summaryrefslogtreecommitdiff
path: root/Chemical_Engineering_Thermodynamics/ch5.ipynb
diff options
context:
space:
mode:
authornice2014-08-27 16:12:51 +0530
committernice2014-08-27 16:12:51 +0530
commit238d7e632aecde748a97437c2b5774e136a3b4da (patch)
treea05d96f81cf72dc03ceec32af934961cf4ccf7dd /Chemical_Engineering_Thermodynamics/ch5.ipynb
parent7e82f054d405211e1e8760524da8ad7c9fd75286 (diff)
downloadPython-Textbook-Companions-238d7e632aecde748a97437c2b5774e136a3b4da.tar.gz
Python-Textbook-Companions-238d7e632aecde748a97437c2b5774e136a3b4da.tar.bz2
Python-Textbook-Companions-238d7e632aecde748a97437c2b5774e136a3b4da.zip
adding book
Diffstat (limited to 'Chemical_Engineering_Thermodynamics/ch5.ipynb')
-rwxr-xr-xChemical_Engineering_Thermodynamics/ch5.ipynb974
1 files changed, 974 insertions, 0 deletions
diff --git a/Chemical_Engineering_Thermodynamics/ch5.ipynb b/Chemical_Engineering_Thermodynamics/ch5.ipynb
new file mode 100755
index 00000000..9cf5b1c8
--- /dev/null
+++ b/Chemical_Engineering_Thermodynamics/ch5.ipynb
@@ -0,0 +1,974 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 5 : Second law of thermodynamics and its applications"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.2 Page No : 161"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math \n",
+ "\n",
+ "# Variables\n",
+ "Q = 1000.;\t\t \t #amount of energy absorbed by the heat engine in kJ/s\n",
+ "W = 650.;\t\t\t #work delivered by the heat engine in kW\n",
+ "T_source = 500. \t\t #temperature of the source in degree celsius\n",
+ "T_sink = 25.\t\t\t #temperature of the sink in degree celsius\n",
+ "\n",
+ "# Calculations\n",
+ "n_claimed = W/Q\n",
+ "T1 = T_source+273.15\n",
+ "T2 = T_sink+273.15\n",
+ "n_carnot = 1-(T2/T1)\n",
+ "\n",
+ "# Results\n",
+ "print \" The efficiency of the Carnot engine = %0.3f \"%(n_carnot);\n",
+ "print \" The efficiency of the engine claimed by the inventor = %0.2f \"%(n_claimed);\n",
+ "if n_claimed<n_carnot:\n",
+ " print \" The claimed heat engine is theoretically feasible as the efficiency of the engine is lesser than that of a Carnot engine\";\n",
+ "else:\n",
+ " print \" The claimed heat engine is not theoretically feasible as the efficiency of the engine is greater than that of a Carnot engine\";\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The efficiency of the Carnot engine = 0.614 \n",
+ " The efficiency of the engine claimed by the inventor = 0.65 \n",
+ " The claimed heat engine is not theoretically feasible as the efficiency of the engine is greater than that of a Carnot engine\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.3 Page No : 165"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "T_source_summer = 42; #temperature in the summer months in degree celsius\n",
+ "T_sink_winter = 0;\t #temperature in the winter months in degree celius\n",
+ "T_amb = 25;\t\t\t #temperature at which the house is to be maintained during both the months in degree celsius\n",
+ "energy_loss = 0.5;\n",
+ "\n",
+ "# Calculations\n",
+ "T_H_summer = T_source_summer+273.15\n",
+ "T_L_summer = T_amb+273.15\n",
+ "T_H_winter = T_amb+273.15\n",
+ "T_L_winter = T_sink_winter+273.15\n",
+ "W_summer = (energy_loss*((T_H_summer-T_L_summer)**2))/(T_L_summer)\n",
+ "W_winter = (energy_loss*((T_H_winter-T_L_winter)**2))/(T_H_winter)\n",
+ "\n",
+ "# Results\n",
+ "print \" The minimum power required to operate the device in summer = %.4f kW \"%(W_summer);\n",
+ "print \" The minimum power required to operate the device in winter = %f kW \"%(W_winter);\n",
+ "\n",
