.0015))\n", - "annotate(\"Mutual Interaction torque\",xy=(1.6,-0.0026))\n", - "xlabel(\"Theta [radians]\")\n", - "ylabel(\"Torque [N.m]\")\n", - "xlim(-pi,pi)\n", - "\n", - "\n", - "#Results\n", - "print \"Tfld = -1.64*10**-3*sin(2*x)- 2.4*10**-3*sin(x)\"\n", - "show()" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Populating the interactive namespace from numpy and matplotlib\n", - "Tfld = -1.64*10**-3*sin(2*x)- 2.4*10**-3*sin(x)" - ] - }, - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n" - ] - }, - { - "output_type": "stream", - "stream": "stderr", - "text": [ - "WARNING: pylab import has clobbered these variables: ['vectorize', 'prod', 'plotting', 'Circle', 'diag', 'sinh', 'trunc', 'plot', 'eye', 'det', 'tan', 'product', 'gamma', 'roots', 'sin', 'zeros', 'cosh', 'interactive', 'conjugate', 'take', 'trace', 'beta', 'exp', 'ones', 'multinomial', 'cos', 'transpose', 'solve', 'diff', 'invert', 'pi', 'tanh', 'Polygon', 'reshape', 'sqrt', 'floor', 'source', 'add', 'poly', 'mod', 'sign', 'power', 'binomial', 'log', 'var', 'seterr', 'flatten', 'nan', 'test']\n", - "`%pylab --no-import-all` prevents importing * from pylab and numpy\n" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAcAAAAEPCAYAAADVmxQSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXdYFOcTx7+AvUfBioolFo4udiVgxII9UbFG0diVqCnm\np0aNLRE1doMt2CMIKipIROUUGypFBWtEkQMLiJ12cPP745UL6B0ccHe7LPt5Hh7dvbfM3O7t7Ftm\nxoCICCIiIiIiIqUMQ64FEBERERER4QLRAIqIiIiIlEpEAygiIiIiUioRDaCIiIiISKlENIAiIiIi\nIqUS0QCKiIiIiJRKODWAQUFBsLS0hLm5OVasWKGyjLu7OyQSCezs7BAZGalx3dWrV8PQ0BApKSk6\nk19EREREpOTCmQHMyMjAlClTEBQUhBs3bsDX1zePgQMAPz8/PH78GDExMdixYwfc3Nw0qhsfH4/g\n4GA0btxYrzqJiIiIiJQcODOAYWFhkEgkaNCgAcqUKQNXV1cEBATkKRMYGIjRo0cDAGxtbZGVlQWZ\nTFZg3dmzZ8PDw0Ov+oiIiIiIlCw4M4AymQwNGzZUHpuamkImk2lUJiEhQW1df39/mJqawsrKSsca\niIiIiIiUZMpw1bGBgYFG5TSJ1JZTJi0tDcuXL0dwcHCh6ouIiIiIlD44M4CmpqaIj49XHsfHx+cZ\n1eUu0759ewD/jQjlcnmeujnnHzx4gEePHsHa2lp5vk2bNrhy5Qpq166dp+3mzZvjwYMHulJPRERE\nRHBYW1sjKiqKazG0B3FEWloaNW7cmGQyGWVmZpK9vT2Fh4fnKePr60sDBw4kIqLw8HCysrLSuC4R\nkZmZGb148UJl//mpvnDhwiJqxV+EqBORMPUSdSo5CFGv/HTi0GToBM5GgBUqVMCff/6Jnj17QqFQ\nYPTo0bCzs8OWLVsAAJMmTcLXX3+NkJAQSCQSlC9fHl5eXvnW/RhNp1k/5tGjR0XWi68IUSdAmHqJ\nOpUchKiXEHVSB2cGEAB69+6N3r175zk3adKkPMcbN27UuO7HxMbGFk9AERERERHBIkaCUcHYsWO5\nFkHrCFEnQJh6iTqVHISolxB1UocBUencJmlgYCDuEBUREREpBEJ7boojQBVIpVKuRdA6QtQJEKZe\nok4lByHqJUSd1CEaQBERERGRUok4BSoiIiIiohFCe26KI0ARERERkVKJaABVIMQ5cCHqBAhTL1Gn\nkoMQ9RKiTuoQDaCIiIiISKlEXAMUKXlkZgJxccDLl4CJCVCnDlCpEtdSiYgIHqE9NzmNBCMiojHP\nnwN79gD+/kB4ODN6NWsCycnA06dA+fKAmRng4gJMngyIyZBFREQKQJwCVYEQ58BLrE5xccC4cUDL\nlkB0NPDzz8CzZ0BsLHDtGqQ7dwJpaazcli2AXA7Y2QHTpgEJCVxLXyRK7LXKByHqBAhTLyHqpA7R\nAIrwE7kcWLKEGbMGDZjB8/JiI7wqVfKWNTAAatQAOnQAVq0C7txhU6JWVsDcuUBWFjc6iIiI8Bpx\nDVCEf9y5A4waBRgbA9u2AR/lidSYp08BNze2ZujjA9SqpV05RURKGUJ7boojQBF+cfw44OAATJgA\nnDhRdOMHAHXrsvbatAHatWNTqCIiIiIfEA2gCoQ4B857nYiAlSuBSZOAo0fZvxrkcyxQLyMjwMMD\nWLwYcHICjh3Tjrw6hPfXqggIUSdAmHoJUSd1iLtARbiHCJg3jxmnsDDA1FT7fYwcCbRoAfTtC+za\nBfTqpf0+REREShTiGqAI9yxaBPj5ASEhbN1Pl1y8CAwYABw+DHTponG1Fy9eoHv37gCAp0+fwsjI\nCCYmJjAwMMCVK1dQpsx/75Jr167FpEmTULFixXzbdHR0xOrVq9GmTZs85zWtLyKib4T23BSnQEW4\nZdkytkHl9GndGz8A6NQJ2L8f+Ppr4P59javVqlULkZGRiIyMxOTJkzF79mxERkYiIiIij/EDgHXr\n1iE1NbXANg0MDGCgYppX0/q5USgUhSovIiIiGkCVCHEOnJc6rV0L7N7NjF/t2kVqokh6OTuzUefQ\noUB6epH6JSIEBgbCwsICEokEI0eOREZGBtavX4/ExEQ4OTnhyy+/BABMmjQJbdu2RYsWLfDzzz/n\n2+769euRkJCQp76XlxfMzc1hbm6OmTNnKstWqVIFP/zwA+zt7XH58mVs2bIFzZo1Q6dOnTBhwgTM\nmDEDAMvw7efnl6deDosXL4aVlRVat26N//3vf0X6LjSBl/efFhCiXkLUSR2cGsCgoCBYWlrC3Nwc\nK1asUFnG3d0dEokEdnZ2iIyMLLDu/PnzYW1tDQsLCzg4OCA2NlbneogUgcOHmc9ecDBQr57++588\nGWjeHPjhhyJVT01Nxbhx43D8+HHExMSgfPnyWLt2Ldzd3VG/fn1IpVKcPn0aALBy5UpcvXoVt2/f\nRlhYGMLDw9W26+7ujlq1ainrP378GL/88gsuXryI6OhoxMTEwNvbWylD586dce3aNTRs2BBLlixB\nREQEQkNDcffuXeXo8uNRZs7x0aNHkZCQgBs3biAmJgbR0dE4depUkb4PEZGSCGcGMCMjA1OmTEFQ\nUBBu3LgBX1/fPAYOAPz8/PD48WPExMRgx44dcHNzK7Duzz//jOvXryM6OhpDhgzBr7/+WmjZHB0d\ni60f3+CVTpGRwMSJLKxZo0bFaqrIehkYANu3M1cLX99CV69QoQJatWoFMzMzAMCoUaMQGhqqsuyO\nHTtgbW2NNm3aICYmBnfv3i2w7RwuX76M7t27o0aNGjA0NMTw4cOV/RgZGWHgwIEAgEuXLqF79+6o\nXr06jIyMMGTIkALXak6ePImTJ0/C1tYWbdq0wd27d/Ho0SMNv4HCwav7T4sIUS8h6qQOznaBhoWF\nQSKRoEGDBgAAV1dXBAQEwNbWVlkmMDAQo0ePBgDY2toiKysLMpkMsbGxauvmnt559+4d6nExuhBR\nz6tXbP1t0ybmn8cl1asD3t4suoydHdC0aaGq5zYwRKRyPe/u3bvYtGkToqKiUKVKFbi5uSGrEJFp\nPt50kLufChUqKP9vaGj4SbkcDA0NlWuECoUCmZmZys9++eUXjBs3TmN5RESEBGcjQJlMhoa5nJxN\nTU0hk8k0KpOQkJBv3Xnz5qFRo0bYtWtXgWsuqhDiHDgvdCICxo9nBmfoUK00WWy97O2ZC8awYSxi\njIZkZGTg3r17yhHT33//DQcHBwBAxYoV8f79ewBAeno6qlSpgsqVKyM5ORknTpwosG0iUtbv0KED\nzpw5g1evXkGhUMDHx0fZT27at2+PM2fO4PXr18jOzoavr6/SOJqamiqnXQMCAiCXywEAPXv2hJeX\nF9I/rIM+e/YMycnJGn8HhYEX958OEKJeQtRJHZyNAFW9LauiKFtuly1bhmXLluH333/HrFmz4OXl\npbLc2LFjlVNYNWrUgI2NjXL4n3MTCOU4KiqKe3kOH4bjw4fAvn1aaz+HYrXn7g6pjw/wzTdwPHBA\no/qJiYn47rvv0K9fPygUCtSrVw+urq4AgPHjx6NDhw6oU6cOIiIiYGlpCVNTU9SvXx9dPrheSKVS\nvHr1SqX8Li4ueeovXrwY1tbWAIBBgwZhyJAhkEqleXZ+PnjwAEOGDIGdnR3q1q2LmjVrKl8KJ0+e\nDAcHB/j5+WHw4MGoUqUKpFIpqlatir59+8LOzg6ZmZkoW7YsAgMDYWxsLMz7TwfHOfBFHl3oJ5VK\ndTY1zjnEEefOnaM+ffoojz08PGjp0qV5yowbN44OHjyoPJZIJCSTyTSqS0QUFxdHLVu2VNk/h6qX\nTsLDiYyNie7f51oS1Tx/zuSLjuZaEq2wc+dOmj59OtdiiAgMoT03OZsCbdu2LaKjo5GQkAC5XA4f\nHx/07t07TxkXFxfs27cPABAREQEjIyM0aNAg37oPHz5U1vf394elpaX+lBJRzZs3bMpz0ya285KP\nmJgACxcCM2awqVoBoOksi4hIqYVL6xsYGEgSiYRat25Ny5cvJyIiT09P8vT0VJaZNm0amZubk62t\nLYWHh+dbl4ho0KBBZGVlRa1btyYXFxdKTExU2Xd+qoeEhBRTM/7BmU4KBZGrK9HkyTppXqt6yeVE\nVlZEPj7aa7MIiPdfyUGIeuWnE8cmQ+twGgu0d+/en4z6Jk2alOd448aNGtcFgEOHDmlPQJHis28f\ny8Jw7RrXkhRMmTLAxo0sbqiLC1C5MtcSiYiI6BAxFqiI7njyBLC2BoKCmJtBSWHUKKBxYxamTURE\nRInQnpuiARTRDUTAV18B5uYlz5AkJrJs8pcuAZ9/zrU0IiK8QWjPTTEWqAo+3uIsBPSuk7c3cO8e\nsGCBTrvRiV716wNz5gDffcfJhhjx/is5CFEvIeqkDtEAimifpCRg5kzAywsoX55raYrGd98BDx6w\nWKUiIiKCRJwCFdE+o0ez7A6rV3MtSfHw8WFZ6q9c0Sg7vYiI0BHac1McAYpol1OngNBQYPFiriUp\nPoMHA9nZwJEjXEsiIiKiA0QDqAIhzoHrRaf0dGDqVOZKoCcXAp3qZWjINvDMn88MoZ4Q77+SgxD1\nEqJO6hANoIj2WLkSkEiAvn25lkR79OrFskb4+HAtiYiIiJYR1wBFtMPDh0DbtkB4OPOhExL//APM\nmgXcvAkYGXEtjYgIZwjtuSmOAEW0w/ffMyMhNOMHAD16AFWrsiz2IiIigkE0gCoQ4hy4TnUKDgau\nX2dGUM/o5VoZGLCcgcuW6cUvULz/Sg5C1EuIOqlDNIAihUZBCiS8ScCVhCu4FHsOqVMn4vb/JiDy\n5W08fv0Y7zLfcS2i9unbF8jKYtOhIiIigkBcAxRRy6NXj3Dh8QU8ePkAca/i8Oj1I8S9ioPsjQw1\nKtSAaTVTjD6djPYxrzB7Zmu8z0pFSloKklOTUalsJbSo1QItarVAa+PW6GDaAW3rt0XlciU4wPS+\nfcD27UBICNeSiIhwgtCem6IBFFGSkpaCgHsBCI4Nxtm4s0jPSkfXRl3RyrgVGldvjMY1GqNx9cZo\nVL0RKpatCDx7BlhYML+/Vq2U7RARklKTcO/FPdx7cQ83n93E5YTLuPHsBiQmEvRr0Q/9W/aHVR2r\nkpWzTi5nsUG9vYH27bmWRkRE7wjtuSkaQBVIpVI4OjrqVyAdo06ntxlv4XvLF/uj9yNMFoZuTbqh\nd/Pe+MLsC7Ss1TJ/A/Xtt8xFQMOIL+lZ6bgUfwnH7h2D/11/ZCmyMKDlAIy2Gg37+vZFMoZ6v1Zr\n1wIXL+rULaI03X8lHSHqlZ9OQjOAnOYDFOGOqKdR+PPqn/C55YMvGn+BiXYT4T/MH5XKVtKwgSjg\n+HHgzh2N+6xQpgKcmjjBqYkTVvdYjdvJt+F3yw+uvq6oUaEGJttPxgjLEahSrkoRtdID48cDS5YA\njx4BZmZcSyMiIlIMxBFgKYKIEBwbjN/O/4Z/U/7FpDaTMN52POpVrVfYhoAvvwSGDAGmTCm2XApS\nIPhBMDzDPXEu7hzcbNzwfcfvCy+Xvpg9myXP9fDgWhIREb0itOemaABLCVcSruDnUz8j4W0CFjgs\nwFDJUJQ1Klu0xo4eBebOZaPAMtqdRIh7FYc1l9dg9/XdGGM9BnO6zEHdKnW12kexefAA6NABiIsD\nKmk4YhYREQBCe26KbhAqEJIfzN3kuxjsMxguy1wwzGIYoqdEY6TVyKIbP7kc+PFHYNUqrRs/AGhc\nozHW9lqLmKkxUJAC5pvMsSBkAd5nvldZnpNr1awZM4D79+ukeSHdfzkIUSdAmHoJUSd1cGoAg4KC\nYGlpCXNzc6xYsUJlGXd3d0gkEtjZ2SEyMrLAurNnz4a5uTnMzc3Rt29fvHjxQud68JGENwmYeGwi\nunh1gX19e+z9ai8mtplYdMOXw7ZtQKNGQM+e2hFUDfWq1sO63utwffJ13E+5j9abWuNA9AH+vH3O\nmAFs2MBJwlwREREtQRyRnp5OZmZmJJPJSC6Xk729PUVEROQp4+vrSwMGDCAiooiICLK2ti6w7pkz\nZyg7O5uIiObMmUMzZ85U2T+HqusUebacPM57UK0VtejHkz/Si9QX2mv89WuiOnWIIiO116aGnH10\nlqz/tKauf3WlyCf67/8TsrOJWrYkOnuWa0lERPSG0J6bnI0Aw8LCIJFI0KBBA5QpUwaurq4ICAjI\nUyYwMBCjR48GANja2iIrKwsymSzfuk5OTjA0ZGp17twZCQkJ+lWMQyKfRKLdtnYIjg3G5W8vw8PZ\nAzUr1tReBx4ebORnY6O9NjXEobEDwieGY6TlSPTc2xNzgucgTZ6mdzmUGBoC06ezUaCIiEiJhDMD\nKJPJ0LBhQ+WxqakpZDKZRmUSEhIKrAsAW7duxYABAwotW0mbA89WZOO30N/Qc29PzOwwE/+M+gfN\nazbPU6bYOiUkAH/+CSxdWrx2ioGRoREm2U/Cjck3EPsqFm23tcWuI7s4kwdjxgCnTwPx8VpttqTd\nf5ogRJ0AYeolRJ3UwZkfoKZOz1TENZZly5ahXLlyGDlypNoyY8eOhdkHX64aNWrAxsZG6QCacxPw\n/biZbTOMPjwar+68wsYuGzHUeqjK8lFRUcXr79tvgZ494fjhxYNL/etUqYOpxlMR+DIQ7kHuMGpq\nBNMUU27kGTUK8PSE1NmZs++jJBwX+/7j6XEOfJFHF/pJpVI8evQIgoSruddz585Rnz59lMceHh60\ndOnSPGXGjRtHBw8eVB5LJBKSyWQF1t25cyd17NiR0tLS1PbPoepawzvam0w8TOi30N8oKztLdx1d\nv05UuzbRq1e666OIXH96nVpsaEETjk6g1MxU/Qtw9y77bvK510REhIIQnpu54UybtLQ0aty4Mclk\nMsrMzCR7e3sKDw/PU8bX15cGDhxIRETh4eFkZWVVYN0TJ06Qubk5JSUl5dt/Sb6Q7zLekdsRN/p8\n/ed0RXZF9x326kW0bp3u+ykib9Lf0DDfYWT9pzXdS76nfwGcnYn27dN/vyIieqYkPzdVwak2gYGB\nJJFIqHXr1rR8+XIiIvL09CRPT09lmWnTppG5uTnZ2trmMZCq6hIRNW/enBo1akQ2NjZkY2NDU6ZM\nUdl3fhcyJCSkmJrpjvsv7pPlZksafWg0vc14q3G9IusUHEzUvDlRRkbR6uuYHL0UCgVtvrKZTDxM\nyDvaW79C+PoSde2qteb4fP8VFSHqRCRMvfLTSTSAAqEkGsAT909Q7ZW1afOVzaRQKApVt0g6ZWcT\n2dgQ5ZqG5hsf6xWeGE7N1jWjaQHTKF2erh8hMjOJ6tUjunVLK83x9f4rDkLUiUiYepUmAyiGQish\nrL28Fh4XPOAzxAddGnXRT6e7dwOensCFCywregnhdfprjDs6DnGv4uAzxAdNP2uq+07nzgXS04E/\n/tB9XyIiHFHSnpsFIRpAnkNEmHNqDo7fO46gUUFoVL2RfjpOSwNatgQOHAA6ddJPn1qEiLDhygYs\nD10OnyE+cGjsoNsOc+KDymRA+fK67UtEhCNKynNTU8RYoCr4eIszV8iz5XDzd0Po41CEuoUWy/gV\nWqd164C2bXlv/NTpZWBgAPf27tj71V4M9hmMPdf36FaQZs0AKyvgyJFiN8WX+0+bCFEnQJh6CVEn\ndYj5AHlKqjwVQw8OhYIUODX6FCqXq6y/zpOSWLDrixf116eO6N60O0LGhKDv330R9zoO87rO010W\n+vHjgR07AFdX3bQvIiKiVcQpUB6SkpaCfn/3Q9PPmuKv/n8VP4B1YXF3BxQKYONG/farI4iARy+e\nYIBPb3Rr6oQ1Pf/QjRFMSwNMTYGICKBxY+23LyJIFAogNZXNnJfV80+9sPD5uVkURAPIM2RvZOi5\ntyd6N+8ND2cPGBroeZb633/ZWtbt24CJiX771hIvXrBk9adPM1v04MGHpA0VXiJziAuqplmgh9wT\n7dsaoV8/ttSpNaZPB2rXBhYs0GKjIkIhK4vtKTt2DLh0CbhzB3j5EqhYEcjMBKpVAyQSoF07oH9/\noHNnwMiIa6n/g6/PzaIirgGqgKs58DvJd9D5r84Yaz0Wq3qs0qrx01in//2PZTwvIcYvt16hocCg\nQUDTpoC/P9ClC9vImpzMNmimv/oMSX8Eo3XnWMjajcL9WDmcnNjDZv9+9nAqNm5ugJcXe63Xgk5C\nQYg6AZrr9fQpMG8emyCYNQuoWpWF1b11i913798DGRnseNEi9vnMmUC9esCcOWxvlb4Q6rVShWgA\neUKYLAyOOx3xq+Ov+LHzj9wIcekScPky++WVICIjgW7dmO3p2ZPF7T50CJg4EbCzAyrnWj6tVbUK\npBMCYFz/HZ50/Rr3H6ZjwQJg82bA3JyNGouFnR17ep09W8yGRITA+/fM8JmbA69eASEhbFZi4ULA\nyQmoU4clFgHYv3XqsHt54UJW7uJFNjK0sgJ++gl4+5ZbfQSHvh0P+QKfVD9x/wQZexjTsbvHuBNC\noSDq1InIy4s7GQpJairRrFksFOeWLURyueZ1M7MyyfWgK32560t6m/GWFAqi48eJTE2Jpk4leqt5\nkJ1PWbWKaOzYYjQgIgQCAogaNSIaMYIoPr54bT15wm6p+vWJjnH4mODTc1MbCEubQsCXC+kd7U21\nV9amC48vcCuInx+RlRVRlg6DamuR69eJJBIiV1eiAsK+qiUrO4vGHRlHHbd3pJdpL4mI6OVL9qBp\n2pRIKi2icE+eENWoQfTuXREbECnJpKcTzZzJjN/p09ptOzSUvaQtWMACNekbvjw3tYWwtCkE+V1I\nfYU3OnDzANVZWYeinkTpvK98dcrMJPr8c6J//tG5HNpg/34iY2OinTuJzpwJKVZb2Yps+u7Ed2S3\nxY5SUlOU548dY2/bP/1UxHcCFxei3buLJFNpC69VkvlYr/h4Int7ooEDiV680E2fT54QOTiwWywl\npeDyhaU0hUIT1wA54mDMQXwX9B1Ojj4J67rW3AqzZQtgZgb06MGtHBqwdi3w889srW7MmOJHaDM0\nMMSanmvgZOaEHnt74FX6KwBA377AjRvAlSvAV18B794VsuExY4BdHCbrFdE7kZFAx47A4MFsDbpm\nTd30U7cucOoU0KIFYG8PXL+um35KBVxbYK7gUnX/O/5Ue2VtinwSyZkMSl69IqpThyhK96PQ4qBQ\nEM2fT9SyJVFcnC7aV9B3J76jdtva0ev018rzGRlEY8YQtW9fyDf6tDSimjWJHj/Wuqwi/EMqJTIx\n0X/c+JzZkBMn9NOf0EyGOALUM+fizuHbo9/i+PDjsKlrw7U4wG+/Ab17A9Ycj0LzQaFg7nWBgcC5\nc0AjHYRDNTAwwJqea2BX1w599vfB+8z3AIBy5ZhXQ5cubHfeixcaNlihAjBkCLBHxyHYRDjn5Ek2\n6jtwgP2rT4YPZy4/33zDfF9FCgnXFpgr8lNdV+sVUU+iyMTDhIIfBOuk/fxQqdODB2yUkpCgd3k0\nRaFguzIdHIhev/70c21fq2xFNo05PIacdztTmvy/LO8KBdGcOSw71MuXGjZ28SIbsuojdRXPEaJO\nRESrV4eQiQnR+fPcyhEWxnZDHz9e/LbENUARrRP7MhYu+12w0WUjujftzrU4jJ9+Yk7v9etzLYla\n1q9no75jx1iUDF1jaGCI7f23o3qF6hh9eDQUxBzaDQzYYNnBAejTh4WuKpAOHZiXc3i4boUW4YQr\nV4BffwUOHmQRW7ikXTs2Ehw7lv1eRDRDDIWmB569e4YuXl0wu8NsTGk7RS99FsjZs2yjxu3bLA4T\nDzl2DJg8mTkD6zu0ZnpWOnrt7QWbujZY03ONMnaoQsGmm969A/z8NAhTtWgRi3W1bp3OZRbRH/fv\ns5ehrVuBfv24luY/Tp0CRowAzpwBLCy0377QQqEJazxbCPSl+uv012TraUsLQxbqpT+NyMoisrUl\nOnCAa0nUEhnJNhWEhXEnw8u0lyTZJKFVF1blOZ+RQeTkRDRjhgaN3L/P5qYK46UvwmveviVq3ZrI\n05NrSVSzbx9R48bMXULbCM1kiFOgKtBWLLz0rHQMPDAQHUw7YOEXC7XSZlHJo9POnWzUN3QoV+Lk\nS2IiCwS8eTOb2skPXcYtrFGhBk6MPIF1Yevw982/lefLlWPb3E+dYjLmS/PmQJMmhYqxJsRYjELR\niYhlverUCZg0iZ96jRgBjBsHDBzIYuAWFj7qpCs4NYBBQUGwtLSEubk5VqxYobKMu7s7JBIJ7Ozs\nEBkZWWDdgwcPQiKRwMjICBERETrXQR3ZimyMPDQSxpWMsaH3Bt3loCssb98C8+czhzq+yJSL9+/Z\nlNLUqfrfUaeKhtUbImBEAL4L+g5nHp5Rnq9Rg03R/vqrBmE/R4xg0bZFSjzr17OEKXzPFPbLL2y3\n9JQpHzKhiKiGq6Fneno6mZmZkUwmI7lcTvb29hQREZGnjK+vLw0YMICIiCIiIsja2rrAurdv36a7\nd++So6MjhYeHq+1fl6orFAqadGwSfbnrS0qXp+usnyLxww9E33zDtRQqycoiGjCAyM2t0Bsndc6Z\n2DNk4mFC159ez3P+n3+I6tUjksnyqZwTGi01VbdCiuiU8+fZbHZsLNeSaMa7dyxcoDbD+3JoMnSC\n2ozw/TRY2a1ZsyZ2FTHaRVhYGCQSCRo0aAAAcHV1RUBAAGxtbZVlAgMDMXr0aACAra0tsrKyIJPJ\nEBsbq7Zuq1atiiSPNlkoXYhridcQMiYE5cuU51qc/7h9mzm1RUdzLYlK5s8HXr8GfHz4Nzh1auKE\n9b3Xo8/+Prgw7gIaVWfOiD16ANOmAcOGsY0HKhOa1q0LtG3LHLWGDNGv4CJa4elTwNWV/XyaNOFa\nGs2oXJn5Jjo5sSnbFi24loh/qDWAd+7cwfbt21Xu+MnZCTRt2rQidyyTydCwYUPlsamp6Sdzz6rK\nyGQyJCQkFFi3OEilUjg6Ohap7oawDfCO8cZ5t/OoWr6q1mQqLtKQEDguX86sTN26XIvzCSdOAHv3\nsnBS5cppXq8416qwDLMYhsS3iei1txcujLuAzyp+BoClULxwgU07/f67msrDh7NpUA0MoD510hcl\nWaesLPYCFvSBAAAgAElEQVSCM3484OKS9zO+62Vhwabphw9n2c40+W3xXSdtotYALl26FF988UW+\nlRcUI+u1pmtiqgywthg7dizMzMwAADVq1ICNjY3ywucY1MIcn449jZ2vdyLULRQxV2MKXV+Xx1G7\ndgH//gvH6dN5IU/u48REYORIKRYuBIyNC1c/B33JO9txNmRvZPhi0RdY1WMVenzZA4aGwMSJUkyY\nAHTr5ogePVTUNzEBTp6E48uXwGef8er718dxVFQUr+QpzPHcucD791I4OABA3s9z4JO8Hx9PmQLs\n3y/F6NGAt3fh6uf8/9GjRxAkXM29njt3jvr06aM89vDwoKVLl+YpM27cODqYK7ieRCIhmUymUV1H\nPa8Bno49TbVX1qYbT29otV2t8O4dy81S5Pw+uiM7m8jZmWjhQq4l0ZxsRTYNPTiUBvsMpmzFfzlp\nzpxhGSTUpmf66iui7dv1I6SIVvDzYy4FRU25xReSk1kapaCg4rXDocnQCQXuAr148SL69u0La2tr\nWFpawtLSElZWVsU2vG3btkV0dDQSEhIgl8vh4+OD3r175ynj4uKCffv2AQAiIiJgZGSEBg0aaFT3\ng3EvtpyacDvpNob7DYf3YG9Y1rHUS5+FYulSFqqigBE9F2zcCLx5w2ZmSwqGBobYNXAXkt4nYVbQ\nLOV95uTENnxOnKhm5524G7REER/PAjH4+ADGxlxLUzxq1QJ27wbc3IBnz7iWhkcUZCHNzMzI39+f\nHjx4QA8fPlT+aYPAwECSSCTUunVrWr58OREReXp6kmcuD9Np06aRubk52dra5hnRqapLRHTo0CEy\nNTWlChUqUJ06dahXr14q+85P9cLELXz27hk1WduEdkbu1LiOXomJITI2phA/P64l+YToaKJatZiv\neFHhMsZkjqP8ygsrlefS01le4b/+UlEhNZXtBi0g9qoQ42aWNJ2ys4m+/JLoo4mlTyhpes2dS9Sr\nV/7JdEtTLNACtenatas+5NA72jCAafI06ri9I807PU9LUmmZ7GyiLl2INm7k3Q81M5MFo9m6tXjt\ncK3X41ePyfQPU9p3Y5/y3I0bLEWNyvfEsWOJ/vgj3za51kkXlDSdNmwg6tCh4AA+JU2vzEymV363\nYGkygAXGAg0ODoaPjw+6deuGcuXYFiIDAwN89dVXOh+d6pLixrQjIow8NBIKUmD/1/thaMDDoDrb\ntgHbt7NgmgUGrdQvixcDYWHMM4BvLg+F5eazm/hy95c47HoYnRuxqMgeHkBQEIsWY5j71ggOBubO\nBa5e5UZYkQJ58ABo3579bIToOvDwIYuwFBJS+HihQosFWqABHDlyJO7evQuJRALDXL9kLy8vnQun\nS4p7IRefXYzA+4EIGROCimV5GEw6MZHl+DtzBrDk17rkzZvAl18CERGAqSnX0miHoH+D4Obvhkvj\nL8Gshhmys5nv1fjxbE1QSVYWUzo0FPj8c87kFVENEdC9O3N3+P57rqXRHdu3A1u2MNeIMmp9AT5F\naAawwPFsy5YtScG3sBxaID/VC5rW8I72pkZrGtGTtzqINqsNFAqigQNZCvUP8GWqRi4natNGe5sh\n+aIXEdG6y+tIskmizCh/8yabCo2P/6jg9OlES5aobYdPOmmLkqKTlxe7PzWNXV5S9PoYhYKtca5c\n+elnpWkKtMB5u86dO+Pu3bu6t8QlhGuJ1zAtcBr8h/mjbhX+OZQDALy9gXv3eLm18o8/gM8+Y8F6\nhcaMdjPQpVEXDPcbjmxFNiwsWCb7T+IxDhvGQnSI8Irnz4E5c9jKQWFGRSURAwOWyun331ls09JK\ngVOgrVq1woMHD9CkSROUL8/CehkYGODGjRt6EVBXFGUon/g2Ee23t8f6XusxqPUgHUlWTJ49Y1Of\n/v5sIYNH5KytXLkCNG3KtTS6QZ4tR699vWBX1w4re6xEZibQpg0wbx6zewBYUkEzMyAwUDdJ20SK\nxMiRLDf0ypVcS6I/Vq8GAgJYshJN1uKFNgVaoAFUFwEgJ4JKSaWwFzJNnoYvdn6BAS0HYJ7DPB1K\nVgyIgEGDgFat8onJxQ1ELG5mjx7Ajz9yLY1ueZH6Au23t8cvDr9gjM0YhIWxyxITw0a/ANiXUKEC\nsGQJp7KKME6cYDFdb95kMTRLC1lZQMeOzN9x/PiCywvNAAprQrcQ5Kf6x3PgCoWCRvqNpGG+w/i9\nHrp9O5G1NXNG+wiu1yp27yaysdF+Xliu9VJHzPMYMvEwoYuPLxIR0eTJRFOm5Cpw9SpR8+Yq017w\nVafiwGed3r5l0V7++afwdfmsl6ZERrIsF8+esWNxDbAA+vTpo10rzHNWXlyJO8l3sKP/Dv7k9fuY\nBw+An39mEaXL8ygDBYCUFDbg2bpV+GsrOZibmOOvAX9h8MHBkL2RYfly4PBhNv0LgM2LKhQs+rcI\npyxcCHTtymYnSiM2NsDo0cKfmVFFgVOgqkhMTET9+vV1IY/e0HQoH3g/EBOOTUDYt2EwrcbTPfty\nOeDgwDK8z5rFtTSfMGkSSxPE9ySiuuD387/D95YvQt1C4eddEX/8wYxgmTJgC4NZWYCaZNAiuufa\nNaBPH5YhzMSEa2m44+1boHVrtn+uc2f15YQ2BVokAygENLmQd5PvoqtXVxwZdgSdGnbSk2RF4Pvv\n2a5Pf/+PvK655/Jl4KuvgFu3WBb10gYRYcShEShjWAa7BuxG9+4GGDgQcHcHcOMG0L8/80zm68yC\ngMnOZg7h7u7AmDFcS8M9Bw6wrQPXrqmfqRGaAVT7tHRyclL5161bN3Tr1k2fMuodqVSK1+mvMeDA\nAPz25W/8Nn6HDwN+fsCuXfkav4/Tt+iDrCzmArBqle6MHxd6FQYDAwPs6L8DMc9jsObyH9i8mUXB\nSUwEC1BQsWKueVEG33UqCnzUydMTqFoV+OaborfBR72Kiqsr+51+/72Ua1H0htoVmZW59gLnrHtd\nvnwZK1asQO3atXUvGYdkK7Ix8tBIdG/aHePtNNgaxRWxsWx+8dgxoGZNrqX5BE9P9oMaPpxrSbil\nUtlKODLsCNpvbw/LgZaYPLkHZs0CvL0N2FPH25t3LitCJykJWLQIkErFwXcOBgZsmaJzZzY7L/DH\nPAANp0ClUimWLl2KtLQ0zJ8/X2XqoZJGfkP5+Wfm4/zj8wgeHYyyRmX1LJmGpKezO3XMmA/zafwi\nKQmQSFgkNtHVjXEu7hyGHByC0yMuoH+X5vD0BHqY3mK7Lx4/5t30tZCZMAGoUgVYs4ZrSfjH7NnA\n69fAjh2ffia0KdB8DWBQUBCWLVuGcuXKYf78+XByctKnbDpF3YX0u+WH709+j6sTrsKkMk9XxYmA\nsWOBtDQ2euDhK+ykSWx2b+1ariXhF5uvbsbmq5vxS/1LWDCnKm7eBMq1sWTD5fx2H4hojWvXgH79\ngDt3gOrVuZaGf7x5wzbE+PkBHTrk/UxoBlDtK2fbtm0xefJkuLq6wsPDA9WqVUNERITyT4hEP4/G\n5IDJmNtwLn+NH8BCVdy8CXh5aWz89LlWER7O9uMsWqT7vkraGswU+ylo36A9Dma6oVlzYi8IQ4ey\nF5kPlDSdNIEvOikULDzd8uXaMX580UubRERIsWIFCwyQnc21NLpF7Rpg5cqVUblyZfj5+cHPz++T\nz0NCQnQqmL55mfYSAw8MxJqea2CawlN3BwA4cgRYt47lEuJhyAoiYMYMYNmy0rnrsyAMDAywqc8m\nOO50RKcJv8Hj27kYc2go6gxzYvNxPEtbJTR272b/CnbXZ0YGkJrKptMrVCiyT/DIkSxbxLZtLEqM\nUBHdIMA2vfT9uy9a1WqFNb14vChw4QIwcCCLIdm2LdfSqGTPHmD9emafxSUt9SS8SUC77e3Q+cV2\nlH/cG3tu2rAXmy++4Fo0wfL6NZva8/fn7c9Hc4jYHG5ICHDuHHNklMmA9++BSpXY5+npzAG3QQOg\neXO267hrV3aPVa1aYBfXrwPOzsyFydiYnRPaFKhaAxgREQE7O7t8K2tShq/kvpBzT8/FZdllnBx9\nEmUMeRqqJDqaJdHbs4e3ISvevmVhSFWtHYh8yoXHFzDI+ysY7byAS10PwswwHti8mWuxBMvs2Wx9\na/t2riUpIkTMZcbLi1nx8uUBJyfA0ZEFwG/cmE275CyLEAHv3gHx8Szlw/XrbNvrlSuAlRV7nnTv\nzhJXqnH8c3dndnTrVnYsNAOoNrCbpaUlvXjxQu1fcnIy2djY6CA6m37IUd0n2ocar2lMz989V37G\nu/h+MTFE9eoR7d9f5Cb0odNPPxGNGaPzbvLAu2tVSDZf2UymyyXkYnGdFLVrE8nlJV4nVXCtU0wM\ny82YE+9SW+hNr8uXiTp1ImralGjZMqJ//y16W6mpRMHBRHPmsAC9tWsTzZhBFB5OpFDk0enlS6K6\ndYmuXGHH+ZiMEonaSao3b96gTZs2av/s7e1RtmzxXASCgoJgaWkJc3NzrFATDsrd3R0SiQR2dnaI\nzBU3UV3dlJQUODs7w8rKCj179sSrV6/U9h/9PBpTA6fikOsh/m56uXWLvaV5ePDaoe7uXbZtmmdJ\nKHjPZPvJcDZvjytdlyC5QkPg7FmuRRIcRGwk88svJdC3LT4eGDWKhVOaMAG4fx+YOxdo1qzobVas\nyJ4pv//OYtGeP8/8iL/+GrCzA44eZSNHsAHlb7+xDTEKhZZ04hNcWd709HQyMzMjmUxGcrmc7O3t\nKSIiIk8ZX19fGjBgABERRUREkLW1dYF1p0+fTmvWrCEiojVr1pC7u7vK/gFQ8/XNaXfUbl2pWHzO\nniWqU4dozx6uJckXhYKoVy+iVau4lqRkkiZPI8natjSvZW9KHzORa3EEh68vkYWF9jOR6JR374gW\nLCCqWZNo/nyWskLXZGezlBgDB7J+f/iB6PFjys4m6tCBaMcO4Y0AOdPm7Nmz1KdPH+XxypUracmS\nJXnKjBs3jnx9fZXHEomE4uPj863btGlTSk5OJiKipKQkatasmcr+AZB7oGrjyAu8vIhMTIhOnuRa\nkgI5epSoZUuijAyuJSm5xL+Op1YzTOhVxepEmZlciyMY3r9nqY5K1KzyyZNEpqZEw4cTxcVxI8PD\nh0SzZhF99hnR8OEUs+sq1a0rPAPI2T49mUyGhg0bKo9NTU0hk8k0KpOQkKC2blJSEmrVqgUAMDY2\nxvPnz9XKsKrHKpXnOfXtUSiAOXOApUvZdJizs1aa1ZVO6eksAcW6dUC5cjrpIl+E4odlWs0UK8b7\n4naN99gy+xeuxdE6XF0nDw8W8NrRUTfta1UvhYLlZho7lm102b8faNRIe+1riFQqBczMgD/+YIHa\n27SB+fyvEELC26HM2ZZHTfPqkQY7joioSHn6Jti3g5mzM1CpEmrUqAEbGxs4fvil5NzYej1OS4Pj\n1q1ASgqkq1cDz57BsXVrrbQfFRWlE/kvXnSEhQVQvrwUUqmev69ccHK9tHxcDcBtu754FLAJJ/p9\ngYrlKvJKvuIc6+r+y+/46VNgwwZHREaWgPsvKAhYvhyOABAeDumdO4BUyvn1AwDp27d45OiIB+FS\n4BmERUFDRLlcTtu2baMFCxYQEVF8fDyFhYUVe+h57ty5PNOYHh4etHTp0jxlxo0bRwcPHlQeSyQS\nkslk+dZt2rQpJSUlERHR8+fP850ClY92I6pRg2jqVKL794utU7GQSok+/5zo229LzFxifDxbKnjw\ngGtJhEPGv3H0onw5clo1lBQqssWLaM6QIUSLFnEthQY8fUrUrh3RqFFE6elcS6OSI7ePkOkfpqVv\nCnTixImIiIiA94dQTdWqVcNkLYQGaNu2LaKjo5GQkAC5XA4fH59Pgmy7uLhg3759AJjPoZGRERo0\naJBvXRcXF+zduxcAsHfvXri4uKiVYVmzv4Dbt4HPPgM6dmRO5qdO6Xe7U3Iy4ObGdnp5eLDQC+U4\nmEssAj/9xNIdNW3KtSTCoVyzRkAzO1Q9ew0eoTwOysBzpFIWjIH3Wc4fPWIxYHv2ZGFqihi5RZfc\nSb6DCccmwHeIL9eiaJ+CLKS5uTkRUR6fv5zdmMUlMDCQJBIJtW7dmpYvX05ERJ6enuTp6aksM23a\nNDI3NydbW1sKDw/Pty4R0YsXL6h79+5kaWlJzs7O9PLlS5V9A6CaNXOtMb97R/Tnn0SWlhRSvz7R\nb78RPX6sFT1VkpZGtG4d88GZOZPozRvd9UXa91c6d46t0797p9VmCw3X/mW6IGT6dDrZ+CuqsqgO\nnY49zbU4WkGf10kuJ7K0JMo1eaQziqVXbCzbobN+vbbE0Qq5dXqd/ppabmhJ28K3EZHwNsEUqI2V\nlRVlZWUpDWBKSgpJJBKdC6ZrANCiRURDh370gUJBIRs3Ek2cyOb3nJyItm0jev5cZTuFJj6eaPFi\n5l3avz9RVJR22i0AbT6AsrKIbG2L5ZevNQRpAA8epKxqNaiWxQmqvaIuPXr5iGuRio0+r9OmTexn\nq48Z5CLr9fAhUaNGTFiekaNTtiKbBvw9gCYdm6T8rNQZwK1bt1KfPn2ofv369Msvv1DLli1p586d\n+pBNpwCg1NQCtkinpRH5+RENHkxUrRqbp587l+jECaIPrhYFkpVFFBFBtGYNkaMj21Y8aRLRzZta\n0kT/eHoSde2qnwdMqcXBgfYO9SebKavJ1tOWUjNTuZaoRJCczLyHbtzgWpJ8ePKEqHlz3o38Pmax\ndDF13N6RMrL+25MgNAOoUTDs69evIzg4GADg7OwMa2trHU7K6oecmHZ+fsCvvwIREWrD4TEyMoCL\nF4HTp1lQ6ogIFlGhZUsWbLZmTXYMAK9eAU+eAImJwL17bCtz165A795Ar14sSnsJJSWFBRT+5x/A\nxoZraQTM5s3IOnsBTS7tRau5o1C3jiF2D9xdpN3OpYkpU1hCjY0buZZEDW/fsmDUAwYwlweecvze\ncUw+PhlXJ1xFvar1lOeFFgu0QAP4+PFjAP+5I+T8ABtx4J+iTXIuJBGLCjRwIEvjA7AtwDnbgdVC\nBCQksNBECQnMMqSns8+qVwfq1WN/LVrwIuumRjppwPTpbI8QX2I2a0svPiGVSpn7S8uW8N3wBIvX\nEowmdMYYmzGY2WEm1+IVCX1cp8hI9n55+zZ7H9UHhdIrKwvo25cFrfb05GUiawDY478H39/7Hv7D\n/NGxYcc8nwnNABboB+ji4qI0eunp6Xj48CFatmyJmJgYnQunDwwMWPoeR0fA1bUQsQINDABTU/ZX\nSoiMBA4eZOFJRXRMnTpAmzb4utIJbKr2FZwyD+P38x1gXccaTk2cuJaOdygUwNSpLA+lvoxfoZk1\ni/27aRNvjd+bjDeYd2Yeln2z7BPjJ0QKnQ8wKioKGzduxPYSm1OE8fGbTIlPlaJjsrNZiqMpU4Bx\n47iWppSwZQsQEoLo+QfQrRvw5z+nMe30SFz+9jLMaphxLR2v+OsvlrLn4kWe5qHcto0lPL50iRcz\nQqpQkAKDvAehXpV68OzrqbKM0EaARUqIa2FhgejoaF3Iozc+vpA5yTIPHwbat+dQMJ6ycSMb/Uml\nvH15FR5JSSyRaWIiZs2vjDdvAMsJa7Hr+i5cGHcBlcpW4lpCXpCSApibszzRvExPeuMGy713/jzb\nM8BTFkkX4VTsKZwZcwbljFT7IgvNABb4rrR69Wrl38qVKzF8+HAY56QHFhDVqzM/9ClTgNOnpVyL\no3U+Dt1UGBISgEWL+LlsURy9+IpSJxMT9jYWEIBFiz5sPEr/Dha1LTD+6PgS9SDS5XWaOxcYPJgb\n41egXu/eAUOHAmvX8tr4HblzBH9F/gXfob64GHqRa3H0RoEG8O3bt3j37h3evXuH9PR09OjRAwEB\nAfqQTe+MHMkMob8/15Lwi5kz2YvBh7CkIvrE1RXw8UH16mzpaOJEA6zvvhX/pvwLjwseXEvHOVev\nst/r0qVcS6ICIvbD6dyZPVx4SszzGEw4NgF+Q/1Qt0pdrsXRK0WaAhUC6obyt28DDg5s1qJePRUV\nSxkBAcB33wE3b/7n5SGiR1JSgCZNAJkMqFoVQ4awjcVT5sjQbls7bO+/HS6fqw/3J2Ry1qWnTwfG\njOFaGhV4eQGrVjErXYmf09UpaSlot60dFnyxAN9Yf1NgeaFNgRZoAPv165dH6Y//f/ToUd1LqQPy\nu5D/+x8QF8eykZRm3r8HJBK2fq+lrEwiRcHFBRg9Ghg+HE+fAlZWQHAw8O6zCxjkPQihbqFoaczf\n6TVd4ekJ7NsHnDvHv6l53LrF/P2kUvYj4iFZiiy47HOBZW1LrO65WqM6QjOABU6BNmnSBFWqVMHE\niRMxYcIEVK1aFc2aNcMPP/yA77//Xh8y6h0HB6nS510oFGUN5tdf2ewNn42foNcAc3B1BT4Eo69b\nF/jtN+Dbb4H29Ttj+ZfL0f9Af7xKf6V/QQuBtq9TUhKwYAH3HgUq9UpNZet+K1bw1vgBwI8nf4SB\ngQFWOK/Ic16Ivyl1FOgHGBYWhrCwMOVx//790b59e6xdu1angnFJxYrMN3DqVDYVysMA7Trnxg1g\n50429SnCMQMGsCgNr18D1atj3Dg28lm/Hpg9+1vceHYDw/2G4/jw4zAyNOJaWr0wcyYbFFtZcS2J\nCtzdAVtbluWFp3hFeuH4/eO48u0VlDHkLC0s9xQUK6158+b08OFD5fGjR4+oefPmxQ3BxjkaqE4D\nBhAtXKh7WfhGdjZRhw5EW7ZwLYmIkn79iHbvVh7eu0dUqxbLxSjPltOXu76k2UGzORRQf/j5sdSZ\n799zLYkKjhwhatZM59ldisP5uPNk4mFCt57fKnRdTZ6bJYkCtTly5AjVrVuXHBwcyMHBgerWrUv+\n/v76kE2naHIhHz9mD5mYGD0IxCP+/JOoUydmCEV4wp49RLmSQBMR/f47kbMzC0r+IvUFNV/fnP6K\n+IsjAfXD8+cskcr581xLooKkJKJ69YhCQ7mWRC1xr+Ko3qp6FHgvsEj1S5UBzM7OJm9vb0pNTaWw\nsDC6evUqpaYKIyp9fhcyd4qTzZvZaCgrSw9C6RBN07Y8eUJkbFxyklUIMh2SKp1evyaqWpUoJUV5\nKjOTyMaGaNcudnzr+S0y8TCh0Dj+PYC1dZ2GDiX6/nutNKUV8uj1zTcstydPeZvxlqz/tKZVF1bl\nWy6/ayU0A5jvJhhDQ0OsXr0aFStWRLt27WBvb4+KpWwv/KRJbA1w3TquJdEPs2axDRYWFlxLIpKH\natVY1PbDh5WnypZloft+/BF4/hxobdIaewbtwZCDQ/Dw5UMOhdUNBw8C168DS5ZwLYkKQkLYHy+F\nY2HORh4aiTb12mB2x9lci8MbCnSD+Pnnn1GnTh0MHjwYlStXVp6vyduIs5pRmO28//7L/I0uXQI+\n/1zHgnHIP/8wv93oaN66LZVufHyYT8qH1GQ5/Pgji9aT47azIWwDtoRvwcXxF1GtfDUOBNU+z5+z\nDS9HjrDfIq/IyGDCrVjB0srwkJ9P/YxLsksIHh2sNsyZJgjNDaJAA2hmZvZJDjIDAwPExsbqVDBd\nU9gLuXYte/kOCeFpsN1i8v49+w1v3MjSForwkNRUoH594O5dli0i12lLS7YrtE8flrpsWuA0PHz1\nEMeGHyvxu/yIgCFDgGbNmI3hHUuWANeu8TaE1M6onVh6bikuf3sZxpWKF8ZSaAZQWBO6hSA/1VXN\ngWdlEXXsSLRhgw6F0iEFrcHMmEE0YoR+ZNEmpWYNMIcRI4g2bvzkdHAwUaNG/20+zMzKJOfdzjQ9\nYLpuhCwkxblOBw4QtW5NlJamPXm0RciePWynXFwc16Ko5OS/J6nOyjp0O+m2xnXENcBcZGRkYMWK\nFejbty/69euHlStXIjMzs1hGNyUlBc7OzrCyskLPnj3x6pVqJ96goCBYWlrC3NwcK3K9+qmrn5KS\nAicnJ1StWhUzcrLbagkjIxbZ6NdfWbg0IXH6NBvd8jaLtsh/DB+uMkRR9+4s4cC8eey4rFFZ+Azx\nwZlHZ7AhbIOehdQeT58yt7pdu4AKFbiW5iOIWIqj//0P4GGC8MgnkRh5aCT8hvqhlXErrsXhJwVZ\nyBEjRpCbmxudPn2aTp06RePHj6cRxRwqTJ8+ndasWUNERGvWrCF3d/dPyqSnp5OZmRnJZDKSy+Vk\nb29PERER+dZ///49nT9/njw9PWn69PzffDVQXSVbtrCdd+npRarOO1JS2MghKIhrSUQ0IiODjTge\nPfrkoxcv2C78Cxf+OxebEkv1VtWjo3eO6lFI7aBQEA0cSPS//3EtiRr27SOysmLbcXlGbEos1V9d\nn/xu+Wm13aI+N/mKWm3kcjkREZmbm3/ymapzhaFp06aUnJxMRERJSUnUrFmzT8qcPXuW+uTye1q5\nciUtWbJEo/peXl46M4AKBXOQ//HHIlXnFQoF0ZAhbPpTpAQxcSJzAlTB4cNEZmbMGOYQJgsjYw9j\nuvD4gso6fGXfPiKJhKcvmykpzCHx0iWuJfmE5PfJ1HJDS9oQpv31GqEZQLVToO3atQPAFj0fPXqk\nPP/o0SMYFnMXSFJSEmrVqgUAMDY2xvPnzz8pI5PJ0LBhQ+WxqakpZDKZRvU/3rRTWPKLhWdgwLae\n79tXsmKFqtJp+3bg3j2WB7GkIsS4hQXqNGKE2kjtAweyvzFjAIWCnWvXoB32DtqLQd6DEP2cm0TW\nhb1OT54wl5xdu3gainDuXGDgQEjT07mWJA9p8jT0+7sfBrYaiOntphepDSH+ptShdnsYfdjp4+Hh\ngQ4dOqBVq1YgIty7dw87duwosGFnZ2c8ffr0k/PLli3TSLCPjRgRFduwfczYsWNhZmYGAKhRowZs\nbGzg6OgI4L+bQNWxsTEwc6YUw4YBt245wsQk//J8OI6KispzvHOnFD/8AISFOaJCBe7lK+pxDnyR\nRy/HXbtCmpgIeHnB8UO8ydyfr1gB2NhIMXkysHUrq19eVh4Tak5A7329cd7tPB5GPdSr/B/ff/mV\nz9Y/gaAAACAASURBVMoC+vWTomdPoE0b/chXqOPLlyH18WHW+QN8kC9bkY0NzzegWc1m6GHUA1Kp\nVCu/L6lUmmcQJCTUukGYmppi9uzZICKkpqaiwocV6IyMDFSqVAmzZxfdmbJZs2YICwuDsbExkpKS\n0LFjR/z77795yoSGhmLFihU4fvw4ACg338ybN6/A+rt27cK1a9ewYYP6xX9tbOedM4c55gYGlizX\niLdvgXbtgJ9+4nW8XpH8+PFHoFw5QM0LZXw80LYtcx10cPjv/Pqw9dh0dRPOu52HSWUTPQlbOH74\ngQVjDwwEyvDNg0MuB+zt2Y9/xAiupVFCH1xf7qfcR8CIgGL5+uWH0Nwg1D62s7OzldngFQoFUlNT\nkZqaqjxfHFxcXLB3714AwN69e+Hi8mlCz7Zt2yI6OhoJCQmQy+Xw8fFB7w8OagXV19cFWrqU+WDx\nNPiDSohYpJcuXUTjV6IZMQL4+292QVXQsCHbtTxiBPDs2X/n3du7Y3Drweizvw/eZb7Tk7Cas3cv\nc3Y/cICHxg8ANmwAatdmu3F5xG/nf8Ml2SX4DfXTmfETJOoWB21sbHS28PjixQvq3r07WVpakrOz\nM718+ZKIiBISEsjFxUVZLjAwkCQSCbVu3ZqWL19eYH0iosaNG1PNmjWpSpUq1LBhQ7p9W7X/Sz6q\nF8pn6ckTogYNiI4d07gKJ+TotHo1ka0tP32qikKp8wPMQaEgatWK6OLFfIvNm0fUrVveWLYKhYK+\n9f+WnHc7U0ZWRvGE1RBNdLp6ledxaJ8+ZTtwcz1T+HD/7YzcSWZrzSjxTaJW2itNfoCcGEA+oC0D\nSMQ2gpmY8PiHS0ynwEC2cU3FDvoSCx8eQNpGY52WLiWaOjXfIllZRE5OzBDmRp4tp4EHBtIw32GU\nrdB92o+CdHr6lKhhQ6JDh3QuStH59luiWbPynOL6/gu6H1RoR/eCEA0gkdLNQKho+0Lu3UvUuDFR\nonZewrROZCQz0hdK1k54kfyIjWVDpoz8R3FPn7J7c+/evOfT5Gnk4OVA0wOmk0Kh0J2cBZCRQdS5\nM9GCBZyJUDAREUR16hDlmm3imvDEcDLxMKHzcfrLDSU0A6h2DTDHzUBEM0aOBMaPB/r1Y3E1+UR8\nPNC3L7B5M9CpE9fSiGiNJk2AVq1YFPN8qFMHCAhgbgUnT/53vkKZCjg67ChCH4diWahmu7O1DREw\nbRpgbAwsXMiJCAVDBMyezcJA1ajBtTQAgIcvH6Lf3/2wpe8WdG7UmWtxSiwlaO+i/vh4i72mzJ/P\nAkoPGgSkpWlXpqLy/DkLbt2vnxSurkawtbVFq1at0KdPH7x+/TrfuosWLcLq1auL1O/atWuRpocv\nQdW12rVrF548eaLzvnVFoe6/UaOAPXsKLCaRsHB3o0bl9V+tXqE6Tow8Aa8oL2wN31p4YTVElU4K\nBTB9OhAVBezezeOd1EePAklJ7A33I4r6rCgOyanJ6LWvF+Z2mYtBrQdpvX0udOIKvt5yJRIDA2Dr\nVvY2O2gQwLWP7JMngKMj8PXXwNChQKVKlRAZGYk7d+7AxMQEmzdvzrd+cfwu161bh9TU1CLXLw47\nd+5EYmJioeoocrzGSxpDhrBhXQEvMwDQuTPg6wsMGwbkfsbVq1oP/4z6B4uki3Do9iHdyZqL7Gxg\nwgRm/E6dYukOeUlmJnM5Wb2aF9tSX6e/Rq+9vfB1668xrd00rsUp+XA9B8sVulRdLicaNoyoVy/u\ndlvGxxN9/jnRh+hxRERUpUoV5f///PNPmjRpEhER3blzhxwdHcnKyoratWtH0dHRRES0aNEiWr16\nNRERffHFF3Tt2jUiYuHnzMzMiIiFzJs6dSq1atWKrKysaO3atbR+/XoqV64cWVpaUrdu3YiIaOLE\niWRvb0+ff/45zZkzRylH48aNaeHChdS2bVtq0aIF3fywk+jNmzfk6upK5ubmZGVlRb6+vkRE5O/v\nT3Z2dmRhYUH9+/enNznpDz5w8OBBqlKlCrVs2ZJsbW0pLS2NAgICyMLCgszNzWnEiBGU/iG2VuPG\njWnOnDnUrl078vb2piNHjlDz5s2pXbt2NGPGDOrbty8RES1cuJBWrfovi7ZEIqG4D9H/t27dSlZW\nVmRubk5ubm7KEIJ6ZdAgom3bNC5+5gxbDw79KHF8RGIEmXiY0JnYM1oWMC9yOUtq4eRE9PatTrsq\nPuvWEfXsybUURMQyunf5qwtNC5jG2Zqt0EyGsLQpBLq+kHI50dChzAi+f6/Trj7h0SOiZs2IPDzy\nns8xgFlZWfTVV1/Rpk2biIioU6dOdP/+fSIiunz5MnXu3JmI8hpAR0dHCg8PJ6K8BvCPP/4gV1dX\nZR+vXr0iIiIzMzN6kSsg5evXr5V9Ozo6Ko2pmZkZ/fnnn0REtHnzZhozZgwREbm7u9MPP/yQp/7T\np0+pY8