summaryrefslogtreecommitdiff
path: root/Digital_Communications_by_S._Haykin/Chapter4.ipynb
diff options
context:
space:
mode:
authorTrupti Kini2016-08-30 23:30:24 +0600
committerTrupti Kini2016-08-30 23:30:24 +0600
commitd664b4cec7c9f6bec093c21e0e3f65e292d4a2bb (patch)
tree373e9ce955a035de3134e7e5131e500980fed95a /Digital_Communications_by_S._Haykin/Chapter4.ipynb
parent318a72ad102546fc1f88bf2bd538ec6b3175638a (diff)
downloadPython-Textbook-Companions-d664b4cec7c9f6bec093c21e0e3f65e292d4a2bb.tar.gz
Python-Textbook-Companions-d664b4cec7c9f6bec093c21e0e3f65e292d4a2bb.tar.bz2
Python-Textbook-Companions-d664b4cec7c9f6bec093c21e0e3f65e292d4a2bb.zip
Added(A)/Deleted(D) following books
A Digital_Communications_by_S._Haykin/Chapter1.ipynb A Digital_Communications_by_S._Haykin/Chapter2.ipynb A Digital_Communications_by_S._Haykin/Chapter3.ipynb A Digital_Communications_by_S._Haykin/Chapter4.ipynb A Digital_Communications_by_S._Haykin/Chapter5.ipynb A Digital_Communications_by_S._Haykin/Chapter6.ipynb A Digital_Communications_by_S._Haykin/Chapter7.ipynb A Digital_Communications_by_S._Haykin/Chapter8.ipynb A Digital_Communications_by_S._Haykin/Chapter9.ipynb A Digital_Communications_by_S._Haykin/screenshots/Ch-6_RaisedCosineSpectrum.png A Digital_Communications_by_S._Haykin/screenshots/Ch6_powerSpectralDensities.png A Digital_Communications_by_S._Haykin/screenshots/ch6_sinc_pilse.png A Heat_And_Mass_Transfer_-_A_Practical_Approach_by_Y._A._Cengel/README.txt A Heat_And_Mass_Transfer_-_A_Practical_Approach_by_Y._A._Cengel/ch1.ipynb A Heat_And_Mass_Transfer_-_A_Practical_Approach_by_Y._A._Cengel/ch10.ipynb A Heat_And_Mass_Transfer_-_A_Practical_Approach_by_Y._A._Cengel/ch11.ipynb A Heat_And_Mass_Transfer_-_A_Practical_Approach_by_Y._A._Cengel/ch12.ipynb A Heat_And_Mass_Transfer_-_A_Practical_Approach_by_Y._A._Cengel/ch13.ipynb A Heat_And_Mass_Transfer_-_A_Practical_Approach_by_Y._A._Cengel/ch14.ipynb A Heat_And_Mass_Transfer_-_A_Practical_Approach_by_Y._A._Cengel/ch2.ipynb A Heat_And_Mass_Transfer_-_A_Practical_Approach_by_Y._A._Cengel/ch3.ipynb A Heat_And_Mass_Transfer_-_A_Practical_Approach_by_Y._A._Cengel/ch4.ipynb A Heat_And_Mass_Transfer_-_A_Practical_Approach_by_Y._A._Cengel/ch5.ipynb A Heat_And_Mass_Transfer_-_A_Practical_Approach_by_Y._A._Cengel/ch6.ipynb A Heat_And_Mass_Transfer_-_A_Practical_Approach_by_Y._A._Cengel/ch7.ipynb A Heat_And_Mass_Transfer_-_A_Practical_Approach_by_Y._A._Cengel/ch8.ipynb A Heat_And_Mass_Transfer_-_A_Practical_Approach_by_Y._A._Cengel/ch9.ipynb A Heat_And_Mass_Transfer_-_A_Practical_Approach_by_Y._A._Cengel/screenshots/14.png A Heat_And_Mass_Transfer_-_A_Practical_Approach_by_Y._A._Cengel/screenshots/2.png A Heat_And_Mass_Transfer_-_A_Practical_Approach_by_Y._A._Cengel/screenshots/5.png A sample_notebooks/VineshSaini/ch10.ipynb
Diffstat (limited to 'Digital_Communications_by_S._Haykin/Chapter4.ipynb')
-rw-r--r--Digital_Communications_by_S._Haykin/Chapter4.ipynb134
1 files changed, 134 insertions, 0 deletions
diff --git a/Digital_Communications_by_S._Haykin/Chapter4.ipynb b/Digital_Communications_by_S._Haykin/Chapter4.ipynb
new file mode 100644
index 00000000..a9616b0d
--- /dev/null
+++ b/Digital_Communications_by_S._Haykin/Chapter4.ipynb
@@ -0,0 +1,134 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4 Sampling Process"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example4.1 page 164"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Aliasing error cannot exceed max|g(t)| = 2.0\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAE0CAYAAADQYm9sAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xe4FPXZ//H3h2JHKSpIUTRgAbGLWKJorNj9xULsGmPs\nT/SJ/RGiMUYTjTW2WFFsiTGoiGLBWMCCICiiImKjKyAoInDu3x/fObgsu3vmnLO7M7vnfl3XXmfL\n7Ow9M3vm3m8dmRnOOedcHM2SDsA551zl8KThnHMuNk8azjnnYvOk4ZxzLjZPGs4552LzpOGccy42\nTxrOOedia1HoRUnbAP2BXYGugAGfAf8FBpvZmFIH6JxzLj2Ub3CfpKHAHGAI8CYwDRCwHtAbOBBo\nbWb7lydU55xzSSuUNNqb2YyCb5bWNbOZJYnMOedc6uRt06hNGJKuzn6t9jlPGM4517TEaQjfO8dz\n/YodiHPOufTL2xAu6TTgdOBnksZnvNQKeK3UgTnnnEufQm0aawFtgD8DFxAawQHmm9nX5QnPOedc\nmhRKGq3MbH7BN8dYxjnnXPUolDSeBz4E/gO8bWbfRM+3A7YDDgG6m9meZYrVOedcwvImDQBJewC/\nAnYGOkZPTwVeBR40sxGlDtA551x6FEwazjnnXKaC04gASNqWMH1IpnnAZ2a2pCRROeecS6U6SxqS\nRgHbAuOip3oB7wNrAaeZ2bMljdA551xqxBncNxXYysy2NbNtga2AycBewDWlDM4551y6xEkam5jZ\n+7UPzGwCsKmZfcKK1VbOOeeqWJ1tGsD7km4FHiYM8DsCmCBpZWBxKYNzzjmXLnHaNFYjTCeyc/TU\na8DfgR+A1X1wn3PONR3e5dY551xsfrlX55xzsXnScLFImi+pa9JxlJqkHpLeirnsgZIebsRnHS0p\nVV3WJY2QdHICn/uapC0LvP5PSfuWMyaXmycNtxxJUyR9HyWJ+ZK+ldTBzFqZ2ZSk48sk6W5JNZI2\nKrBMz+hEOFfSF5IurWO1VwB/ifP5ZvYk0FNSrwKfv4uk16PP/1rSq5K2i97/oJntE+ezysgoc69I\nSQcC88zs3ejxQEmDsha7GvhjOeNyuXnScNkMOCBKEq3MbE0zm16qD5PUvIHv2wXYiLpPcIOAVwjT\n/O8GnB6dpHKtcz2gL/BEPUJ5CPhNnvWtCTwF3BB9fifgD8Cieqy/Kfgt4TjlZWZvAWtGM1S4BHnS\ncLFk/qKX1E7Sk5LmSXpT0h8lvRK91jVatlnGe5dVeUg6IaqKuE7SbGCApJUk/VXSZ5KmS7pV0ioF\nYmkB3AicxU/XecmnB2FyTTOzyYTJNnvkWXYvYLSZ/ZjxWRdKmhSVuN6XdEjWe0YA++dZ38aAmdkj\n0ef/YGbDzWx8xr54JeOzaiSdKukjSXMk3Zy13adImpARy9a5PjRaz1mSPpE0S9I1khS9ttyv+FzH\nK+O1bpJejkpJszKr4iRtKml4VHqaKOnwPPsASRtK+m8U93BJt9TGIGklYHfg5ejxvsBFwJFRSXdM\nzH3tysSThsulrhPxLcB8oD1wPHAchX/xZ1d59AY+AdYF/kSoeugGbBn97QRcVmB9vwNerj351uE5\n4HhJLSRtCuwIPJ9n2V6EywFkmgTsYmZrEkoJD0jqkPH6RKCrpDVyrO9DYKmkeyXtK6lNjHj3J1x6\nYAvgCEn7AEQn5QHAsVEsBwKFLoZ2CGH6n22Ag4GToufrU/V0BTDMzFoTjsmNUSyrA8OBB4B1gKOA\nv0vaLM96BgOjgLbAQOCYjDi6AzVmNhXAzIYRvhMPRyXdzMT4AeE74hLkScNlE/BE9Et3jqTHl3sx\nVCcdBgyIfjl/ANxH3Ykm01Qzu8XMaghVNacA55rZXDNbAFxFOBGtGJzUhVAdVCipZPodcCSwEJgA\n/MPMRudZdi1gQeYTZvbP2uo5M3sU+JiQ9GrVjlNqnb2yaAzTLoQT5J3ATEn/kbRugXj/bGbfmtkX\nwEv8dJL8NXB1bexmNtnMPi+wnquj/fkFcD3QP3q+PsfpR0JC7GRmP5rZ69HzBwCfmtl9ZlZjZmOB\nx4EVShuS1ickwcvMbImZvQYMyVikNT/tw2VvyxPnAnLsZ1denjRcNgMONrM20e2wrNfXIcwk8EXG\nc1/W8zMy37sOsBowujZRAc8Aa+d57/XA5WY2v7bKhTwnQoWBqS8SEszKQBdgX0mn5Vn3HKBV1jqO\nkzQmI7bNgXYZi9QuPzfXCs1sopmdaGZdovd2jLYhn8z2o++B2hJMZ0LpLK7Mffw5P10Ppz7OJ+zb\nNyW9J+nE6PkNgB0yfljMIVx3p32OdXQEvjGzH7Jiqz1mK+zzAlqRZz+78vGk4eprFrCEcAKulXn/\nu+jvahnPZVbnwPJVJLMJpYAeGYmqdVQFk8sewF8kTSNMpgkwUlKukklPoJWZPRD9Iv4KeATol2fd\n4wjtEABI2gC4AzgDaGtmbYD3WD5JbQZMiUpIBZnZh4RS2eZ1LZvDF4Squ7jWz7r/VXT/Owofm2XM\nbIaZ/cbMOgGnEqqgfkZIQi9nHK82UVXSGTlWMw1oK2nVPLFNAhR1QqhVkyekzYCx+eJ15eFJw9WL\nmS0lVEUMlLRq1E5wLFEiMLNZhBPUsZKaSzoJ+FmB9dUQqm6ul7QOgKROkvbO85buhPr+LQkzLkOo\nLsnV42kSsJKk/pKaRW0RRwLv5ln388A2UeMswOrRds0GmkW/tLNP+LsBQ3OtTNImks6V1Cl63IVQ\nTTQyz+evsAp+SlD/AP5X0jYKukVVP/n8r6TW0WeeTUiWAGOAXSV1kbQWodE594dLh0vqHD2cS9gX\nSwk9wjaWdIykltFt++i7sBwz+wx4m/B9aSlpR8Lxqv2+/EjY730z3jaDUC2WXYLclVAKdQnypOHi\nyiwdnEmo/59O+OX8EKH+u9YpwO8JJ9sehPnKMteT3Rh7AeEEP0rSPEIj68bkYGazzWxmdJsRrWt2\nbfWHQs+rW6Nl5xDq2X9PqAYZQyhN5OzvH63vRUIjcu2MztcSTvLTCQnj1ay3HQXcnmt9hLr6HYA3\nJC2I1jMOOC/PvsjeL8teN7N/AlcSGpW/JSTuQg3r/wFGE7b5KeDuaD3PExLIOOAt4Mkcn1trO8Ix\nmR+t72wzqy1V7R1t+1eE0sRVwEp51nM0oQPC14TG9UdY/vtyO+GHR63Hor9fS3obQNL2wHwze7vA\nNrsySGzuqegX0P2EHjQG3GFmN+ZY7kZgP0L97glmNiZ7GZcsSVcD65rZiXUunHJRD6D7zKx3jGUP\nBI42s5yN9kmRVAN0i7oYp46kR4AJZvaHjOdeBc6oHeCX4z3/JHRiGFamMF0eSSaNDkAHMxsbdVcc\nDRwS9capXaYfcKaZ9ZO0A3CDmfVJJGC3jKRNCA3L44HtgaeBk81sSME3urJIW9JQGAE/B/gU2IdQ\nSuqTL0G4dItzPY2SiLox1nZlXCDpA0JPiw8yFjuIUP2Bmb0R1dG2j6oRXHJaEaqkOhLqn//qCSNV\n0jZ1dQdComhHaND/rSeMypVY0sikMBHe1sAbWS91YsWunZ0JJyqXkKheuXvScbjczKxBU7OUipk9\nRWhXcVUg8YbwqGrqn8A5ebotZvegSNuvKOecazISLWlIagn8C3jAzHJ1mfyK5ccAdOan/uaZ6/FE\n4pxz9WRm9ZkhAEiwpBH1wb6L0Isi3wjZIYR5jZDUB5ibrz3DzFJ1GzBgQOIxeEz5bwsXGuecY3To\nYPz978b33+eOacYM4+KLjXbtjFtuMWpqmt6+8piqM6aGSrKksTNh4rJxGTNZXkw0WtTMbjezoZL6\nSZpEGMla8V06XfK++goOPRQ22ADeew/atcu/7LrrwpVXwrHHwq9+BSNHwh13wKqr5n+Pc9Usyd5T\nrxKjpGNmZ5YhHNdETJ4Mv/gF/PrXcPHFsMKY4zw23RRefRVOPBH23x+efBJWX720sTqXRok3hFer\nvn37Jh3CCpp6TF98AbvvDuefD5dckj9h5ItptdVg8OBQQtl/f/jhh5yLlUxTP35xeUylldjgvmKS\nZNWwHa50vv0WdtkFjjsO/vd/G7eumppQVbV0KTzyCDTzn16uAknCGtAQ7knDVb0lS+DAA0MJ4dZb\n41dJFbJoEey9N+y6K1xxRePX51y5NTRp+G8kV/UGDAiJ4+abi5MwAFZeGR59FO65B57xeVddE5Jo\n0pB0t6QZknJetlNSX4XrUI+JbpeWO0ZX2V58Ee69Fx58EFoUudtH+/bw0ENwwgnw2WfFXbdzaZV0\nSeMeYN86lnnZzLaObjmntHYul1mzQhvGvfeGrrOl8POfw3nnhS65NfkuHeRcFUk0aZjZK4TZLwsp\nUoWCa2p++9vQYL3XXqX9nPPOCwnjpptK+znOpUHSJY26GLCTpHclDZXUI+mAXGV4/HF4/324/PLS\nf1bz5qFt44or4OOPS/95ziUp7UnjHaCLmW0J3ETuS3o6t5y5c+Gss+DOO2GVVcrzmd27w6WXhkGD\n3pHPVbNUTI2ej5nNz7j/jKS/S2prZt9kLztw4MBl9/v27VtVg2lc/Zx/Phx8cGhvKKezzoJBg0Kj\n+zHHlPeznavLiBEjGDFiRKPXk/g4jehaGk+aWa8cr7UHZpqZSeoNPGpmXXMs5+M0HABvvx3GZEyc\nCGutVf7PHzkSfvlL+OADWHPN8n++c3FV5OA+SQ8BuwFrEy6sNABoCWHCQklnAKcBSwjXCD/XzEbl\nWI8nDYcZ7LxzqCI66aTk4jjpJGjTBq69NrkYnKtLRSaNYvGk4SBUC/3tb/Dmm8lO7TFzJvTsCSNG\nhL/OpZEnjSrYDtdwCxaEmWgffRR22inpaEL32//8B4YPL94odOeKyacRcU3an/8MffumI2EAnHYa\nfPklPPts0pE4V1xe0nAVb9o02HxzePdd6Nw56Wh+8u9/w8CB8M47YSyHc2niJQ3XZF1xRbg4UpoS\nBsAhh8Aaa4S2FueqhZc0XEX75BPo3Rs+/BDWXjvpaFb02mthKpMPPyzfQEPn4qi4kkZdM9xGy9wo\n6eNoGpGtyxmfqwwDB8LZZ6czYUDoArzNNmFadueqQWIlDUk/BxYA9+cZ2NcPONPM+knaAbjBzPrk\nWZeXNJqg8ePDZIQffwytWiUdTX4TJ4bR6R9+CG3bJh2Nc0HFlTRizHB7EHBftOwbQOtohLhzQJjr\n6YIL0p0wIHQFPuyw0MPLuUqX5obwTsAXGY+/BFLW1OmSMnIkjBkTurZWggED4K674Kuvko7EucZJ\n9YSFrHgtjbx1UD5hYdNhBhdfHE7EldK43LEjnHJKmKr99tuTjsY1RVUxYWEdkxXeBowws4ejxxOB\n3cxsRo5lvU2jCRk+HM48M1wvo9iXcC2lOXNg441Dj6qNN046GtfUVVybRgxDgOMAJPUB5uZKGK5p\nqS1lXHFFZSUMCJMYnnsu/N//JR2Jcw2X2L9d5gy3kr4ga4ZbMxsqqZ+kScB3wIlJxerS4/HHYenS\nMP14JTr77HDBpnfeCV1xnas0PrjPVYwlS6BXrzCT7b77Jh1Nw916a5jMcNiwpCNxTVk1Vk85t5xB\ng2DddWGffZKOpHFOPjmMLXnppaQjca7+vKThKsKiRaHxePDgMMq60g0eDDfeGLoO+9TpLgle0nBV\n7fbbQ9VUNSQMgKOOgoULYciQpCNxrn68pOFSb8GC0Hg8bBhsuWXS0RTP0KHw+9/DuHE+dborv4os\naUjaV9LEaFLCC3K83lfSPEljotulScTpknXddbDHHtWVMAD22y/MRfXAA0lH4lx8SU5Y2Bz4ENgT\n+Ap4C+hvZh9kLNMXONfMDqpjXV7SqFKzZoW5m956CzbaKOloiu/VV+GYY8JkhiuvnHQ0rimpxJJG\nb2CSmU0xs8XAw8DBOZbzZsIm7E9/gv79qzNhAOyyS2irue22pCNxLp4kk0auCQk7ZS1jwE7R9TSG\nSupRtuhc4j77DO6/v/pHUF95JVx1Fcyfn3QkztUtyYkY4tQnvQN0MbPvJe0HPAHknLXHJyysPpdd\nBmecAe2rfEL8LbaAPfcMgxYvuyzpaFy1qvgJC6P5pAaa2b7R44uAGjO7usB7PgW2NbNvsp73No0q\n89578ItfhEFwa66ZdDSlN3kybL99uGDTOuskHY1rCiqxTeNtoLukrpJWAo4kTFK4jKT2Uhj6JKk3\nIcl9s+KqXLW54AK48MKmkTAgtNn07x+qqZxLs6SnRt8PuB5oDtxlZldJOhXCpIWSzgBOA5YA3xN6\nUo3KsR4vaVSRYcPgrLPC1OcrrZR0NOUzfTr07BkuLrX++klH46pdQ0saPrjPpcrixaGO/+qr4aCC\nHa2r0yWXwLRpcPfdSUfiqp0njSrYDhfmY3rySXjuuaY5J9PcuWFcytNPw7bbJh2Nq2aeNKpgO8xg\n/HgYPRrefRemTIGZM8M0Gi1awKqrhmqLjTaC3r3DPExrr5101MXz9dew2Wbw4ouw+eZJR5Oce+4J\n4zZGjoRmVTI7nFnoQv3qq+FaIlOmhOul//hjuD5KmzZhBuPu3WGrrcL3u2vXpKOubp40KnQ7Fi0K\nvyqfeirU5a+2GvTpE6bM+NnPQnfTNdYI/1jffQeffx56FI0cCaNGQY8eYfK7/v3DP10lO/30cJK8\n+eakI0lWTQ38/OdwwgnhuuKV7MMP4cEH4eGH4dtvw3Ztv3344dOpU7jGuxRKWNOnw0cfwdix8Prr\n0KpVmGrlqKNgxx2bZsmzlDxpVNh2jBkDd90V/pl69YLDDgv/IN26xV/H4sXwwgvw0EOhSufQQ+G8\n80IiqTSjRoV98P774VdnUzd2bLhuyIQJ0K5d0tHUj1koLV57bShVHH10OPFvt138E39tqXvIkJB0\nFi2CY4+FU0+Fjh1LG39T0dCkgZkldgP2BSYCHwMX5Fnmxuj1d4Gt8yxjlaCmxuzZZ8322MOsUyez\ngQPNPv20OOueNcvsiivM1l3X7PjjzT77rDjrLYcffzTr1cts8OCkI0mXs84yO+WUpKOonzffNOvb\n12yTTcz+8Q+zhQsbv86aGrPRo81OP92sdWuz/v3NRo1q/Hqbuui8Wf/zdkPeVIwboZvtJKAr4drg\nY4HNspbpBwyN7u8AjMqzrqLuzGJbvDicELfayqxHD7N77zVbtKg0nzVvntmll5q1bWv2xz+W7nOK\n6eqrzfbeO5wc3E/mzDHr3NnshReSjqRus2ebnXiiWceOZnfeGb7zpTBnjtm115p17Wq2445mjz9u\ntmRJaT6r2lVi0tgRGJbx+ELgwqxlbgOOzHg8EWifY11F3JXF8913ZjffbLbhhma77GL25JNmS5eW\n57OnTDHbf3+znj3NXnutPJ/ZEO+/b9aundknnyQdSTo9/XQ4QX77bdKR5FZTY/bAA2bt25udc075\n4lyyxOyxx8x69zbr3t3sttvMvv++PJ9dLSoxafwSuDPj8THATVnLPAnslPH4ecI0IqlOGrNmmV1+\neagqOvjg5E7aNTVmjzxitt56ZhdckL5Sx6JFZltvbXb77UlHkm4nnmj2298mHcWKZs82O/RQsy22\nCNVSSaipMXv5ZbMDDgiJ6/LLQ1xpsnSp2YwZSUexooYmjbRPWAgrTo2e83177jmQnj1DI2pSExZO\nmhQmnRs8ODTqjhgRupAmRYIjjoDdd4eTTw49UB58MIwDSIM//CE0alZ6D6FSu+660JvuqafggAOS\njiYYMQKOOw5++cvQESOpa4FIsOuu4TZhQmh879YtNL6fe25yU+qbhSsyDh4c9s+eeyY/YLNYExYm\nWdLow/LVUxeR1RhOqJ46KuNx3uqp004zW2cdsx12MPvb38y++qqIKbmApUvNXnwx/OJae22zSy4x\nmzatPJ9dHzU1ZrfeGqqCbrst+faD4cPNOnRI575Ko1dfDSXXKVOSjePHH8N3fL31zJ55JtlY8pk6\n1ezCC8N3/fDDy1sKmjzZ7MorQ9vlBhuYXXSR2bhx5fv8+qACq6daAJ8QGsJXou6G8D7U0RC+eLHZ\nsGFmJ5xg1qaN