diff options
author | kinitrupti | 2017-05-12 18:53:46 +0530 |
---|---|---|
committer | kinitrupti | 2017-05-12 18:53:46 +0530 |
commit | 6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d (patch) | |
tree | 22789c9dbe468dae6697dcd12d8e97de4bcf94a2 /Chemical_Reaction_Engineering_by_O._Levenspiel/ch19.ipynb | |
parent | d36fc3b8f88cc3108ffff6151e376b619b9abb01 (diff) | |
download | Python-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.tar.gz Python-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.tar.bz2 Python-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.zip |
Removed duplicates
Diffstat (limited to 'Chemical_Reaction_Engineering_by_O._Levenspiel/ch19.ipynb')
-rwxr-xr-x | Chemical_Reaction_Engineering_by_O._Levenspiel/ch19.ipynb | 204 |
1 files changed, 204 insertions, 0 deletions
diff --git a/Chemical_Reaction_Engineering_by_O._Levenspiel/ch19.ipynb b/Chemical_Reaction_Engineering_by_O._Levenspiel/ch19.ipynb new file mode 100755 index 00000000..312fef16 --- /dev/null +++ b/Chemical_Reaction_Engineering_by_O._Levenspiel/ch19.ipynb @@ -0,0 +1,204 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 19 : The Packed Bed Catalytic Reactor" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 19.1 page no : 438" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "%matplotlib inline\n", + "\n", + "from matplotlib.pyplot import *\n", + "\n", + "# Variables\n", + "Cp = 40. #J/mol.k\n", + "Hr = 80000. #J/mol.k\n", + "FAo = 100. #mol/s\n", + "nA = 1.\n", + "nB = 7.\n", + "n = nA + nB\n", + "T1 = 300. #k\n", + "T2 = 600. #k\n", + "T3 = 800. #k\n", + "\n", + "# Calculations\n", + "m = Cp/Hr;\n", + "XA = [0.8,0.78,0.7,0.66,0.5,0.26,0.1,0];\n", + "inv_rA = [20,10,5,4.4,5,10,20,33];\n", + "\n", + "\n", + "plot(XA,inv_rA)\n", + "xlabel(\"Xa\")\n", + "ylabel(\"1/8 X 1/-rA\")\n", + "\n", + "print ('From the plot we can say that a recycle reactor should be used')\n", + "W = FAo*38.4\n", + "R = 1.;\n", + "Q1 = n*FAo*Cp*(T2-T1);\n", + "Q2 = n*FAo*Cp*(T1-T3);\n", + "\n", + "# Results\n", + "print \" The weight of catalyst needed is %.f kg\"%(W)\n", + "print \" The Recycle Ratio is %.f\"%(R)\n", + "print \" The heat exchange for feed is %.f MW\"%(Q1/10**6)\n", + "print \" The heat excahnge for the product is %.f MW\"%(Q2/10**6)\n", + "show()\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Populating the interactive namespace from numpy and matplotlib\n", + "From the plot we can say that a recycle reactor should be used\n", + " The weight of catalyst needed is 3840 kg\n", + " The Recycle Ratio is 1\n", + " The heat exchange for feed is 10 MW\n", + " The heat excahnge for the product is -16 MW\n" + ] + }, + { + "output_type": "stream", + "stream": "stderr", + "text": [ + "WARNING: pylab import has clobbered these variables: ['draw_if_interactive']\n", + "`%pylab --no-import-all` prevents importing * from pylab and numpy\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEPCAYAAABP1MOPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VPW9x/H3mGAhCAQEAgKaALKEJYlwjViQiRggIhiK\nRSnSiClavF5FqNtDbaK3l8ZetQLqBRUFK6VSF5QHCGXJUBEoyiJRoAgNJGAIhCRqCIYs5/5xTGQL\nTCY5c2b5vJ5nnmzDOR9GnG9+5/f7fY/DMAwDEREJWpfZHUBEROylQiAiEuRUCEREgpwKgYhIkFMh\nEBEJcioEIiJBzrJC8P333xMfH09sbCzR0dE8+eSTAKSnp9O5c2fi4uKIi4sjMzPTqggiIuIGh5X7\nCMrKyggLC6OyspLBgwfz3HPPsW7dOlq0aMH06dOtOq2IiNSDpZeGwsLCADh9+jRVVVW0bt0aAO1h\nExHxHZYWgurqamJjY4mIiCAhIYE+ffoAMHfuXGJiYkhNTaWkpMTKCCIicgmWXhqq8c033zBixAgy\nMjKIjo6mXbt2ADz11FPk5+ezYMECqyOIiEgdQr1xklatWjFq1Cg+++wznE5n7fd/9atfMXr06POe\n3717dw4cOOCNaCIiAaNbt27s37+/3n/OsktDhYWFtZd9Tp06xZo1a4iLi+Po0aO1z/nggw/o16/f\neX/2wIEDGIbhc4+0tDTbMyiTMgVjLmVy7+HpL9CWjQjy8/NJSUmhurqa6upqJk2axLBhw/jlL3/J\nzp07cTgcREVFMX/+fKsiiIiIGywrBP369WP79u3nff+tt96y6pQiIuIB7SyuhzPnN3yFMrlHmdzn\ni7mUyVpeWTVUXw6HAx+MJSLi0zx979SIQEQkyKkQiIgEORUCEZEgp0IgIhLkVAhERIKcCoGISJDz\n2ULw9dd2JxARCQ4+WwjmzrU7gYhIcPDZDWVXXmlw8CBccYXdaURE/EPAbSgbOhTefNPuFCIigc9n\nRwSffGIwaRLs2wchIXYnEhHxfQE3IrjxRmjfHpYtszuJiEhg89lCADBjBjz/vN0pREQCm08XgrFj\n4ehR2LzZ7iQiIoHLpwtBSAhMmwYvvGB3EhGRwOWzk8U1sb77DqKi4NNPzY8iInJhATdZXKNFC0hN\nhRdftDuJiEhg8vkRAcDhw9C/Pxw4AK1b2xhMRMSHBeyIAKBzZxg1Cl591e4kIiKBxy9GBAA7d8Jt\nt8G//w2XX25TMBERHxbQIwKA2Fjo2ROWLrU7iYhIYLGsEHz//ffEx8cTGxtLdHQ0Tz75JABFRUUk\nJibSo0cPhg8fTklJidvHrNlg5ntjGBER/2VZIWjatClZWVns3LmTXbt2kZWVxcaNG8nIyCAxMZF9\n+/YxbNgwMjIy3D7myJFQXg5ZWValFhEJPpZeGgoLCwPg9OnTVFVV0bp1az766CNSUlIASElJYVk9\nmglddhlMn662EyIijcnSQlBdXU1sbCwREREkJCTQp08fCgoKiIiIACAiIoKCgoJ6HfPuu2HbNtiz\nx4rEIiLBJ9TKg1922WXs3LmTb775hhEjRpB1zjUdh8OBw+G44J9NT0+v/dzpdOJ0OgFo2hSmTjXb\nTrz2mlXJRUR8n8vlwuVyNfg4Xls++t///d80a9aM119/HZfLRYcOHcjPzychIYG9e/eeHeoSS6CO\nH4cePWDvXvhhcCEiEvR8bvloYWFh7YqgU6dOsWbNGuLi4hgzZgyLFi0CYNGiRSQnJ9f72O3awfjx\n8MorjRpZRCQoWTYiyM7OJiUlherqaqqrq5k0aRKPPvooRUVFjB8/ntzcXCIjI1m6dCnh4eFnh3Kj\nqu3da97O8uBBaNbMir+BiIh/8XRE4Dc7iy9k9Gjzcd99XgglIuLjgrIQuFzw61/D7t3m0lIRkWDm\nc3ME3jB0KDRvDitX2p1ERMR/+XUhcDi0wUxEpKH8uhCAuXpo/37Yvt3uJCIi/snvC0GTJvDQQxoV\niIh4yq8ni2uUlEDXrvD559Cli4XBRER8WFBOFtcID4eUFJg71+4kIiL+JyBGBGBuLBs4EHJyzBve\ni4gEm6AeEQBERsKwYbBggd1JRET8S8CMCAC2bv1xFVGopX1VRUR8T9CPCACuvx46d4b337c7iYiI\n/wioQgC6r7GISH0FXCEYMwZOnIBNm+xOIiLiHwKuEISEwCOPaIOZiIi7AmqyuMbJk+Yqos2boXv3\nxsslIuLLNFl8hubNzXsUvPii3UlERHxfQI4IAPLzoU8fcylpmzaNFExExIdpRHCOjh3h9tth3jy7\nk4iI+LaAHREAZGfDiBFm24mf/KQRgomI+DCNCC6gXz/o2xeWLLE7iYiI7wroQgDmBrMXXtAGMxGR\nugR8IRg+3CwCa9fanURExDcFfCHQfY1FRC7OskKQl5dHQkICffr0oW/fvsyZMweA9PR0OnfuTFxc\nHHFxcWRmZloVodYvfgG7dsEXX1h+KhERv2PZqqGjR49y9OhRYmNjKS0tZcCAASxbtoylS5fSokUL\npk+fXneoRlo1dKb/+R84cADeeKNRDysi4jN8btVQhw4diI2NBeCKK66gd+/eHDlyBKDR3+Td8etf\nw7JlcPSo108tIuLTvDJHcPDgQXbs2MENN9wAwNy5c4mJiSE1NZWSkhJvRODKK2HCBHjpJa+cTkTE\nb1i+oay0tBSn08lvf/tbkpOTOXbsGO3atQPgqaeeIj8/nwXn3F/S4XCQlpZW+7XT6cTpdDY4y1df\nwY03wqFDEBbW4MOJiNjK5XLhcrlqv3766ac9uuJiaSGoqKjgtttuIykpiWnTpp3384MHDzJ69Giy\ns7PPDmXBHEGN5GRzt/HUqZYcXkTENj43R2AYBqmpqURHR59VBPLz82s//+CDD+jXr59VES5oxgz4\n05+gutqrpxUR8VmWjQg2btzITTfdRP/+/XE4HADMmjWLJUuWsHPnThwOB1FRUcyfP5+IiIizQ1k4\nIjAMiI+HmTPNpnQiIoHC0/fOgG46V5d33oGXX4Z//MOyU4iIeJ3PXRryZePGQW4ufPqp3UlEROwX\nlIUgNBQeflhtJ0REIEgvDQF8+y1ERcH27XDNNZaeSkTEK3RpqJ5atoTJk+GHFkgiIkEraEcEYM4T\nxMXBv/8NrVpZfjoREUtpROCBq682N5e9/rrdSURE7BPUIwKAbdtg7FizM2mTJl45pYiIJTQi8NCA\nAdC1K7z7rt1JRETsEfSFAMy2E88/r/sai0hwUiEARo2C0lLtNBaR4KRCAFx2GTzyCLzwgt1JRES8\nL+gni2uUlUFkJGzcCD16ePXUIiKNQpPFDRQWZt7O8k9/sjuJiIh3aURwhoIC6N0b9u2Dtm29fnoR\nkQbRiKARRETAz34G//d/dicREfEejQjOsXs33HwzHDwITZvaEkFExCMaETSS6Gi47jpYvNjuJCIi\n3qERwQWsWwcPPQRffAE/3GVTRMTneW1EcOrUKf72t7/V+0T+5Oabzb5Dq1fbnURExHpuFYKqqipW\nrFjB3XffTWRkJH/961+tzmUrh+PHthMiIoGuzktDhmGwYcMGlixZwsqVK4mPj+fjjz8mJyeHsLAw\na0PZfGkI4PRp8w5mK1dCTIytUURE3OLpe2edhaBz585ER0dz7733Mnr0aJo3b05UVBQ5OTkNDnvJ\nUD5QCAAyMmDPHli0yO4kIiKX1uhzBHfccQf79+/nnXfeYfny5Zw8ebJBAf3R/ffD8uXw9dd2JxER\nsU6dheDFF19k//79/Nd//Rfr1q2jZ8+eHD9+nHfeeYfS0tJLHjgvL4+EhAT69OlD3759mfPDzYGL\niopITEykR48eDB8+nJKSksb72zSy1q3h7rth7ly7k4iIWMft5aOnT59