eOlJqaSkREv//+O837eHvjR7K+f/+e6tSpQw8fPiQiIjc3N/r9QxxNMzMz+uOPP4iIKDU1\nlerWrassN3z4cOrXr5/ye8htAC0sLCguLo6ioqKoT58+lPXBx2DKlCm0rRCGSGscPkzk4FCoKsHB\nqjdFnYk9QyYeJhSeGK5FAf8jI4Po66+ZTflwGflLSgpvtne/z3xPjjsdadyRcXrZtasOoRlAcQpU\nBdqYAy9ThsULrV0bcHJiaV30we3bbNpzxgw2c5ODVCpFWloabG1tUa9ePcTHx2Py5MlITk5GREQE\nhgwZAltbW+U5TTl9+jQmTJigPK5evbrKcjt27IC1tTXatGmDmJgY3L17V/nZgAEDAAB2dnaIj49X\ntjt58mRlmWrVqiE0NBT3799Hp06dYGtri927dyM8PFxlf/TBQTw6OhotW7ZUhrwbNWoUQkNDleUG\nDx4MALh58yZatGihLDd8+PB8AyoQEYKDgxEZGQl7e3vY2trizJkzSvmLQ6HvPxcX4NYt4OFDjat0\n786WDgcMYNOiOTg1ccKWvlvgss8F159eL5wc+SCVSpGeDgwezIKp+PsDFStqrXndsHQpW8uwsFBb\nRB/rZe8z32PAgQFoULUBtvbbCkMD3T62S9MaIPeT2gKmTBlg505g8WIWeszXl/2rK/z92brKypUs\nGPLHVKxYEZGRkUhLS0Pv3r3h7++Prl27wsTEBJGRkfm2bWhoqFwnS/9ocTM/QwEAd+/exaZNmxAV\nFYUqVarAzc0NWVlZys/Lf4h2bGRklGctTlW7vXv3xu7du5XH6n6sOeuXBcWUrVy5slI/dTrl1h3I\nq//48eOxePFilTLojXLlAFdXtpOkEFspe/Zky4f9+wMxMWwTl5ERMKj1IGQpstBzb0+cHH0SVnWs\nii3i48csbV7DhuzFsGzZYjepWx48YLE+Y2I4FeNl2kv02d8HrYxbYWu/rTAyNOJUHqEhjgBVkBMQ\nVhsYGLBn0vr1zBXBw4NtANAmaWnAzJls1Hf8uGrjl1unihUrYu3atZg3bx5q1aoFExMTZcxVIsKt\nW7eUZXMMgampKa5duwYAOHz4sPJzZ2dnbNu2TVkuZ2dpxYoV8f6DP0h6ejqqVKmCypUrIzk5GSdO\nnChQJ2dnZ2zZskV5/ObNG3Tt2hUhISF4/Pixst3cGUNy65fTt4WFBe7du6cM5vv333/DIXdwzA9I\nJBLcu3cPcXFxAABvb2+loTQ1NUVERAQAFtT54cOHMDAwgLOzM3x8fPDy5UuljDkZS4pDke6/sWOZ\nASzkZh5bW+DKFbYpxtkZyBF/iGQI1vdejx57euDa/9u787ioqv4P4J9BxQ3SUkGTJxGVdVZQDAXF\nBEVxL3EhFCtLjBQpXH76PIBmJak8mUtomqiZoKaVIomCkLsJiKBBLiBoCmouEJsz5/fH1XlQtgFm\nuMPl+369eL0YvOee73dmuqdz71lu/V73eJ5SKoHVq4HAQFd4e3NLnOl94wdwa30GBnJzSGqgzWvF\ni+4U3sGQyCFw7O6Ib8d8i5YGjdNf0WVO+oYawEYybhxw7hzXQDk7c6PftCE2FpDJuBGfKSk19zAr\n9nzkcjl69+6N6OhoREVFYdWqVZBKpRCLxdi9e3elMkFBQQgPD0e/fv2Qn5+v/ru/vz86deoEGxsb\nyOVybH86JP/dd9/FkCFDMHToUMhkMkgkEvTp0wfe3t5wdnauNr5n5122bBlu3LgBW1tbyOVyHD16\nFKampti4cSPGjBkDuVwOR0fH5xrrZ3x8fDBjxgzY29tDJBJh8+bNGD16NOzs7FBcXIy5c+dWej/a\ntm2LiIgIuLm5oX///ujSpYu6Uffy8sJff/0FsViMtWvXwsrKCgAgk8mwaNEiuLi4qHcSqevoU61x\ncADatweSkupctFs3biTmG29wDeL69VzD5WXnpb4dGnc1rs7n/fNPYPBgbm3PM2e4KQ96O9WhohMn\nuIDnzeMthBsPb2DQ1kEYZz0O4cPDdX7bs9ni6dkj72pKXZfLGymV3IA9ExNuJNyxY9yyjnWhUjGW\nmMgNsOndm7GDB2svw/eSTbqiq7yOHTumHgXa2OqdU3g4Yz4+Dar74kXGBg9mTCxmbPdubim1pOwk\n1iWsC/vh4g8aneP+fcaCg7llM7/6ivvON5nvn0rFmJMTY1u3anS4LvLKvJvJeoT3YKtPrtb6uTXR\nnJZCo/+taGQGBtxuDJmZ3P+0z54NWFoCn30G3LxZfbmyMu5/TJct43p5770HTJgApKdzYyCI9ml7\n/0md8/bmJm1rMCewOmIxkJAArFjBPUvu0weI2+yCDU5H8MnhT/D1maq3GMvO5nqOnp6AuTn3zO/s\nWWDOnCbS63vmxx+5LV7efpuX6i/cvgDXra7496B/Y54Tfz3Q5qLa/QCFTl/2tWKMu1Bs2QJERXGj\nRsVi4NVXubENRUXcxeXUKaB3b2DoUG4En5sbN2CBkOe89RYwbBjw/vsNPhVjwPnz3K5LP/4I3FNl\no8xrGF577AW3FsvQqqUId+9yt97v3eNWHBo5knuW+PLLWsilsZWXc0vmrF3LvYeN7FTuKYyLGoev\nR3wNLzuvRq9fE/py3dQWagD1yJMnXM8wI4Pbw62sDGjXDjAz49bwpOVZSa1iYrhhx6dPa/3UBQXA\nhT8L4Hd8JLqo5Hiz9QaYdG4JW1vu2WGT6ulVZf167oFlxQVTG8mRa0cwZe8UbBu3DSP6jGj0+jWl\nj9fNBuHv7iu/akq9yTyvqAMh5sSYMPNqUE5PnnAbVD5dzUcXHpU8Ym7b3Ni4XePYP2WazWbX+8/p\n0SNur7CUlDoV00Ze+y/vZ13CurDE7MQGn0sb6BkgIaRpatGCmwfz3Xc6q8K4tTEOTj2I1i1aw+N7\nDzwoeaCzuhpNWBh321Mub9Rqt1/Yjg8OfIAY7xgM6lF5eg7RLboFSojQXLnCrXydm8s9SNYRFVMh\nIDYAiTmJiPWORTfjbjqrS6du3QIkEu5h5muvNUqVKqbC0sSl2Jq6FTHeMbDtYtso9TaU0K6b1AMk\nRGh69+b2CTx4UKfVGIgM8JXHV/Cy9YLTZietLp3WqIKDuWHVjdT4FZUVYfKeyTh89TDOvHemyTR+\nQkQNYBWEuBaeEHMChJmXVnJ67z3gm28afp5aiEQiLB60GF+4fQG37W6Izoiu8ji9/ZwyMrg1BBct\nqlfxuuaVdS8Lr29+HW1btUX89HiYGtW80gwf9Paz0gHeGsD79+/D3d0dUqkUw4cPx4MHVT9HiI2N\nhUQiga2tLVasWFFr+cOHD8Pe3h5SqRQSiQS/1rJbNiGC5OXFLTdUYdFxXZosnozDbx/GgiMLEHQ4\nCE9UT2ovpA8WLuQav0bY6X3vpb0YuGUg/Pv5Y+vYrWjTso3O6yS14Gv0jb+/PwsPD2eMMRYeHs7m\nzJlT6ZiSkhJmbm7O8vLyWHl5Oevbty9LTk6usfyFCxdYfn4+Y4yx9PR0ZmpqWuXeWTymTkjjWLyY\nsY8+atQq7xbdZR47PJjLFheW+zC3Ueuus4QExnr2ZOzp/pC6UvakjAXGBrIe4T3YuZvndFqXrgnt\nuslbNhYWFuzu3buMMW5/uV69elU6JjExkXl6eqpff/nll2zZ0x1eNSnPGGNdunRR7x9XkdA+SEIq\nyc1l7OWXuSH+jUipUrJPEz9lpl+asv2X9zdq3RpTKhnr25exHzRb3q2+ch7ksIGbBzKPHR7sbtFd\nndbVGIR23eTtFmhBQQE6PZ3Z3blzZ+Tn51c6Ji8v77nV/s3MzNSr7WtSfs+ePZDJZGhbx43HhHgP\nXIg5AcLMS2s5mZlxSwdFRmrnfBoyEBlg8aDF2Ou1F4GHA/Hez+8h5nBMo8ZQq2cLvns1bMWV6j4r\nxhh2XtyJvhv7wrOPJw5OPYhO7ZrGShZC/G+qOjrdX8Pd3R23q9gJdvny5RqVr20vt5pcunQJCxcu\nRFxc9avY+/r6qjdA7dixo3pFf+B/XwKhvE59uv2EvsSjrdfP6Es8evf6o4+A99/HMVtbwMCg0etP\n/SAV836dB58NPgi+H4w5k+fw//6UluLYvHlAUBBcny5fo83vX35RPt4Kews3Ht7AofmH4PCqg/58\nH+qR37Fjx9TbiQkOX11PCwsLVlBQwBhjLD8/v8pbmElJSc/dAg0LC2OffvppreVzc3OZpaUlO3ny\nZLX185g6IY1HpWJMKmXs1195DWP/5f3s1VWvMr8DfuxB8QNeY2GrVzNW4bqiLaVPSln4qXDWOawz\nm394PisuL9Z6HXwT2nWTt1ugI0eOxI4dOwAAO3bswMgqtjTo168f0tPTcfPmTZSXlyM6OhojRoyo\nsfyDBw/g6emJL774Ak5OTo2UDSF6SiTidkr+uupdHBrLWOuxSPdLR7myHLbrbbHtwjYoVVreGVoT\n9+8Dn3/ObXWhJYwxHMg6AMkGCWKvxCLRNxEr3FfQKM+mgK+W9969e8zNzY1JJBLm7u7O/v77b8YY\nYzdv3mQjR45UHxcTE8Ps7OyYjY0N++yzz2otv2zZMta+fXsml8vVP896ihXVlLrer1tYD0LMiTFh\n5qX1nIqKGOvcmbGrV7V73jqomNOJGyeY07dOTLJewg5kHqhylLbOzJvH2KxZWjvdlh+3MPdt7sx6\nrTWLyYrR2nn51JzWAhVWNnVADaAwCDEvneQUFMTYxx9r/7waejEnlUrF9l/ez2zX2TKXLS7s5I3q\nH1dozZUr3C69t283+FQFRQXM74Af6/BBB7bm9BpW9qRMCwHqh+bUANJaoIQ0B9evA/36ATk5QPv2\nfEejplQpse3CNgQfC4bDqw747I3PYNPFRjeVvfUWt2/T4sX1PkVhWSE2nNuAsJNhmCKeguDBwU1m\ndKc2CO26SQ0gIc3F2LHclu1a2CxX24rLi7Hu3DqEnQjDwNcG4sN+H2Joz6Eaj/quVVIS4OMD/PEH\nUMdpUQBw5f4VbDq/CVtSt+CNnm8geHBws1zDU2jXTVoLtAovDnEWAiHmBAgzL53l9GwwDA8XsNpy\natuqLT4Z8Amuz70Oj14eCPw1EDbrbBB+Khx3Cu80rHKVCggMBL74ok6NX5myDFHpURi6bSgGbB4A\nFVPh9LunEfVWlLrxo+9f06bTeYCEED0ydCigVAKJicDT+V76pr1he3zQ9wO87/A+jt84jm9TvkVo\nYij6vtoXE2wmYLTlaPyrw79qP1FF27cDrVoBkyfXeuiDkgeIvRKLnzN/RuyVWMi7yvGBwwcYZz0O\nrVu2rmdWRF/RLVBCmpP164GjR4G9e/mORGP/lP+DX6/8in1/7MOhK4fwUuuXMLjHYLiau8KhmwN6\ndOwBI0Ojqgs/fsxtDbVvHwxefx3e3t7Yvn07AKC8vBzdunWDhdQCw5YMw4ncEzh/6zwGmw/GGMsx\nGGU5Ct2Mu+Hhw4fYuXMn/Pz86p2Dr68vRo8ejTfffFOjv1eUmJgIQ0NDnU/rioyMxLBhw9CtG7ev\n48yZMxEYGAgbm/89k63PdbOx4q8P6gES0pxMmwb85z/AtWuAhQXf0WikXat2GG8zHuNtxoMxhksF\nl5CYk4gDWQfw+fHPkfMgB+1atUOPjj1g3tEcPTr0QI8OPdChTQc4fL0H7ex74ohBClq1aYW403GY\nsmsKrj6+ikunLqHEsATX/74OEUQIGhCEwT0Go73h84OE/v77b6xfv75BDaBIJKryeWZ1f68oISEB\nxsbGdWpAlEolWrRoUacYt27dCrFYrG4AN23aVKfy1alP/CqVCgYGun9CR88AqyDEe+BCzAkQZl46\nzcnIiBsEs3Kl7uqogrZyEolEsDOxw+x+sxE9MRqXP7yMov8rwqUPL2GD5wZMtpuMbkbd8Of9P/HH\n8f0w330E4eNMkfxXMhgYbJxs0CmvE/7r8V94lnhi+dzleN3sdSx7YxnOfn8W33z9vz0UJRIJcnJy\nsHDhQly9ehUKhQLz589HYmIiRo8erc7L398fkU/XWw0JCYGjoyOsra3h6+sLlUqlPl9tPSdzc3N1\neSsrK6SnpyM7OxsREREIDw+HQqHAiRMncPv2bYwaNQoymQxyuRyJiYnqun18fODq6gpfX1/k5OTA\nxcUFCoUCYrFYfRwAhIaGwsbGBnK5HAsWLMDevXvx+++/w9vbG5aWligpKYGrqyvOnz8PAPjuu+9g\na8s99wwICFCfx8jICEuWLIFCoYBCocBff/31XE5VxX/16lUMGDAAMpkMzs7O6mXWfH19MWvWLAwc\nOBALFy5EVlYWFAoFHBwcsGTJEhgbG6vf82fvP4Dn3v9Tp07ByckJUqkUQ4YMwc2bN2v+QvEx90If\n1JQ6zS1rOoSYl85zun2b2yXi1i3d1lNBo39OKhVjQ4cy9nTLNMYYMzIyYmlpaeytt95iJSUlTC6X\ns2PHjrFRo0YxxhgLCQlhK1euVB8vFotZTk4Oy87OZmKxWP33hIQEdZmEhATm7+/Ptm7dyhhj7OHD\nh+rjfHx82J49exhjjPn6+qp/r8jX15ft3buXMcaYubk527BhA2OMsfXr17Pp06er41q1apW6zPjx\n49nx48cZY4zl5OSol4EMDg5mffv2ZeXl5YwxxoqLi1lZGTc/MSsri0kkEsYYYz/++CMbOHCg+t+e\nxezq6srOnz+v/qyevc7JyWHdu3dnf//9NwPA3Nzc2K5duxhjjIlEInbo0CHGGGPz589nwcHBlXJ8\nMX53d3e2c+dOxhhjkZGRzMPDgzHG2PTp09m4cePUxw0bNkx9XEREBDMyMqr0/jPGbY0XGRnJSktL\nmb29vXqXoF27djFvb+9K8VREPcAquOrpAIGGEGJOgDDz0nlOpqbA9OncqMhG0uifU3Q0kJ8P+Ps/\n92eJRILs7Gz88MMP8PT01OhUrIae24t5HThwAA4ODpDJZIiPj0dmHTckHjt2LADA3t4eubm5VcZw\n5MgR+Pv7Q6FQYOzYsSgtLcWjR48gEokwZswYtGzJPdkqKirC22+/DTs7O3h5eSErK0tdfsaMGWjV\nqhUA4KWXXnqunoo5McZw+vRpuLm5oePTTYOnTJmC3377DQBgaGgIDw8PAICDg8NzMVdUMf5Tp07B\n6+kuHFOmTMGJEycAcL37CRMmVHnc5FoGMDHGkJaWhitXrsDNzQ0KhQLLly/HnTs1jyCmZ4CENEcL\nFwI2NsAnnwD/quOoSn33+DHw8cfArl1Ay8qXuDFjxuCTTz5BYmIiCgoK1H83MDB47pZlSUlJlad/\n8bji4mKIRCIUFhYiICAAaWlp6Nq1K0JDQ/HkyZM6hd66NTfStEWLFs/VUZFIJMK5c+fUDV1F7dq1\nU/++atUqmJubIyoqCkqlEm3atFGXr65Rr+45ZcXjWYVdeZ41okDl96U6NT3zrBh/dcfW9DnJZDIk\nJSXVGoP6XBof2YzQc6WmQ4h5NUpOpqbAzJmAhluTNVSjfk6hoYCbG+DsXOU/v/POOwgJCYGdnd1z\nfzczM0NycjIAbvuw69evAwDatm2Lf/7557njMjIyUFZWhpiYGMTHxwMAnjx5AgMDA3Ts2BHFxcXY\n/WzPwQZ6sX43Nzd8883/nlWmp6dXWa6kpASmpqYAgJ07d0Kp5BYfd3d3x9atW1FWVgYAePjwobqe\noqKi5z4rkUgEJycnxMfH48GDBwCA6OhoDBo0qN7xDxgwANHR0QCAXbt2wcXFpcpyFY+LiopS/73i\n+//48WMcPXoUIpEIUqkUN27cQEpKCgDu86itB04NICHNVVAQtzHs0wu9IKSncxsAh4VV+qdnvYnu\n3bvD/+mt0YqjML28vPDXX39BLBZj7dq1sLKyAgCYmppCLpfD1tYWCxYsgIWFBcaOHQtra2uEhobC\n3t4eALen6IwZM2BtbQ0PDw/079+/yvo1UTGu0aNHY+fOnZDL5Thx4gS++eYbxMXFQSKRQCwWY82a\nNVXW4efnh02bNsHBwQEZGRkwMuKmiowdOxbu7u6QSqVQKBRYsWIFAMDHxwczZszA+++//1yvyszM\nDEuXLlWP4rSxscHEiRMr1VfdiNYX41+3bh3Wrl0LqVSKiIgIrFu3rsr4v/76a4SFhVW6tVrx/ffy\n8lK//4aGhti9ezdmzZoFuVz+3AChat9nVtMNbgGjeYCEgJsSkZcHbNnCdyQNxxg3wd/LC/jwQ76j\nESQ+r5vGxsZ4/PixVs9JzwAJac4CA4E+fYCsLMDSku9oGub774HCQmDWLL4jITqgtXVhK6BboFWg\n50pNhxDzatScOnYE5s7lnpvpkM5zys/nBvRs2ADUcQJ4Q9D3r/E8evRI6+ekBpCQ5m7uXCAuDsjI\n4DuS+vP356Z2ODryHQlpQugZICGEWxkmKQn4+We+I6m73bu5Z5kpKcDTof5EN4R23aQGkBAClJYC\ntrZARAQ3haCpKCgAJBJg/37g9df5jkbwhHbd5OUW6P3799XDcIcPH66eX/Ki2NhYSCQS2Nraqofq\n1lT+zJkz6uGvNjY22LZtW73i09d74A0hxJwAYebFS06tWwNffgkEBADl5Vo/vc5y8vfnNrrl0/z1\nsQAAEAZJREFUqfGj71/TxksDGBwcDE9PT6SlpWHEiBEIDg6udExpaSn8/PwQGxuLtLQ07NmzRz3B\nsbryMpkMKSkpSE1NRUJCAgICAtSTPQkhtRg/HujWDVi7lu9INLN7N3DhArB0Kd+RkCaKl1ugvXr1\nwtmzZ9GpUyfcvXsXr7/+Oq5cufLcMUlJSQgLC8OBAwcAACtXrkRJSQmWLFmiUfnr16/Dzc0NV69e\nrTIGoXXlCdGKrCxgwADg/HmgRw++o6leXh7g4MA9s3xhwjnRHaFdN3npARYUFKBTp04AgM6dOyM/\nP7/SMXl5efhXhTUKzczMkJeXV2v5s2fPws7ODnZ2dli9erUu0yBEeCwtudugs2dzE8v1UXk54O0N\nzJlDjR9pEJ01gO7u7pBIJJV+ftZwlNmLkx4rLsBaE0dHR2RkZCA5ORlz585Vr3NXF0K8By7EnABh\n5sV7TvPnAzducItJa4lWc5o3D2jfnlvQm2e8f1Y6IMScqqOzlWDi4uKq/bcuXbrg7t276Ny5MwoK\nCmBiYlLpGDMzs+fWf8vLy4OZmZnG5a2trdGrVy/88ccfldbke8bX1xfm5uYAuHX85HK5eiuQZ18C\nobxOTU3Vq3i09foZfYlHEK8NDXFs9mzAzw+ujo5Ar1768/3LygKOHMGxlSuB337j/f16Rq8+Py3n\nd+zYMfWmtULDyzPAjz76CL169UJAQADCw8Nx/fr15xZ0BbiVzK2trXHixAmYmJhgwIABiIiIgL29\nfbXlc3Nz8eqrr6JFixbIycmBk5MTLl68qL5dWpHQ7mUTonVr1gDffQecPAm0bct3NNw8xYkTgd9+\na/rLtjVRQrtu8tIA3r9/H5MmTcKdO3fQtWtXREdHo2PHjrh16xZmzpyJgwcPAgAOHTqEoKAgqFQq\n+Pj4YNGiRTWW37ZtG7788kv1quShoaEYN25clTEI7YMkROsYAyZPBl56Cdi0id9YcnK4qQ6RkcCw\nYfzG0owJ7rpZ437xAlZT6gkJCY0XSCMRYk6MCTMvvcrp0SPGrK0Z++67Bp2mQTkVFjImlTK2enWD\nYtAFvfqstKSmnITWZNBuEISQ6hkbA3v2cNsMKRSATNa49atU3Bqf9vbc6FRCtIiWQiOE1O7774GQ\nEOD334EOHRqnTsaAjz8GTp8GEhK41WoIr4R23aQGkBCimdmzgdxc4McfgVatdFuXUgn4+QFpaUBM\nDPDKK7qtj2hEaNdN2g6pCi8OcRYCIeYECDMvvc3pv//lbklOmwY8eVKnonXKqbycq+PPP7ltmvS4\n8dPbz6oBhJhTdagBJIRoxtAQ2LsXuH8fmDIFKCnRfh2lpdxUhwcPuJ6fsbH26yDkKboFSgipm5IS\nbgeG/HyuQezcWTvnvXCB6/nZ2nLTHQwNtXNeojVCu25SD5AQUjdt2gBRUdyi2Q4O3AT1hnjyBFi+\nnNuHMDAQ2LmTGj/SKKgBrIIQ74ELMSdAmHk1iZwMDIDPPwfWrQOmTuUmzF+/Xu3h1eZ06RLXkCYm\nAsnJ3JQHDdb81RdN4rOqIyHmVB1qAAkh9TdqFJCZCYjFQL9+XA8uK6vmMkolN61hyhRg8GBgxgzg\n11+BCru/ENIY6BkgIUQ77twBVqwAfvgBMDHhGreKzweVSq5xjI8HzMy4nuPMmdxSa6RJENp1kxpA\nQoh2KZXc5PXTp4EXtyPr3RtwdgYsLPiJjTSI0K6b