2W67hRPll18WbT8v8+mn4cux0Uah3eCmm8wWLCj+5xTbhAmhQf7QQ82+/jqZGKZM\nCVUJL76YzOdXqr/8JfwoSqqacfJksz59zPbZx2z69GRiqI9vvzW77jqzLl3MdtopnAtmzSruZ9TU\nmI0fH3oubrtt+OF6+ukhyZer/bKhKi5phJjZj3DJ10nARdFzpwKnZixzc/T6u8A2edazwg5ZuNDs\niSfMjjoq9CTq2dPsd78LDYsN+eJ8953Zf/9rdtllZltuGb4cv/mN2RtvJP+rvb5++MHsf/4n/DO9\n/HJ5P/v778222Sb0gHH1U1MT2shOOqn837nBg0NJ+tpr038yzPbjj2b/+U84F6y5ptlee5ldc43Z\nO+/Uf1tqasy++MLswQdDd+iNNgolinPOMXvppdL1GiuFhiaNJjG4b+nSMDXHc8+FwXDvvANrrRWm\nK9hggzAydb31wjQdLVvCwoVh9OrUqfDpp6GudOLEMLXFrrvCwQeH9oHmzcu4kSUwdGho6zjllHDx\nnxYlbuFasiTUga++OjzwgI/wbYgFC6Bv3zCZYzku2DR/fphxeOTIUDe/zTal/8xSWrAAhg8P54Hn\nnw//45ttFmYX7tYtXMukdeswM0FNDXzzTZjKZ9q0cB4YPz689vOfh+Ow++7hvFCJ32UfEV6P7aip\nCclg3Dj44gv48svwpVi0KMyFs+qqYQqDDh1CQ9qmm4YEs8oqJdyIhEybBscfH6YoGTw4JNFSqKkJ\n02LMng1PPNG0pjwvtunTYaed4KKLStuJYPToMJJ7113hhhvCdDbVZs6cMAvB+++Hc8Ls2WFKE7OQ\nCNq2DdPztG8fzgO9eoX7lZgksnnSqILtSEpNTeihc801Yd6nI44o7vqXLoXTToMPPoBnnw3za7nG\n+egj2Guv0EPonHOKu+4lS0IvpGuvLc33waWDJ40q2I6kvf02/OpX4XoW118PnTs3fp0LFoSumd9+\nC//+dyjBueL47LOQOPr3hwEDijMj7ujR8Otfh2qaO+7wmWarWSVe7tWlzHbbhSnZe/YM1XHXXhuq\n6xrq/fdhhx1C+9HTT3vCKLYNNoBXXgl18wcdFKpWGmrWrFBi2X//UHp59llPGC63RJKGpLaShkv6\nSNJzklrnWW6KpHGSxkh6s9xxNkWrrhoG3b3+emgs7NYtXNvhhx/ir+Pbb+HSS0ND4XnnhetDJDX4\nq9q1bx8G2vXoEZL9XXeF6qW4ZswIpZTNNgvVlOPHh9lkq6HO3pVGUiWNC4HhZrYx8EL0OBcD+prZ\n1mbWu2zRFUFRRl4WWX1i2njj0Lvq0UfDtOudOoXrXbz8cu4EUlMTeqX9/vfhOiCffRam9z7ppOLF\nVC5pjAnyx9WyZWiPGjoUBg2CTTYJl8udPDk06Gb7+mt45JHQyL3ppqEzxJtvwk03hWqpYsSUJI+p\ntJJKGgcB90X37wMOKbBsRf7mSeOXpCEx9ekTqpbGjAmJ4/zzw/UdevYM9en9+oUqqLZtw0moZctQ\nShk0KCxfiphKLY0xQd1xbbttKHUMGgSffBJ6WHXsCLvsEqqd9tgjJPQNNwzL7Lpr6DF0xx0Nn24j\njfvKYyqtpOaeam9mM6L7M4D2eZYz4HlJS4HbzezOskTnVrD++nDJJeH23Xdhnq0ZM8KFoNq1Cyej\n+v5KdaWx007hdvvt4UqPn38O8+aFLuNduoQE0bJl0lG6SlWypCFpONAhx0uXZD4wM5OUr+vTzmY2\nTdI6wHBJE83slWLH6upn9dXDBHou3aTQWF6qsTeuaUqky62kiYS2iumS1gNeMrOCc69KGgAsMLNr\nc7zm/W2dc66eGtLlNqnqqSHA8cDV0d8nsheQtBrQ3MzmS1od2Bv4Q66VNWTDnXPO1V9SJY22wKPA\n+sAU4AgzmyupI+HCTPtL2gh4PHpLC+BBM7uq7ME655xbpipGhDvnnCuPihsRLulwSe9LWiop75yb\n5R4YWI+49pU0UdLHki4ocUypGUQZZ7sl3Ri9/q6krUsRR31iktRX0rxov4yRdGkZYrpb0gxJ4wss\nU+79VDCmhPZTF0kvRf9z70k6O89yZdtXcWIq976StIqkNySNlTRBUs7amnrtp4bMp57kDdgU2Bh4\niTzX14iW+xRom6a4gOaEa4N0BVqS48JTRY7pGuD86P4FwJ+T2FdxtpvlL7i1A3kuuFXmmPoCQ8r1\nHYo+8+fA1sD4PK+XdT/FjCmJ/dQB2Cq6vwbhujxJf6fixJTEvlot+tsCGAXs0pj9VHElDTObaGYf\nxVy8bA3kMePqDUwysylmthh4GDi4hGGlZRBlnO1eFquZvQG0lpRv/E65YoIyDy610KV8ToFFyr2f\n4sQE5d9P081sbHR/AfAB0DFrsbLuq5gxQfn31ffR3ZUIP5a+yVqkXvup4pJGPdQODHxbUgmvOlAv\nnYAvMh5/GT1XKvUdRFmqfRVnu3MtU4R5dhsVkwE7RUX2oZJ6lDCeuMq9n+JIdD9J6kooCb2R9VJi\n+6pATGXfV5KaSRpLOAe8ZGYTshap135KqsttQQUGBl5sZk/GXE3RBwYWIa6i9zqokEGUcbc7+xdY\nKXtpxFn3O0AXM/te0n6EruEblzCmuMq5n+JIbD9JWgP4J3BO9Ot+hUWyHpd8X9URU9n3lZnVAFtJ\nWgt4VlJfMxuRHXb22/KtL5VJw8z2KsI6pkV/Z0n6N6E6olEnwiLE9RXQJeNxF0JWb7BCMUWNlx3s\np0GUM/Oso+j7Kkuc7c5epnP0XKnUGZOZzc+4/4ykv0tqa2bZxftyKvd+qlNS+0lSS+BfwANmtsJY\nLxLYV3XFlOR3yszmSXoa2A4YkfFSvfZTpVdP5awblLSapFbR/dqBgXl7o5QrLuBtoLukrpJWAo4k\nDHQsldpBlFBgEGUZ9lWc7R4CHBfF0QeYm1G1Vgp1xiSpvRQmCZfUm9BFPcmEAeXfT3VKYj9Fn3cX\nMMHMrs+zWFn3VZyYyr2vJK2tqNekpFWBvYAxWYvVbz+VsxW/SD0BDiXUvy0EpgPPRM93BJ6O7m9E\n6A0zFnjHYz7yAAAZCklEQVQPuCgNcUWP9yP0qphU6riAtsDzwEfAc0DrpPZVru0GTgVOzVjm5uj1\ndynQM65cMQFnRPtkLPA60KcMMT0ETAV+jL5PJ6VgPxWMKaH9tAtQE33mmOi2X5L7Kk5M5d5XQC9C\nldhYYBzw++zveX33kw/uc845F1ulV08555wrI08azjnnYvOk4ZxzLjZPGs4552LzpOGccy42TxrO\nOedi86ThnGs0SVtG02K4KudJwzlXDFsTpth2Vc4H9znnGiWahmUSsAphzqI/mdljyUblSsWThnOu\n0SQdD2xrZjmvoOeqh1dPOeeKQZT54kIuGZ40nHPF4FUWTYQnDedcMcwHWiUdhCs9TxrOuWJ4Cegh\naYykw5MOxpWON4Q755yLzUsazjnnYvOk4ZxzLjZPGs4552LzpOGccy42TxrOOedi86ThnHMuNk8a\nzjnnYvOk4ZxzLjZPGs4552LzpOGccy42TxrOOedi86ThnHMuNk8azjnnYvOk4ZxzLjZPGs4552Lz\npOGccy42TxrOOedi86ThnHMuNk8azjnnYvOk4ZxzLjZPGs4552LzpOGccy42TxrOOedi86ThnHMu\nNk8azjnnYvOk4ZxzLjZPGs4552LzpOGccy62oiUNSatIWrlY63POOZc+MrOGvVFqBhwC9Ad2IiQg\nAUuBkcCDwBPW0A9wzjmXOo1JGv8FXgGGAGPNbFH0/MrA1sBBwC5mtmuRYnXOOZewxiSNjc3sozqW\nWbk2mTjnnKt8jWnTeAhA0gv5FvCE4Zxz1aVFI97bXNIlwCaSziW0Z9QyM7uucaE555xLm8aUNI4i\nNHo3B1oBa2TcWjU+NOecc2nT4DaNZSuQ+pnZ0CLF45xzLsUaXNKQdIKkFvkShqSVJJ3Y8NCcc86l\nTWPaNNYA3pI0EXgLmE5o1+gAbAdsCtzZ6Aidc86lRqOqpyQJ2BnYBVg/evoz4FXgdR/Y55xz1aXR\nbRrOOeeajgZXT0naHPiZmf0nenw9sBZgwM1m9k5xQnTOOZcWjely+2dgdsbjvYGngBHAZY1Yr3PO\nuZRqTEP4emb2Wsbj+Wb2LwBJpzYuLOecc2nUmJLGcgP4zGyHjIfrNmK9zjnnUqoxSWOqpD7ZT0ra\nEfiqEet1zjmXUo2Z5bY38AhwL/AOYYzGNsAJwJFm9kZxQnTOOZcWjR2n0R44E+gRPfU+cIuZzShC\nbM4551LGx2k455yLrWjXCHfOOVf9PGmkmKT5kromHUepSeoh6a2Mx1Mk/SLPsltIei3Xa0mQ1FVS\njaRm0eOhko4t4vpHSDq5WOurdtF3Z/26l1zhfQ9JOjjj8R8lzZI0VdK6kiZIWinj9a6SPi1W3JXE\nk0YKRF/076MkMV/St5I6mFkrM5uSdHyZJN0dnSQ3KrBMz+hkN1fSF5IurWO1VwB/yXhs0W0FZjYO\nmCvpgBix3itpsaQOdS1bLGbWz8wGRZ9/gqRXGrtK8uyLNJHUV9IXScdB1r6S1ErSdZI+lbRA0meS\nHos68tQuswWwRcbsFusD5wKbmllHM5sJvAT8pozbkVqeNNLBgAOiJNHKzNY0s+ml+jBJzRv4vl2A\njaj7JDYIeAVoA+wGnC7pwDzrXA/oCzxRj1AeBAoOIJW0OvD/gAnAMfVYtyuRhn7vGvF5KwMvAj2B\n/QljyzYDHgb2y1j0VOCBjMfrA1+b2dcZz9X5nWsyzMxvCd+AT4E9cjxfA2wU3W8HPAnMA94E/gi8\nEr3WNVq2WcZ7RwAnR/dPAF4DriNM/XI5sBLwV8KsxNOBW4FVCsTYgtC1uldmXHmW/YHwK6328aPA\nBXmWPQ54Lsf+uJDQG+8b4G5g5YzXOwHfAy0LxHAcMA44Ghif9dpA4DFCcvs2Wq47cBEwI9one2Xt\ny6uAN6L9/wTQJte+r93vhEsD/AAsAeYD32Qfl4xj80rG472AicBc4KYcy59ESITfAMOA9fNs/yqE\nE+FsYE70nVmnru2JXu8DvB69byywW8ZrbYF7CGOxvgEeB1YDFhKu5Dk/2qfrRfv5n9F+nhftl3uB\nKzLW1xf4IuPxFOB/o2MyH7gLaA88E61jONC6jv+l9aP7vwamAqvW8f/3CbBTdH9Pwnerdlvuzvj+\nfwd0yTjunyZ97kji5iWN9FAdr99C+BK3B44nnBQL/eLPrtboTfjnWBf4E3A10A3YMvrbicJzhv0O\neNnMxtcRJ8BzwPGSWkjaFNgReD7Psr2AD7OeE/ArwnxmPwM2BpZVcZnZV8BiYJMCMRxPGEc0BOgm\naZus1w8A7ieUhsYQTkYAHQnVZbdnLX8scCLhZLgEuDHP51oI0SYSfpmOtFB6bJv5eq43Slob+Bdw\nMeFHwieESw9Y9PrBhMR2KLA2oTT3UIHtXxPoTDjRn0pIYgW3R1Inwhxyl5tZG8IJ/F+S2kXvG0RI\nSD0I36W/mdn3wL7AVPuppDwtWv4g4DEzW4vwa72u6jYDDgN+QTi+BxASxoXR5zUDzi7w/kx7AsPM\nbGG+BaIS6YZE30Eze55QCqndlpOi55cAk4CtYn521fKkkQ4CnpA0J7o9vtyLoVh/GDDAzH4wsw+A\n+6g70WSaama3mFkNsAg4BTjXzOaa2QLCL8+jcgYndSHU58adiPJ3wJGEX58TgH+Y2eg8y64FLMh6\nrnam5K/MbA5wJdA/a5n5QOs88a5P+AX7mJnNB54lJNlM/zWz4Wa2lPBruB3w5+jxI0BXSWtmxHO/\nmU2ITpD/BxwRXU+mkPocH4B+wHtm9riZLTWz6wmlwFq/Ba4ysw+j43gVsFV0fLL9GG1TdwvGRPui\n0PY0I1TlDTWzYbDsJPo2sH9Ulbgv8Fszm2dmS8ysts0m37a+bmZDonX9UMeytW4ys1lmNpWQGEea\n2btmtgj4N7B1He+v1Y6M/Sdpq+j/a1508Tj46Ts0P+N9+eKbT/i+NmmeNNLBgIPNrE10Oyzr9XUI\nxePMhsYv6/kZme9dh1ClMLo2URF+za2d573XE355zs84Ueb8x5K0GqEe+TJgZaALsK+k0/Ksew5Z\n85jliPdzQgkgUytCFU4uxxJOvh9Fjx8DfpVVpz4z4/5CYLZF9Q7RYwhXp8wXT0vy76+G6siKxzXz\nczcAbsg4ZrV17p1yrGsQIVk+LOkrSVdLypygNN/2bAAcnvEDZg6htNOBcCy/MbN59dim+n5PIVQR\n1lqY9fgHlj8uhXxNxvfGzMZGpafDCN9N+Ok7lOs7mK3Qd67J8KRRGWYRqhAyf1Fm3v8u+rtaxnPZ\nPYYyqwRmE/4Ze2QkqtZmtia57QH8RdI0Qh0xwEhJuUomPYFWZvaAmdVEVUmPEH5F5zKOUP2Ubf2s\n+7WfW1uFshIrVmvVOg7oLmlaFPP1hBPi/nmWjyM7nsUsf2mAXHJVw3wHrJ7xOPM4TSXjuEYJOvM4\nfw78JuOYtTGz1c1s1AofHEoBl5tZT2AnQjVPZmkr1/bMij5jUNZntDKzawiJpq2kXL+2c21rrqqo\n7yj8Pc2lviW2Wi8Ae0c/ZHKuz8y+I1QDFqrqJEq43YB3GxhL1fCkUQGiKpPHgYGSVo3aCY4l+oc0\ns1mEhsljJTWXdBKhLSDf+moI12+/XtI6EE7EkvbO85buwBaE9o/aOt0DyN3jaRKwkqT+kppF3V2P\nJP8/2/PANpl94An/1GdEMbUFLiH0eKm1G/CCmS3OXpnChJkbAdtH8W4JbA4MZsUqqrgEHCNps+gE\ndDmh6quuXmQzgM6SWmY8NxY4LDqO3QiNw7WGAj0lHRqdpM5m+ZPqbcDFknpE27qWpMNzBhy6wPaK\nSlfzCUlhaYzteQA4UNLe0XdplWhdnaJ2imeAv0tqLamlpF0ztrVdRpVe7edkGwv0k9Qm+m78T4H9\n11j3A9OAf0fdwJtLWgXYjuWT2VDCd6qQ3sAUM0tDt+JEedJIt8wv9pmE+tTphPaMhwj11rVOAX5P\n+PXbg9BbKnM92Se4Cwgn+FGSanul5PrFj5nNNrOZ0W1GtK7ZtXXUkm6VdGu07Bzg8CiWOYRG5nGE\n3l651j2DUJ11SFa8DxIa1D8BPs56/9GEE2guxwFPmNn7WTHfQKiXb5NnfxR6bITqnnsJJ6GVWL4x\nNl/yeIHQA2y6pNrqsL8RjtsMQi+kB/gp+c8m7LvaC5x1A15d9iFmTxA6MDwcHbPxwD55PrsDoVpu\nHqFdaUS0DQW3x8y+BA4mNMbPJJQ8zuOnc8WxhAQ0MdqG2vdNJHwnJ0v6Jmr/yLWfBxF+QEwh9P56\nOMcy2bKPRaxxK1EbyO6E7X+asC8mAtsCR2QsegfhO5XvM4levzXO51a7xOaeknQ3obpgppn1yrPM\njYSeDN8DJ5jZmDKGmGqSrgbWNbMTk46lsSRtBtxnZr1jLLsFcKuZ7Vz6yJZ95kuEKpu7y/WZpVRt\n25NJYZT2bmb2eT3f9yDwqEUD/LJeW5eQdLcysx+j57oCL5nZho2NudIkWdK4h9ATIydJ/YBuZtad\n0HOnSWd5SZsoTKGhaDTrSYSeJBXPzD6IkzCiZceVM2FkaGi9elpV2/Y0ipkdnSthRK/NNLMetQmj\nqUssaURd9eYUWOQgQjUMFq7N0VphKvamqhWhD/8CQpH+r7VdGV1ZpH4qj3qqtu1JQpPch425Rnip\ndWLFLqadWb77XZNhZm8TGqRdmZnZ7knHUEzVtj2ZylVdZGFOuLzzr1WzNCcNWLEInW8kbZPM+M45\n1xhmVu9qyjT3nvqK5fuod6bAtcctBXOyFPs2ebKx1loDEo+jlLcBA3z7KvlWzdvXsaPxu99V7/Y1\nVJqTxhCifvWS+gBzrYldRnbxYmiW5iPkXBVr0QJqapKOIn0Sq56S9BBhQM3aCvPwDyBMZYCZ3W5m\nQyX1kzSJMIq04ruW1teSJZ40nEtKy5aeNHJJLGmYWfYEdLmWObMcsaTVkiWw5pp9kw6jpPr27Zt0\nCCXl21e5WrSA7bbrm3QYqZPY4L5ikmTVsB3ZRo+GU06Bd95JOhLnmp7NN4eHHoJeOYceVz5JWJU1\nhDd5S5aEIrJzrvxatgz/g255njRSbMmSUER2zpVfixaeNHLxpJFiixd70nAuKS1ahP9Bt7xEk4ak\nfSVNlPSxpAtyvL62pGGSxkp6T9IJCYSZGK+eci45Xj2VW2JJI5rn/2bCpIU9gP7RbKeZzgTGmNlW\nhMt3Xpt19bGq5iUN55LjJY3ckixp9AYmmdkUCxfTeZgwj3+maUDtRV3WBL62cIH3JsHbNJxLjrdp\n5JbkKSnXhIQ7ZC1zJ/CipKmEWV6PoAnx6innkuPVU7klWdKIM7DiYmCsmXUkXGb0FklxLgBfFbx6\nyrnkePVUbkmekrInJOxCKG1k2gm4EsDMPomuyrUJ8Hb2ygYOHLjsft++fatipKpXTzmXnGoraYwY\nMYIRI0Y0ej1JXu61BfAh8AtgKvAm0N/MPshY5jpgnpn9IboA02hgCzP7JmtdVTki/P774fnnw1/n\nXHkddRQcckj4W40aOiI8ybmnlkg6E3gWaA7cZWYfSDo1ev124E/APZLeJVSlnZ+dMKqZV085lxyv\nnsot0VOSmT0DPJP13O0Z92cDB5Y7rrTw6innklNt1VPF4iPCU8x7TzmXHO9ym5snjRTz6innkuPV\nU7l50kgxr55yLjlePZWbJ40UW7zYq6ecS4qXNHJL9YSF0TJ9JY2JJiwcUeYQE+UlDeeS420auSV5\njfDaCQv3JAz0e0vSkKxxGq2BW4B9zOxLSWsnE20yPGk4lxyvnsot7RMW/gr4l5l9Ccu64DYZXj3l\nXHK8eiq3JJNGrgkLO2Ut0x1oK+klSW9LOrZs0aWAlzScS46XNHJL8pQUZ96PlsA2hKlGVgNGShpl\nZh+XNLKU8HEaziXH2zRyS/uEhV8As81sIbBQ0n+BLYEVkkY1Tljo4zScS061VU81lQkLNyU0lu8D\nrAy8ARxpZhOy1lWVExaedhr06gWnn550JM41PTfcAJMnh7/VqConLDSziZKGAeOAGuDO7IRRzbx6\nyrnkePVUbqmesDB6/Ffgr+WMKy28esq55FRb9VSx+IjwFPPeU84lx3tP5eZJI8W8esq55Hj1VG6e\nNFLMq6ecS45XT+XmSSPFvHrKueR49VRuqZ+wMFpue0lLJB1WzviS5tOIOJccL2nklljSyJiwcF+g\nB9Bf0mZ5lrsaGAbUu09xJfOShnPJ8ZJGbmmfsBDgLOCfwKxyBpcGnjScS443hOeW6gkLJXUiJJJb\no6eqb9h3AV495VxyvHoqtySTRpwEcD1wYTRHiPDqKedcmXj1VG5pn7BwW+BhSQBrA/tJWmxmQ7JX\nVo0TFnrScC451VY91SQmLMxa/h7gSTN7PMdrVTlh4VZbwT33wNZbJx2Jc03PG2/AWWfBm28mHUlp\nVOWEhUnFlhZe0nAuOV49lVvqJyzMeP7EsgSVIp40nEtOtVVPFYuPCE8x7z3lXHK891RunjRSzEsa\nziXHq6dy86SRYj7LrXPJ8eqp3DxppJjPcutcclq29OqpXFI9YaGkoyW9K2mcpNckbZFEnEnx6inn\nkuMljdzSPmHhZGBXM9sCuAK4o7xRJssbwp1LjjeE55bqCQvNbKSZzYsevgF0LnOMifKShnPJ8Ybw\n3FI9YWGWk4GhJY0oZTxpOJccr57KLclTUux5PyTtDpwE7Fy6cNLFzJOGc0ny6qnc0j5hIVHj953A\nvmY2J9/Kqm3CwqVLoVmzcHPOlV+1VU81iQkLJa0PvAgcY2ajCqyr6iYs/OEHWGstWLQo6Uica7qa\nNQuJoxp/vFXrhIWXAW2AW6Pp0RebWe+kYi4n7znlXPJqq6hWXjnpSNIjsZJGMVVjSWPOHNhwQ5g7\nN+lInGu6Vl8dZs4Mf6tNQ0saVVjoqg7eCO5c8rwH1Yo8aaSUV085lzyfSmRFnjRSyksaziXPSxor\n8qSRUj5ZoXPJ87EaK/KkkVI+Lbpzyau2sRrFkOpZbqNlboxef1fS1uWOMSm11VPFGIyTZr59la3a\nt+/HH0d40siS6lluJfUDuplZd+A3wK1lDzQhtdVT1f5P6dtX2ap9+xYtGuHVU1lSPcstcBBwH4CZ\nvQG0ltS+vGEmw6unnEte8+ZePZUtyabWXLPc7hBjmc7AjNKGloxXXoHx48P9Tz/1hnDnktasGQwe\nDK++Gh5vuSXs3GSmTc0tybmn/h9hEsJTosfHADuY2VkZyzwJ/NnMXosePw+cb2bvZK2ruoaDO+dc\nGVTU3FPEm+U2e5nO0XPLaciGO+ecq78k2zTeBrpL6ippJeBIYEjWMkOA4wAk9QHmmllVVk0551wl\nSPUst2Y2VFI/SZOA74ATk4rXOedclcxy65xzrjwqbkS4pMMlvS9pqaRtCiw3RdI4SWMkvVnOGBuj\nHttX58DINJLUVtJwSR9Jek5S6zzLVdTxq/aBqnVtn6S+kuZFx2uMpEuTiLMhJN0taYak8QWWqchj\nV9e2Nei4mVlF3YBNgY2Bl4BtCiz3KdA26XhLsX2E6rxJQFegJTAW2Czp2GNu3zWEHnAAFxB6x1X0\n8YtzPIB+wNDo/g7AqKTjLvL29QWGJB1rA7fv58DWwPg8r1fysatr2+p93CqupGFmE83so5iLV1yv\nqpjbF2dgZFotG7AZ/T2kwLKVcvyqfaBq3O9bpRyv5ZjZK8CcAotU7LGLsW1Qz+NWcUmjHgx4XtLb\nkk5JOpgiyzXosVNCsdRXe/upB9wMIN8/XyUdvzjHI99A1UoQZ/sM2CmqvhkqqUfZoiu9Sj52dan3\ncUvlmGNJw4EOOV662MyejLmanc1smqR1gOGSJkZZN3FF2L5U914osH2XZD4wMyswMDO1xy+HuMcj\n+xddqo9jhjhxvgN0MbPvJe0HPEGoZq0WlXrs6lLv45bKpGFmexVhHdOiv7Mk/ZtQxE7FSacI2xdn\nYGRiCm1f1CjXwcymS1oPmJlnHak9fjkUbaBqStW5fWY2P+P+M5L+LqmtmX1TphhLqZKPXUENOW6V\nXj2Vsy5O0mqSWkX3Vwf2BvL2jEixfHWNcQZGptUQ4Pjo/vGEXzbLqcDjV+0DVevcPkntJSm635vQ\nnb8aEgZU9rErqEHHLenW/Qb0BjiUUL+4EJgOPBM93xF4Orq/EaGHx1jgPeCipOMu5vZFj/cDPiT0\naqmk7WsLPA98BDwHtK6G45freACnAqdmLHNz9Pq7FOj5l8ZbXdsHnBEdq7HA60CfpGOux7Y9BEwF\nfoz+906qlmNX17Y15Lj54D7nnHOxVXr1lHPOuTLypOGccy42TxrOOedi86ThnHMuNk8azjnnYvOk\n4ZxzLjZPGs65opD0UDSH0TlJx+JKJ5XTiDjnKoukDsB2ZtY96VhcaXlJwzlXDM8BnaIL+eySdDCu\ndHxEuHOu0SRtADxlZr2SjsWVlpc0nHPFUJEXYHL150nDOedcbJ40nHPOxeZJwzlXLN5A2gR4Q7hz\nzrnYvKThnHMuNk8azjnnYvOk4ZxzLjZPGs4552LzpOGccy42TxrOOedi86ThnHMuNk8azjnnYvOk\n4ZxzLjZPGs4552LzpOGccy42TxrOOedi86ThnHMuNk8azjnnYvv/h+EYlR78eFQAAAAASUVORK5C\nYII=\n",