+ "# Note: Answer in book is wrong. Please calculated manually."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The minimum power required to operate the device in summer = 0.4847 kW \n",
+ " The minimum power required to operate the device in winter = 1.048130 kW \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.4 Page No : 166"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "T_L = 4.25 \t\t\t #normal boiling point of helium in K\n",
+ "Q_L = 0.083\t\t\t #latent heat of vaporization of helium in kJ/mol\n",
+ "n = 1. \t\t\t #amount of liquid helium to be produced in kmol\n",
+ "T_amb = 42.\t\t\t #ambient temperature in summer in degree celsius\n",
+ "\n",
+ "# Calculations\n",
+ "T_H = T_amb+273.15\n",
+ "COP = (T_L)/(T_H-T_L)\n",
+ "W = (Q_L)/COP;\t\t\n",
+ "\n",
+ "# Results\n",
+ "print \" The maximum possible COP of the unit = %0.4f \"%(COP);\n",
+ "print \" The minimum amount of work to be done on the refrigerating unit = %f kJ \"%(W);\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The maximum possible COP of the unit = 0.0137 \n",
+ " The minimum amount of work to be done on the refrigerating unit = 6.071694 kJ \n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.5 Page No : 166"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "T_ice = 0.;\t\t \t #temperature of the ice to be produced in degree celsius\n",
+ "m = 5000.;\t\t\t #rate at which ice is to be produced in kg/hour\n",
+ "T_water = 0.;\t \t\t #temperature of water used to produce ice in degree celsius\n",
+ "T_amb = 40.;\t\t \t #ambient temperature in degree celsius\n",
+ "T_source = 100.;\t\t\t #temperature of the source for operating heat engine in degree celsius\n",
+ "lambda_fusion = 6.002;\t\t\t #latent heat of fusion of water in kJ/mol at 0 degree celsius\n",
+ "molar_mass = 18*10**-3;\t\t\t #molar mass of water in kg/mol\n",
+ "\n",
+ "# Calculations\n",
+ "T_L = T_water+273.15\n",
+ "T_H = T_amb+273.15\n",
+ "COP = (T_L)/(T_H-T_L)\n",
+ "Q_L = ((m/3600)/molar_mass)*(lambda_fusion)\n",
+ "W = (Q_L)/(COP);\t\t\t \n",
+ "T1 = T_source+273.15;\t\t\n",
+ "T2 = T_amb+273.15\n",
+ "n_heatengine = (T1-T2)/T1\n",
+ "Q1 = W/n_heatengine;\t\n",
+ "energy_ratio = (Q1+Q_L)/Q_L;\n",
+ "\n",
+ "# Results\n",
+ "print \" The minimum power required to operate the refrigerator = %0.2f kW\"%(W);\n",
+ "print \" The maximum possible efficiency of the heat engine = %0.4f \"%(n_heatengine);\n",
+ "print \" Ratio of the energy rejected to the ambient atmosphere to the\\\n",
+ " energy absorbed from the water = %0.4f \"%(energy_ratio);\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The minimum power required to operate the refrigerator = 67.82 kW\n",
+ " The maximum possible efficiency of the heat engine = 0.1608 \n",
+ " Ratio of the energy rejected to the ambient atmosphere to the energy absorbed from the water = 1.9107 \n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.6 Page No : 169"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "T1 = 800.\t\t\t #temperature of reservoir 1 in K\n",
+ "T2 = 400.\t\t\t #temperature of reservoir 2 in K\n",
+ "Q1 = 1000.\t\t\t #energy absorbed from reservoir maintained at T1 in kJ\n",
+ "Q2 = 400.\t\t\t #energy absorbed from reservoir maintained at T2 in kJ\n",
+ "W = 1000.\t\t\t #work delivered by the heat engine in kJ\n",
+ "T3 = 300.\t\t\t #temperature of the sink in K\n",
+ "\n",
+ "# Calculations\n",
+ "Q3 = (Q1+Q2)-W\n",
+ "clausius_inequality = (Q1/T1)+(Q2/T2)-(Q3/T3)\n",
+ "\n",
+ "# Results\n",
+ "print \" The LHS of the Clausius inequality = %0.4f \"%(clausius_inequality);\n",
+ "if clausius_inequality<0 or clausius_inequality == 0:\n",