1ABW4dixY+ptQYRCiDkBwsyLcmo6hJhXTTkJ\nrQGkZ4CEEEKaJeoBEkII0YjQrpvUAySEENIsUQNYBSHOgxFiToAw86Kcmg4h5iXEnKpDDSAhhJBm\niZ4BEkII0YjQrpvUAySEENIs8dIA3r9/H+7u7pBKpRg+fDgePHhQ5XGxsbGQSCSwtbXFihUrNC5/\n48YNGBkZYdWqVfWKT4j3wIWYEyDMvCinpkOIeQkxp+rw0gAGBwfD09MTaWlpGDFiBIKDgysdU1pa\nCj8/P8TGxiItLQ179uxBSkqKRuUDAwPh6elZ7/hSU1PrXVZfCTEnQJh5UU5NhxDzEmJO1eGlAYyJ\niYGPjw8A4O2338bBgwcrHXPmzBnY2dmhe/fuaNmyJSZNmqQ+rqby+/fvh4WFBWxtbesdX3U90qZM\niDkBwsyLcmo6hJiXEHOqDi8NYEFBATp16gQA6Ny5M/Lz8ysdk5eXh39VWB3ezMwMeXl5NZYvLCxE\nWFgYQkJCdJwBIYSQpq6lrk7s7u6O27dvV/r78uXLNSovemFPMMZYpb+9KCQkBPPmzUO7du0aNFIp\nOzu73mX1lRBzAoSZF+XUdAgxLyHmVC3GAwsLC1ZQUMAYYyw/P5/16tWr0jFJSUnM09NT/TosLIx9\n+umnNZZ3cXFh5ubmzNzcnHXs2JG98sorbN26dVXGIJPJGAD6oR/6oR/60fBHJpNptS3gm856gDUZ\nOXIkduzYgYCAAOzYsQMjR46sdEy/fv2Qnp6OmzdvwsTEBNHR0YiIiKixfFJSkrp8aGgojI2NMXv2\n7CpjaE4PegkhhFTGyzPA0NBQHDx4EFKpFIcOHcLSpUsBALdu3VKP3mzTpg02bNiA4cOHQyaTYcKE\nCbC3t6+xPCGEEKKpZrsSDCGEkOaNVoKpxpIlSyCTySAWizFo0CBcu3aN75AaLDAwELa2trC1tcWo\nUaNw7949vkNqsN27d8POzg4tWrRAcnIy3+E0SHULPzRl77zzDkxNTSGRSPgORWtyc3MxaNAgSCQS\nWFlZISwsjO+QGqykpAT9+vWDQqGApaUl5s2bx3dIjYPvh5D66vHjx+rf16xZw6ZNm8ZjNNoRHx/P\nlEolY4yxBQsWsICAAJ4jarjLly+zzMxM5urqys6fP893OPVWUlLCzM3NWV5eHisvL2d9+/ZlycnJ\nfIfVYElJSSw5OZmJxWK+Q9Ga27dvs4sXLzLGuOtEnz59WGpqKs9RNdw///zDGGOsvLyc9e/fn8XH\nx/Mcke5RD7AaRkZG6t8LCwvRrVs3HqPRjiFDhsDAgPvIBw4ciJs3b/IcUcNZW1vD0tKS7zAarKaF\nH5oyFxcXvPzyy3yHoVWmpqYQi8UAuOuEVCrFrVu3eI6q4dq2bQsAKCsrg1KphKmpKc8R6R41gDVY\nvHgxXnvtNURGRmLhwoV8h6NVGzduxNixY/kOgzxV08IPRH9lZ2fj3LlzcHZ25juUBlOpVJDL5TA1\nNcWQIUMatJpWU9GsG0B3d3dIJJJKP7/88gsAbtL+jRs34Ovr22TuideWE8DlZWhoCG9vbx4j1Zwm\nOTV1tS3yQPRPYWEhJk6ciK+++grGxsZ8h9NgBgYGSE1NRV5eHpKSkprFoti8zAPUF3FxcRodN3Xq\nVAwbNkzH0WhHbTlFRkbi4MGDiI+Pb6SIGk7Tz6kpMzMzQ25urvp1bm7ucz1Col/Ky8vx5ptvYurU\nqRg3bhzf4WhVhw4d4OnpidOnT8PV1ZXvcHSqWfcAa3L9+nX17z/99JMgRrHFxsYiLCwMP//8M9q0\nacN3OFrHmvCMnooLP5SXlyM6OhojRozgOyxSBcYY3n33Xdja2jaZO0O1uXfvHh4/fgwAKC4uRlxc\nnCCuebWheYDVmDBhAq5evYry8nL07NkT3377bZMfCNOnTx+UlZXhlVdeAQA4OTlh/fr1PEfVMPv2\n7cOcOXNw9+5ddOjQAQqFAocOHeI7rHo5dOgQgoKCoFKp4OPjg0WLFvEdUoNNmTIFiYmJuHfvHkxM\nTLB06VLMmDGD77Aa5Pjx4xg0aBCkUqn61vXnn38ODw8PniOrv4sXL2LatGlgjKGkpARTp07Ff/7z\nH77D0jlqAAkhhDRLdAuUEEJIs0QNICGEkGaJGkBCCCHNEjWAhBBCmiVqAAkhhDRL1AASQghplqgB\nJIQQ0ixRA0iarXv37kGhUEChUKBbt24wMzODQqHAyy+/DDs7uzqd66effsLly5frVCYkJARmZmYI\nCQmpU7kX+fr6Yu/evQCAmTNn1jmOmly7dg1yuVwQa10S8iJqAEmz1alTJ6SkpCAlJQWzZs1CYGAg\nUlJSkJqaqt42SlP79u3DpUuX6lRGJBIhMDCwygZQqVTW6TzPViTZtGkTbGxs6hRHTSwsLJCamqq1\n8xGiT6gBJOSpZ4siMcagVCoxa9YsiMViuLq6oqioCACQmZmJIUOGQCaToX///sjIyMDJkyfxyy+/\nICgoCPb29rh27Ro2btwIR0dH2NnZYfTo0SgsLKyxToDrEfr4+MDV1RW+vr7IycmBi4sLFAoFxGIx\nEhMTAXDb1sycORNWVlbw8PBAfn6++hyurq5ITk4GAMyaNQv9+vWDpaXlc9t5mZubIyQkBI6OjrCy\nskJ6ejoA4OjRo+oesUKhUK8NSYhQUQNISBX+/PNP+Pv7Iz09Haampti9ezcA4J133sGmTZtw4cIF\nrFmzBh988AEGDBiAMWPGYOXKlUhOToaFhQUmT56Ms2fPIiMjA3K5HBERERrV+8cff+DIkSPYvn07\nTE1NER8fj5SUFOzbtw8fffQRACAqKgp5eXnIzMzEtm3bcPLkSXX5itsqhYWF4dy5c7h8+TLOnDmD\n8+fPq4/p2rUrzp49i4CAAKxcuRIAsHr1amzcuBEpKSk4ffo02rVrp5X3khB91ay3QyKkOj179lTv\n+u3g4IDc3Fzcu3cPycnJmDhxovq44uJi9e8Ve3NnzpzBv//9bxQXF+Px48dwc3OrtU6RSIQxY8ag\nZUvuP8uioiLMnj0b6enpMDQ0RFZWFgDgt99+w6RJkwAAJiYmeOONN6o83+bNm7F161aIRCLcunUL\nmZmZcHBwAAD1Zsj29vbYs2cPAGDQoEGYM2cOpkyZgvHjx9N2TETwqAEkpAqtW7dW/96iRQuoVCow\nxtClSxekpKRUWaZi72v69OmIi4uDnZ0dIiMjNd5ctGKva9WqVTA3N0dUVBSUSqV6CysDA4Nat37K\nzMzEunXrkJqaCiMjI8yYMQNPnjyplN+z3ABgwYIFGDVqFGJiYuDs7IzDhw/DyspKo7gJaYroFigh\nGurcuTO6dOmCAwcOAOB6fM8GvrRt21b9nBAAysrKYGJiAqVSie+//75e9ZWUlMDU1BQAsHPnTvXA\nGGdnZ/Ut2YKCAiQkJFQqW1paCiMjI7Rv3x53797VaIuo7Oxs2NnZISgoCI6OjsjIyKhX3IQ0FdQA\nEvJUxR5cxd8rvo6KisKqVasglUohFovVDdGkSZOwdOlS9SCY0NBQODg4wMXFBdbW1pXOp0kMfn5+\n2LRpExwcHJCRkQEjIyN1Xd27d4eVlRWmTZuGAQMGVDqPVCqFRCJBnz594O3tDWdn51rrXLlyJaRS\nKWQyGVq2bAlPT0+NYiakqaL9AAnhSWhoKIyMjPDxxx/zHUqtjI2NaVQoERzqARLCEyMjI2zcuLHB\nE+F16dlE+K5du/IdCiFaRz1AQgghzRL1AAkhhDRL1AASQghplqgBJIQQ0ixRA0gIIaRZogaQEEJI\ns/T/jVWB3070t1UAAAAASUVORK5CYII=\n", - "text": [ - "<matplotlib.figure.Figure at 0x3dbe950>" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 3, - "metadata": {}, - "source": [ - "Example 3.9, Page number: 148" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "from __future__ import division\n", - "\n", - "\n", - "#Variable declaration:\n", - "W=4.0*10**-2 #width of plunger lower arm(m)\n", - "W1=4.5*10**-2 #width of plunger upper arm(m)\n", - "D=3.5*10**-2 #depth of plunger (m)\n", - "d=8*10**-3 #length of magnet(m)\n", - "go=1*10**-3 #air gap length(m)\n", - "uo=4*pi*10**-7 #Permeability of free space(A.turns/m)\n", - "ur=1.06*uo #Relativity permeability\n", - "Hc1=-940 #Magnetising force(kA/m)\n", - "Bt=1.25 #Magnetic field induction(T)\n", - "N=1500 #No of turns\n", - "x=3*10**-3 #Position of plunger(m)\n", - "\n", - "#Calculation:\n", - "Ni=-Hc1*d*10**3\n", - "Rx=x/(uo*W1*D)\n", - "Ro=go/(uo*W*D)\n", - "Rm=d/(ur*W*D)\n", - "f=-((Ni)**2)/(uo*W1*D*(Rx+Ro+Rm)**2)\n", - "\n", - "\n", - "\n", - "#Results:\n", - "print \"The x-directed force:\",round(f,1),\"N\"\n", - "print \"Current in the excitation winding:\",round(Ni/N,2),\"A\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The x-directed force: -703.3 N\n", - "Current in the excitation winding: 5.01 A\n" - ] - } - ], - "prompt_number": 31 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file |