summaryrefslogtreecommitdiff
path: root/Chemical_Engineering_Thermodynamics___by_S._Sundaram/ch10_1.ipynb
diff options
context:
space:
mode:
authorTrupti Kini2016-02-03 23:30:17 +0600
committerTrupti Kini2016-02-03 23:30:17 +0600
commitb6571526f4ec5600270a3be6417629a803173b70 (patch)
tree9ad382f8daa63e58cd4bc8461b33f000398cba67 /Chemical_Engineering_Thermodynamics___by_S._Sundaram/ch10_1.ipynb
parentb8c320655a21bfbd05b6337cc1ed824f05bd884c (diff)
downloadPython-Textbook-Companions-b6571526f4ec5600270a3be6417629a803173b70.tar.gz
Python-Textbook-Companions-b6571526f4ec5600270a3be6417629a803173b70.tar.bz2
Python-Textbook-Companions-b6571526f4ec5600270a3be6417629a803173b70.zip
Added(A)/Deleted(D) following books
A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/Chapter3.ipynb A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/Chapter4.ipynb A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/Chapter5.ipynb A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/Chapter7.ipynb A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/chapter10.ipynb A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/chapter12.ipynb A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/chapter13.ipynb A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/chapter14.ipynb A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/chapter15.ipynb A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/chapter16.ipynb A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/chapter17.ipynb A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/chapter19.ipynb A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/chapter20.ipynb A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/chapter21.ipynb A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/chapter22.ipynb A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/chapter23.ipynb A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/chapter24.ipynb A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/chapter25.ipynb A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/chapter26.ipynb A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/chapter27.ipynb A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/chapter28.ipynb A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/chapter29.ipynb A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/chapter30.ipynb A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/chapter31.ipynb A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/chapter32.ipynb A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/chapter33.ipynb A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/chapter34.ipynb A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/chapter35.ipynb A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/chapter36.ipynb A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/chapter6.ipynb A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/chapter9.ipynb A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/screenshots/chapter32.png A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/screenshots/chapter331.png A A_Textbook_of_Applied_Electronics_by_R_S_Sedha/screenshots/chapter332.png A Chemical_Engineering_Thermodynamics___by_S._Sundaram/ch10_1.ipynb A Chemical_Engineering_Thermodynamics___by_S._Sundaram/ch11_1.ipynb A Chemical_Engineering_Thermodynamics___by_S._Sundaram/ch12_1.ipynb A Chemical_Engineering_Thermodynamics___by_S._Sundaram/ch13_1.ipynb A Chemical_Engineering_Thermodynamics___by_S._Sundaram/ch14_1.ipynb A Chemical_Engineering_Thermodynamics___by_S._Sundaram/ch15_1.ipynb A Chemical_Engineering_Thermodynamics___by_S._Sundaram/ch1_1.ipynb A Chemical_Engineering_Thermodynamics___by_S._Sundaram/ch2_1.ipynb A Chemical_Engineering_Thermodynamics___by_S._Sundaram/ch3_1.ipynb A Chemical_Engineering_Thermodynamics___by_S._Sundaram/ch4_1.ipynb A Chemical_Engineering_Thermodynamics___by_S._Sundaram/ch5_1.ipynb A Chemical_Engineering_Thermodynamics___by_S._Sundaram/ch7_1.ipynb A Chemical_Engineering_Thermodynamics___by_S._Sundaram/ch8_1.ipynb A Chemical_Engineering_Thermodynamics___by_S._Sundaram/ch9_1.ipynb A Chemical_Engineering_Thermodynamics___by_S._Sundaram/screenshots/TaVSN2_1.png A Chemical_Engineering_Thermodynamics___by_S._Sundaram/screenshots/TempVSMoleFraction13_1.png A Chemical_Engineering_Thermodynamics___by_S._Sundaram/screenshots/Tempvsequlibrum14_1.png
Diffstat (limited to 'Chemical_Engineering_Thermodynamics___by_S._Sundaram/ch10_1.ipynb')
-rw-r--r--Chemical_Engineering_Thermodynamics___by_S._Sundaram/ch10_1.ipynb254
1 files changed, 254 insertions, 0 deletions
diff --git a/Chemical_Engineering_Thermodynamics___by_S._Sundaram/ch10_1.ipynb b/Chemical_Engineering_Thermodynamics___by_S._Sundaram/ch10_1.ipynb
new file mode 100644
index 00000000..4e2aff57
--- /dev/null
+++ b/Chemical_Engineering_Thermodynamics___by_S._Sundaram/ch10_1.ipynb