+ " print \" The given process does not violate the second law of thermodynamics, therefore the claim is correct\"\n",
+ "else:\n",
+ " print \" This is a violation of the second law of thermodynamics, and hence the claim cannot be justified\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The LHS of the Clausius inequality = 0.9167 \n",
+ " This is a violation of the second law of thermodynamics, and hence the claim cannot be justified\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.7 Page No : 172"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "T_system = 200.;\t\t\t #temperature of the contents of reactor in degree celsius\n",
+ "t = 15. \t\t\t #operation time of agitator in minutes\n",
+ "P = 750. \t \t\t #power of the operating motor in W\n",
+ "\n",
+ "# Calculations\n",
+ "dQ = P*t*60*10**-3\n",
+ "T = T_system+273.15\n",
+ "del_S = dQ/T;\t\t\n",
+ "\n",
+ "# Results\n",
+ "print \" The change in the entropy of the reactor contents = %0.4f kJ/K \"%(del_S);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The change in the entropy of the reactor contents = 1.4266 kJ/K \n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.8 Page No : 172"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "\n",
+ "# Variables\n",
+ "P = 0.101325;\t\t\t #pressure in the piston cylinder assembly in MPa\n",
+ "T1 = 300.;\t\t\t #temperature of the piston cylinder assembly in K\n",
+ "T2 = 400;\t\t\t #final temperature of the piston cylinder assembly in K\n",
+ "a = 45.369;\t\t\t #coefficients to compute isobaric molar heat capacity of CO2(g) in J/molK\n",
+ "b = 8.688*10**-3;\t\t\t #coefficients to compute isobaric molar heat capacity of CO2(g) in J/molK\n",
+ "e = 9.619*10**5;\t\t\t #coefficients to compute isobaric molar heat capacity of CO2(g) in J/molK\n",
+ "\n",
+ "# Calculations\n",
+ "del_S = (a*math.log(T2/T1))+(b*(T2-T1))+((e)*((1./T2**2)-(1./T1**2)))\n",
+ "\n",
+ "# Results\n",
+ "print \" The change in entropy of CO2 = %.4f J/molK\"%(del_S);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The change in entropy of CO2 = 9.2447 J/molK\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.9 Page No : 173"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "m = 1. \t\t\t #amount of saturated liquid water in kg\n",
+ "T_initial = 100.\t\t #initial temperature of water in degree celsius\n",
+ "T_body = 500.\t\t\t #temperature of body which is brought into contact with the cylinder in degree celsius\n",
+ "hfg = 2256.94\t\t\t #enthalpy of vaporization taken from steam tables corresponding to T1 in kJ/kg\n",
+ "\n",
+ "# Calculations\n",
+ "T = T_initial+273.15\n",
+ "del_S = hfg/T;\t\t\n",
+ "\n",
+ "# Results\n",
+ "print \" The change in entropy of water = %0.4f kJ/kgK\"%(del_S);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The change in entropy of water = 6.0483 kJ/kgK\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.10 Page No : 173"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "m_steel = 10. \t\t\t #mass of steel casting in kg\n",
+ "T_steel = 800.\t \t\t #temperature of steel casting in degree celsius\n",
+ "m_water = 100.\t\t \t #mass of water used for quenching in kg\n",
+ "T_water = 30.\t\t\t #temperature of water used for quenching in degree celsius\n",
+ "Cp_steel = 0.461;\t\t\t #heat capacity of steel in kJ/kgK\n",
+ "Cp_water = 4.23;\t\t\t #heat capacity of water in kJ/kgK\n",
+ "\n",
+ "# Calculations\n",
+ "Ti_steel = T_steel+273.15\n",
+ "Ti_water = T_water+273.15\n",
+ "T_final = ((m_steel*Cp_steel*Ti_steel)+(m_water*Cp_water*Ti_water))/((m_steel*Cp_steel)+(m_water*Cp_water));\n",
+ "del_S_steel = m_steel*Cp_steel*math.log(T_final/Ti_steel)\n",
+ "del_S_water = m_water*Cp_water*math.log(T_final/Ti_water)\n",
+ "\n",
+ "# Results\n",
+ "print \" The change in entropy of steel = %0.4f kJ/K\"%(del_S_steel);\n",
+ "print \" The change in entropy of water = %f kJ/K\"%(del_S_water);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The change in entropy of steel = -5.7031 kJ/K\n",
+ " The change in entropy of water = 11.427392 kJ/K\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.11 Page No : 175"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "V = 2.\t \t\t #volume of insulated tank in m**3\n",
+ "Ta = 400.\t\t\t #temperature of gas in compartment (a) in K\n",
+ "Pa = 3.\t\t \t #pressure of gas in compartment (a) in MPa\n",
+ "Tb = 600.\t\t\t #temperature of gas in compartment (b) in K\n",
+ "Pb = 1.\t\t\t #pressure of gas in compartment (b) in MPa\n",
+ "R = 8.314;\t\t\t #universal gas constant in J/molK\n",
+ "\n",
+ "# Calculations\n",
+ "Va = V/2\n",
+ "Vb = V/2\n",
+ "Na = (Pa*10**6*Va)/(R*Ta)\n",
+ "Nb = (Pb*10**6*Vb)/(R*Tb)\n",
+ "T = ((Na*Ta)+(Nb*Tb))/(Na+Nb)\n",
+ "N = Na+Nb;\t\t\t \n",
+ "P = ((N*R*T)/V)*10**-6\n",
+ "Cp = (5./2)*R;\t\t\t\n",
+ "del_S = ((Na*((Cp*math.log(T/Ta))-(R*math.log(P/Pa))))+(Nb*((Cp*math.log(T/Tb))-(R*math.log(P/Pb)))))*10**-3; # Calculations of the change in entropy using Eq.(5.43) in kJ/K\n",
+ "\n",
+ "# Results\n",
+ "print \" Entropy change of the gas = %0.2f kJ/K\"%(del_S);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Entropy change of the gas = 2.19 kJ/K\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.12 Page No : 177"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "# Variables\n",
+ "N = 1.\t \t\t #amount of air to be separated into its components in kmol\n",
+ "P = 0.1\t\t \t #pressure of air in MPa\n",
+ "T = 300.\t\t\t #temperature of air in K\n",
+ "per_oxygen = 21.\t\t\t #percentage of oxygen in air\n",
+ "per_nitrogen = 79.\t\t\t #percentage of nitrogen in air\n",
+ "R = 8.314;\t\t\t #universal gas constant in J/molK\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "x1 = per_nitrogen/100\n",
+ "x2 = per_oxygen/100;\n",
+ "W = (T*N*10**3*R*((x1*math.log (x1))+(x2*math.log (x2))))*10**-3\n",
+ "\n",
+ "# Results\n",
+ "print \" Minimum work to be done to separate 1kmol of air at 0.1MPa and 300K into pure oxygen\\\n",
+ " and nitrogen at the same temperature and pressure = %0.2f kJ\"%(abs(W));"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Minimum work to be done to separate 1kmol of air at 0.1MPa and 300K into pure oxygen and nitrogen at the same temperature and pressure = 1281.91 kJ\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.13 Page No : 179"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "# Variables\n",
+ "m_ice = 10.\t \t\t #mass of the block of ice in kg\n",
+ "T_ice = 0.\t\t \t #temperature of the ice in degree celsius\n",
+ "m_water = 100.\t\t\t #mass of watre in the tank in kg\n",
+ "T_water = 30.\t\t\t #temperature of the water in the tank in degree celsius\n",
+ "Cp = 4.23;\t\t\t #heat capacity of water in kJ/kgK\n",
+ "lambda_melting = 333.44\t\t\t #latent heat of melting of ice in kJ/kg\n",
+ "\n",
+ "# Calculations\n",
+ "Ti_ice = T_ice+273.15\n",
+ "Ti_water = T_water+273.15\n",
+ "T_final = ((m_water*Cp*Ti_water)+(m_ice*Cp*Ti_ice)-(m_ice*lambda_melting))/((m_ice*Cp)+(m_water*Cp))\n",
+ "del_S_ice = ((m_ice*lambda_melting)/(Ti_ice))+(m_ice*Cp*math.log (T_final/Ti_ice));\t\t\t \n",
+ "del_S_water = m_water*Cp*math.log (T_final/Ti_water)\n",