m9erVLFmyhNWrV3PixImL\nPv/o0aMcPXqU2NhYSktLGTBgAMuWLePNN9+kbdu2PPbYYzz77LMUFxeTkZFxdigfuTQE5v2M4+Mh\nJweuuMLuNCIidWv0OQKAyspKUlJSWHzO7qqysrJ6TxgnJyfz4IMP8uCDD7JhwwYiIiI4evQoTqeT\nvXv3nh3KhwoBwB13gNMJDz5odxIRkbpZso8gNDSUQ4cOUV5eftb361sEDh48yI4dO4iPj6egoICI\niAgAIiIiKCgoqGdk75sxw+xKWlVldxIR8QWHD5tXCwJF6KWeEBUVxeDBgxkzZkxtAXA4HEyfPt2t\nE5SWljJu3Dhmz55NixYtzvqZw+HAUcfW3fT09NrPnU4nTqfTrfNZYdAg6N4dpk2DOXO021gk2L39\nNhQVwR//aG8Ol8uFy+Vq8HEuOUdQ84Z87ht2WlraJQ9eUVHBbbfdRlJSEtOmTQOgV69euFwuOnTo\nQH5+PgkJCT5/aQjgm2/MHcejRsEzz9idRkTs9MADZl8yX7tc7Ol75yVHBGf+Zp6fn0/Hjh3dOrBh\nGKSmphIdHV1bBADGjBnDokWLePzxx1m0aBHJycn1Dm2HVq0gMxOGDDFXEz3yiN2JRMQuubkwYoTd\nKRpPvZrOXXfddWzfvt2t527cuJGbbrqJ/v37144m/vCHP3D99dczfvx4cnNziYyMZOnSpYSHh58d\nygdHBDVyc81ikJYG995rdxoRsUP//uZG07g4u5OczbIRwZnqc4LBgwdTXV19wZ+tXbu2Pqf1KVdf\nDWvWmKuIWrWCcePsTiQi3paba74XBIp6FYJf/epXVuXwKz16wIoV5tCwZUtITLQ7kYh4yzffQEUF\ntGljd5LGU+eloQEDBjB48GCSkpJwOp009eLtunz50tCZNm6EsWPho4/MlUUiEvi++AJ+/nOzD5mv\nafR9BFu2bCE5OZmsrCyGDh1KUlISs2fPZt++fQ0KGkgGD4a33oLkZNi1y+40IuINeXmBdVkI6jFZ\nfOTIETIzM1m9ejX79+/nhhtu4JVXXrEmlJ+MCGq88w5Mnw4bNpj7DUQkcM2fD599Bq+9ZneS81k+\nWdypUydSU1NJTU2lqqqKLVu21PtkgerOO+Hbb825go0boVMnuxOJiFUCbaIYPLx5/dSpU/npT3/a\n2Fn82pQpMHWqWQwKC+1OIyJWCcRCUOeIoKio6ILfNwyDFStWWBbInz32GBQXQ1ISrF8P53TUEJEA\nkJsLXbrYnaJx1VkI2rZtyzXXXHPBnx0/ftyyQP5u1iwoKYHbbzdvc+nFxVYi4gWBOCKoc7K4e/fu\nrFu37oLFoEuXLuTl5VkXys8mi89VVWXe0KasDN59F5o0sTuRiDSGqipo1sycE/TFX/IaffnotGnT\nKC4uvuDPHn300XqfKJiEhJjLSisrzTYUdWywFhE/U1BgbiTzxSLQEPXqNeQt/j4iqFFWBiNHQkyM\n2leLBIItW+Chh2DrVruTXJglN6aRhgkLg+XL4ZNPzCZ1IuLfAnF+AOrZa0jqT+2rRQKHCoF4rH17\ns2PpkCFmYVD7ahH/lJsLXbvanaLx1Xlp6L333rvg98vLy3lGt+iqt5r21b/9LdTx0oqIjwvEPQRw\nkUIwf/58br31Vv59xh2aV61aRUxMDCdOnPBKuEBT07566lSzKIiIfwnUS0MXXTW0ZMkSZs6cycSJ\nE8nOzubYsWO88sorxMbGWhsqQFYN1UXtq0X8U7t2ZhvqiAi7k1yYp++dFy0ElZWVpKWl8eKLLxIe\nHk5WVhY9evRoUFC3QgV4IQBYtQruucccGfTvb3caEbmUsjJzD0FZGVzmo+stG3356Mcff8yAAQM4\nceIEhw8f5uWXX2b06NH87ne/o7y8vEFhxexHNGeO+XH/frvTiMil5OWZ8wO+WgQaos6/0iOPPMJr\nr73GvHnzaN26NcnJyWzfvp3y8nJiYmK8mTFg3XknpKebHUuPHLE7jYhcTKDOD8BFLg1VVVUREhJy\nwT/05Zdf0qdPH+tCBcGloTP98Y+wcCH84x/Qtq3daUTkQhYsMOf33nzT7iR1a/RLQ3UVAcDSIhCM\nHnvM7FaalGQ2sxIR3xPII4IAvNrln2bNgoEDzYJw6pTdaUTkXIG6hwAsLgT33nsvERER9OvXr/Z7\n6enpdO7cmbi4OOLi4sjMzLQygt9wOOCll6BDB3PuoKLC7kQicqZAvGl9jYsWgtzcXEpKSgDIycnh\nb3/7G1988YXbB588efJ5b/QOh4Pp06ezY8cOduzYwciRIz2IHZhCQmDRIrWvFvFFQXlpKCMjg6FD\nhxIfH8/rr79OUlISmZmZ3HnnnTz//PNuHXzIkCG0bt36vO8H00RwfV1+uXkzm0OH4OGHQS+ViP0M\n48flo4GozqZzb731Frt37+bkyZNERkaSk5NDu3btOHnyJNdffz0zZszw+KRz587lrbfeYuDAgTz/\n/POEh4d7fKxAVNO+OiHBbF+t1k4i9jp+HJo3Nx+BqM5CEBoaSrNmzbj88ssJCwujTZs2ADRv3pzL\nGrCjYurUqfzud78D4KmnnmLGjBksWLDgvOelp6fXfu50OnE6nR6f0x+pfbWI7/DVy0IulwuXy9Xg\n49S5j2DChAkAnDx5kpYtW3Lq1CnGjh3L+vXrOX36NG+//bZbJzh48CCjR48mOzvb7Z8F2z6Ci8nN\nNYtBWpraV4vY5f33zdvPLltmd5KL8/S9s84RwcKFC1myZAkdO3ZkxIgRvP3222zatInY2Fjuv/9+\nj4Pm5+fTsWNHAD744IOzVhTJ+WraVzud5ihh3Di7E4kEH18dETSWOkcE9913H0lJSdxyyy20aNHC\no4NPmDCBDRs2UFhYSEREBE8//TQul4udO3ficDiIiopi/vz5RJzTyk8jgvPt2AEjRsDixWZLChHx\nnhkzzKXdjz5qd5KLa/Tuo1u2bGHVqlWsX7+eJk2aMGLECEaOHOmVPkMqBBem9tUi9vj5z+GOO8w9\nPr7MkjbUNQoLC/n73/9OZmYmu3btIi4ujqSkJMaPH+9R2EuGUiGok9pXi3hffDy8+KLv/wJmaSE4\nk2EYbNu2jdWrVzNz5sx6n9CtUCoEF/XOOzB9OmzYAN27251GJPB17AiffQadOtmd5OIafbL4YifK\nzs62rAjIpd15p9mcLjHRvFzk6/84RfxZeTkUFZlzBIGq3iMCgC5dupCXl2dFHkAjAnepfbWI9Q4c\ngFtugZwcu5NcWqOPCC62rLOgoKDeJ5LG99hjUFxstq9etw5atrQ7kUjgCfSlo3CRQnDs2DEyMzMv\n2CvoxhtvtDSUuG/WLLMY3H47rFwJzZrZnUgksARy19EadRaCUaNGUVpaSlxc3Hk/Gzp0qKWhxH0O\nB7z8MkycaM4dvPceNGlidyqRwBHI9yGo4dEcgdU0R1B/p09DcjJceaXZyjoQb7AtYof77oPrroNf\n/9ruJJfW6LeqFP9yZvvqhx5S+2qRxhIMcwQqBAGkpn31pk3wQ4NXEWmgYCgE9d5HIL7t3PbV06fb\nnUjEfxmGCoH4qfbtzRYUQ4ZAeLjaV4t4qrgYQkMDf2m2CkGAUvtqkYYLhqWjoEIQ0Hr0gBUrzPbV\nLVuqfbVIfQXDZSHQZHHAi4sz7670i1/A5s12pxHxL8GwhwBUCILC4MHmbfaSk2HXLrvTiPgPjQgk\noCQlwZw55sf9++1OI+IfgqUQaI4giKh9tUj9qBBIQJoyxVwSl5io9tUilxIshUC9hoLUE0+YravV\nvlrkwioroXlzKC31n0aO6jUk9fKHP8CAAWb76lOn7E4j4nu+/trcnOkvRaAhVAiCVE376ogIc+6g\nosLuRCK+JVguC4EKQVALCTGXlVZWmm0oqqvtTiTiO4JlDwFYXAjuvfdeIiIizrrtZVFREYmJifTo\n0YPhw4dTUlJiZQS5BLWvFrkwjQgayeTJk8nMzDzrexkZGSQmJrJv3z6GDRtGRkaGlRHEDWpfLXI+\nFYJGMmTIkPPuefzRRx+RkpICQEpKCsuWLbMygrippn310qXwwgt2pxGxXzAVAq/vIygoKCAiIgKA\niIgICgoKvB1B6nBm++rycvPWfOfUcZGgYBiQk6NC4BUOhwOHw3HBn6Wnp9d+7nQ6cTqd3gkV5K6+\nGtauNfcZREbCsGEwcSKMGgVNm9qdTsQ7nn7aXDbau7fdSS7O5XLhcrkafBzLN5QdPHiQ0aNHk52d\nDUCvXr1wuVx06NCB/Px8EhIS2Lt379mhtKHMJ5SUwHvvweLFsHMn/OxncPfdcNNNcJnWm0mAmj3b\nXFr98cfm8mp/4jcbysaMGcOiRYsAWLRoEcnJyd6OIG4KD4fUVFi/3uxa2rMnPPwwXHMNPP64OplK\n4Fm40JwjW7vW/4pAQ1g6IpgwYQIbNmygsLCQiIgInnnmGW6//XbGjx9Pbm4ukZGRLF26lPDw8LND\naUTg07KzzVHCX/5iFouJE837HQTLmmsJTB98AA88AFlZ0KuX3Wk84+l7p3oNiceqq83h8+LF5iWk\nfv3MonDHHZpkFv+ydq35y0xmJlx3nd1pPKdCILYqL4eVK82isGaNJpnFf2zZAmPGmBsrb7rJ7jQN\no0IgPkOTzOIvsrPhllvgzTfh1lvtTtNwKgTikw4fhiVL4O23oajIHH5PnAj9+9udTILdgQMwdCg8\n9xzcdZfdaRqHCoH4PE0yi6/4+mvzXt6PPw733293msajQiB+Q5PMYqcTJ8zLlJMmmRsnA4kKgfgl\nTTKLN333nflvLCEBnn3W7jSNT4VA/J4mmcVK339vTgh37w7z55s3Zwo0KgQSUDTJLI2pstK89PiT\nn5hzVCEhdieyhgqBBCxNMktDVFfD5Mlw7Bh8+KF5M6ZApUIgAU+TzFJfhgHTpsG2bfD3v5s3YQpk\nKgQSVDTJLO5ITzdHAVlZ5mgy0KkQSNCqmWR++234/HNNMovJn9tJe0qFQATIyzMnmRcv1iRzMFu4\nENLSzCIQLHcZAxUCkfNokjk4BUI7aU+pEIjUQZPMwSNQ2kl7SoVAxA2aZA5cgdRO2lMqBCL1pEnm\nwBFo7aQ9pUIg0gCaZPZfgdhO2lMqBCKNRJPM/iNQ20l7SoVApJFpktm3BXI7aU+pEIhYSJPMviXQ\n20l7SoVAxEs0yWyvmnbS114L8+YFZjtpT6kQiNhAk8zeVdNOumlT8zUP1HbSnvK7QhAZGUnLli0J\nCQmhSZMmbN269cdQKgTihzTJbK3qarjnHigshGXLArudtKf8rhBERUWxbds22rRpc97PVAjEn2mS\nufEZBjz8MOzYAatXB347aU95+t5p6xVNvdlLILrsMnNd+6uvmssbH37YfPOKjDTnE957z7zOLe57\n+mmzuC5friJgBdtGBF27dqVVq1aEhIRw//33M2XKlB9DaUQgAejcSeZRo8zLRuHh5kjhQh9btYLQ\nULuT2+P772HzZvM1W7PGLATt29udyrd5+t5p2z+xTz75hI4dO3L8+HESExPp1asXQ4YMqf15enp6\n7edOpxOn0+n9kCKNKDwcUlPNR14erFoFx4+bt1Dctw+Ki81iUfOxpAS++QaaN794sbjYx7Aw/1lV\nU1EBn34K69ebnUO3boU+fcwlouvXqwhciMvlwuVyNfg4PrFq6Omnn+aKK65gxowZgEYEIjWqq801\n8+cWiTOLRV0/Ky4231w9LSKtWkGTJtb93aqqzJHR+vXmY+NG6NYNbr7ZfAwZAi1bWnf+QORXk8Vl\nZWVUVVXRokULTp48yfDhw0lLS2P48OFmKBUCkUZRXv5jwbhU0Tj3OSUl0KzZ2QWiPsXkiivOHo0Y\nBuzebf62v349uFzQoYP5G//NN5vzKm3b2vZSBQS/KgQ5OTmMHTsWgMrKSiZOnMiTTz75YygVAhHb\nGQaUltZ/FFLzsbzcHFXUFIa8PPNSVc1v/AkJ0LGj3X/LwOJXheBSVAhE/F9FhTnHUVxsPtq3N1dO\niXVUCEREgpxf7iMQERH7qRCIiAQ5FQIRkSCnQiAiEuRUCEREgpwKgYhIkFMhEBEJcioEIiJBToVA\nRCTIqRCIiAQ5FQIRkSCnQiAiEuRUCEREgpwKgYhIkFMhEBEJcioEIiJBToVARCTIqRCIiAQ5FQIR\nkSCnQiAiEuRUCEREgpwthSAzM5NevXpx7bXX8uyzz9oRQUREfuD1QlBVVcWDDz5IZmYmu3fvZsmS\nJezZs8fbMTzicrnsjnAeZXKPMrnPF3Mpk7W8Xgi2bt1K9+7diYyMpEmTJtx11118+OGH3o7hEV/8\nD69M7lEm9/liLmWyltcLwZEjR+jSpUvt1507d+bIkSPejiEiIj/weiFwOBzePqWIiFyM4WWbN282\nRowYUfv1rFmzjIyMjLOe061bNwPQQw899NCjHo9u3bp59L7sMAzDwIsqKyvp2bMn69at46qrruL6\n669nyZIl9O7d25sxRETkB6FeP2FoKC+99BIjRoygqqqK1NRUFQERERt5fUQgIiK+xdadxe5sLHvo\noYe49tpriYmJYceOHbZn2rt3L4MGDaJp06Y8//zzludxN9fixYuJiYmhf//+/PSnP2XXrl22Z/rw\nww+JiYkhLi6OAQMGsH79etsz1fj0008JDQ3l/ffftz2Ty+WiVatWxMXFERcXx+9//3vbM9XkiouL\no2/fvjidTsszuZPrueeeq32d+vXrR2hoKCUlJbZmKiwsZOTIkcTGxtK3b18WLlxoaR53MhUXFzN2\n7FhiYmKIj4/nyy+/vPgBPZ71baDKykqjW7duRk5OjnH69GkjJibG2L1791nPWbFihZGUlGQYhmFs\n2bLFiI+Ptz3TsWPHjE8//dSYOXOm8dxzz1mapz65Nm3aZJSUlBiGYRirVq3yideqtLS09vNdu3Z5\nPJHVmJlqnpeQkGCMGjXKePfdd23PlJWVZYwePdrSHPXNVFxcbERHRxt5eXmGYRjG8ePHfSLXmZYv\nX24MGzbM9kxpaWnGE088YRiG+Tq1adPGqKiosDXTb37zG+OZZ54xDMMw9u7de8nXybYRgTsbyz76\n6CNSUlIAiI+Pp6SkhIKCAlsztWvXjoEDB9KkSRPLcniSa9CgQbRq1QowX6vDhw/bnql58+a1n5eW\nltK2bVvbMwHMnTuXO+64g3bt2lmapz6ZDC9eoXUn01/+8hfGjRtH586dASz/b+durnMzTpgwwfZM\nHTt25NsdB4ViAAAFoElEQVRvvwXg22+/5corryQ01LrpV3cy7dmzh4SEBAB69uzJwYMHOX78eJ3H\ntK0QuLOx7ELPsfINzlc3u9U314IFC7j11lt9ItOyZcvo3bs3SUlJzJkzx/ZMR44c4cMPP2Tq1KmA\n9fta3MnkcDjYtGkTMTEx3Hrrrezevdv2TF999RVFRUUkJCQwcOBA/vznP1uayd1cNcrKyli9ejXj\nxo2zPdOUKVP48ssvueqqq4iJiWH27Nm2Z4qJiam97Ll161YOHTp00fdOr68aquHu/4Dn/qZk5f+4\nvrrZrT65srKyeOONN/jkk08sTOR+puTkZJKTk/n444+ZNGkS//rXv2zNNG3aNDIyMnA4HBiGYflv\n4u5kuu6668jLyyMsLIxVq1aRnJzMvn37bM1UUVHB9u3bWbduHWVlZQwaNIgbbriBa6+91tZcNZYv\nX87gwYMJDw+3LA+4l2nWrFnExsbicrk4cOAAiYmJfP7557Ro0cK2TE888QQPP/xw7VxKXFwcISEh\ndT7ftkLQqVMn8vLyar/Oy8urHYbW9ZzDhw/TqVMnWzPZwd1cu3btYsqUKWRmZtK6dWufyFRjyJAh\nVFZWcuLECa688krbMm3bto277roLMCf5Vq1aRZMmTRgzZoxtmc58w0hKSuKBBx6gqKiINm3a2Jap\nS5cutG3blmbNmtGsWTNuuukmPv/8c0sLQX3+Tf31r3+1/LKQu5k2bdrEzJkzAejWrRtRUVH861//\nYuDAgbZlatGiBW+88Ubt11FRUXTt2rXug1oym+GGiooKo2vXrkZOTo5RXl5+ycnizZs3Wz4B6k6m\nGmlpaV6bLHYn16FDh4xu3boZmzdv9plM+/fvN6qrqw3DMIxt27YZXbt2tT3Tme655x7jvffesz3T\n0aNHa1+nf/7zn8Y111xje6Y9e/YYw4YNMyorK42TJ08affv2Nb788kvbcxmGYZSUlBht2rQxysrK\nLM3jbqZHHnnESE9PNwzD/G/ZqVMn48SJE7ZmKikpMcrLyw3DMIxXX33VSElJuegxbSsEhmEYK1eu\nNHr06GF069bNmDVrlmEYhjFv3jxj3rx5tc/5z//8T6Nbt25G//79jW3bttmeKT8/3+jcubPRsmVL\nIzw83OjSpYvx3Xff2Z4rNTXVaNOmjREbG2vExsYa//Ef/2F7pmeffdbo06ePERsbawwePNjYunWr\n7ZnO5I1C4E6ml156yejTp48RExNjDBo0yCvF3J3X6X//93+N6Ohoo2/fvsbs2bMtz+RuroULFxoT\nJkzwSh53Mh0/fty47bbbjP79+xt9+/Y1Fi9ebHumTZs2GT169DB69uxpjBs3rnZFYV20oUxEJMjp\nVpUiIkFOhUBEJMipEIiIBDkVAhGRIKdCICIS5FQIRESCnAqBSB3y8vLo2rUrxcXFgNnat2vXruTm\n5tqcTKRxqRCI1KFLly5MnTqVJ554AjD7t9x///1cffXVNicTaVzaUCZyEZWVlQwYMIDJkyezYMEC\ndu7cyalTp0hOTqa4uJiKigp+//vfW9arSMQbVAhELmH16tUkJSWxZs0ahg0bRlVVFWVlZbRo0YLC\nwkIGDRrEV199ZXdMEY/p0pDIJaxatYqrrrqK7OxsAKqrq3nyySeJiYkhMTGRr7/+mmPHjtmcUsRz\ntrWhFvEHO3fuZO3atWzevJnBgwdz1113kZmZSWFhIdu3byckJISoqCi+//57u6OKeEwjApE6GIbB\n1KlTmT17Nl26dOHRRx/lN7/5Dd9++y3t27cnJCSErKwsDh06ZHdUkQZRIRCpw2uvvUZkZCTDhg0D\n4IEHHmDPnj3Exsby2Wef0b9/f/785z/Tu3dvm5OKNIwmi0VEgpxGBCIiQU6FQEQkyKkQiIgEORUC\nEZEgp0IgIhLkVAhERIKcCoGISJBTIRARCXL/D2gmXcwZU/vYAAAAAElFTkSuQmCC\n", + "text": [ + "<matplotlib.figure.Figure at 0x7ff34ba76ed0>" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 19.2 page no : 440" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "\n", + "import math \n", + "from matplotlib.pyplot import *\n", + "\n", + "# Variables\n", + "Cp = 40.\n", + "Hr = 80000.\n", + "m = Cp/Hr;\n", + "FAo = 100. #mol/s\n", + "print ('We should use a mixed flow reactor operating at optimum')\n", + "\n", + "# Calculations and Results\n", + "XA = [0.85,0.785,0.715,0.66,0.58,0.46];\n", + "inv_rAopt = [20,10,5,3.6,2,1];\n", + "plot(XA,inv_rAopt)\n", + "\n", + "area1 = 0.66*3.6;\n", + "area2 = (0.85-0.66)*20;\n", + "W1 = FAo*area1;\n", + "W2 = FAo*area2;\n", + "print \" The weight of catalyst needed for 1st bed is %.1f kg\"%(W1)\n", + "print \" The weight of catalyst needed for 2ndbed is %.1f kg\"%(W2)\n", + "\n", + "#Heat exchange\n", + "#For the