+ "text/plain": [
+ "<matplotlib.figure.Figure at 0x7f1df4d30f10>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from numpy import arange,ones,sinc\n",
+ "%matplotlib inline\n",
+ "from matplotlib.pyplot import plot,xlabel,ylabel,show,title,subplot\n",
+ "\n",
+ "\n",
+ "t = arange(-1.5,0.01+2.5,0.01)\n",
+ "g = [2*sinc(2*tt-1) for tt in t]\n",
+ "print 'Aliasing error cannot exceed max|g(t)| = ',max(g)\n",
+ "f = arange(-1,0.01+1,0.01)\n",
+ "G = [0,0,0,0]+[xx for xx in ones(len(f))]+[0,0,0,0]\n",
+ "f1 = arange(-1.04,0.01+1.04,0.01)\n",
+ "subplot(3,1,1)\n",
+ "plot(t,g)\n",
+ "xlabel(' t')\n",
+ "ylabel(' g(t)')\n",
+ "title('Figure 4.8 (a) Sinc pulse g(t)')\n",
+ "subplot(3,1,3)\n",
+ "plot(f1,G)\n",
+ "xlabel(' f')\n",
+ "ylabel(' G(f)')\n",
+ "title('Figure 4.8 (b) Amplitude spectrum |G(f)|')\n",
+ "show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example4.3 page 165"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAEZCAYAAABvk9RIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcXuP9//HXWxKUIPY1FaXW0tppqbETW1tL7Q390c3y\nLdUW1aSLbiiqLYrEVlFL1BZUMaSW2GKXtiFIlAiSyGKLfH5/XGeSkzuz3DOZuc/cZ97Px2Mec99n\nuz/X2e7PfV3XOUcRgZmZmVm9W6ToAMzMzMw6g5MaMzMzKwUnNWZmZlYKTmrMzMysFJzUmJmZWSk4\nqTEzM7NS6HBSI2m6pAGdF4p1NkmNkr6ZvT5M0l2dvPwBkuZI6lbJcVeXO1vuqZIu6ezlZsteUdKL\nkhbriuVbdSStJ+kpSe9JOq7oeOqdpO9ImpStz2UlfUnSf7Pvkn078XNWlvSCpEUXYhlzJH2ms2Jq\n52c3SJpQxGeXQZtfRpJekTQr2/GmZzvkKhGxVES8UoMYqyZpaFs7o6RfSHpW0seSBjczfkVJ10ia\nKuldSVe3sqxXsoN0idyw/yfpvoUvTaeI7I+I+GtE7F5wPLXSqeVu7iQTEb+OiGMWZrmt+DEwLCI+\nzD5/bpJm1cuOz50WYhE/BO6JiKUj4o+dFVetFPnFXElSH+AcYOdsfU4Bfg78IfsuuWUhlj3fdo6I\nScB9wLELG3cVnz1I0qiKYZdL+kVXf3Z3l/2gbMobZmX749w8IjfdapIm5sZNz6bN5x2HVPu51fzC\nDmDvbMdbKtsh3+xIIashqVcH59sO+AzZl1kr/gucAtzewrQjgP8B/YEVgbPaWN4iwIntCrYZyizs\ncqy+ZbUzRwL5ZNp3yOyYABbmmFoTeKEjM3b0PNYZJPXOv12I5XRmDewqwOLAi7lhn6aD67dCc9v5\nr8C3OmHZpdXV+2j2g3KpiFgK2BN4PZ9H5CYdCIzMjVsKeJX5847h7fngVv+A8cBOzQyfA3wme708\ncCswDXgU+CUwKhs3IJt2kdy8jcA3s9eDgAeB3wNvk7L3RYGzs4K9CVwILN5KjL2BJ4GN83G1Ua6r\ngMEVw3bLyrtIW/Pn1s2PgHeAZbJh/w+4LzfNF4HHgKnZutm2Yj38Miv/TGDtLP7vkJKv97L1sTbw\ncLaMa4E+2fz9gNuAt4B3s22wem759wFH59Zz0zb5ITA99/cxqWYAYBngMlJiNxH4RdP6ICVwZwOT\ngZeA71Vu24r1sxpwYxbfy8DxuXGfAi7P4n6elGhOaG7/yt5fDvwie71sF5T7KNIJ9r2sbMdmw5cE\n3gc+yeZ5D1gVGAJclfvMfbNyTMk+f/3cuFeAk4Gnc9twsRbW2ZeB/+benwnMzmKYTvplC63sV80s\nsz8pWX+LdIxdkNueP8nimwRcASxdcdwOAl4j7ePfBrYEnsnKeUHuMwaR9uMLspheJHfeoPX9ahDw\nL9IPiHdJ+8oeFct+KVv3LwOHZsPXBu7NyjSZlAg2HYdXZdtsVrbefpAN3wZ4KIv/KWCHFtbZvbn1\n/h6wTlaGK7P1+ApwOqCWzmPNLHMr0nE8JVsPF5Ady7l9/visrJOB3zUtPxt/NGkffRe4E/h0xbzf\nBf6TraP7s2EzsvIfRO5YaOE8fjnpXDsym28nWjmGmynfYjRz3gbWzZY3J4vlHmBcbvu8B/RpbR/J\nln8M847R54FNW9nOvUnn1P4txHo5cBHwj2x5jc2sz6b10ux2BzbI9o/Z2WdPyWL8CPgwG3bzwp4L\nK+K+EDirYtjNwPer+JwhwA3ZOptG2p+2Ah7P3r8JnJNN21AZQ1b2nXL78gLztbJvLLC83LgRwFcq\nho3v8Ge1NjK38J2bGZ7f6NcC15B24A1IJ8EHKk6O+Z2z8kvnY9IX5CLZMs4F/k760u4L3AL8qpUY\nTwHOrYyrjXI1l9T8lHSyuIp0YnoU+HJb6ybbiZq+cOcmNcBypB39sKxsB2c77rLZ+MZsR9kgG98n\ni/+mrNwbkg6Oe7P1uDRppz8yt/yvZuusL3AdcFMr63lUM2VYA3gd2D17fxPpwPkUqaZqNPO+4L9N\n+rJanZRY3Ec6oSyQ1GTleYL0pdkbWIt0st4tG/8b0om3XxbDc8Brze1f2fthZF8UXVTugcBa2esv\nk06Im2bvd2DBA3wwWVLDvJP2zkAv0v74X6B3bj95hPRrdVnSiflbLexT3wNuqxg2tzxt7FfLNbO8\nXqRk6pxsmy4GfDEbd3QW5wBS8nYjcGXFcftn0o+MXUn74k3ACqST5ySy44N5x/GJ2WceREpu+lWx\nXw0ifRF8k/Rl8W3SrzqyuKYBn83erwxsmL1eO1vnfbKY7ic7D1SeGLP3q5OO6z2y97tk71doYVtU\nrvcrs3IsSarF+TetnMeaWd5mpBP0IsyrBTqxYp+/h3RM9M+W3/Tjb79sW62XzX868GDFvHdl8y7W\nwjE0iLaTmqlkCXK2rVo8hpspX4vn7ay8ld8DlduntX3kQFKis3lu23+6ueXklvc0sE8LsV5OSma2\nI+3f5+XXTcV6aW27f6OZdTr3XNUZ58KKZW/P/OfJZUkJ3SpVfM4Q0nG2b/Z+cVKSfVj2fglgq+x1\nAwue8/KJRuV8WzcXb27eBZaXDe9DSuCX7LTPam1ktpBXmJeFTgFG5Dc66QT2EdlJJxv3C1qvqan8\n0nk1N06kL4j8wbgt8HIL8fUnHexLNXcgt1Ku5pKav2TzH5WV6+tZmZdvYRnjSb9mNiKdDFZg/qTm\nCOCRinkeAr6RWw9DmjnJ5GtzHgdOyb0/m9yJu2LeLwDvtrKeKw++ppPWKdn7lYEPyJ2QgUOAe7PX\n95KdZLL3u1Zu29y4rfPbNRt2KjA0ez3fyZH0C6e1mpphZIljZ5e7hWXeBJzQ0gFJrqYGOAO4tmIf\nnsi8L/zxZLUL2fvfAhe28LmnA8Mrht1H9uVWzX5VMXxb0q+25rbRPcC3c+/XJR3LizDvuF01N/5t\n4MDc+xvIvpSz9fx6xfJHA4dXsV8NYv7aqSWyz16J9EUyBfga8Kk2jumvAE9WHp+59z8iS9pyw+4k\n+5HQzPLmrnfS+eBD5q+BO5Z5x/ogKvb3tv6A/yM7n+b2+fwx8R3gn9nrO5g/wVqEXE1ENm9DxfI7\nktRcXu0xXDG81fM2zX8P5L+42tpH7qKFWqLK7Zwb/i/g8BbmuRy4Jvd+SVKNy+r59VLldm8uqflF\n7v1CnQubWc+vAtvnpv1nlZ8zBGisGH9/NnyFiuENlTFUbK9m52tlX19gednwnZvi76zPyre9tiSA\n/SLi3hbGr0jKCvMdKSdWsdy8/Lwrkk5qT+S6mIiW+/+cR8qKp+f6pHS0Hfl9YHxEDMve/03S6cCX\nSL86mhURz0u6jdTBM99mvBqp1irv1Wx4k+Z6uU+qiKny/SoAWQflc4HdSRk7QF9JimxvaMNlwIsR\n0dRvaE1S5vxGbt0vkivDqhXxVpYtb01gNUlTcsN6AQ9kr1drx7Lm0wXlRtKepNqXz5LKvASpmaUa\n823niIisY/HquWny/dDeZ/59IO9dYKlmhufL1dJ+tToL6k860c1pZtyq2XxNXiMdyyvnhrW1Ly6Z\ne/96MzGtRuo70dp+Bbn1ExGzsun6RsRbkr4O/AC4TNKDwMkR8W9JKwPnk35tL5Ut891mytlkTeBA\nSfvkhvUmJestaVrvK2RlqFxf+XXe6hUrktYlNU9tTtq/epN+tORVHhNN+8mawPmSzqmYfvXcPAt7\nxUww/zZs6xjOa+95u1Jb5541SF/+7bEU6cdmc4Lc91REzJT0Lml959dBNdu9LZ12LszOLdeSEr5R\nwKGkmqRqPgcW/G7+JqmLw4uSxgM/i4jbqyhTR+erNJDUv7XTPqszOoJNJmW4/XPD8q9nZv+XyA1b\npWIZ+RP226ST5YYRsWz21y/m71iUtxNwlqQ3SG2xAA9LOriK2Cu/AJ9uYZpqvigHk7Lm/M7+OmlH\ny1uT+Q+aapbdkpNJv663iohlSM0kooqkTtKPSf0E8lfVTCD9Klk+t+6XiYiNs/FvkL6gmuRfV3qN\nlCAum/tbOiL2rnJZs5h/n1mVeeuqU8uddc69kdSHYaWIWJbUr6BpeW1to/m2c5Zc92fBL/kmrS3v\nGVLZWpu+pf2quR8TE4BPt9Ap8H+kX9BNPk06lic1M201Kk/0Tft6W/tVqyLiHxGxG+m8MRZoupT+\nV6Tmz89l+8ERzH9Oq1xvr5Fq1/L75FIR8bsqwnib1Lw0IDfs08y/ztvaTy4kNTmtk8V7OguegyuP\niaZ96DVSLWk+9iUj4pF2fP5McseUpMrzcOUy2jqG89p73q7U1j4ygXTcNmeBcmedpdeh+XM6pGO7\nf276vqRm3f9VTNfWdm9unTe33y3MubDScOAASWuSmjNvrPJzFvgui4hxEXFoRKxIqkG+QdKnWHBf\n6UVKXNuar732JJ1rW9Tez1ropCYiPiF19Bki6VOS1iedXCIbP5l0YB4hqZeko0ntoS0tbw7ppHWe\npBUBJK0uabcWZvkssAnweVIzBMDepLbdBUjqLWlxUgbbR9LiuV7+NwHLSjoyi/UA0on6wSrWw0vA\n35j/Sqg7gHUlHZJ97teB9UmdXOeG1NayK6bJv+5LOpFMk7QcKbFqe2GpVuJ44GuRXTacleENUse5\n30taStIiktaW9OVskuuAE7LtsSypZqoljwLTJf0w2y96SfqcpC1yyzpVUj9Ja2Tx5A+4p4DDsvn2\nIPVz6ZJyk9rUFyWdwOZk0+X3t0nA8pJaOkFfD+wlaafs0tWTSVXpD7UUSithPgb0k5SvyZnE/MfM\nSNrer5qMJp00fyNpiWx//2I2bjjwfaX7DfUlJQnXtlCr05J8WVaSdIKkPpIOzGIaGelqydb2q5YX\nLq0kaT9JS5K+XGaSEhlI+8FM4D1Jq5P6MuVVrrergX0k7ZbtV4srXa7f2q9uwdzz3HXAmZL6Zl8o\n32f+q9Ta0pfUlD8rO09+p5lpfpAdE/2BE0jnFEidWk+TtCGApGWyddyayvI/DWwk6fPZOXBIxfSV\n+2Vbx/BcHThvV87f1rnnUtK62UzJOpKavvwrywnpy/6ViGit9mqg0r1yFiV1mXg4Iub7IVLFdp8E\nrJEd9+SG5S+l78i5sLV19RTpXHUpcGdENF0e3dbnLHDekXR40/Yi9V0LUtPbf4DFJQ3MyvYTUn+8\ntuarmqS1SP2//t3GdO36rIVJavJfQMeReoi/SbqCYjipbb7JMaQTztukzq/5JKG5mpAfkXrHPyJp\nGnA3C/56TTNHvB0Rb2V/k7JlvR0RHwBIulDShblZLiXVAhxM+qU0i9TuT6R7J+xLquqeSrpaZr+I\naK1KO+/npOy2KaF7h5RgnZyV/Qeky9Tyy6sse1uZf359nUfqH/I26Qv0jhbmr5zvIFK16ouadx+A\nP2fjjiR9wTddZXE982rWLiG1bT9Nqja/saXPy05ye5MSzZdJNXp/IXV2BvgZqUp3PKlfw5XMf9Cd\nCOxD6k9xKCnhbNKp5Y6I6aQvkOuyMh9CuqKgqSxjSfv0y0r3Llo1v9zsoDycdDXLZGAvUgfF2VXE\nNP+IiI9I7f2H5wafT/pl9q6k87L9p639qml5c0jrcR3SL7kJ2XoAGErqW/YAaRvNYv4TajW1iPlp\nRpN+ZEwmfUnsnx1T0Pp+1dz6aHq/COlL5HXSFVjbMy8Z+Bmp8+000hVwlfvjr4GfSJoi6aSImEjq\ncHsaqZ/Ra6R12Np5ML+840lJ1Mukqv+/kvpPtFSGSj8g7cvvkY6Fa5uZ52ZSf68xpCR1KEBE/J30\nK/Xa7Jz4LKn5tbk4mwwBrsjKf0BE/Id0jvonqbPrKFo+t1RzDFdq67zd1vppcR+JiBtIVwJeQ1p/\nI5jX9Dzfds6GHUaqGWtJZMsaTNqvNmX+Y67a7X4P6eKNNyW9lQ27DNgwi2dEB8+Fba2ra0itFNfM\nDbjtz2luH90deE7SdFKT/sER8WFETCNdTXcpqVZqBvM3kTU7XxsxV372XrTd9NTuz2q6HLFTSfot\nqRr/qE5feB2TNJS0Id9qruo9+/U2jHSAnR4R5+TGnUo66OaQTmhHVbET1Q1JDaSmgf5tTVt2klYg\nnTy/UC/bWNIgUqfa7YuOpV5JmkNqmnq56FjqmaSVSFeWfiH7kdDcNMOAiRFxRi1js3kk3U66LcSd\nnbncTrm5ktLtxDfJqgW3Il0qelNb8/VAw4A9Whn/DulXwdn5gUqPozgG2CxLhnqRapqshLLaxw3q\nJaEx606yWvsNW0poMr7RafEas79O1Vl3jFyKVPU7g1SlenYsxG2vyyoiRpGaU1oaPzkiHif1Hch7\nLxu2hFIHuCVouRNqPev8akOrlWo71FvLvP5qx/trwSLirKZuIp2pmku625R9EX+2M5ZlC4qId5Uu\n5XyN1EH2roj4Z8FhdaqIaKTtXv/WTUXEFaT+dNZBEVHYoxV6GneNKK9u9XRla56ktUk36hpAuqdB\nX0mHFRqUmZlZN9MpNTXW5bYAHsqupkLSCNKzf/6an0iSq1PNzDogItzPpgRcU9M9VR5cY4FtsnsP\niPTMmmafbhvtuE17vf0NHjy48BhcPpevJ5avzGWL8G/BMnFNTQ1JGk66++0KSrfRH0y6BTcRcbHS\nHT4fI91XYI6kE0l36Hxa0pWke8PMIT2R/C9FlMHMzKy7clJTQxFxSBvj32T+R0zkx/2OdBt/MzMz\na4abn6xuNDQ0FB1Cl3L56luZy1fmslm5dMkdha0Yqvoh1WZm1kQS4Y7CpeCaGjMzMysFJzVmZmZW\nCk5qzMzMrBSc1JiZmVkpOKkxMzOzUnBSY2ZmZqXgpMbMzMxKwUmNmZmZlYKTGjMzMysFJzVmZmZW\nCk5qzMzMrBSc1JiZWY/13ntFR2CdyUmNmZn1SBFwzDFFR2GdyUmNmZn1SJdcAmPHFh2FdSYnNTUk\naaikSZKebWH8+pIelvSBpJMrxvWTdIOkFyW9IGmb2kRtZlY+zzwDp58O111XdCTWmZzU1NYwYI9W\nxr8DHA+c3cy484GREbEBsAnwYueHZ2ZWfjNmwEEHwbnnwnrrFR2NdSYnNTUUEaOAKa2MnxwRjwMf\n54dLWgbYPiKGZtPNjohpXRqsmVkJRcB3vwtf/CIcfnjR0Vhn6110AFaVtYDJkoYBnweeAE6MiFnF\nhmVmVl+uuAKeeAIefbToSKwrOKmpD72BzYDjIuIxSecBPwZ+WjnhkCFD5r5uaGigoaGhRiGamXVv\nL7wAp5wCv/tdI2ed1Vh0ONYFFBFFx9CjSBoA3BoRG7cyzWBgRkSck71fBXg4ItbK3m8H/Dgi9q6Y\nL7w9zcwWNHMmbL01nHQSHH30/OMkEREqJjLrTO5T0z3Nd3BFxJvABEnrZoN2AZ6veVRmZnWoqR/N\nZpvBUUcVHY11JTc/1ZCk4cAOwAqSJgCDgT4AEXFxViPzGLA0MEfSicCGETGDdFXUXyUtCrwE+NA0\nM6vCZZelfjSjR4NcH1Nqbn4qETc/mZnN76mnYNddYdQoWH/95qdx81N5uPnJzMxKado0OOAAuOCC\nlhMaKxfX1JSIa2rMzJII2H9/WHVV+NOfWp/WNTXl4T41ZmZWOuedBxMmwPDhRUditeSamhJxTY2Z\nGTz0EHz1q6lj8IABbU/vmprycJ8aMzMrjUmT4OtfT1c8VZPQWLk4qTEzs1KYPTslNEcdBXvv3fb0\nVj5ufioRNz+ZWU92yinw7LNw++3Qq1f187n5qTzcUdjMzOreDTfA9denm+y1J6GxcnFNTYm4psbM\neqIXX4QvfxnuuAO22KL987umpjzcp8bMzOrW9OnpfjS/+U3HEhorF9fUlIhrasysJ4lIHYOXWQYu\nuaTjy3FNTXm4T42ZmdWls86C8ePTc53MwEmNmZnVoX/8I901ePRoWHzxoqOx7sJJjZmZ1ZWXXoIj\njkhXO/XvX3Q01p24o7CZmdWNmTPTIxDOOCNd8WSW547CJeKOwmZWZhFw8MGwxBIwdCiok7r2uqNw\nebimpoYkDZU0SdKzLYxfX9LDkj6QdHIz43tJGiPp1q6P1syse/nd71LH4Asv7LyExsrFSU1tDQP2\naGX8O8DxwNktjD8ReAFwdYyZ9Sh33QXnnw8jRrhjsLXMSU0NRcQoYEor4ydHxOPAx5XjJK0BDAQu\nBfwbxcx6jP/8B448Ev72N1hjjaKjse7MSU39OBc4BZhTdCBmZrUybRrsuy/88pew/fZFR2PdnS/p\nrgOS9gbeiogxkhpam3bIkCFzXzc0NNDQ0OrkZmbd1iefwCGHwK67wjHHdN5yGxsbaWxs7LwFWrfh\nq59qTNIA4NaI2LiVaQYDMyLinOz9r4AjgNnA4sDSwI0RcWTFfL76ycxK44c/TE/dvvNO6NOn6z7H\nVz+Vh5ufuqf5Dq6IOC0i+kfEWsDBwL2VCY2ZWZlcdRXceCNcd13XJjRWLm5+qiFJw4EdgBUkTQAG\nA30AIuJiSasAj5FqYuZIOhHYMCJmVCzK1TFmVlqjR8NJJ0FjIyy/fNHRWD1x81OJuPnJzOrd66/D\n1lune9Hss09tPtPNT+Xh5iczM+sWZs5MVzodd1ztEhorF9fUlIhrasysXs2ZAwceCH37wuWX1/aO\nwa6pKQ/3qTEzs8L95Cfw1ltwzTV+BIJ1nJMaMzMr1JVXprsFjx4Niy1WdDRWz9z8VCJufjKzevOv\nf8HXvpaudNpww2JicPNTebijsJmZFeLll1M/mquuKi6hsXJxUmNmZjU3dSrsvTecfjrsvnvR0VhZ\nuPmpRNz8ZGb14KOPYM894XOfg/PPLzoaNz+ViZOaEnFSY2bdXQQcfTS8+y6MGAG9ehUdkZOaMvHV\nT2ZmVjNnngnPPgv33989EhorFyc1ZmZWE9dcA5deCg8/DEsuWXQ0VkZufioRNz+ZWXc1ahTsvz/c\ne2/qS9OduPmpPHz1k5mZdan//Cddun311d0vobFycVJjZmZdZtKkdKXTmWfCbrsVHY2VnZMaMzPr\nEjNmpHvRHHEEfPObRUdjPYH71JSI+9SYWXcxezbstx+sskrqHNydH1LpPjXl4ZqaGpI0VNIkSc+2\nMH59SQ9L+kDSybnh/SXdJ+l5Sc9JOqF2UZuZtU8EfOc7MGcOXHRR905orFyc1NTWMGCPVsa/AxwP\nnF0x/GPg+xGxEbAN8D1JG3RNiGZmC+cXv4Ann4Trr4c+fYqOxnoSJzU1FBGjgCmtjJ8cEY+Tkpj8\n8Dcj4qns9QzgRWC1rozVzKwjhg6Fyy+H22+Hvn2LjsZ6Gt98r85IGgBsCowuNhIzs/ndfjucdlq6\nW/AqqxQdjfVETmo6QFI/YFtgABDAK8DDETGtiz+3L3ADcGJWY7OAIUOGzH3d0NBAQ0NDV4ZkZgak\nuwQPGgS33QbrrVd0NK1rbGyksbGx6DCsC/jqp3aQtD1wCimZGQP8DxCwKqn25BXgdxHxr1aWMQC4\nNSI2bmWawcCMiDgnN6wPcBtwR0Sc18J8vvrJzGruhRdgp51g2LB0T5p646ufysM1Ne3zVeDkiPhv\ncyMlrQt8G2gxqanSfAeXJAGXAS+0lNCYmRVhwgTYYw8466z6TGisXFxTU0OShgM7ACsAk4DBQB+A\niLhY0irAY8DSwBxgOrAh8AXgAeAZUnMXwKkRcWfF8l1TY2Y18+67sN126cZ6J5/c9vTdlWtqysNJ\nTQdI2gj4MvP3qRkVEc8XGJaTGjOrmVmzYJddUlLzu98VHc3CcVJTHk5q2kHSEaT7yLwDPMr8fWq2\nItXAnB8RVxcUn5MaM+tyH30EX/0qrLBCuny73m+u56SmPNynpn2WBXaOiOnNjZS0NDCophGZmdXQ\nJ5/AN74BvXt3/8cfWM/jmpoScU2NmXWlCPjud2HsWLjjDlh88aIj6hyuqSkP31G4AySdJWkZSX0k\n3SPp7axpysystH7yE3j8cbjllvIkNFYuTmo6ZrfsRnt7kzoJr026f42ZWSmdfTbcdFOqoVlqqaKj\nMWue+9R0TNN62xu4ISKmSXK7j5mV0qWXwp/+BKNGpc7BZt2Va2raQdI/spe3ShoLbA7cI2kl4IPi\nIjMz6xrXXQeDB8M//gFrrFF0NGatc0fhdpA0JiI2zV4vD0yNiE8kLQksFRFvFhyfOwqbWae59VY4\n5hi4+27YuMUHu9Q/dxQuDzc/tc8ykr5GujdNwNxHGJC9H1FUYGZmnenuu9OdgkeOLHdCY+XipKZ9\nlgH2aWW8kxozq3ujRsFhh8GIEbDFFkVHY1Y9Nz+1Q775qTty85OZLaxHH4W994ZrrkmPQegJ3PxU\nHu4obGZmADzzDOyzDwwd2nMSGisXJzXtM1XS9yWtX3QgZmad6fnnYffd4YILUk2NWT1y81M7SFoV\n2APYHVgPGA3cAfwzImYWGRu4+cnMOmbsWNhpJzjrrNSXpqdx81N5OKnpIEm9gK2BPYGdSPepuSsi\nfldgTE5qzKxd/vtf2HFHOPPM9KDKnshJTXm4+akdJB3X9DoiPomIhyLijIj4EnAw8Hob8w+VNEnS\nsy2MX1/Sw5I+kHRyxbg9JI2V9F9JP+qM8phZz/bSS7DzzvDzn/fchMbKxTU17bCwVz9J2h6YAVwZ\nEQvc+UHSisCawFeAKRFxTja8F/BvYBdS4vQYcEhEvFgxv2tqzKwq48dDQwOcdhp861tFR1Ms19SU\nh2tqaigiRgFTWhk/OSIeBz6uGLUVMC4iXomIj4Frgf26LlIzK7PXXks1ND/8oRMaKxfffK99NpE0\nvYVxERFLd9Hnrg5MyL2fSOrPY2bWLq+8kjoFn3gifO97RUdj1rmc1LTPMwXdfM9tSma20MaPTwnN\nSSfB8ccXHY1Z53NSUx9eB/rn3vcn1dYsYMiQIXNfNzQ00NDQ0JVxmVmdePnllNCccopraBobG2ls\nbCw6DOsC7ijcDpJOi4hfLeQyBgC3NtdRODfNEGB6rqNwb1JH4Z2B/wGP4o7CZlall15KCc2PfgTf\n/W7R0XQ/7ihcHq6paZ9FJa0cEZOaG5ndnO/bETG4hfHDgR2AFSRNAAYDfQAi4mJJq5CubFoamCPp\nRGDDiJjmEXnDAAAc7UlEQVSRXU5+F9ALuKwyoTEza864cSmhOf10dwq28nNNTTtI2hs4GVgUeBJ4\nAxCwCrAZ8CFwdkSMLCg+19SY2Vz//nd6htMZZ8CxxxYdTfflmprycFLTAZL6A18CPp0NehV4MCKa\n7edSK05qzKzJc8+lZzmdeSYMGlR0NN2bk5rycFJTIk5qzAzgySdh4EA47zw4+OCio+n+nNSUh2++\n1w6SPp97vaikMyTdKulXkpYoMjYzM4DRo2HPPeHCC53QWM/jpKZ9Ls+9/g2wNnAOsARwUREBmZk1\nGTUK9tkHhg2Dr3616GjMas9XP3XczsCWEfGRpPuBZ4oOyMx6rn/+Ew49FIYPT49AMOuJnNS0zzKS\nvka64ulTEfERpOcjSHJnFjMrxN//nq5uuvFG2H77oqMxK46TmvZ5ANgne/2gpFUi4s3s/jSTC4zL\nzHqoq65KD6a8807YbLOiozErlq9+KhFf/WTWs/zpT/Db38Jdd8EGGxQdTf3y1U/l4ZqaTtJUa1N0\nHGZWfhHw61+nDsEPPAADBhQdkVn34KufOs9lRQdgZuUXkZ7hNHy4ExqzSm5+KhE3P5mV2+zZ6flN\nzz0Hd9wByy1XdETl4Oan8nDzUwdIWhlYAwjg9ZYecGlm1lnefz/dTO/DD+Gee6Bv36IjMut+nNS0\ng6RNgQuBfkDTc57WkDQV+G5EPFlYcGZWWlOnwr77whprwPXXw6KLFh2RWffk5qd2kPQ0cGxEjK4Y\nvg1wcUR8vvk5a8PNT2bl88YbsMcesMMO6VlOi7gnZKdz81N5+PBonyUqExqAiHgEWLKAeMysxMaN\ng+22g4MOgvPPd0Jj1hY3P7XPHZJGAlcAE0h3Fu4PHAncWWRgZlYujz0G++0HgwenzsFm1jY3P7WD\nJAF7AvsCq2eDXwduiYiRVcw/FNgLeCsiNm5hmj9knzELGBQRY7LhpwKHA3OAZ4GjIuLDinnd/GRW\nAiNHwje+AZddlvrSWNdy81N5OKmpIUnbAzOAK5tLaiQNBI6LiIGStgbOj4htJA0A7gU2iIgPJf0N\nGBkRV1TM76TGrM5ddhmcfjrcdBNsu23R0fQMTmrKwy207SBpqKQtWxm/taRhLY2PiFHAlFY+Yl9S\n0xZZ351+2eXj7wEfA0tI6g0sQaohMrOSiICf/QzOPDPdVM8JjVn7uU9N+5wLnJJd7fRv4A1Sv5pV\ngPWAh4CzF2L5q5P66jSZCKweEU9KOgd4DXgfuCsi/rkQn2Nm3cjs2fCd78CYMfDQQ7DKKkVHZFaf\nnNS0Q0Q8CxwpaTFgU2BN0g34XgWejogPOuFjFqgClbQ28H/AAGAacL2kwyLir53weWZWoOnT09VN\nAI2Nvqme2cJwUtMxvYHHsku5kdQLWKwTlvs66WqqJmtkwxqAhyLinezzRgBfBBZIaoYMGTL3dUND\nAw0NDZ0Qlpl1hYkTYa+9UlPTH/8IvX1GronGxkYaGxuLDsO6gDsKd4Ck0cDOETEje78UqUnoi1XM\nOwC4tYqOwtsA52Udhb8AXA1sCXwAXA48GhF/qpjfHYXN6sRTT8E++8AJJ8APfgByN9XCuKNwefh3\nQccs1pTQAETEdElLtDWTpOHADsAKkiYAg4E+2TIujoiRkgZKGgfMBI7Kxj0l6UrgcdIl3U8Cf+ns\nQplZbYwcCYMGwZ//DAccUHQ0ZuXhmpoOkPQgcEJEPJG93wK4ICIKvV7BNTVm3d+f/wy/+AWMGOEr\nnLoL19SUh2tqOub/gOskvZG9XxX4eoHxmFk3N3s2nHQS3H03/OtfsPbaRUdkVj6uqekgSYuSLuMO\n4N8R8XHBIbmmxqybmjYNvv71dC+av/0N+vUrOiLLc01Nefjmex23BbAJsDlwiKQjC47HzLqhl19O\nzUzrrAO33+6ExqwrufmpAyRdDXwGeAr4JDfqymIiMrPuaNQoOPBAOOMM+N73io7GrPyc1HTM5sCG\nbusxs5YMGwY/+hFcfTXstlvR0Zj1DE5qOuY5Uufg/xUdiJl1L7Nnw8knwx13pGc4rb9+0RGZ9RxO\najpmReAFSY8CH2bDIiL2LTAmMyvYO++kRx4suig8+qj7z5jVmpOajhlSdABm1r089xzstx/svz/8\n+tfQq1fREZn1PL6ku0R8SbdZMf7+dzj2WDj3XDjssKKjsfbyJd3l4ZqadpD0YER8SdIM0v1p8iIi\nli4iLjMrxiefwM9+Bpdfnh59sMUWRUdk1rM5qWmHiPhS9r9v0bGYWbGmTEm1MrNmwWOPwcorFx2R\nmfnmex0gaW1Ji2evd5R0giR3CTTrIZ55BrbcMl3ZdPfdTmjMugsnNR0zApgtaR3gYqA/cE2xIZlZ\nLVxzDey8M/z85/D730OfPkVHZGZN3PzUMXMiYrakr5Gezn2BpDFFB2VmXeejj+CHP4Rbb4V77oFN\nNik6IjOr5KSmYz6SdChwJLBPNsy/18xKauLEdP+Z5ZeHxx+HZZctOiIza46bnzrmaGBb4MyIGC9p\nLeCqgmMysy5w992p/8y++8LNNzuhMevOfJ+adpD0F+AO4J8RMb0D8w8F9gLeioiNW5jmD8CewCxg\nUESMyYb3Ay4FNiJdTn50RDxSMa/vU2PWSebMgV/+Ei66CP76V9hxx6Ijsq7i+9SUh5uf2mcoKeE4\nSdLHwF3AnRHxdJXzDwMuoIWneUsaCKwTEZ+VtDVwIbBNNvp8YGREHCCpN7DkQpTDzFrx9ttwxBEw\nc2ZqblpttaIjMrNquPmpHSLikYgYHBHbAwcBE4CTJT0laZikg9qYfxQwpZVJ9gWuyKYdDfSTtLKk\nZYDtI2JoNm52REzrjDKZ2fweeAA23TR1BL7nHic0ZvXENTUdFBFvky7jvkaSgFOAzy7kYlcnJUpN\nJgJrAJ8AkyUNAz4PPAGcGBGzFvLzzCzzySfpmU1//CMMGwZ77ll0RGbWXk5qOkFEhKTjI6J/Jyyu\nsl03SNtpM+C4iHhM0nnAj4GfVs48ZMiQua8bGhpoaGjohJDMym3SJDj8cPjwQ3jiCVh99aIjsq7U\n2NhIY2Nj0WFYF3BH4XaQ9Gwro9eLiEWrWMYA4NbmOgpLughojIhrs/djgR1Iic7DEbFWNnw74McR\nsXfF/O4obNZO99wDRx4JRx8NgwdDb//U63HcUbg8fPi2z0rAHjTfL+ahTlj+LcBxwLWStgGmRsQk\nAEkTJK0bEf8BdgGe74TPM+uxPv4YzjgDrroqPZBy112LjsjMFpaTmva5HejbdJl1nqT725pZ0nBS\nzcsKkiYAg8lu2hcRF0fESEkDJY0DZgJH5WY/HvirpEWBlyrGmVk7jBsHhx4KK60EY8ak/2ZW/9z8\nVCJufjJrXUSqmTn5ZPjpT+G440BudOjx3PxUHq6pMbMeYdo0+O53U82Mn91kVk6+T42Zld7998Pn\nPw9LL51upueExqycXFNjZqX14YepM/DVV8Mll8BeexUdkZl1JSc1ZlZKzz2X7j2z1lrw9NOw4opF\nR2RmXc3NT2ZWKnPmwO9/nx5AeeKJMGKEExqznsI1NWZWGi+9BEcdla5yGj0aPvOZoiMys1pyTY2Z\n1b05c+DPf4att4avfAUaG53QmPVErqkxs7r22mvpEQfTp8O//gXrr190RGZWFNfUmFldioBLL4XN\nN4edd4YHH3RCY9bTuabGzOrO+PFwzDHphnr33gsbL/B4WDPriVxTY2Z145NP4PzzYcstYbfd4OGH\nndCY2TyuqTGzujB2LHzzm7DIIvDQQ7DuukVHZGbdjWtqzKxb++gj+OUvYbvt4JBD0iMPnNCYWXNc\nU2Nm3daDD8Kxx6a7Aj/5JHz600VHZGbdmZMaM+t2pk6FU0+Fm29OfWgOOACkoqMys+7OzU9m1m1E\nwA03wEYbpdcvvAAHHuiExsyq45qaGpI0FNgLeCsimr1mQ9IfgD2BWcCgiBiTG9cLeByYGBH71CBk\ns5oZNw6OOw4mToS//S31oTEzaw/X1NTWMGCPlkZKGgisExGfBY4FLqyY5ETgBSC6LEKzGvvgAxgy\nBLbZBnbZBcaMcUJjZh3jpKaGImIUMKWVSfYFrsimHQ30k7QygKQ1gIHApYAr460U7roLPvc5eO65\nlMz84AfQp0/RUZlZvXLzU/eyOjAh935iNmwScC5wCrB0AXGZdarx4+Gkk+CZZ+CPf4Q99yw6IjMr\nAyc13U9lLYwk7U3qhzNGUkNrMw8ZMmTu64aGBhoaWp3crKZmzYLf/Ab+9KeU1AwfDosvXnRU1tM0\nNjbS2NhYdBjWBRTh7hm1JGkAcGtzHYUlXQQ0RsS12fuxQANwAnAEMBtYnFRbc2NEHFkxf3h7WncU\nATfeCCefDNtuC2edBf37Fx2VWSKJiHCzfgm4pqZ7uQU4DrhW0jbA1Ih4Ezgt+0PSDsAPKhMas+7q\n6adTrczkyXDllbDDDkVHZGZl5aSmhiQNB3YAVpA0ARgM9AGIiIsjYqSkgZLGATOBo1pYlKtjrNt7\n80044wy49VYYPDg9Vbu3zzhm1oXc/FQibn6y7uCDD+Dcc+Gcc+Coo+D006Ffv6KjMmuZm5/Kw7+b\nzKxTzJmTbpp36qmw2WbwyCOwzjpFR2VmPYmTGjNbaPfdB6ecAossAldc4X4zZlYMJzVm1mHPPQc/\n+hGMHQu//rWf02RmxfIdhc2s3V57DY4+GnbeGXbfHV58EQ46yAmNmRXLSY2ZVe2tt+D//g823RRW\nXRX+8x844QRYdNGiIzMzc1JjZlWYOjVdnr3BBulGei+8AGeeCcssU3RkZmbzOKkxsxbNmJEea7Du\nujBxIjz5JJx/Pqy8ctGRmZktyB2FzWwBM2em5zOdcw7suCPcf3+qpTEz686c1JjZXLNmwYUXpmcz\nffnLcO+9sNFGRUdlZlYdJzVmxowZcNFFqWbmS1+Cu++GjRd45KqZWffmpMasB5s6FS64IP3ttBPc\ndRdssknRUZmZdYw7Cpv1QJMnp2cyrb02vPwyjBoF117rhMbM6puTGrMeZPx4OO44WG89eOcdePxx\nGDYsvTczq3dOasx6gDFj4NBDYcstYaml0n1mLroI1lqr6MjMzDqPkxqzkopIHX533x323jvdBfjl\nl9MzmlZZpejozMw6nzsKm5XMBx/ANdfAueemxOakk+CWW2CxxYqOzMysa7mmpoYkDZU0SdKzrUzz\nB0n/lfS0pE2zYf0l3SfpeUnPSTqhdlFbvXjrLfjZz2DAALj+evj97+HZZ9ODJ53QmFlP4KSmtoYB\ne7Q0UtJAYJ2I+CxwLHBhNupj4PsRsRGwDfA9Sb6/qwHw2GPwjW+kzr6vv55umHfHHbDrrn5qtpn1\nLE5qaigiRgFTWplkX+CKbNrRQD9JK0fEmxHxVDZ8BvAisFpXx2vd14cfwtVXwzbbwIEHprv+jhsH\nf/kLbLhh0dGZmRXDfWq6l9WBCbn3E4E1gElNAyQNADYFRtcyMOsexo+HSy6BoUPTHX9POw322gt6\n9So6MjOz4jmp6X4qGwxi7gipL3ADcGJWY7OAIUOGzH3d0NBAQ0ND50doNTV7Ntx+e7oE+7HH4PDD\n4b77/IBJs45qbGyksbGx6DCsCygi2p7KOk1W03JrRCzwZB1JFwGNEXFt9n4ssENETJLUB7gNuCMi\nzmth2eHtWR6vvppqZC67DNZcE771rdTU9KlPFR2ZWblIIiLcA60E3Keme7kFOBJA0jbA1CyhEXAZ\n8EJLCY2VwwcfwPDhqZPv5pvDu++mTr8PPghHHumExsysNa6pqSFJw4EdgBVI/WQGA30AIuLibJo/\nkq6QmgkcFRFPStoOeAB4hnnNUadGxJ0Vy3dNTR2KgCeegMsvT89f2nzzdBn2fvvB4osXHZ1Z+bmm\npjyc1JSIk5r68tpr6Qqmq66Cjz5KNTGDBqWmJjOrHSc15eGOwmY1NHUqjBiREplnnkl9ZC67DLbd\n1veUMTNbWK6pKRHX1HRPM2fCbbelpqV774WddoIjjkiXYvtOv2bFc01NeTipKREnNd3H++/DP/4B\nf/sbjByZbpJ38MHw1a/CMssUHZ2Z5TmpKQ8nNSXipKZYM2akK5VuuAHuuis9Ffugg2D//WGllYqO\nzsxa4qSmPJzUlIiTmtp7++1UE3PTTXDPPalvzP77w1e+4kTGrF44qSkPJzUl4qSmNsaNg5tvhltu\ngTFjYOed0+XX++4Lyy1XdHRm1l5OasrDSU2JOKnpGh99BKNGpaalkSNhyhTYZ5+UxOy8s2+IZ1bv\nnNSUh5OaEnFS03leew3uvDMlMvfeC+uvDwMHwp57whZbwCK+F7dZaTipKQ8nNSXipKbjpk6Fxka4\n++70N3Uq7LJLSmR23x1WXLHoCM2sqzipKQ8nNSXipKZ6M2ak5yndf3964vVzz6VOvrvumv422cS1\nMWY9hZOa8nBSUyJOalo2dSo8/DA88ECqkXn2WdhsM2hogB12gC99yc9ZMuupnNSUh5OaEnFSk0TA\n+PGpJqbp75VXUl+Y7beHHXdMN8NzB18zAyc1ZeKkpkR6alLz7rvw2GMwejQ8+mj669071b40/X3h\nC9CnT9GRmll35KSmPJzUlEhPSGreeivdG+bJJ+f9f+st2Hxz2Hpr2Gqr9Lf66n5ApJlVx0lNeTip\nKZEyJTUffghjx6a+L88+mzryPv106uC72WbpEQRN/9dbD3r1KjpiM6tXTmrKw0lNDUkaCuwFvBUR\nG7cwzR+APYFZwKCIGJMN3wM4D+gFXBoRv21m3rpLaqZNg3//OyUw+b/x4+Ezn4GNN4bPfS7933hj\nWGst18CYWedyUlMeTmpqSNL2wAzgyuaSGkkDgeMiYqCkrYHzI2IbSb2AfwO7AK8DjwGHRMSLFfN3\nu6Rmzhx480149VV46aV5f+PGpf8zZ6aalvXXn/e33nrpb7HF5l9WY2MjDQ0NhZSjFly++lbm8pW5\nbOCkpkx6Fx1ATxIRoyQNaGWSfYErsmlHS+onaRVgLWBcRLwCIOlaYD/gxZYWVAuzZ8OkSfC//8Eb\nb6T///sfTJiQkphXX4WJE6FfP1hzTVh77fS3445wzDHp9aqrVl/zUvYTq8tX38pcvjKXzcrFSU33\nsjowIfd+YjZstWaGb90ZHxgBs2alviozZsB776V7ukydmp5x1PT/7bdh8uT5/6ZOhRVWgNVWS3+r\nrpr+ttsODj00JTL9+/vSaTMzqw0nNd1Pp1aBXnopXH89vP9+Sl7ef3/e65kz0//FF4cll4S+fWGp\npWDZZVPtSr9+6fUyy6R+LSuuOP/f8sunS6fNzMy6A/epqbGs+enWFvrUXAQ0RsS12fuxwA6k5qch\nEbFHNvxUYE5lZ2FJ3phmZh3gPjXl4N/Z3cstwHHAtZK2AaZGxCRJ7wCfzRKi/wFfBw6pnNkHpZmZ\n9WROampI0nBSzcsKkiYAg4E+ABFxcUSMlDRQ0jhgJnBUNm62pOOAu0iXdF9WeeWTmZlZT+fmJzMz\nMyuFRYoOwNpP0h6Sxkr6r6QftTDNH7LxT0vatNYxLoy2yidpfUkPS/pA0slFxLgwqijfYdl2e0bS\ng5I2KSLOjqqifPtl5Rsj6QlJOxURZ0dUc+xl020pabakr9UyvoVVxbZrkDQt23ZjJP2kiDg7qspz\nZ0NWtuckNdY4RFtYEeG/OvojNT+NAwaQmq6eAjaomGYgMDJ7vTXwSNFxd3L5VgS2AH4JnFx0zF1Q\nvm2BZbLXe5Rw+y2Ze70x6R5MhcfeGWXLTXcvcBuwf9Fxd/K2awBuKTrWLixfP+B5YI3s/QpFx+2/\n9v25pqb+bEV2I76I+BhouhFf3nw38QP6SVq5tmF2WJvli4jJEfE48HERAS6kasr3cERMy96OBtao\ncYwLo5ryzcy97Qu8XcP4FkY1xx7A8cANwORaBtcJqi1fvV6QUE35DgVujIiJABFRL/umZZzU1J+W\nbtDX1jT18sVYTfnqWXvL901gZJdG1LmqKp+kr0h6EbgDOKFGsS2sNssmaXXSF+WF2aB66rRYzbYL\n4ItZ8+FISRvWLLqFV035PgssJ+k+SY9LOqJm0Vmn8NVP9afak2Tlr6l6ObnWS5wdVXX5JO0IHA18\nqevC6XRVlS8i/g78PXse2lXAel0aVeeopmznAT+OiJAk6qtWo5ryPQn0j4hZkvYE/g6s27VhdZpq\nytcH2AzYGVgCeFjSIxHx3y6NzDqNk5r68zrQP/e+P+kXR2vTrJENqwfVlK+eVVW+rHPwJcAeETGl\nRrF1hnZtv0jPQ+stafmIeKfLo1s41ZRtc9J9pgBWAPaU9HFE3FKbEBdKm+WLiOm513dI+rOk5SLi\n3RrFuDCq2X4TgLcj4n3gfUkPAJ8HnNTUCTc/1Z/HyW7EJ2lR0o34Kk+YtwBHAuRv4lfbMDusmvI1\nqadfwU3aLJ+kTwMjgMMjYlwBMS6Masq3dlaLgaTNAOogoYEqyhYRn4mItSJiLVK/mu/USUID1W27\nlXPbbivSbUHqIaGB6s4tNwPbSeolaQnShRYv1DhOWwiuqakz0cKN+CR9Kxvf4k386kE15VN6cvlj\nwNLAHEknAhtGxIzCAq9SNeUDfgosC1yYfX98HBFbFRVze1RZvv2BIyV9DMwADi4s4Haosmx1q8ry\nHQB8R9JsYBZ1su2g6nPnWEl3As8Ac4BLIsJJTR3xzffMzMysFNz8ZGZmZqXgpMbMzMxKwUmNmZmZ\nlYKTGjMzMysFJzVmZmZWCk5qzMzMrBSc1JiVlKRPJI2R9JykpySd1HTjtDbmO60W8VV85gBJz1Y5\n7fJZucZIekPSxNz73tk0F0m6Nxv2vKRZuWm+1rWlMbOi+D41ZiUlaXpELJW9XhG4BngwIoZUO1+t\nSBoA3BoRG7dzvsHA9Ij4fcXwMcBm2TOY1gRua++yzaz+uKbGrAeIiMnAscBxAJIGSbqgabyk2yTt\nIOk3wKeyGo2rJf0su2Nz03RnSlrgqdqSjsye3PyUpCsk9ZX0cq7mZOnsfS9J60j6ZzbtE5LWqlhW\nL0lnSXo0W+axbRRvvtonSRsA/4l5v9iUG7eRpNFZ+Z6WtE4168/M6oMfk2DWQ0TE+CxhWIkFn1gc\naZL4saTvRcSmAFktxwjgfEmLkJ6Xs2V+RkkbAacD20bEu5L6RcQMSY3AXqTn6RwM3BgRn0j6K/Cr\niLg5ewZPL2Dl3CK/SXpe2VaSFgP+JekfEfFKlUXdE7ijhXHfBs6PiGuyhMvnQLMScU2NWc8TVPkw\n0Ih4FXhH0heA3YAnm3lq+E7AdU0PNoyIqdnwS5n33LFBwDBJSwGrRcTN2bQfZU9EztuN9GyoMcAj\nwHJAe2pUdgPubGHcQ8Bpkn4IDIiID9qxXDPr5vwrxayHkPQZ4JOImJw9kDD/o2bxVmZtSk5WBoY2\nM77ZJCkiHso6ADcAvSLihSypqcZxEXF3ldPOlT1ZuV9EvNnc+IgYLukRYG9gpKRvRcR97f0cM+ue\nXFNj1gNkHYUvApr60YwHvqCkP5B/CvjHTX1hMjcBewBbkJ5wXOle4EBJy2WftVxu3JXAX8mSoYiY\nDkyUtF827WKSPlWxvLuA7+b646ybJSvV2DGLp1mSPhMR4yPiAlKzmDsPm5WIa2rMyutTWRNOH2A2\nKcE4FyAiHpQ0HngBeBF4IjffX4BnJD0REUdExMeS7gWm5DrfzpXVwJwJ3C/pE+BJ4Ohs9DXAL4Hh\nuVmOAC6W9HPgY+CApkVl/y8FBgBPZpegvwV8tZVy5mPaE7iulWkOknR49rlvAGe2slwzqzO+pNvM\nWpV1EH4COCAiXmrnvAcA+0TEN7okuAU/7wlgq4j4pBafZ2bdi2tqzKxFkjYEbgVGdCChuQDYHRjY\nFbE1JyI2r9VnmVn345oaMzMzKwV3FDYzM7NScFJjZmZmpeCkxszMzErBSY2ZmZmVgpMaMzMzKwUn\nNWZmZlYK/x9BcGdXqAyYrQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "<matplotlib.figure.Figure at 0x7f05d85531d0>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from numpy import arange,ones,sinc,pi,sin\n",
+ "%matplotlib inline\n",
+ "from matplotlib.pyplot import plot,xlabel,ylabel,show,title,subplot\n",
+ "\n",
+ "T_Ts = arange(0.01,0.01+0.6,0.01)\n",
+ "#E = 1/(sinc_new(0.5*T_Ts))#\n",
+ "E=[1]\n",
+ "for i in range(1,len(T_Ts)):\n",
+ " E.append(((pi/2)*T_Ts[i])/(sin((pi/2)*T_Ts[i])))\n",
+ "\n",
+ "plot(T_Ts,E)\n",
+ "xlabel('Duty cycle T/Ts')\n",
+ "ylabel('1/sinc(0.5(T/Ts))')\n",
+ "title('Figure 4.16 Normalized equalization (to compensate for aperture effect) plotted versus T/Ts')\n",
+ "show()\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}