+ "del_S_G = del_S_ice+del_S_water;\t\t\t \n",
+ "\n",
+ "# Results\n",
+ "print \" The change in entropy of ice = %f kJ/K\"%(del_S_ice);\n",
+ "print \" The change in entropy of water = %f kJ/K\"%(del_S_water);\n",
+ "print \" The entropy generated = %f kJ/K\"%(del_S_G);\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The change in entropy of ice = 15.211650 kJ/K\n",
+ " The change in entropy of water = -14.035033 kJ/K\n",
+ " The entropy generated = 1.176617 kJ/K\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.14 Page No : 182"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "P = 3.\t\t\t #pressure of superheated steam in MPa\n",
+ "T_enter = 300.\t\t\t #entrance temperature of superheated steam in degree celsius\n",
+ "T_exit = 45.\t\t\t #final temperature at which the steam leaves in degree celsisus\n",
+ "m = 1. \t\t\t #mass flow rate of steam in kg/s\n",
+ "\n",
+ "# Calculations\n",
+ "\n",
+ "si = 6.5422\n",
+ "hi = 2995.1\n",
+ "sf = 0.6383\n",
+ "hf = 188.35\n",
+ "sg = 8.1661;\t\t\t #entropy of saturated vapour in kJ/kgK\n",
+ "hg = 2583.3;\t\t\t #entahlpy of saturayed vapour in kJ/kg\n",
+ "\n",
+ "Xe = (si-sf)/(sg-sf)\n",
+ "he = ((1-Xe)*hf)+(Xe*hg)\n",
+ "Ws = -m*(he-hi);\t\t\n",
+ "\n",
+ "# Results\n",
+ "print \" The power Results from the turbine = %0.1f kW\"%(Ws);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The power Results from the turbine = 928.4 kW\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.15 Page No : 183"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "# Variables\n",
+ "Pi = 3.\t\t\t #pressure of dry saturated steam when it enters the nozzle in bar\n",
+ "Pe = 2.\t\t\t #pressure of dry saturated steam at the exit in bar\n",
+ "\n",
+ "# Calculations\n",
+ "#From steam tables corresponding to Pi\n",
+ "si = 6.9909;\t\t\t #entropy of steam at the entrance in kJ/kgK\n",
+ "hi = 2724.7;\t\t\t #entahlpy of steam at the entrance in kJ/kg\n",
+ "\n",
+ "#From steam tables corresponding to Pe\n",
+ "sf = 1.5301;\t\t\t #entropy of saturated liquid in kJ/kgK\n",
+ "hf = 504.70;\t\t\t #enthalpy of saturated liquid in kJ/kg\n",
+ "sg = 7.1268;\t\t\t #entropy of saturated vapour in kJ/kgK\n",
+ "hg = 2706.3;\t\t\t #entahlpy of saturayed vapour in kJ/kg\n",
+ "\n",
+ "se = 6.9909\n",
+ "Xe = (se-sf)/(sg-sf)\n",
+ "he = ((1-Xe)*hf)+(Xe*hg)\n",
+ "Ve = math.sqrt (2*(hi-he)*10**3)\n",
+ "\n",
+ "# Results\n",
+ "print \" The exit velocity of steam = %f m/s\"%(Ve);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The exit velocity of steam = 379.103198 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.16 Page No : 183"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "# Variables\n",
+ "N_glycerol = 100.\t\t\t #molar flow rate of glycerol in mol/s\n",
+ "Ti_gly = 227.\t\t\t #inlet temperature of glycerol in degree celsius\n",
+ "Te_gly = 40.\t\t\t #outlet temperature of glycerol in degree celsius\n",
+ "Ti_water = 25.\t\t\t #inlet temperature of cooling water in degree celsius\n",
+ "Te_water = 50.\t\t\t #outlet temperature of cooling water in degree celsius\n",
+ "Cp_gly = 280.\t\t\t #heat capacity of glycerol in J/molK\n",
+ "Cp_water = 77.\t\t\t #heat capacity of water in J/molK\n",
+ "\n",
+ "# Calculations\n",
+ "Ti_gly = Ti_gly+273.15\n",
+ "Te_gly = Te_gly+273.15\n",
+ "Ti_water = Ti_water+273.15\n",
+ "Te_water = Te_water+273.15\n",
+ "\n",
+ "N_water = -(N_glycerol*Cp_gly*(Te_gly-Ti_gly))/(Cp_water*(Te_water-Ti_water));\n",
+ "del_S_gly = N_glycerol*Cp_gly*math.log (Te_gly/Ti_gly)*10**-3\n",
+ "del_S_water = N_water*Cp_water*math.log (Te_water/Ti_water)*10**-3\n",
+ "S_G = del_S_gly+del_S_water\n",
+ "\n",
+ "# Results\n",
+ "print \" The rate at which entropy is generated in the heat exchanger = %0.3f kJ/K s\"%(S_G);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The rate at which entropy is generated in the heat exchanger = 3.754 kJ/K s\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.17 Page No : 183"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "T_i = 150.\t\t\t #temperature of saturated steam taken up by the device in degree celsius\n",
+ "T_e = 200.\t\t\t #temperature of superheated steam delivered by the device in degree celsius\n",
+ "P_e = 0.2\t\t\t #pressure of superheated steam delivered by the device in MPa\n",
+ "me2 = 0.949\t\t\t #mass of superheated steam leaving the device in kg\n",
+ "me1 = 0.051\t\t\t #mass of saturated liquid leaving the device in kg\n",
+ "T_liq = 100.\t\t #temperature of saturated liquid leaving the device in degree celsius\n",
+ "mi = 1. \t\t #mass of saturated steam fed to the device in kg\n",
+ "\n",
+ "# Calculations\n",
+ "#From steam tables corresponding to T_i\n",
+ "hi = 2745.4 \t\t\t #enthalpy of saturated vapour in kJ/kg\n",
+ "si = 6.8358;\t\t\t #entropy of saturated vapour in kJ/kgK\n",
+ "\n",
+ "#For saturated liquid at T_liq\n",
+ "he1 = 419.06;\t\t\t #enthalpy of saturated liquid in kJ/kg\n",
+ "se1 = 1.3069;\t\t\t #entropy of saturated vapour in kJ/kgK\n",
+ "\n",
+ "#For superheated steam at P_e and T_e\n",
+ "he2 = 2870.5;\t\t\t #enthalpy of superheated steam in kJ/kg\n",
+ "se2 = 7.5072;\t\t\t #entropy of superheated steam in kJ/kgK\n",
+ "\n",
+ "LHS = mi*hi;\n",
+ "RHS = (me1*he1)+(me2*he2);\n",
+ "\n",
+ "S_G = (me1*se1)+(me2*se2)-(mi*si);\n",
+ "\n",
+ "# Results\n",
+ "print \" The LHS of the equation applied to the flow device to check if the first law of thermodynamics is satisfied = %0.1f kJ\"%(LHS);\n",
+ "print \" The RHS of the equation applied to the flow device to check if the first law of thermodynamics is satisfied = %0.1f kJ\"%(RHS);\n",
+ "print \" The entropy generated by applying the second law of thermodynamics to the flow device = %0.4f kJ/kgK\"%(S_G);\n",
+ "if int(LHS) == int(RHS) and S_G>0 or S_G == 0 :\n",
+ " print \" As the first and second law of thermodynamics are satisfied, the device is theoretically feasible \"\n",
+ "else:\n",
+ " print \" As both the first and second law or either the first or second law of thermodynamics \\\n",
+ " are not satisfied, the device is not feasible \"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The LHS of the equation applied to the flow device to check if the first law of thermodynamics is satisfied = 2745.4 kJ\n",
+ " The RHS of the equation applied to the flow device to check if the first law of thermodynamics is satisfied = 2745.5 kJ\n",
+ " The entropy generated by applying the second law of thermodynamics to the flow device = 0.3552 kJ/kgK\n",
+ " As the first and second law of thermodynamics are satisfied, the device is theoretically feasible \n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.18 Page No : 185"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "Pi = 30.\t\t\t #pressure of superheated steam entering the turbine in bar\n",
+ "Ti = 300.\t\t\t #temperature of superheated steam entering the turbine in degree celsius\n",
+ "Pe = 0.1\t\t\t #pressure at which steam exits the turbine in bar\n",
+ "Xe = 0.9\t\t\t #quality of steam at the exit (no unit)(for the actual turbine)\n",
+ "\n",
+ "# Calculations\n",
+ "#For superheated steam at Pi and Ti\n",
+ "hi = 2995.1;\t\t\t #enthalpy of superheated steam at the entrance in kJ/kg\n",
+ "si = 6.5422;\t\t\t #entropy of superheated steam at the entrance in kJ/kgK\n",
+ "\n",
+ "#For steam at Pe\n",
+ "hf = 191.83;\t\t\t #enthalpy of saturated liquid in kJ/kg\n",
+ "hg = 2584.8;\t\t\t #enthalpy of saturated vapour in kJ/kg\n",
+ "sf = 0.6493;\t\t\t #entropy of saturated liquid in kJ/kgK\n",
+ "sg = 8.1511;\t\t\t #entropy of saturated vapour in kJ/kgK\n",
+ "\n",
+ "X2 = (si-sf)/(sg-sf)\n",
+ "h2 = (hf*(1-X2))+(X2*hg)\n",
+ "he = (hf*(1-Xe))+(Xe*hg)\n",
+ "n_T = (hi-he)/(hi-h2)\n",
+ "\n",
+ "# Results\n",
+ "print \" The isentropic efficiency of the turbine = %f \"%(n_T);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The isentropic efficiency of the turbine = 0.703395 \n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.19 Page No : 186"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "Ti = 25.\t\t\t #temperature of air taken in by the adiabatic air compressor in degree celsius\n",
+ "Pi = 0.1\t\t\t #pressure of air taken in by the adiabatic air compressor in MPa\n",
+ "Pe = 1.\t \t\t #discharge pressure of air in MPa\n",
+ "n_c = 0.8\t\t\t #isentropic efficiency of the compressor (no unit)\n",
+ "gaamma = 1.4\t\t #ratio of molar specific heat capacities (no unit)\n",
+ "R = 8.314\t\t\t #universal gas constant in J/molK\n",
+ "\n",
+ "# Calculations\n",
+ "Ti = Ti+273.15\n",
+ "Te = Ti*(((Pe*10**6)/(Pi*10**6))**((gaamma-1)/gaamma))\n",
+ "W_s = (((R*gaamma)/(gaamma-1))*(Te-Ti))*10**-3;\t\t\t\n",
+ "Ws = W_s/n_c\n",
+ "Te_actual = ((Ws*10**3*(gaamma-1))/(R*gaamma))+Ti\n",
+ "\n",
+ "# Results\n",
+ "print \" The exit temperature of air = %0.2f K\"%(Te_actual);\n",
+ "print \" The power consumed by the compressor = %f kW/mol\"%(Ws);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The exit temperature of air = 645.01 K\n",
+ " The power consumed by the compressor = 10.093262 kW/mol\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.20 Page No : 187"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "Ti = 30.\t\t\t #temperature of saturated liquid water in degree celsius\n",
+ "m = 500.\t\t\t #mass flow rate of water being pumped in kg/s\n",
+ "P2 = 3. \t\t\t #preesure maintained in the boiler in MPa\n",
+ "n_p = 0.75;\t\t\t #isentropic efficiency of the pump (no unit)\n",
+ "\n",
+ "# Calculations\n",
+ "#For saturated liquid water at Ti\n",
+ "vf = 0.0010043\n",
+ "P1 = 4.241;\t\t\n",
+ "\n",
+ "Ws_m = (vf*((P2*10**6)-(P1*10**3)))*10**-3\n",
+ "Ws_act_m = Ws_m/n_p;\t\t\t \n",
+ "P = ((Ws_act_m*10**3)*m)*10**-6;\n",
+ "\n",
+ "# Results\n",
+ "print \" The power consumed by the pump = %d MW\"%(P);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The power consumed by the pump = 2 MW\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.21 Page No : 188"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "# Variables\n",
+ "Pi = 3.\t\t\t #pressure of dry saturated steam entering the nozzle in bar\n",
+ "Xe = 0.98\t\t #quality of steam exiting the nozzle (no unit)\n",
+ "Pe = 2.\t\t\t #pressure of steam exiting the nozzle in bar\n",
+ "\n",
+ "# Calculations\n",
+ "#For steam at Pi\n",
+ "hi = 2724.7\n",
+ "he = 2652.8\n",
+ "V2_2_s = hi-he\n",
+ "\n",
+ "#For steam at Pe\n",
+ "hf = 504.70\n",
+ "hg = 2706.3\n",
+ "he_act = ((1-Xe)*hf)+(Xe*hg)\n",
+ "V2_2 = hi-he_act;\t\t\t\n",
+ "n_N = (V2_2)/(V2_2_s)\t\t\n",
+ "\n",
+ "# Results\n",
+ "print \" The isentropic efficiency of the nozzle = %0.3f \"%(n_N);\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The isentropic efficiency of the nozzle = 0.868 \n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file