first reactor\n", + "Q = (820-300)*Cp+0.66*(-Hr);\n", + "\n", + "#For 100 mol/s\n", + "Q1 = FAo*Q/10**6;#MW\n", + "print \" The amount of heat exchanged for 1st reactor is %.2f MW\"%(Q1)\n", + "\n", + "#For 2nd reactor\n", + "#To go from XA = 0.66 at 820 k to XA = 0.85 at 750 k\n", + "Q2 = FAo*((750-820)*Cp+(0.85-0.66)*(-Hr));\n", + "Q2 = Q2/10**6;\n", + "print \" The amount of heat exchanged for 2nd reactor is %.2f MW\"%(Q2)\n", + "\n", + "#For the exchanger needed to cool the exit stream from 750 k to 300 k\n", + "Q3 = FAo*Cp*(300. - 750);\n", + "Q3 = Q3/10**6;#MW\n", + "print \" The amount of heat exchanged for exchanger is %.2f MW\"%(Q3)\n", + "\n", + "show()\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "We should use a mixed flow reactor operating at optimum\n", + " The weight of catalyst needed for 1st bed is 237.6 kg" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + " The weight of catalyst needed for 2ndbed is 380.0 kg\n", + " The amount of heat exchanged for 1st reactor is -3.20 MW\n", + " The amount of heat exchanged for 2nd reactor is -1.80 MW\n", + " The amount of heat exchanged for exchanger is -1.80 MW\n" + ] + }, + { + "metadata": {}, + "output_type": "display_data", + "png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD9CAYAAACoXlzKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGLtJREFUeJzt3Xl0VPX9xvFnJPwUJIphiWxtWGUJhNhYWQoESUCEsBRF\nsXVFWtcjtlTRyiGUxeDWg2AFqy0gLkSpLB4JijoUBInFBQQUZCkRkxgINEAsBPj+/rhN2EIyM7kz\n987M+3UOx5DkTh4u5vHjN/fer8cYYwQAiBgXOB0AAGAvih0AIgzFDgARhmIHgAhDsQNAhKHYASDC\nVFnseXl56tu3rzp16qTExEQ999xzkqTi4mKlp6erXbt26t+/vw4ePBiSsACA6nmquo69oKBABQUF\n6tq1qw4fPqyf/exnWrx4sf7+97+rYcOGevjhhzV9+nQdOHBAWVlZocwNADiPKif2yy+/XF27dpUk\n1atXTx06dNDevXu1dOlS3XbbbZKk2267TYsXLw5+UgCAT6qc2E+3e/du9enTR1999ZV+8pOf6MCB\nA5IkY4zi4uIqfi9JHo8nOGkBIMLZ8TAAn354evjwYY0YMUIzZsxQbGzsGR/zeDyVFrkxxvW/Jk6c\n6HgGcpKTnGQs/2WXaou9rKxMI0aM0C233KJhw4ZJkuLj41VQUCBJys/PV+PGjW0LBADRaM0a+16r\nymI3xmj06NHq2LGjxo4dW/H+IUOGaN68eZKkefPmVRQ+ACAwkyfb91oxVX3w448/1oIFC9SlSxcl\nJydLkp544gmNHz9eI0eO1Msvv6yEhARlZ2fblyiEUlNTnY7gE3Lai5z2Coecbs+Ymytt3Wrf6/n8\nw1O/XtTjsXW9CAAiWUaGdO210v3329OdFDsAOOjzz6XBg6UdO6Q6dezpTh4pAAAOmjpVGjdOuugi\n+16TiR0AHLJ5s9SvnzWtX3yxfd3JxA4ADpk6VRo71ip1OzGxA4ADtm2TevaUdu6Uyu/7ZGIHgDA2\nbZr0wAOnSt1OVV7HDgCw365d0jvvSN9+G5zXZ2IHgBDLypLuvluqXz84r88aOwCEUF6elJRkrbE3\nbHjmx1hjB4Aw9OST0ujR55a6nZjYASBE8vOlTp2kLVukyy8/9+NM7AAQZp55RrrllspL3U5M7AAQ\nAkVFUvv20saNUrNmlX8OEzsAhJE//1kaOfL8pW4nJnYACLLiYqltW2nDBikh4fyfx8QOAGHiueek\noUOrLnU7MbEDQBCVlEitW0vr1klt2lT9uUzsABAGnn9eGjCg+lK3ExM7AATJkSNSq1bSRx9JHTtW\n//lM7ADgcrNnS717+1bqdmJiB4Ag+PFHa219+XLr2TC+YGIHABd76SXpqqt8L3U7MbEDgM2OHrV+\nWPr221JKiu/HMbEDgEvNmyclJvpX6nZiYgcAG5WVSe3aSQsWWHua+oOJHQBc6NVXpZYt/S91OzGx\nA4BNTpyQOnSQ5syR+vb1/3gmdgBwmexsqXFjKTXV2Rwxzn55AIgMJ09KU6dam2l4PM5mYWIHABu8\n/bZUp47Uv7/TSSh2AKgxY6QpU6QJE5yf1iWKHQBq7J13rHLPyHA6iYViB4AaKJ/WH3/cHdO6RLED\nQI28/7506JD0y186neQUih0AAmSMNHmy9Mc/She4qE1dFAUAwsuqVVJBgXTjjU4nORPFDgABmjxZ\neuwxKcZldwRR7AAQgLVrpZ07pV//2ukk56LYASAAU6ZI48dLtWs7neRcLvsfCABwv3/9S9q40brb\n1I2Y2AHAT1OmSA8/LF14odNJKsdjewHADxs3SgMGWOvrderY+9o8thcAHDB1qvT739tf6nZiYgcA\nH23dKvXpY03r9erZ//pM7AAQYtOmSQ8+GJxStxMTOwD44NtvpW7dpB07pEsvDc7XCMnEfueddyo+\nPl6dO3eueF9mZqaaN2+u5ORkJScnKycnp8YhAMDtnnhCuu++4JW6naqc2FevXq169erp1ltv1aZN\nmyRJkyZNUmxsrH73u9+d/0WZ2AFEkH//W7rySmn7dikuLnhfJyQTe69evXTZZZed835KG0A0mT5d\n+s1vglvqdgroztOZM2dq/vz5SklJ0TPPPKP69euf8zmZmZkVb6empirV6W27ASAAe/dKb7whff21