@@ -0,0 +1,254 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:a053f39727ace41fe9dd23fd039f18e2237a3b4848b2ddbeb10075aa5411107c"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 10 : Compressor"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.1 Page No : 168"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "#Given\n",
+ "V1 = 2.7;#flow rate of CO2 in cubic meter/min\n",
+ "T1 = 273-51;#temperature in K\n",
+ "P1 = 1.0;#initial pressure in Kgf/sq cm\n",
+ "P2 = 10.0;#final pressure in Kgf/sq cm\n",
+ "y = 1.3;#gamma\n",
+ "v1 = 0.41;#specific volume in cubic meter/Kg\n",
+ "H1 = 158.7;# initial enthalpy in Kcal/Kg\n",
+ "H2 = 188.7;#final enthalpy in Kcal/Kg\n",
+ "\n",
+ "#process is isentropic\n",
+ "#To calculate the horsepower required\n",
+ "\n",
+ "#(i)Assuming ideal gas behaviour\n",
+ "#From equation 10.3 (page no 189)\n",
+ "W = (y/(y-1))*(P1*1.03*10**4*V1)*(1-(P2/P1)**((y-1)/y));#work in m Kgf/min\n",
+ "W1 = W/4500.0;\n",
+ "print \"i)The horsepower required is %f hp\"%(W1);\n",
+ "\n",
+ "#(ii)Umath.sing the given data for CO2\n",
+ "#From equation 10.2 (page no 189)\n",
+ "W = -(H2 - H1);#work in Kcal/Kg\n",
+ "M = V1/v1;#Mass rate of gas in Kg/min\n",
+ "W1 = W*M*(427/4500.0);\n",
+ "print \" ii)Compressor work is %f hp\"%(W1);\n",
+ "#end\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "i)The horsepower required is -18.779590 hp\n",
+ " ii)Compressor work is -18.746341 hp\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.2 Page No : 171"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "P1 = 1.0;#Initial pressure in atm\n",
+ "P2 = 29.0;#Final pressure in atm\n",
+ "C = 0.05;#Clearance\n",
+ "y = 1.4;#gamma of air\n",
+ "\n",
+ "#To calculate the volumetric efficiency and the maximum possible pressure that can be attained in a math.single stage\n",
+ "#(i)Calulation of volumetric efficiency\n",
+ "#From equation 10.11 (page no 194)\n",
+ "V_E = 1+C-C*(P2/P1)**(1/y);\n",
+ "print \"i)Volumetric efficiency is %f percent\"%(V_E*100);\n",
+ "\n",
+ "#(ii)Calculation of maximum pressure \n",
+ "V_E = 0;#Minimum efficiency\n",
+ "P2 = P1*(((1+C-V_E)/C)**y);\n",
+ "print \" ii)The maximum possible pressure attained is %f atm\"%(P2);\n",
+ "#end\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "i)Volumetric efficiency is 49.596143 percent\n",
+ " ii)The maximum possible pressure attained is 70.975263 atm\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.3 Page No : 174"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "V_d = 5.15;#print lacement volume in cubic meter/min\n",
+ "P1 = 1.0;#initial pressure in Kgf/sq cm\n",
+ "P2 = 8.5;#final pressure in Kgf/sq cm\n",
+ "C = 0.06;#Clearance\n",
+ "M_E = 0.8;#Mechenical efficiency\n",
+ "y = 1.31;#gamma\n",
+ "\n",
+ "#To calculate the capacity and the actual horse power of the compressor\n",
+ "v1 = V_d*(1+C-(C*((P2/P1)**(1/y))));\n",
+ "print \"The capacity of the copressor is %f cubic meter/min\"%(v1);\n",
+ "#From equation 10.6 (page no 192)\n",
+ "W = (y/(y-1))*(P1*1*10**4*v1)*(1-(P2/P1)**((y-1)/y));#work in Kgf/min\n",
+ "W1 = W/4500.0;#work in hp\n",
+ "W2 = W1/M_E;\n",
+ "print \" The actual horse power of the compressor is %f hp\"%(W2);\n",
+ "#end\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The capacity of the copressor is 3.876154 cubic meter/min\n",
+ " The actual horse power of the compressor is -30.000346 hp\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.4 Page No : 177"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "P1 = 1.0;#Initial pressure in Kgf/sq cm\n",
+ "Pn = 13.0;#Final pressure in Kgf/sq cm\n",
+ "V1 =27.0;#flow rate of gas in cubic meter/min\n",
+ "y = 1.6;#gamma of the gas\n",
+ "n = [1.0,2.0,3.0,4.0,7.0,10.0];#number of stages\n",
+ "print \"No of stages Horse power in hp\";\n",
+ "#To Calculate the theoretical horse power required\n",
+ "W = []\n",
+ "for i in range(0,6):\n",
+ " W.append(n[i]*(y/(y-1))*((P1*10**4)/4500)*V1*(1-(Pn/P1)**((y-1)/(n[i]*y))));\n",
+ " print \" %d\"%(n[i]),\n",
+ " print \" %f\"%(-1*W[i])\n",
+ "#end\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "No of stages Horse power in hp\n",
+ " 1 258.647729\n",
+ " 2 197.623943\n",
+ " 3 181.430407\n",
+ " 4 173.977056\n",
+ " 7 164.971690\n",
+ " 10 161.541416\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.5 Page No : 180"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "P1 = 1.0;#Initial pressure in Kgf/sq cm\n",
+ "P4 = 200.0;#Final pressure in Kgf/sq cm\n",
+ "n = 4.0;#no of stages\n",
+ "\n",
+ "#To find out the presure between stages\n",
+ "r = (P4/P1)**(1/n);#Compression ratio\n",
+ "P2 = r*P1;\n",
+ "print \"The pressure after 1st stage is %f Kgf/sq cm\"%(P2);\n",
+ "P3 = r*P2;\n",
+ "print \" The pressure after 2nd stage is %f Kgf/sq cm\"%(P3);\n",
+ "P4 = r*P3;\n",
+ "print \" The pressure after 3rd stage is %f Kgf/sq cm\"%(P4);\n",
+ "#end\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The pressure after 1st stage is 3.760603 Kgf/sq cm\n",
+ " The pressure after 2nd stage is 14.142136 Kgf/sq cm\n",
+ " The pressure after 3rd stage is 53.182959 Kgf/sq cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file