\n/a/t9Xrl9Xptf91qf3i6e/duZWRkVCzF/PDDD2rUqJEkacKECcrPz9fLL7985ouyFAMgQowdaz1r\n/dlng/+17OpOvyf2xo0bV7x91113KcMtm/wBgM0KC6X586XNm51O4h+/r2PPz8+vePvtt98+44oZ\nAIgkzz4r3Xyz1KSJ00n8U+XEPmrUKK1atUr79u1TixYtNGnSJHm9Xn3xxRfyeDxq2bKl5syZE6qs\nABAy+/dLL70kffGF00n8xw1KAFCJCROspZgXXwzd17SrOyl2ADjLwYNSmzZSbq7UqlXovi7PigGA\nIJk5Uxo0KLSlbicmdgA4zaFDVqGvWSNdcUVovzYTOwAEwQsvSGlpoS91OzGxA8D/lJZa0/rKlVJi\nYui/PhM7ANjsxRelHj2cKXU7MbEDgKT//ldq3Vpatsx6kqMTmNgBwEZ/+5uUnOxcqduJiR1A1Dt2\nTGrbVsrOlq6+2rkcTOwAYJNXXrGugnGy1O3ExA4gqh0/LrVvby3F9O7tbBYmdgCwweuvS82aOV/q\ndmJiBxC1TpyQOnWSZs2ybkpyGhM7ANTQokXSZZdJ/fo5ncReAe15CgDh7uRJacoUKStL8nicTmMv\nJnYAUWnpUql2bWngQKeT2I9iBxB1jJEmT5YefzzypnWJYgcQhZYvt25KGjrU6STBQbEDiCqnT+sX\nRGgDRugfCwAq9+GH0oED0vXXO50keCh2AFFl8mTpscekWrWcThI8FDuAqLF6tZSXJ918s9NJgoti\nBxA1Jk+WHn1UionwO3godgBRYf166ZtvpFtvdTpJ8FHsAKLClCnSI49I//d/TicJPh4CBiDiff65\nNHiwtGOHdNFFTqc5Px4CBgA+mjJFGjfO3aVuJyZ2ABHtq6+sR/Lu3CnVret0mqoxsQOAD6ZNkx56\nyP2lbicmdgARa9s2qWdPa1qPjXU6TfWY2AGgGtOmSQ88EB6lbicmdgARaedO6aqrrCth6td3Oo1v\nmNgBoApZWdI994RPqduJiR1AxMnLk5KSrDX2hg2dTuM7JnYAOI8nn5Tuuiu8St1OTOwAIkp+vtSp\nk7Rli3T55U6n8Q8TOwBU4umnpVtuCb9StxMTO4CIUVQkXXGFtGmT1KyZ02n8x8QOAGd59lnpxhvD\ns9TtxMQOICIUF0tt20obNkgJCU6nCQwTOwCc5rnnpKFDw7fU7cTEDiDslZRIrVtL69ZJbdo4nSZw\nTOwA8D+zZkkDBoR3qduJiR1AWDt82JrWvV6pQwen09QMEzsASJozR+rTJ/xL3U5M7ADC1o8/WtN6\nTo7UpYvTaWqOiR1A1HvpJevRvJFQ6naqstjvvPNOxcfHq3PnzhXvKy4uVnp6utq1a6f+/fvr4MGD\nQQ8JAGc7etR62NeECU4ncZ8qi/2OO+5QTk7OGe/LyspSenq6tm3bpn79+ikrKyuoAQGgMnPnSomJ\nUkqK00ncp9o19t27dysjI0ObNm2SJLVv316rVq1SfHy8CgoKlJqaqq+//vrMF2WNHUAQlZVJ7dpJ\nr74q9ejhdBr72NWdMf4eUFhYqPj4eElSfHy8CgsLK/28zMzMirdTU1OVmpoaUEAAONuCBVKrVuFf\n6l6vV16v1/bX9Xtiv+yyy3TgwIGKj8fFxam4uPjMF2ViBxAkH30kjRwpLVsmdevmdBp7OXZVTPkS\njCTl5+ercePGNQ4BAL54912r1LOzI6/U7eR3sQ8ZMkTz5s2TJM2bN0/Dhg2zPRQAnG3RIumOO6Sl\nS6W+fZ1O425VLsWMGjVKq1at0r59+xQfH68//elPGjp0qEaOHKk9e/YoISFB2dnZqn/WNuAsxQCw\n0/z50iOPWBN7crLTaYLHru7kzlMArvbCC9LUqdJ770kdOzqdJrgcuyoGAELlqaekv/xFWrXKenQA\nfEOxA3AdY6TMTOmNN6R//lNq0cLpROGFYgfgKsZI48ZJK1dapf6/22bgB4odgGucPCnde6/02WfW\n9epxcU4nCk8UOwBXOH7cupxxzx5rWr/kEqcThS+KHYDjjh6VRo2SSkul5culunWdThTeeB47AEeV\nlkrl9zkuWUKp24FiB+CYQ4ek666TGjSwHhNw4YVOJ4oMFDsARxQXS2lp0hVXWHeWxrAwbBuKHUDI\nFRZaz3vp2VOaPVu6gCayFacTQEh9953Up4+1rv7MM5LH43SiyEOxAwiZnTul3r2l0aOlSZMo9WCh\n2AGExNat1qQ+bpz0hz84nSay8eMKAEH3xRfSwIFSVpZ0221Op4l8FDuAoPrkE2nIEOn556UbbnA6\nTXSg2AEEjddrlfncudKgQU6niR6ssQMIinfftUo9O5tSDzWKHYDt2J/UWRQ7AFvNny/df7+UkyN1\n7+50mujEGjsA25TvT/rBB5G/P6mbUewAbPH009aVL+xP6jyKHUCNGGPdRfr66+xP6hYUO4CAsT+p\nO1HsAALC/qTuRbED8Bv7k7obxQ7AL+xP6n5cxw7AZ+xPGh4odgA+YX/S8EGxA6gW+5OGF4odQJV+\n+IH9ScMNf0UAzuu776yt7NifNLxQ7AAqxf6k4YtiB3AO9icNb/wIBMAZ2J80/FHsACqwP2lkoNgB\nSGJ/0kjCGjsA9ieNMBQ7EOXYnzTyUOxAFGN/0sjEGjsQpdifNHJR7EAUYn/SyEaxA1GE/UmjA8UO\nRIny/Unff5/9SSMdxQ5EgdP3J/V62Z800lHsQIRjf9LoQ7EDEezoUenmm6UjR9ifNJpwHTsQocr3\nJzWG/UmjTcATe0JCgi655BLVqlVLtWvXVm5urp25ANTAoUNSRobUvLn17Be2sosuAf91ezweeb1e\nxfFTGMBVioutx+4mJVk3IdWq5XQihFqNlmKMMXblAGCD0/cnnTOHUo9WNZrY09LSVKtWLf32t7/V\nmDFjzvh4ZmZmxdupqalKTU0N9EsBqEZZmfThh9KDD0o33ihlZrKVXTjwer3yer22v67HBDh25+fn\nq0mTJioqKlJ6erpmzpypXr16WS/q8TDNA0F24oT1SICFC6V//MN6NMDdd0u33+50MgTKru4MeGJv\n0qSJJKlRo0YaPny4cnNzK4odQHCcPCl9/LFV5m+9JTVrZk3on34qJSQ4nQ5uEVCxl5aW6sSJE4qN\njdWRI0f03nvvaeLEiXZnAyDrcsVPPrHK/M03pYYNpZEjpTVrpDZtnE4HNwqo2AsLCzV8+HBJ0vHj\nx/WrX/1K/fv3tzUYEM2MkTZssMo8O1u6+GJrMl+5UurQwel0cLuA19irfFHW2AG/GSNt3GiV+cKF\n0gUXWGV+441SYiI/DI0Gjq+xA7DH5s2nJvOjR60if/NNKTmZMkdgKHbAAdu2nZrM//Mfa818/nzp\nqqsoc9QcSzFAiOzcaU3lCxdKBQXSDTdY03n37tayC2BXd1LsQBDt2XOqzPfskUaMsKbzXr24KxTn\notgBl/r+e2uNfOFCa8ll+HBrMk9N5WFcqBrFDrhIYaF1w1B2trRpkzRkiFXmaWlS7dpOp0O4oNgB\nh+3bZ93Kv3ChteXcoEHWMsuAAdKFFzqdDuGIYgcccOCAtHixVebr1knXXmtN5gMHSnXqOJ0O4Y5i\nB0KkpMTagWjhQmn1aqlfP6vMBw+27ggF7EKxA0F05Ii0bJlV5h9+KPXpY5V5RgabQSN4KHbARsZY\nd4CuXGn9Wr1a6tHDKvNhw6T69Z1OiGhAsQM19N130gcfSO+/b/2zbl3rKpa0NGu5hV0fEWoUO+Cn\nkhLJ67Um8vffl4qKpGuuOVXmrVo5nRDRjmIHqnHsmLR+/anllY0bpW7drBJPT5e6duVWfrgLxQ6c\npbJ18rZtT03kPXtySSLcjWIHJO3de6rIV648c538mmukBg2cTgj4jmJHVDp9nXzlSumHH1gnR+Sg\n2BEVqlonT0uzNqNgnRyRgmJHRGKdHNGMYkfEOHudvE4d66qVtDSpb1+pYUOnEwKhQbEjbJ29Tl5Y\naN0QxDo5oh3FjrBRViZ98sn518m7dmU3IUCi2OFirJMDgaHY4SqskwM1R7HDUZWtk19zzakyZ50c\n8B/FjpCqbJ386qtPFTnr5EDNUewIqsrWydu0OVXkrJMD9qPYYbuz18kvusgq8vR01smBUKDY4ZdD\nh6S8PGtzie++O/X26f+MiTn13JX0dNbJgVCj2FHBl9I+flxq0UJq3vz8/6xfX/J4nP7TANGLYo8S\nlDYQPSj2CEBpAzgdxe5ylDYAf1HsDqK0AQQDxR4klDYAp1DsAaC0AbgZxX4WShtAuIuqYqe0AUSD\niCl2ShsALGFf7PfdJy1YQGkDQLmwL/bvv7eeDkhpA4Al7IsdAHAmu7rzAhuyAABchGIHgAhDsQNA\nhKHYASDCRHWxe71epyP4hJz2Iqe9wiFnOGS0U8DFnpOTo/bt26tt27aaPn26nZlCJlz+sslpL3La\nKxxyhkNGOwVU7CdOnND999+vnJwcbdmyRa+//rq2bt1qdzYAQAACKvbc3Fy1adNGCQkJql27tm66\n6SYtWbLE7mwAgAAEdIPSW2+9pRUrVuivf/2rJGnBggVav369Zs6cab0ot5ICQEDsuEEpJpCDqitu\n7joFAOcEtBTTrFkz5eXlVfw+Ly9PzZs3ty0UACBwARV7SkqKtm/frt27d+vYsWNauHChhgwZYnc2\nAEAAAlqKiYmJ0axZszRgwACdOHFCo0ePVocOHezOBgAIQEATe05Ojh566CGdPHlSY8aM0aOPPlrp\n53366aeKiYnRokWLKt6XkJCgLl26KDk5WT//+c8DS+1jxqqus/d6vbr00kuVnJys5ORkTZkyxedj\nncw5efLkio+F6lz6krM8a3JyshITE5WamurXsW7I6abz+fTTT1f8nXfu3FkxMTE6ePCgT8e6Jadb\nvtf37duna6+9Vl27dlViYqLmzp3r87Fuyen3uTR+On78uGndurXZtWuXOXbsmElKSjJbtmyp9PP6\n9u1rBg0aZN56662K9yckJJj9+/f7+2Vtz/jRRx+ZjIyMgI51Q05jQnMufc154MAB07FjR5OXl2eM\nMaaoqMjnY92Q0xh3nc/TLVu2zPTr1y+gY53KaYx7vtcnTpxoxo8fb4yx/r7j4uJMWVmZ687l+XIa\n4/+59Hti9/Ua9pkzZ+r6669Xo0aNKvuPib9fNigZK8sRymv0a5LTl4/ZxZecr732mkaMGFHxQ/SG\nDRv6fKwbcpZzy/k83WuvvaZRo0YFdKxTOcu54Xu9SZMmKikpkSSVlJSoQYMGiomJcd25PF/Ocv6c\nS7+Lfe/evWrRokXF75s3b669e/ee8zlLlizRPffcI+nMyyM9Ho/S0tKUkpJScR283XzJ6PF4tHbt\nWiUlJem6667Tli1bfD7WDTnLPxbsc+lrzu3bt6u4uFh9+/ZVSkqKXnnlFZ+PdUNOyV3ns1xpaalW\nrFihESNG+H2skzkl93yvjxkzRps3b1bTpk2VlJSkGTNm+HysG3JK/p9Lv3946svNR2PHjlVWVlbF\nbiCn/5fm448/VpMmTVRUVKT09HS1b99evXr18jdGjTNeeeWVysvLU926dbV8+XINGzZM27ZtszVH\ndWqaMxTn0tecZWVl+uyzz/TBBx+otLRU3bt3V7du3UJ6s1pNcrZt21Zr1qxR06ZNXXE+yy1btky/\n+MUvVL9+fb+Prama5JTc870+bdo0de3aVV6vVzt27FB6erq+/PJLW3NUpyY5Y2Nj/T6Xfk/svlzD\nvmHDBt10001q2bKlFi1apHvvvVdLly6VZP3vhiQ1atRIw4cPV25urr8RbMkYGxurunXrSpIGDhyo\nsrIyFRcXq3nz5iG7Rr8mOaXQnEtfc7Zo0UL9+/dXnTp11KBBA/Xu3VtffvllSO95qElOSWratKkk\nd5zPcm+88cYZyxtuO5/nyym553t97dq1uuGGGyRJrVu3VsuWLfXNN9+47nv9fDmlAM6lvz8EKCsr\nM61atTK7du0yR48erfYHDrfffrtZtGiRMcaYI0eOmJKSEmOMMYcPHzY9evQwK1as8DeCLRkLCgrM\nyZMnjTHGrF+/3vz0pz8N6M/nVM5QnUtfc27dutX069fPHD9+3Bw5csQkJiaazZs3u+58ni+n286n\nMcYcPHjQxMXFmdLSUr+PdTqnm77XH3roIZOZmWmMsb6fmjVrZvbv3++6c3m+nIGcS7+L3Rhj3n33\nXdOuXTvTunVrM23aNGOMMbNnzzazZ88+53NPL/YdO3aYpKQkk5SUZDp16lRxbDBUl3HWrFmmU6dO\nJikpyXTv3t2sW7euymPdljOU59KXnMYY89RTT5mOHTuaxMREM2PGjCqPdVtON57PuXPnmlGjRvl0\nrNty7ty50zXf60VFRWbw4MGmS5cuJjEx0bz66qtVHuu2nIH8uxnQQ8AAAO4V1TsoAUAkotgBIMJQ\n7AAQYSh2AIgwFDsARBiKHQAizP8DWZlwLI/+Rv8AAAAASUVORK5CYII=\n", + "text": [ + "<matplotlib.figure.Figure at 0x3959650>" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [], + "language": "python", + "metadata": {}, + "outputs": [] + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |