summaryrefslogtreecommitdiff
path: root/BASIC_ELECTRICAL_ENGINEERING_by_D_C_KULSHRESHTHA/Chapter4.ipynb
diff options
context:
space:
mode:
authorkinitrupti2017-05-12 18:53:46 +0530
committerkinitrupti2017-05-12 18:53:46 +0530
commit6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d (patch)
tree22789c9dbe468dae6697dcd12d8e97de4bcf94a2 /BASIC_ELECTRICAL_ENGINEERING_by_D_C_KULSHRESHTHA/Chapter4.ipynb
parentd36fc3b8f88cc3108ffff6151e376b619b9abb01 (diff)
downloadPython-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.tar.gz
Python-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.tar.bz2
Python-Textbook-Companions-6279fa19ac6e2a4087df2e6fe985430ecc2c2d5d.zip
Removed duplicates
Diffstat (limited to 'BASIC_ELECTRICAL_ENGINEERING_by_D_C_KULSHRESHTHA/Chapter4.ipynb')
-rwxr-xr-xBASIC_ELECTRICAL_ENGINEERING_by_D_C_KULSHRESHTHA/Chapter4.ipynb1106
1 files changed, 1106 insertions, 0 deletions
diff --git a/BASIC_ELECTRICAL_ENGINEERING_by_D_C_KULSHRESHTHA/Chapter4.ipynb b/BASIC_ELECTRICAL_ENGINEERING_by_D_C_KULSHRESHTHA/Chapter4.ipynb
new file mode 100755
index 00000000..04c5c889
--- /dev/null
+++ b/BASIC_ELECTRICAL_ENGINEERING_by_D_C_KULSHRESHTHA/Chapter4.ipynb
@@ -0,0 +1,1106 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:3cfae8c34ec0891b928806727193cd8cb859809240d182673d6b8dcfad3eeded"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 4: NETWORK THEOREMS"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.1,Page number: 105"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Question:\n",
+ "\"\"\"Finding the current I in the circuit using superposition theorem.\"\"\"\n",
+ "\n",
+ "#Calculations:\n",
+ "I1=-0.5*(0.3/(0.1+0.3))\n",
+ "I2=80e-03/(0.1+0.3)\n",
+ "I=I1+I2\n",
+ "\n",
+ "\n",
+ "#Result:\n",
+ "print \"The current I in the circuit is %.3f A.\" %(I)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The current I in the circuit is -0.175 A.\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.2,Page number: 106"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Question:\n",
+ "\"\"\"Finding current I_x in the network using superposition theorem.\"\"\"\n",
+ "\n",
+ "#Calculations:\n",
+ "I1=10.0/(50+150)\n",
+ "I2=40*(150.0/(50+150))\n",
+ "I3=-120*(50.0/(150+50))\n",
+ "Ix=I1+I2+I3\n",
+ "\n",
+ "\n",
+ "#Result:\n",
+ "print \"The current Ix determined using superposition principle is %.2f A.\" %(Ix)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The current Ix determined using superposition principle is 0.05 A.\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.3,Page number: 106"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Question:\n",
+ "\"\"\"Finding the voltage across resistor by applying the principle of superposition.\"\"\"\n",
+ "\n",
+ "#Calculations:\n",
+ "i=4.0*(1.0/(1.0+(2+3)))\n",
+ "R=3.0\n",
+ "v_4=i*R\n",
+ "v_5=(-5*(1.0/(1+(2+3))))*R\n",
+ "v_6=6.0*(3.0/(1+2+3))\n",
+ "v=+v_4+v_5+v_6\n",
+ "\n",
+ "\n",
+ "#Result:\n",
+ "print \"The total voltage(v) across the 3 ohm resistor is %.2f V.\" %(v)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The total voltage(v) across the 3 ohm resistor is 2.50 V.\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.4,Page number: 108 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Question:\n",
+ "\"\"\"Finding the value of I_s to reduce the voltage across the 4-ohm resistor to zero. \"\"\"\n",
+ "\n",
+ "#Variable Declaration:\n",
+ "V_source=10.0 #Voltage of the source(in Volts) \n",
+ "\n",
+ "\n",
+ "#Calculations:\n",
+ "I1=V_source/(2+4+6)\n",
+ "\n",
+ "\"\"\" I2(from top to bottom in the 4 ohm resistor) = -Is*((2+6)/(2+6+4)) = -(2/3)*Is ;\n",
+ " \n",
+ " The voltage across the 4 ohm resistor can be zero,only if the current through this resistor is zero. \n",
+ " \n",
+ " I1+I2=0; \"\"\"\n",
+ "\n",
+ "Is=I1*(3.0/2)\n",
+ "\n",
+ "\n",
+ "#Result:\n",
+ "print \"The current Is to reduce the voltage across the 4 ohm resistor to zero is %.2f A.\" %(Is) "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The current Is to reduce the voltage across the 4 ohm resistor to zero is 1.25 A.\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.5,Page number: 110"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Question: \n",
+ "\"\"\"Finding the voltage across the load resistor using Thevenin's theorem.\"\"\"\n",
+ "\n",
+ "#Calculations:\n",
+ "I1=(50.0-10.0)/(10+10+20)\n",
+ "I2=1.5*(10.0/(10.0+(10+20)))\n",
+ "I=I1+I2\n",
+ "V_Th=I*20\n",
+ "R_Th=1.0/((1.0/20)+(1.0/(10+10)))\n",
+ "R_L=5.0\n",
+ "V_L=V_Th*(R_L/(R_L+R_Th))\n",
+ "\n",
+ "\n",
+ "#Result:\n",
+ "print \"The voltage across the load resistor R_L is %.2f V.\" %(V_L)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The voltage across the load resistor R_L is 9.17 V.\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.6,Page number: 111"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Question:\n",
+ "\"\"\"Finding the voltage across the resistor by applying Thevenin's theorem.\"\"\"\n",
+ "\n",
+ "#Calculations:\n",
+ "V_Th=5.0*1.0\n",
+ "R_Th=3.0\n",
+ "R_L=3.0\n",
+ "V_L=V_Th*(R_L/(R_L+R_Th))\n",
+ "\n",
+ "\n",
+ "#Result:\n",
+ "print \"The voltage across the resistor by applying Thevenin's Theorem is %.2f V.\" %(V_L)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The voltage across the resistor by applying Thevenin's Theorem is 2.50 V.\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.7,Page number: 113"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Question:\n",
+ "\"\"\"Finding Norton's equivalent circuit with respect to terminals AB.\"\"\"\n",
+ "\n",
+ "#Calculations:\n",
+ "I1=10.0/5\n",
+ "I2=5.0/10\n",
+ "I_N=I1+I2\n",
+ "R_N=1.0/((1.0/5)+(1.0/10))\n",
+ "I_L=I_N*((10.0/3)/((10.0/3)+5))\n",
+ "\n",
+ "\n",
+ "#Result:\n",
+ "print \"When terminals AB are shorted, the current I_N is %.2f A.\" %(I_N)\n",
+ "print \"The value of current that would flow through a load resistor of 5 ohm if it were connected across terminals AB is %.2f A.\" %(I_L) "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "When terminals AB are shorted, the current I_N is 2.50 A.\n",
+ "The value of current that would flow through a load resistor of 5 ohm if it were connected across terminals AB is 1.00 A.\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.8,Page number: 114 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Question:\n",
+ "\"\"\"Finding the available power from the battery.\"\"\"\n",
+ "\n",
+ "#Variable Declaration:\n",
+ "Voc=12.6 #Open-circuit voltage(in Volts)\n",
+ "Isc=300.0 #Short-circuit voltage(in Volts)\n",
+ "\n",
+ "\n",
+ "#Calculations:\n",
+ "Ro=Voc/Isc\n",
+ "P_avl=(Voc*Voc)/(4*Ro)\n",
+ "\n",
+ "\n",
+ "#Result:\n",
+ "print \"The available power from the battery is %.2f W.\" %(P_avl)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The available power from the battery is 945.00 W.\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.9,Page number: 115 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Question:\n",
+ "\"\"\"Finding the available power from the battery.\"\"\"\n",
+ "\n",
+ "#Variable Declaration:\n",
+ "no_of_cells=8 #Number of dry cells in the battery\n",
+ "emf=1.5 #EMF of each cell(in Volts)\n",
+ "int_res=0.75 #Internal resistanceof each cell(in Ohms)\n",
+ "\n",
+ "\n",
+ "#Calculations:\n",
+ "Voc=no_of_cells*emf\n",
+ "Ro=no_of_cells*int_res\n",
+ "P_avl=(Voc*Voc)/(4.0*Ro)\n",
+ "\n",
+ "\n",
+ "#Result:\n",
+ "print \"The available power from the battery is %.2f W.\" %(P_avl)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The available power from the battery is 6.00 W.\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.10,Page number: 115 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Question:\n",
+ "\"\"\"Plotting a curve showing the variation of the output power Po with the load resistance R_L.\"\"\"\n",
+ "\n",
+ "from math import sqrt\n",
+ "\n",
+ "#Variable Declaration:\n",
+ "P=25.0 #Power to be delivered to the speaker(in Watts)\n",
+ "Ro=8.0 #Resistance of the speaker(in Ohms)\n",
+ "\n",
+ "\n",
+ "#Calculations:\n",
+ "V_Th=sqrt(P*4*Ro)\n",
+ "Vo=V_Th/2.0\n",
+ "R_Th=Ro\n",
+ "R_L=0.0\n",
+ "P1=(V_Th*V_Th*R_L)/((R_Th+R_L)*(R_Th+R_L))\n",
+ "R_L=2.0\n",
+ "P2=(V_Th*V_Th*R_L)/((R_Th+R_L)*(R_Th+R_L))\n",
+ "R_L=4.0\n",
+ "P3=(V_Th*V_Th*R_L)/((R_Th+R_L)*(R_Th+R_L))\n",
+ "R_L=6.0\n",
+ "P4=(V_Th*V_Th*R_L)/((R_Th+R_L)*(R_Th+R_L))\n",
+ "R_L=8.0\n",
+ "P5=(V_Th*V_Th*R_L)/((R_Th+R_L)*(R_Th+R_L))\n",
+ "R_L=16.0\n",
+ "P6=(V_Th*V_Th*R_L)/((R_Th+R_L)*(R_Th+R_L))\n",
+ "R_L=32.0\n",
+ "P7=(V_Th*V_Th*R_L)/((R_Th+R_L)*(R_Th+R_L))\n",
+ "P8=0.0\n",
+ "\n",
+ "\n",
+ "#Result:\n",
+ "print \"(a)The voltage provided by this amplifier to to the speaker is %.2f V.\" %(Vo)\n",
+ "print \"(b)(i)If the load is a short circuit(R_L=0),the output voltage Vo would be zero and hence the output power,Po= Vo*I_L = 0*I_L =0.\"\n",
+ "print \" (ii) If the load is an open circuit(R_L=0),the load current I_L would be zero and hence the output power,Po= Vo*I_L = Vo*0 = 0.\"\n",
+ "print \"(c)(i) For R_L = 0 , Po = %.2f W. \\n (ii) For R_L = 2 Ohms, Po = %.2f W.\" %(P1,P2) \n",
+ "print \" (iii) For R_L = 4 Ohms, Po = %.2f W. \\n (iv) For R_L = 6 Ohms, Po = %.2f W.\" %(P3,P4) \n",
+ "print \" (v) For R_L = 8 Ohms, Po = %.2f W. \\n (vi) For R_L = 16 Ohms, Po = %.2f W.\" %(P5,P6) \n",
+ "print \" (vii) For R_L = 32 Ohms, Po = %.2f W. \\n (viii) For R_L = infinity, Po = %.2f W.\" %(P7,P8)\n",
+ "print \"Note: Po is the power delivered to the speaker (in Watts) and R_L is the speaker resistance(in Ohms).\" \n",
+ "\n",
+ "\n",
+ "from __future__ import division\n",
+ "from pylab import *\n",
+ "from matplotlib import *\n",
+ "import numpy as np\n",
+ "%matplotlib inline\n",
+ "\n",
+ "\n",
+ "#Variable declaration:\n",
+ "Rdata=[0.0, 2.0, 4.0, 6.0, 8.0, 16.0] #(in ohm)\n",
+ "Podata=[0, 16, 22.22, 24.49, 25, 22.22] #(in Watt)\n",
+ "\n",
+ "\n",
+ "#Calculations:\n",
+ "R=np.array(Rdata)\n",
+ "Po=np.array(Podata)\n",
+ "length=len(R)\n",
+ "Rmax=R[length-1]\n",
+ "a=polyfit(R,Po,4)\n",
+ "Rfit=[0]*100\n",
+ "Pofit=[0]*100\n",
+ "for n in range(1,100,1):\n",
+ " Rfit[n-1]=Rmax*(n-1)/100\n",
+ " Pofit[n-1]=a[0]*Rfit[n-1]**4+a[1]*Rfit[n-1]**3+a[2]*Rfit[n-1]**2+a[3]*Rfit[n-1]+a[4]\n",
+ "\n",
+ "#Plot the data and then the fit to compare (convert xfit to cm and Lfit to mH)\n",
+ "plot(Rdata,Podata,'o')\n",
+ "plot(np.array(Rfit),np.array(Pofit),'g.') \n",
+ "xlabel('R_L (in ohm) ')\n",
+ "ylabel('Po (in Watt) ')\n",
+ "title('Ouput power(Po) vs. Speaker Resistance(R_L)')\n",
+ "grid()\n",
+ "print \"\\n\\nThe required plot is shown below: \"\n",
+ "show()\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a)The voltage provided by this amplifier to to the speaker is 14.14 V.\n",
+ "(b)(i)If the load is a short circuit(R_L=0),the output voltage Vo would be zero and hence the output power,Po= Vo*I_L = 0*I_L =0.\n",
+ " (ii) If the load is an open circuit(R_L=0),the load current I_L would be zero and hence the output power,Po= Vo*I_L = Vo*0 = 0.\n",
+ "(c)(i) For R_L = 0 , Po = 0.00 W. \n",
+ " (ii) For R_L = 2 Ohms, Po = 16.00 W.\n",
+ " (iii) For R_L = 4 Ohms, Po = 22.22 W. \n",
+ " (iv) For R_L = 6 Ohms, Po = 24.49 W.\n",
+ " (v) For R_L = 8 Ohms, Po = 25.00 W. \n",
+ " (vi) For R_L = 16 Ohms, Po = 22.22 W.\n",
+ " (vii) For R_L = 32 Ohms, Po = 16.00 W. \n",
+ " (viii) For R_L = infinity, Po = 0.00 W.\n",
+ "Note: Po is the power delivered to the speaker (in Watts) and R_L is the speaker resistance(in Ohms).\n",
+ "\n",
+ "\n",
+ "The required plot is shown below: "
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEYCAYAAABV8iGRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdcE/f/B/B3GLIlzLAJooLIFHArUZwoSqXOqqBWtP4c\nVK1aW+uqFqvW2VptVXCgxdJaUVEcgFZFq0DBiVjC3oQlm9zvD75nY8oMl+QO3s/H4x4PLuPyyuW4\nz93n87nPsQiCAIQQQt2PgrwDIIQQkg8sABBCqJvCAgAhhLopLAAQQqibwgIAIYS6KSwAEEKom8IC\nAFHq888//+bAgQOrOrOMpKQkx2HDht2jKhPd+fv7B2/atGm7vHO01927d0fY2tq+lHeOjjh69OiS\nTz/9dJ+0ls/UbRYLgBYEBwf7Ozg4JGtoaLw1NjbOXbZs2Q9lZWXasvhspu0QSIWFhQanT5+et3Tp\n0h8BAGJiYngKCgpCLS2tip49e5bb2tq+DA4O9m9rOY6OjklsNrv08uXLk6UeWkRWVpaZr69vuIGB\nQSGbzS51cHBIDgkJ8ZP257JYLILFYknlghwejxejpqZWraWlVaGvr180derUP7Kyssw6s8wRI0bc\nffnypW1br9uyZcuWefPmne7MZ1Ghrq6ux44dO75Yt27dtwAAfD6fS26XWlpaFVwul799+/ZN7VkW\nl8vl37p1y1P8cXlts52FBUAz9u7du2bDhg1Be/fuXVNeXt4zLi5ucHp6uuXYsWNv1NfXK8s7H900\nNDQoATQVmpMmTbqioqJSSz5namqaXVFRoVVeXt5z165d6xcvXvzTixcv+rW1zI8++ujs0aNHl0gz\nt7h58+adtrS0TM/IyLAoKSnRPX369DwOh5Mvi88mCILV2WUIhcL//D+zWCzi+++//7+KigqtN2/e\nWNfU1KiuXr36u85+FpP88ccfU/v16/fC2Ng4V/TxsrIy7YqKCq3w8HDfXbt2rb969apXW8tqrbCW\nxzbbaQRB4CQylZWV9dTU1Ky4cOHCh6KPV1ZWahgYGBScOHFiAUEQ4OfnF/zll19uJ5+Pjo7mmZmZ\nZZLzlpaW/G+++WaDnZ3dMx0dnZIFCxacqKmpUSEIAk6ePOk/fPjwu6LLZ7FYwtTUVOujR48GKCsr\n1/Xo0aNWU1OzYsqUKX80l5PFYgkPHjy4olevXm/09fULP/vss2+FQiGLIAgQCoWs7du3f2lpack3\nNDTMnz9/fkhZWVlPgiBg/vz5IXv37l1NEARkZWWZslgs4ffff7+MIAhITU211tXVLSY/IyIiYrKT\nk1Mim80WDB069F5SUpKD6PfbtWvXOgcHhyRVVdXqhoYGxVGjRt0+e/bsnJbWCUEQYGBgUBAeHj6t\ntra2x6pVq/abmJhkm5iYZAcGBu6rra3tQb4uKyvLVE1Nraqurk5Z/LufP39+ppub21+ij3333Xef\nkuvqypUrXnZ2ds+0tLTKTU1Ns/bs2bOmPb+9pqZmxd9//+3Y3HNpaWlcFoslPHbs2GITE5NsY2Pj\nHNHlCoVC1jfffLPB2to6VU9Pr2jGjBm/lJSU6JDPf/jhhxeMjIxytbW1S0eOHBn77NkzO/I5f3//\nk+S2VF5ersXj8aJXrVq1nyAIePHihe2YMWNu6OrqFtvY2LwMCwubTr7Pz88veOnSpUcmTpx4VUND\no/LWrVujxXPzeLzo48ePLyTnv//++2V2dnbPyPnWlt/SehT/XYOCgtabmppmaWlpldvY2Ly8devW\n6MjIyAk9evSoVVZWrtPU1KxwdnZOIAgCTpw4saBfv37PtbS0ynv16vXm6NGjAaLbi6mpadbevXtX\nGxoa5hsbG+ecPHnSn3y+qqpKbfXq1XstLS352trapcOHD79bXV2tShAEPHjwYPCQIUPus9lsgZOT\nU2JMTIwH+b4FCxac2LFjx0bx37KxsVGBfGzgwIEPd+/evbatbYTL5aY1t57b2mbpOsk9AN2myMjI\nCUpKSvWiGwc5+fn5Bc+ePTuUIJr+aTdt2rSNfK65AsDBwSEpKyvLtKSkRGfYsGF/kv/kLRUAb968\n6dXcspubWCyWcPTo0bcEAgE7IyPDvG/fvq9+/vnnRQRBwPHjxxf27t37dVpaGreyslJj2rRp4fPm\nzTtFEE3/gN7e3pcIgoCzZ8/Osba2Tp05c+Z58n0+Pj6/EwQB8fHxLoaGhvmPHj1yFwqFrJCQkPlc\nLjeN3LgtLS35Li4u8VlZWaZkwWZgYFDw+PFj1+bWSWNjo8Jvv/32QY8ePWpTUlL6bNq0aduQIUPu\nFxYW6hcWFuoPHTr0nvh37tmzZ1lycrK9+HevqqpS09LSKn/9+nVv8jE3N7e/fvnllxkEQYCRkVHu\nn3/+OYwgCCgtLdWOj493ac9vP2bMmBvDhg378/z58zPT09MtRJ8jdxpz5sw5W1VVpZacnGxvYGBQ\ncPPmTU+CIGD//v2rhgwZcj87O9ukrq5OecmSJT+S2wr5m1dWVmrU1dUpBwYG7iN3iKK/d1FRkZ67\nu/sjcj1UVlZqmJmZZQYHB/s1NjYqJCQkOOvr6xc+f/68H7k9amtrl96/f38IQRBA/g6iE4/Hiya3\ni6KiIj1PT8+bCxYsONHa8l+8eGHb2noU/V1fvnxpY25unpGbm2tEEASkp6dbkNvxli1bNpPbHTld\nuXLF659//rEiCAJiY2NHqqurvxVdrpKSUv3mzZu3NDQ0KF69enWiurr629LSUm2CIGDZsmXfjxo1\n6nZOTo5xY2OjwoMHDwbX1tb2yMrKMtXT0yuKjIycQBAE3LhxY4yenl5RUVGRHkEQ4O7u/ujXX3/1\nFf8tGxoaFAmiqfDQ0NCoFC00WppaKwBa22bpOsk9AN2m06dPzzUyMspt7rn169cHjRs37jpBvH/U\nRhD/LQC4XG6a6NHN1atXJ1pbW6cSRPsKANFlNzexWCzh9evXx5HzP/zwwyeenp43CYKA0aNH3zpy\n5MhS8rlXr171VVZWrmtsbFRITU211tHRKREKhaylS5ceOXr0aACZe/78+SH79u0LJAgCli5dekR8\nh2xjY/Pyzp07I8jvJ3p0RhAEKCsr17169aqv6DpRUFBoZLPZAl1d3WIXF5d4cidtbW2dSv7DEgQB\n169fH8flctNEl2dqapp19+7d4c19/7lz557etm3bJoIgICUlpY+WllY5eTRoYWGRfvTo0QDyrKe9\nk0AgYG/YsOGb/v37P1VUVGxwdnZO+Ouvv9wI4t+dhuj3W7du3a5Fixb9TBAE2NravhDdMeTk5BiT\n67y5z2GxWMLy8nIt8vdeuHDhcXt7+2TRs4rz58/PHDFixB3R9wYEBBzdunXrVwTRVAD4+fkFt/ad\nPDw8YtTV1d9qa2uXslgs4aBBg+KqqqrU2rP8ltaj6Lb++vXr3oaGhvk3b970FD/y3bx585a5c+ee\nbi2fj4/P7wcOHFhJLldNTa1KdJ0ZGhrmP3z4cGBjY6OCmppalehZKDkFBQWtFy9oxo8ffy0kJGQ+\nQRDQp0+fFNH/FfK3ZLPZAjU1tSoWiyVs71liWwVAa9ssHSdsAxCjr69fVFRUpN9cfWpubq6xvr5+\nUXuXZW5unkn+bWFhkZGTk2NCVc7Wlp+bm2tsaWmZLvpcQ0ODUn5+Psfa2vqNhobG28TEROe7d++O\nmDx58mUTE5OclJSUvnfu3Bnp4eERCwCQnp5uuXfv3jU6OjoCcsrKyjIT/Q6inw8AoKOjI6ioqNAS\nfczExCRHIBDoFBcX68XHxw+YMWNGGABATk6OiXhG8fVTUVGhxWazS5v77nPmzAk9d+7cbACA0NDQ\nOR988MHvqqqqNQAA4eHhvlevXvXicrl8Ho8XExcXN7g965PNZpd+8803nz99+tQ+Pz+f4+zsnOjj\n43OxPes8PT3d8oMPPvidXFd2dnbPlZSUGvLz8zmNjY2KGzZsCOrdu3eqtrZ2mZWVVRoAQFFRkT5A\nU/3/lStXJtXU1KguWbLkKLn89PR0y4cPHw4S/Q1CQ0Pn5OfncwCa6qPFfwNxLBaLOHTo0IrS0lJ2\nUlKSY3p6uiVZ193W8tuzHnv37p26f//+wC1btmzhcDj5s2fPPpebm2vcUp7IyMiJgwcPjtPT0yvW\n0dERXL161au4uFiPfF5PT69YQUFBSM6rq6tXVVZWahYVFenX1NSoWltbvxFfZnp6uuWFCxemi36P\ne/fuDcvLyzMCaNouy8vLe4q/r7i4WK+yslJz7969a/bv3x/Y3Gs6qrVtlo6wABAzZMiQByoqKrXh\n4eG+oo9XVlZqXrt2bYKnp+ctAAANDY23VVVV6uTz5MYmKiMjw0L0bxMTk5z2vLe9PULEl29qapoN\n0LTT5fP5XNHnlJSUGsgGTQ8Pj9gLFy5Mr6+vVzYxMcnx8PCIDQ4O9hcIBDrOzs6JAE07ty+++GKH\nQCDQIafKykrNmTNn/tJSTkdHx6RXr17ZtCd7cxnJ9QMAkJ2dbVpXV9fDxsbmVXPvHzNmzM3CwkKD\nv//+2+n8+fOz5syZE0o+5+bm9vjixYs+hYWFBj4+PhfJQqcj9PT0itesWbM3JyfHRCAQ6IjmFP2b\nXOcWFhYZ165dmyC6vqqqqtSNjY1zQ0ND51y6dGnKrVu3PMvKyrTT0tKsAP5t+GWxWMTixYt/Gj9+\n/HUvL6+r5LZhYWGR4eHhESu6zIqKCq3vv//+/zryXcjPsbe3f7p9+/ZNGzZsCBIKhQptLb+963H2\n7Nnn7t69OyI9Pd2SxWIR69ev30V+L9HX1dbWqvj6+oavW7fu24KCAkOBQKDj5eV1lWhHA7i+vn6R\nqqpqTWpqam/x5ywsLDLmzZt3Wvx7kL1+HB0dk1JSUvo2t1wFBQXhp59+uo/L5fL37dv3aVs5WtPW\nNktHWACI0dbWLtu8efPWFStWHLp+/fr4+vp6ZT6fz50xY0aYubl5JtmtzdnZOfHq1ateAoFAJy8v\nz2j//v2BosshCIL1ww8/LMvOzjYtKSnR3bFjxxezZs06DwDg5OT097Nnz/r//fffTjU1NapbtmzZ\nIvpeDoeT/88///RqK+uePXvWlpaWsjMzM80PHjy4ktw5z549+9y+ffs+5fP53MrKSs2NGzfunDVr\n1nnyyMrDwyP28OHDy0eOHHkHoKmr4OHDh5ePGDHiLvlPu3jx4p9+/PHHpY8ePRpIEATr7du3Gleu\nXJlUWVmp2VIeLy+vq7GxsR7tWc+zZ88+9/XXX39ZVFSkX1RUpL9t27avRLsMxsbGenh6et5SVlau\nb+79ysrK9dOnT7+wdu3aPQKBQGfs2LE3AADq6+uVz549+1FZWZm2oqJio5aWVoWiomJjezKtX79+\n17Nnz/o3NDQoVVRUaB05cuSTPn36vNbR0RGQr/n666+/rK6uVnv27Fn/4OBgf3KdL1269MeNGzfu\nJAuIwsJCg0uXLk0BaDp4UFFRqdXV1S15+/atxsaNG3eKfi65Azx8+PByGxubV97e3hE1NTWqkyZN\nupKSktL3zJkzc+vr65Xr6+uV//rrL3eyC2Z7dpzi/Pz8QqqqqtQvXLgwffLkyZdbWn5712NKSkrf\n27dvj66trVVRUVGpVVVVrSFfZ2RklMfn87lkzrq6uh51dXU99PX1ixQUFISRkZETo6KixrUnt4KC\ngnDhwoUnVq9e/V1ubq5xY2Oj4oMHD4bU1dX1mDt37pmIiAjvqKiocY2NjYo1NTWqMTExvOzsbFOA\n9m2XGzZsCDp06NAK0QOzltTV1fWoqalRJafGxkZFgLa3WVqSdx0UXafjx48vtLe3T1ZTU6vicDh5\nS5cuPUI2RhFEU4PbzJkzz/fs2bPMyckpcd++fYHm5uYZ5PNcLjctKChovZ2d3TM2my3w9/c/SdZR\nEwQBO3bs2Kivr19oYWGRfubMmY8UFBQayTaA169f93Z2dk5gs9mCDz744Lfm8rFYLOGhQ4eW9+rV\n642enl7R2rVrd5N1p0KhkLVt27ZN5ubmGQYGBgXz5s07JZr95cuXNiwWS3jq1Kl5BNHUwKekpFT/\n7bfffib6GdeuXRvv7u7+iM1mC4yNjXNmzJjxS2VlpQb5/cTrQouKivTMzMwyye8ZHR3NE10nolNN\nTY3KypUrDxgbG+cYGxvnrFq1ar9oLyAvL68rERERk1v7je7evTucxWIJly9ffoh8rK6uTnnChAmR\nOjo6JT179iwbOHDgw3v37g0liKYGSk1NzYrMzEyz5pa3YsWKg3369EnR1NSsMDAwKPD29r708uVL\nG4L4t974p59++tjExCTbyMgoV7TXiFAoZH333Xef2tjYvNTS0iq3trZO/eKLL74miKbG1qlTp17U\n0tIq53K5aadOnZon+nuLNvoLhULW/PnzQ8aPH3+tpqZG5dWrV30nTZp02cDAoEBPT6/I09PzJtlT\nqT2dBcR7AREEAbt27Vo3YMCAJwTR1D7U3PJbW4+iv2tSUpLDwIEDH2ppaZXr6uoWe3t7XyIbhIuL\ni3WHDx9+V0dHp8TV1fUxQTT1QuJwOHlsNlswb968U7Nnzw4lv0Nz24vodlZdXa0aGBi4z9TUNEtb\nW7vUw8MjhtzWHj58ONDDwyNGV1e32MDAoGDy5MkRGRkZ5uQ2YWFhkZ6Tk2NM/pYKCgqN4u0z/fv3\nf0q2R7Q0cbncNBaLJRSdyPzt2WbpNsk9QFed2mos6uwk2mhMp2njxo079u/fv6ozy/j7778dhw4d\nek/e30V0aq7rIE7MmY4dO7Y4MDBwn7SWT8dttj0TiyCkc0ewmpoaVQ8Pj9ja2lqVurq6HlOnTv3j\nm2+++bykpER35syZv6Snp1tyuVx+WFjYDCY1mrSXlZVV2vHjxxeNHj36tjSWr6CgIExNTe3dq1ev\nf6SxfPQ+Pp/P7dWr1z8NDQ1Koo2UCDGZ1NoAVFVVa6Kjo0clJiY6JyUlOUZHR4/6888/hwcFBW0Y\nO3bsjZSUlL6enp63goKCNkgrQ1cmraEDUMtwnXd9GRkZFuQQEaJTz549yzs7hAYdSe0MQFRVVZU6\n2dPE19c3PDY21oPD4eTn5eUZ8Xi8mPaMK4IQQohi0qxfamxsVHByckrU1NSs+Oyzz74lCALYbLaA\nfF4oFLJE5/9XGBE44YQTTjh1fOroPlqq3UAVFBSEiYmJzllZWWZ37twZGR0dPUr0+ZYGVpJ3w0h7\nps2bN8s9A+bEnJgTM5KTRPtoCfftHaKtrV02adKkK0+ePHElq34Amq5YNTQ0LJBFBqrx+Xx5R2gX\nzEktzEktJuRkQkZJSa0AKCoq0i8tLWUDAFRXV6vduHFjrIuLS8KUKVMukWOsh4SE+Ilfao8QQkg2\nlKS14NzcXGM/P78QoVCoIBQKFebNm3fa09PzlouLS8KMGTPCjh8/vojsBiqtDNLk7+8v7wjtgjmp\nhTmpxYScTMgoKZn0AuoIFotF0C0TQgjRHYvFAqKDw4PgWEASiomJkXeEdsGc1MKc1GJCTiZklBQW\nAAgh1E1hFRBCCHUBWAWEEEKo3bAAkBBT6gUxJ7UwJ7WYkJMJGSWFBQBCCHVT2AaAEEJdALYBIIQQ\najcsACTElHpBzEktzEktJuRkQkZJYQGAEELdFLYBIIRQFyBJG4DUBoNDCCEqBEQEQEpxCqgrq4Oh\nhiHwS/n/+TvUNxTW3VjX4deF+oYCW5Ut768oN3gGIKGYmBjg8XjyjtEmzEktzEktMmdLO/lQ31Dw\nOe8DsemxAABgoG4AhVWF//l7ut10KHhb0OHXWbGtwELbotXCgCnrEs8AEEK0JbqTJ4/EH917BCbZ\nJlBeWw73Mu8BwPs77ICIAFBXVgcAAHcTd9BW1Yab/9z8z9/HvI/BnPA5HX5dD8Ue7wqDAUcHvFcY\nkGcK1anVcH3w9S55poBnAAghqRHd6Yvu5MWPxI00jCDvbd5/dthR86LeLeeY97EW/2arsqG0prTD\nr5sTPgciUyPfFQYt5ZtuNx3CpofJaK1JRpIzACwAEEKd0tyRfXM7fdGdfNS8qPd2vhemX4DPbnzW\n7A5bmloqDMTz2RnYvVctRcezASwAZIgp9YKYk1qYs4kkR/aiO3nySNwnyAcubrhIix2qaGEgeqYw\nX3s+7MnZ06F2A3nANgCEkFSIH+WnFKe8t5MHgGbr2MV3+qLVKGxVNmzhbaHNDrS5fGHTwyAmJua9\ndgjRdoOAiABgq7IZ26sIzwAQQs1q7Si/sq6y2eob8Tp2Ju0MW9NaVZFoLyV5thVgFRBCqEMkrb8n\n39uVdvLtJV7AeZ31okVbAQ4GJ0NMGR8Ec1KrK+QMiAgAXjAPvM56wfPC5xCbHguRqZHvCgNy/k3J\nGwBoqvaI+zgOpttNh6h5UcBWZb+rHunsDo4J61M8o/h3D/UNfbdu+KX899Yn3WEbAELdQEvVOZLW\n36N/ia4b0bYCdWV14AXzaN02gFVACHVB4lU7ovXUbfXM6a5VO1QQXX+ybhvANgCEupmWhlDoSKMt\nkg7RtgGy6kyasACQIewPTi3M2T6tHdmLDqGgm6cLJUYltG+0lff6bA9JM4qfTYn/dlT/DngdAEJd\nRHuO7FsbJ2eN6xoIrw5/b4ePdfiyJd5uInrtREBEAC1+DzwDQIgG2ntk31p3TNG/6XSUj5pIu0oI\nq4AQojlJ6uxFj+yx/p65RKuEpHFPAkkKACAIQipTRkaGOY/Hi7azs3vWv3//pwcOHFhJEARs3rx5\ni6mpaZazs3OCs7NzQmRk5ATR9zVFor/o6Gh5R2gXzEmNy5djiXHjviCcnPyIceO+IC5fjm3xtYsv\nLSY8TnoQE89MJPx+93v3t6BaQHic9CBgCxCwBQiDbw3e/W2024iALUC4H3MnBNUCQlAtIKaHTf/P\n3+1F9/VJYkJOaWQU3Q6mh02nZJn/23d2aD8ttTYAZWXl+n379n3q7OycWFlZqenq6vpk7NixN1gs\nFrF69ervVq9e/Z20PhshKl25cgdWrboOb97sAIAYAODBA30X4L4CMOMYt3oFbXvHtm/uyF60jpgO\n9cWIOqLbAVl9Jw8yqwLy8fG5uHz58sP37t0bpqmpWblmzZq9zQbCKiAkR80NjfBr9HUQFPQHeGsI\nwOYD1KsDqJQDWFA3tj1W53Qv0ughRNteQHw+n5uQkOAyePDguHv37g07dOjQilOnTs13c3N7vHfv\n3jVsNrtU9PX+/v7A5XIBAIDNZoOzs/O7bljkZdk4j/OSzu+5vwcqTSpBXVkdlhksgx8f//huPvPv\nTHha+BSA+7/C4EkKCAQZAH0yAN4aABQWAigDgE7TFbQ2FTYwX3s+/FD3w7v5ra5b3/XA+fPOn1D/\nph4uzmsa8jgmJgaWGSx79w++zGAZJMYl0mr94Lxs5smRRgFEegjxAXxe+0DMlpg23x8TEwPBwcEA\nAO/2lx0l9TOAyspKTR6PF/Pll19+7ePjc7GgoMDQwMCgEABg06ZN23Nzc42PHz++6F0ghpwBxDCg\n/zIA/XNeuXIHDh6Mgvz8LOBwzGDlynEwadJIiZbV2sBmrTW4tnT0LnpTEMh2B6jRBlC8CaDsDhB2\nATjzJsLL3fdpeQUt3X93EhNyyiIjFT2EaHcGUF9fr+zr6xs+d+7cMz4+PhcBAAwNDQvI5z/++OOf\nvb29I6SZAdFXc3Xrb958AQDwXiEgyY49ICKgxZuEd2T8m1DfUPA+9gFknR8AfP4mgEE+AA8vgrXp\nt3Bgwo/v/lFxrBzUGaG+oVLtIdQSqZ0BEATB8vPzC9HT0yvet2/fp+Tjubm5xsbGxrkAAPv27fv0\nr7/+cg8NDZ3zLhBDzgBQ540f/yVERX397wPeAQB6KaCvnQWTeMPbdcTeWh950XHbW2twbc/R+5Ur\nd+DQoRtQU6MIqqqNsGLFWInPVBBqDS+YJ9EYQrS6DuDPP/8cPnLkyDuOjo5JLBaLAADYuXPnxnPn\nzs1OTEx0ZrFYhJWVVdrRo0eXcDic/HeBsADoNowDXCGvXqupUTU8FGCWDwBXOjt2AGxwRcwgaXUQ\nrQoASTGlAGBC3SUAPXK2dPHTg/hkKO2Z1fSiaA8AM3WAPpHQs8IYBjr1p+WOnQ7rsz0wJ3VknVHS\n9iTatQGg7qm1+8eKHtnr6OoCNEBTA+uDtQAKw0Fj1hA45rMHxo8f9t4/QXP3aiVh3TvqSkS3b6kP\nIEe3o22mnAGg97X3/rHiVTZzT/lDj+tu0PhWA+vWERLTkfYAPANAMtXeu0yRr22uyubuymiAlfLJ\njxDdSfuKYbwnsITICzLojsqcoveSLa0plej+sS3dS7Y7rk9pwpzUkWdG0fsNS6ONC88AUKtaOsoX\nH9cG7x+LEPXE/5eobhPANgD0H61V7bQ0Fj12rURI+lprE8A2AEQJ0V47ovX5bY1YiRCSLqrbBLAN\nQEJMqLsEaF9O8bp90Y1MtD7fkm3ZbP29rHLSAeakFhNy0ikj1W0CeAbQTbVWty86LgnW5yNEH1T/\nP2IbQDclWpcoXreP9fkIMQ+2AaBWiR71KysqA0DLdfsIoa4P2wAkRKd6wdaI5hTtt6+hrCGTun1J\nctIZ5qQWE3IyIaOk8Aygi7py5Q4subwKSgtzQfV3Tfh+9IH3GneDfYLxaB+hLoC8qZIksA2gC3p3\no5UR994Nr6zBt4XjPnsgvC4Eq3oQ6iLev6lSx9sAsAqoCzp4MKppg6hvOuKHbHd4e/4BnDwSJ/eq\nHoQQdd79r0sICwAJ0bVeMCAiAB72OwPwkRfA5SNN4+yfjgKoYUNNjaK847WIrutTHOakFhNy0jlj\nbW3navGxDaCLSSlOgTKddACddICxnwH8ugUAmo74VVUb5ZoNIUQtFZWGTr0f2wAYTnxwKPJ2iSpF\nxlD783OAmqadv7X1RjhwYAKOtY9QF9LZNgA8A2A40XF7RK/i9e3hBydf7xW5iTnu/BHqasj/6UOH\nNsH16xIsgCAIWk1NkegvOjpa3hEIgiCIiWcmErAFCPdj7oSgWvCf5+mSsy2Yk1qYkzpMyEgQBPG/\nfWeH9rd4BsBAotU+RyYdwat4EUISwTYABurIfUIRQt2DJGMBYTdQBpL2fUIRQt0DFgASknXfYNEx\n+49MOtJPVOnSAAAfsElEQVTuMcHp3IdZFOakFuakDhMySgrbABhCtLfPZzc+w2ofhFCnYRsAQ3id\n9YLI1Egcsx8h1CxJ2gCwAKAp8Qu8yMewtw9CqDnYCCxD0q4XFB27PyAi4N2t4Dq682dK/SXmpBbm\npA4TMkpKagVAZmam+ahRo6L79+//zN7e/unBgwdXAgCUlJTojh079kbfvn1Txo0bF1VaWoqHs83A\nnj4IIWmTWhVQXl6eUV5enpGzs3NiZWWlpqur65OLFy/6nDx5coG+vn7RunXrvt21a9d6gUCgExQU\ntOFdoG5cBYQXeCGEJEXrNgAfH5+Ly5cvP7x8+fLDsbGxHhwOJz8vL8+Ix+PFvHz50vZdoG5cAOAF\nXgghSdH2pvB8Pp+bkJDgMmjQoIf5+fkcDoeTDwDA4XDy8/PzOeKv9/f3By6XCwAAbDYbnJ2dgcfj\nAcC/9XHynicfo3L56srqAHwAGz2bd9U+nV3+/v37abn+ZLE+pTGP65PaeSasz8TERAgMDKRNHnI+\nJiYGgoODAQDe7S87rKODB3V0qqio0BwwYMCT33//3YcgCGCz2QLR53V0dEpE56EbDwYnqBYQ08Om\nNzuom6SYMpAV5qQW5qQOEzIShGSDwUm1Cqi+vl558uTJlydOnBgZGBi4HwDA1tb2ZUxMDM/IyCgv\nNzfXeNSoUdHduQpIvLsn1vcjhCRBq26gBEGwFi1adNzOzu45ufMHAJgyZcqlkJAQPwCAkJAQPx8f\nn4vSysAE4t09EUJIVqRWANy7d2/YmTNn5kZHR49ycXFJcHFxSbh27dqEDRs2BN24cWNs3759U27f\nvj16w4YNQdLKIE2ida2dIe3unlTllDbMSS3MSR0mZJSU1BqBhw8f/qdQKGy2gLl58+YYaX0u05B3\n8MLungghWcOhIGQM6/wRQtJAqzYA1Dys80cI0QUWABKStF5Q1kM8MKX+EnNSC3NShwkZJYUFgIyF\n+oa2+2YuCCEkTe1qA3j79q1GZmamOYvFIszMzLI0NDTeSi1QF28DQAghaaB0KIiKigqtn376afH5\n8+dnFRUV6XM4nHyCIFj5+fkcPT294o8++ujs4sWLf9LU1KzsfPSuDRt+EUJ01GIVkI+Pz0UtLa2K\nS5cuTfnnn396PXjwYEhcXNzgtLQ0q8uXL0/W0NB4O3Xq1D9kGZZOOlIvKM+GX6bUX2JOamFO6jAh\no6RaPAO4deuWZ0vPGRkZ5QUEBBwLCAjAgerbAcf2RwjRUZttAJ6enrfEC4PmHqMsUBdsAyitKcWL\nvRBCUkVpG0B1dbVaVVWVemFhoUFJSYku+Xh5eXnP7Oxs084E7W7I2zkihBCdtNgGcPTo0SVubm6P\nX716ZePq6vqEnKZMmXJp+fLlh2UZko7aqhcMiAgAXjAPvM56QWlNqWxCNYMp9ZeYk1qYkzpMyCip\nFs8AAgMD9wcGBu4/ePDgypUrVx4Ufa6mpkZV+tGYjWz4BWgqDPAMACFEN222Abi4uCQkJCS4iD42\nYMCA+Pj4+AFSCdRF2gC8znpBZGokuJu440VfCCGpo7QNIDc31zgnJ8ekurpaLT4+fgBBECwWi0WU\nl5f3rKqqUu983K4NR/lECNFdi2cAISEhfsHBwf6PHz92c3Nze0w+rqWlVeHv7x88bdq036QSiCFn\nADExMe/u00lnmJNamJNaTMjJhIwAFJ8B+Pn5hfj5+YX8+uuvH3744Ye/dj5e14ZX+yKEmKZdYwFd\nvnx58vPnz+1EG3+/+uqrbVIJxJAzAHG8YN67Rt/pdtOx0RchJFNSuR/AkiVLjoaFhc04ePDgSoIg\nWGFhYTPS09MtJY/ZNeHVvgghpmmzALh///7QU6dOzdfV1S3ZvHnz1ri4uMGvXr2ykUU4OhPvG0zX\nYZ6Z0ocZc1ILc1KHCRkl1WYBoKamVg0AoK6uXpWdnW2qpKTUkJeXZyT9aMxCXu1Lp50/Qgi1ps02\ngG3btn21YsWKQ7dv3x79f//3f98DACxevPin7du3b5JKIIa2ASCEkDxJ0gbQYgGwb9++T4cNG3Zv\nwIAB8UpKSg0ATVcA19TUqLLZbKmNbUD3AuDKlTtw8GAU1NYqQWq/P0C3D4AZxxh7/iCE5IrSRuCs\nrCyzwMDA/QYGBoUjR468s3Hjxp03b94cIxQKu+1tJK9cuQOrVl2HqKivITaWB9k12pBckUjrG7wz\npf4Sc1ILc1KHCRkl1eJ1AHv37l0DAFBbW6vy+PFjtwcPHgw5ceLEwsWLF//EZrNLX7x40U92Menh\n4MEoePNmx78P1Df1/OlZYYw9fxBCjNNiAUCqrq5WKy8v71lWVqZdVlambWJikuPo6Jgki3B0U1sr\nurp4AOHOAJMDwEHQi7bVP0y4ghEAc1INc1KHCRkl1WIBsHjx4p+eP39up6WlVTFw4MBHQ4cOvb96\n9ervdHR0BLIMSCcqKg3vP1DDBvg1DDTHS6U9HCGEpKrF+vyMjAyL2tpaFSMjozxTU9NsU1PTbGk2\n/jLBypXjwNr6i//NxQAAgLX1RlixYqzcMrWFKfWXmJNamJM6TMgoqRbPAK5fvz5eKBQqPHv2rP+D\nBw+GfPfdd6uTk5Md9PT0igcPHhy3bdu2r2QZlA4mTRoJh/i7oeQNF+r5DTCwdjasXuYNkyaNlHc0\nhBDqsHaNBZSZmWl+//79offu3Rt2+fLlycXFxXplZWXarb1n4cKFJ65cuTLJ0NCwIDk52QEAYMuW\nLVt+/vnnjw0MDAoBAL755pvPJ0yYcO29QDTvBopj/iCE6IjSbqAHDhxYNXPmzF8sLCwyPDw8YiMi\nIrz79ev34vfff/9A9B7BLVmwYMHJa9euTRALSKxevfq7hIQEl4SEBBfxnT8T4Jg/CKGuosUCgM/n\nc2fMmBEWFxc3+J9//ul15syZuZ988skRJyenvxUVFRvbWvCIESPuNtdg3NESim7IMX++svyKtj1/\nRDGl/hJzUgtzUocJGSXVYhvAvn37PpXGBx46dGjFqVOn5ru5uT3eu3fvmuYalv39/YHL5QIAAJvN\nBmdn53ddscgfQ17ziXGJsMxg2bus8s7TZt7ERFrlaWmeRJc8uD5lM8+E9ZmYmEirPOR8TEwMBAcH\nAwC82192VLvaACTF5/O53t7eEWQbQEFBgSFZ/79p06btubm5xsePH1/0XiCatwEghBAdSeV+AFQy\nNDQsYLFYBIvFIj7++OOfHz16NFCWny+JgIgA4AXzwOusF5TWdOtesAihLkamBUBubq4x+ffvv//+\ngYODQ7IsP18SKcUpEJse+5/xfsRPtekKc1ILc1KLCTmZkFFSbQ4FER4e7rthw4ag/Px8Dnl6wWKx\niPLy8p6tvW/27NnnYmNjPYqKivTNzc0zt27dujkmJoaXmJjozGKxCCsrq7SjR48uoeqLSAv2+kEI\ndVVttgFYW1u/uXz58uR+/fq9kEkgmrUBlNaUQkBEABzzPsaIXj8Ioe6J0vsBkIYNG3bv3r17wzqV\nrAPoVgAghBATSKUR2M3N7fHMmTN/OXfu3Ozw8HDf8PBw399++22a5DG7BqbUC2JOamFOajEhJxMy\nSqrNNoCysjJtNTW16qioqHGij0+bNu036cVCCCEkbVK9DkASdKgCCogIgJTiFFBXVsdbPSKEGEGS\nKqAWzwB27dq1fv369btWrFhxqJkPIg4ePLhSkpBMQHb9BGgqDHDAN4RQV9RiG4Cdnd1zAABXV9cn\nbm5uj8nJ1dX1iaur6xPZRZS99nT9ZEq9IOakFuakFhNyMiGjpFo8A/D29o4AAPD39w+WWRqaCPUN\nxa6fCKEur8U2gIULF5745JNPjri7u//V3PMPHz4c9OOPPy49efLkAkoD0aANACGEmIbS6wCSk5Md\ndu/e/VlcXNxgGxubV8bGxrkEQbDy8vKMXr16ZTN06ND7a9eu3WNvb/+UkvRkICwAEEKow6RyIVht\nba1KQkKCS3p6uiWLxSIsLS3TnZyc/lZVVa3pVNqWAjGkAIiJiXk3RCudYU5qYU5qMSEnEzICUNwL\niKSiolI7ePDguMGDB8dJHg0hhBDd4HUA/4N9/xFCTEb7+wHQWUvDPiOEUFfV7gKgsrJSs7KyUlOa\nYeSpo8M+M6VvMOakFuakFhNyMiGjpNosAJKTkx1cXFwS7OzsntvZ2T13dXV98vTpU3tZhJMl8mbv\nUfOisPoHIdQttNkGMGTIkAc7d+7cOGrUqGgAgJiYGN7GjRt33r9/f6hUAjGkFxBCCNGJVNoAqqqq\n1MmdPwAAj8eLefv2rYYkARFCCNFHmwWAlZVV2vbt2zfx+XxuWlqa1ddff/1lr169/pFFODpjSr0g\n5qQW5qQWE3IyIaOk2iwATp48uaCgoMBw2rRpv/n6+oYXFhYanDhxYqEswiGEEJKeFtsAqqur1X78\n8celqampvR0dHZMWLlx4QllZuV7qgWTUBoD9/hFCXQmlbQB+fn4hT548cXVwcEiOjIycuHbt2j2d\nj0gf2O8fIdTdtVgAvHjxot+ZM2fmLl269Mdff/31wzt37oyUZTBp62i/f3FMqRfEnNTCnNRiQk4m\nZJRUiwWAkpJSQ3N/dxXY7x8h1N212AagqKjYqK6uXkXOV1dXq6mpqVUDNNXTl5eX95RKILwOACGE\nOozS0UAbGxsVOx8JIYQQXeFgcBJiSr0g5qQW5qQWE3IyIaOksABACKFuqlvdDwD7/iOEuipa3Q9g\n4cKFJzgcTr6Dg0My+VhJSYnu2LFjb/Tt2zdl3LhxUaWlpTLdA2Pff4QQ+pfUCoAFCxacvHbt2gTR\nx4KCgjaMHTv2RkpKSl9PT89bQUFBG6T1+c3pbN9/UUypF8Sc1MKc1GJCTiZklJTUCoARI0bc1dHR\nEYg+dunSpSl+fn4hAE1XGl+8eNFHWp/fHOz7jxBC/2rzpvBUys/P53A4nHwAAA6Hk5+fn89p7nX+\n/v7A5XIBAIDNZoOzszPweDwA+Lc0lmSercqGZQbLIDEukZLlMWGefIwueZg+Tz5GlzxMnycfo0ue\nluZFs9IhD4/Hg5iYGAgODgYAeLe/7CipNgLz+Xyut7d3RHJysgMAgI6OjkAgEOiQz+vq6paUlJTo\nvhcILwRDCKEOo1UjcHM4HE5+Xl6eEQBAbm6usaGhYYEsP59K4kcGdIU5qYU5qcWEnEzIKCmZFgBT\npky5FBIS4gcAEBIS4ufj43NRlp+PEELoX1KrApo9e/a52NhYj6KiIn0Oh5O/bdu2r6ZOnfrHjBkz\nwjIyMiy4XC4/LCxsBpvNLn0vEFYBIYRQh0lSBdStLgRDCKGuivZtAPIQEBEAvGAeeJ31gtKa0rbf\n0E5MqRfEnNTCnNRiQk4mZJRUly8A8OpfhBBqXpevAvI66wWRqZHgbuKOF4AhhLosbANoRmlNKQRE\nBMAx72O480cIdVnYBtAMtiobwqaHUb7zZ0q9IOakFuakFhNyMiGjpLp8AYAQQqh5Xb4KCCGEugOs\nAkIIIdRuWABIiCn1gpiTWpiTWkzIyYSMkpLpcNCygLd9RAih9ulybQC8YB7EpscCAMB0u+kQNj2M\nqmgIIURb2AYA1N72ESGEurIuVwDI6raPTKkXxJzUwpzUYkJOJmSUVJdrAyAv/EIIIdS6LtcGgBBC\n3RG2ASCEEGo3LAAkxJR6QcxJLcxJLSbkZEJGSWEBgBBC3RS2ASCEUBeAbQAIIYTarUsUANK6729r\nmFIviDmphTmpxYScTMgoqS5RAOB9fxFCqOO6RBsA3vcXIdTdddt7AuN9fxFC3V23bQSW1n1/W8OU\nekHMSS3MSS0m5GRCRkl1iQIAIYRQx3WJKiCEEOruum0VEEIIoY7DAkBCTKkXxJzUwpzUYkJOJmSU\nlFzuB8Dlcvk9e/YsV1RUbFRWVq5/9OjRQHnkQAih7kwubQBWVlZpT548cdXV1S35TyBsA0AIoQ6T\npA1AbncE62hQcQERAZBSnALqyuoQ6huK/f8RQqiD5FIAsFgsYsyYMTcVFRUblyxZcnTx4sU/iT7v\n7+8PXC4XAADYbDY4OzsDj8cDgH/r48jhH4AP4PPaB2K2xLz3vPjrqZ4nH5PV50k6v3///mbXH93m\nycfokgfXp2zmmbA+ExMTITAwkDZ5yPmYmBgIDg4GAHi3v+wwgiBkPuXk5BgTBAEFBQUGTk5OiXfu\n3BlBPtcUqW0Tz0wkYAsQ7sfcCUG1oF3voVJ0dLTMP1MSmJNamJNaTMjJhIwEQRD/23d2aF8s9+sA\ntm7dullTU7NyzZo1ewHa3waAwz8ghNC/GHEdQFVVlXpFRYUWAMDbt281oqKixjk4OCR3dDnyGP4B\nIYS6EpkXAPn5+ZwRI0bcdXZ2Thw0aNDDyZMnXx43blyUrHN0lmhdK51hTmphTmoxIScTMkpK5o3A\nVlZWaYmJic6y/lyEEELvk3sbgDi8DgAhhDqOEW0ACCGE6AELAAkxpV4Qc1ILc1KLCTmZkFFSWAAg\nhFA3xZg2ABz6ASGEWtal2wDIoR8iUyMhICJA3nEQQojxGFMAqCurAwCAu4k7HPM+Juc0zKkXxJzU\nwpzUYkJOJmSUFGMKgFDfUJhuNx2i5kVh9Q9CCFGAMW0ACCGEWtal2wAQQghRCwsACTGlXhBzUgtz\nUosJOZmQUVJYACCEUDeFbQAIIdQFYBsAQgihdsMCQEJMqRfEnNTCnNRiQk4mZJQUFgAIIdRNYRsA\nQgh1AZK0Acj8jmAdgQPAIYSQ9NC6CojOA8AxpV4Qc1ILc1KLCTmZkFFStC4A6DYAHEIIdSW0bgMo\nrSmFgIgAOOZ9DKt/EEKoFZK0AdC6AEAIIdQ+eCGYDDGlXhBzUgtzUosJOZmQUVJYACCEUDeFVUAI\nIdQFYBUQQgihdsMCQEJMqRfEnNTCnNRiQk4mZJQUFgASSkxMlHeEdsGc1MKc1GJCTiZklJRcCoBr\n165NsLW1fdmnT5/Xu3btWi/+/PjxX8KVK3fkEa3dSktL5R2hXTAntTAntZiQkwkZJSXzsYAaGxsV\nly9ffvjmzZtjTE1Ns93d3f+aMmXKpX79+r0gXxMV9TW8efMFAABMmjRS1hERQqhbkPkZwKNHjwb2\n7t07lcvl8pWVletnzZp1/o8//pj63ovWGsCbogA4dOiGrOO1G5/Pl3eEdsGc1MKc1GJCTiZklBhB\nEDKdLly48OHHH3/8Ezl/+vTpucuXLz9EzgMAgRNOOOGEU8enju6PZV4FxGKxiNae72g/VoQQQpKR\neRWQqalpdmZmpjk5n5mZaW5mZpYl6xwIIdTdybwAcHNze/z69es+fD6fW1dX1+OXX36ZOWXKlEuy\nzoEQQt2dzKuAlJSUGg4fPrx8/Pjx1xsbGxUXLVp0XLQHEEIIIRmRdSNwa1NkZOQEGxubl717934d\nFBS0Xt55WpoyMjLMeTxetJ2d3bP+/fs/PXDgwEp5Z2ppamhoUHR2dk6YPHlyhLyztDQJBAK2r6/v\nr7a2ti/69ev3/MGDB4Plnam5aefOnZ/b2dk9s7e3T549e3ZoTU2NirwzEQQBCxYsOGFoaJhvb2+f\nTD5WXFysO2bMmBt9+vRJGTt2bJRAIGDTMefatWt329ravnB0dPz7gw8++K20tFSbbhnJac+ePWtY\nLJawuLhYl47rkiAIOHjw4ApbW9sX/fv3f7pu3bpdbS1Hrl9CdGpoaFC0trZOTUtL49bV1Sk7OTkl\nPn/+vJ+8czU35ebmGiUkJDgTBAEVFRWaffv2fUXXrHv37l09Z86cs97e3pfknaWlaf78+SHHjx9f\nSBAE1NfXK8l7J9DclJaWxrWysvqH3OnPmDHjl+DgYD955yIIAu7cuTMiPj7eRXRn8Nlnn327a9eu\ndQRBQFBQ0Pr169cH0TFnVFTU2MbGRgWCIGD9+vVB8s7ZXEaCaDroGz9+/DUul5tGhwKguZy3b98e\nNWbMmBt1dXXKBEFAQUGBQVvLoc1QEO26PoAmjIyM8pydnRMBADQ1NSv79ev3Iicnx0TeucRlZWWZ\nXb161evjjz/+maBp76qysjLtu3fvjli4cOEJgKYqQm1t7TJ55xLXs2fPcmVl5fqqqir1hoYGpaqq\nKnVTU9NseecCABgxYsRdHR0dgehjly5dmuLn5xcCAODn5xdy8eJFH/mk+1dzOceOHXtDQUFBCAAw\naNCgh1lZWWbySdekuYwAAKtXr/7u22+/XSePTM1pLueRI0c++fzzz79RVlauBwAwMDAobGs5tCkA\nsrOzTc3NzTPJeTMzs6zs7GxTeWZqDz6fz01ISHAZNGjQQ3lnEffpp5/u271792fkPxgdpaWlWRkY\nGBQuWLDg5IABA+IXL178U1VVlbq8c4nT1dUtWbNmzV4LC4sMExOTHDabXTpmzJib8s7Vkvz8fA6H\nw8kHAOBwOPn5+fkceWdqy4kTJxZ6eXldlXcOcX/88cdUMzOzLEdHxyR5Z2nN69ev+9y5c2fk4MGD\n43g8Xszjx4/d2noPbQqAtq4PoKPKykrNDz/88NcDBw6s0tTUrJR3HlGXL1+ebGhoWODi4pJA16N/\nAICGhgal+Pj4AcuWLfshPj5+gIaGxtugoKAN8s4l7s2bN9b79+8P5PP53JycHJPKykrNs2fPfiTv\nXO3BYrEIuv9/7dix44sePXrUzZkzJ1TeWURVVVWp79y5c+PWrVs3k4/R9f+poaFBSSAQ6MTFxQ3e\nvXv3ZzNmzAhr6z20KQCYdn1AfX29sq+vb/jcuXPP+Pj4XJR3HnH3798feunSpSlWVlZps2fPPnf7\n9u3R8+fPPyXvXOLMzMyyzMzMstzd3f8CAPjwww9/jY+PHyDvXOIeP37sNnTo0Pt6enrFSkpKDdOm\nTfvt/v37Q+WdqyUcDic/Ly/PCAAgNzfX2NDQsEDemVoSHBzsf/XqVS86Fqhv3ryx5vP5XCcnp7+t\nrKzSsrKyzFxdXZ8UFBQYyjubODMzs6xp06b9BgDg7u7+l4KCgrC4uFivtffQpgBg0vUBBEGwFi1a\ndNzOzu55YGDgfnnnac7OnTs3ZmZmmqelpVmdP39+1ujRo2+fOnVqvrxziTMyMsozNzfPTElJ6QsA\ncPPmzTH9+/d/Ju9c4mxtbV/GxcUNrq6uViMIgnXz5s0xdnZ2z+WdqyVTpky5FBIS4gcAEBIS4kfH\ngxSAppGBd+/e/dkff/wxVVVVtUbeecQ5ODgk5+fnc9LS0qzS0tKszMzMsuLj4wfQsUD18fG5ePv2\n7dEAACkpKX3r6up66OnpFbf6Jnm3ZotOV69endi3b99X1tbWqTt37vxc3nlamu7evTucxWIJnZyc\nEp2dnROcnZ0TIiMjJ8g7V0tTTEyMB517ASUmJjq5ubn9RZeugC1Nu3btWkd2A50/f34I2dtC3tOs\nWbPOGRsb5ygrK9eZmZllnjhxYkFxcbGup6fnTTp1AxXPefz48YW9e/d+bWFhkU7+H33yySc/0CFj\njx49asl1Kfq8lZXVP3ToBdRczrq6OuW5c+eetre3Tx4wYMCT6OhoXlvLod09gRFCCMkGbaqAEEII\nyRYWAAgh1E1hAYAQQt0UFgAIIdRNYQGAEELdFBYAiJEUFRUbXVxcEhwdHZOmTZv2W2VlpWZLr+Xz\n+VwHB4fktpZ5+PDh5cHBwf4AAJs3b95669Ytz87mDA4O9l+xYsUhSd+flJTkuGjRouOdzYFQc7AA\nQIykrq5elZCQ4JKUlOTYs2fP8qNHjy7pzPIIgmAdP3580dy5c88AAGzdunWzp6fnrc7m7OwQDI6O\njklv3ryxpuOVp4j5sABAjDdkyJAHb968se7MMu7duzfM1tb2pZKSUgMAgL+/f3B4eLgvAACXy+Vv\n2bJli6ur6xNHR8ekV69e2Yi/v6amRnXBggUnHR0dkwYMGBAfExPDI5/LyckxmThxYmTfvn1T1q9f\nv4t8XFNTs3LdunXf2tvbPx07duyNuLi4wR4eHrHW1tZvIiIivMnXTZw4MfLChQvTO/P9EGoOFgCI\n0RobGxWjoqLG2dvbP+3Mcv7888/h5HhEAO8PoMZisQgDA4PCJ0+euH7yySdH9uzZs1b8/d9///3/\nKSoqNiYlJTmeO3dutp+fX0htba0KQRCsxMRE57CwsBnJyckOv/zyy0xylNuqqip1T0/PW0+fPrXX\n0tKq+Oqrr7bdvn179O+///7BV199tY1c9sCBAx/duXNnZGe+H0LNwQIAMVJ1dbWai4tLgrGxcW5m\nZqb50qVLf+zM8jIyMiyMjIzyWnqeHGRrwIAB8Xw+nyv+/L1794aR1Uc2NjavLC0t01NSUvqyWCzC\n09PzlpaWVoWKikqtnZ3d8/T0dEsAgB49etSNHz/+OkDTmDOjRo2KVlRUbLS3t38q+hnGxsa5zX0m\nQp2FBQBiJDU1teqEhASX9PR0S1VV1Roqbh5EtDLMr4qKSi1AU+NzQ0NDs/fSbun95HvF30/euAMA\nQEFBQdijR4868m/RzyAIgkX34ZwRM2EBgBhNTU2t+uDBgyu/+OKLHa3twNtiaWmZTg6fLIkRI0bc\nJYczTklJ6ZuRkWFha2v7sjOZSLm5ucaWlpbpnV0OQuKwAECMJHpE7OzsnNi7d+/UsLCwGS29/tWr\nVzbm5uaZ5EQ28JKGDx/+Z3vuoNTSzVWWLVv2g1AoVHB0dEyaNWvW+ZCQED9lZeX61m7GIv646Lzo\n348ePRo4cuTIO21lQ6ijcDRQhKCpmmXAgAHxDx8+HERWxdAFj8eLCQsLm0HHMegRs+EZAELQdMS9\nePHin+h2V6qkpCTH3r17p+LOH0kDngGgLiM5OdlB/LaXqqqqNQ8ePBgir0wI0RkWAAgh1E1hFRBC\nCHVTWAAghFA3hQUAQgh1U1gAIIRQN4UFAEIIdVP/DwfYb53vcrDdAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x4950910>"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.11,Page number: 115"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Question:\n",
+ "\"\"\"Finding the current in branch B due to the voltage source of 36 V in branch A.\"\"\"\n",
+ "\n",
+ "\n",
+ "#Variable Declaration:\n",
+ "V_supply_a=36.0 #Supply voltage in the network shown in figure a(in Volts)\n",
+ "Req_a=2+ 1/((1.0/12)+(1.0/(3+1))) + 4 #Equivalent resistance of network shown in figure a(in Ohms)\n",
+ "\n",
+ "\n",
+ "#Calculations:\n",
+ "I_supply_a=V_supply_a/Req_a\n",
+ "I=I_supply_a*(12.0/(12+4))\n",
+ "V_supply_b=36.0\n",
+ "Req_b= 3+ 1.0/((1.0/12)+(1.0/(2+4))) + 1\n",
+ "I_supply_b=V_supply_b/Req_b\n",
+ "I_dash= I_supply_b*(12.0/(12+6))\n",
+ "R_tr=V_supply_a/I\n",
+ "\n",
+ "\n",
+ "#Result:\n",
+ "print \"The current I(in figure (a)) is %.2f A and the current I'(in branch A in figure (b)) is %.2f A.\" %(I,I_dash)\n",
+ "if(I==I_dash) : print \"As the two currents I and I' have the same value, the reciprocity theorem is established.\\n \"\n",
+ "else : print \"As the two currents I and I' have different values, the reciprocity theorem is not established.\\n \"\n",
+ "print \"The transfer resistance is %.2f Ohms.\" %(R_tr)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The current I(in figure (a)) is 3.00 A and the current I'(in branch A in figure (b)) is 3.00 A.\n",
+ "As the two currents I and I' have the same value, the reciprocity theorem is established.\n",
+ " \n",
+ "The transfer resistance is 12.00 Ohms.\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.13,Page number: 119"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Question:\n",
+ "\"\"\"Finding the current using Thevenin's theorem.\"\"\"\n",
+ "\n",
+ "#Variable Declaration:\n",
+ "R_L=20.0 #Load resistance(in Ohms)\n",
+ "\n",
+ "\n",
+ "#Calculations:\n",
+ "\"\"\" KVL equation for the loop bacdeb, V_Th+50-20+10=0.\"\"\"\n",
+ "V_Th=-50.0-10.0+20.0\n",
+ "\"\"\"Shorting all the voltage sources.\"\"\"\n",
+ "R_Th=0.0\n",
+ "I3=V_Th/(R_L+R_Th)\n",
+ "\n",
+ "\n",
+ "#Result:\n",
+ "print \"The current I3 in the circuit is %.2f A.\" %(I3)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The current I3 in the circuit is -2.00 A.\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.14,Page number: 120"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Question:\n",
+ "\"\"\"Finding the current using Thevenin's theorem.\"\"\"\n",
+ "\n",
+ "#Variable Declaration:\n",
+ "R_L=1.0 #Load resistance(in Ohms)\n",
+ "\n",
+ "\n",
+ "#Calculations:\n",
+ "\"\"\" KVL equation for the loop bacdeb, V_Th+50-20+10=0.\"\"\"\n",
+ "V_Th=20.0-10.0-9.0\n",
+ "\"\"\"Shorting all the voltage sources.\"\"\"\n",
+ "R_Th=0.0\n",
+ "I2=V_Th/(R_L+R_Th)\n",
+ "\n",
+ "\n",
+ "#Result:\n",
+ "print \"The current I2 in the circuit is %.2f A.\" %(I2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The current I2 in the circuit is 1.00 A.\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.15,Page number: 121"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Question:\n",
+ "\"\"\"Finding the current using superposition theorem.\"\"\"\n",
+ "\n",
+ "#Variable Declaration:\n",
+ "R=0.5 #Load resistance(in Ohms)\n",
+ "\n",
+ "\n",
+ "#Calculations:\n",
+ "I=15.0/(1+0.6)\n",
+ "I1=I*(1/(1+(R+1)))\n",
+ "I2=20/((2/3.0)+2)\n",
+ "I1_20=I2*(2.0/(2.0+(R+R)))\n",
+ "Inet=I1-I1_20\n",
+ "\n",
+ "\n",
+ "#Result:\n",
+ "print \"The current flowing through R from A to B is %.2f A.\" %(Inet) "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The current flowing through R from A to B is -1.25 A.\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.16,Page number: 121"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Question:\n",
+ "\"\"\"Finding the voltage across the resistance using Thevenin's theorem.\"\"\"\n",
+ "\n",
+ "#Calculations:\n",
+ "\"\"\"The first step is to remove the 5 Ohms resistance.Then, find the open-circuit voltage Voc across AB. \n",
+ " Using nodal analysis,for node C we can write ((Voc-20)/2)+((Voc+10)/1)+((Voc-12)/4)=10.\"\"\"\n",
+ "Voc=(10+3)/(0.5+1+0.25)\n",
+ "V_Th=Voc\n",
+ "R_Th=1.0/((1.0/2.0)+(1.0)+(1/4.0))\n",
+ "V_AB=V_Th*(5.0/(5.0+R_Th))\n",
+ "\n",
+ "\n",
+ "#Result:\n",
+ "print \"The voltage across the 5 Ohms resistance is %.2f V.\" %(V_AB)\n",
+ "print \"Note:There is a calculation error in the textbook.Voc=7.43 V but not 1.74 V. Therefore V_AB=6.67 V.\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The voltage across the 5 Ohms resistance is 6.67 V.\n",
+ "Note:There is a calculation error in the textbook.Voc=7.43 V but not 1.74 V. Therefore V_AB=6.67 V.\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.17,Page number: 122"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Question:\n",
+ "\"\"\"Finding the current using Norton's theorem.\"\"\"\n",
+ "\n",
+ "#Calculations:\n",
+ "Isc=20.0/10.0\n",
+ "I_N=Isc\n",
+ "R_N=1.0/((1.0/10)+(1.0/10))\n",
+ "I=I_N*(R_N/(R_N+2.0))\n",
+ "\n",
+ "\n",
+ "#Result:\n",
+ "print \"The current through the 2 Ohms resistance when connected across terminals AB is %.2f A.\" %(I)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The current through the 2 Ohms resistance when connected across terminals AB is 1.43 A.\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.18,Page number: 123"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Question:\n",
+ "\"\"\"Finfing the power consumed by resistor using Norton's theorem.\"\"\"\n",
+ "\n",
+ "#Variable Declaration:\n",
+ "R_L=2.0 #Resistance of load(in Ohms)\n",
+ "\n",
+ "\n",
+ "#Calculations:\n",
+ "\"\"\"To determine I_N,short circuit the terminals xy and find the current Isc throgh this short circuit.\n",
+ "\n",
+ " Applying node-voltage analysis to determine the voltage at node 1,\n",
+ " \n",
+ " ((V1-12)/3)+(V1/2)=4;\"\"\"\n",
+ "\n",
+ "V1=(4.0+(12.0/3.0))/((1.0/3.0)+0.5)\n",
+ "Isc=V1/2.0\n",
+ "I_N=Isc\n",
+ "R_N=1.0/((1.0/(3.0+2.0))+(1.0/5.0))\n",
+ "I=I_N*(R_N/(R_N+R_L))\n",
+ "P=I*I*R_L\n",
+ "\n",
+ "\n",
+ "#Result:\n",
+ "print \"The power consumed by the 2 Ohms load reistor is %.3f W.\" %(P)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The power consumed by the 2 Ohms load reistor is 14.222 W.\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.19,Page number: 124"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Question:\n",
+ "\"\"\"Finding the voltage across load.\"\"\"\n",
+ "\n",
+ "#Variable Declaration:\n",
+ "R_L=5.0 #Load resistance(in Ohms)\n",
+ "\n",
+ "\n",
+ "#Calculations:\n",
+ "R_N=1.0/((1.0/20.0)+(1.0/(10.0+10.0)))\n",
+ "I_N=(65.0-10.0)/(10.0+10.0)\n",
+ "I_L=I_N*(R_N/(R_N+R_L))\n",
+ "V_L=I_L*R_L\n",
+ "\n",
+ "\n",
+ "#Result:\n",
+ "print \"The voltage across the load using Norton's theorem is %.2f V.\" %(V_L)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The voltage across the load using Norton's theorem is 9.17 V.\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.20,Page number: 125 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Question:\n",
+ "\"\"\"Finding the reading of voltmeter.\"\"\"\n",
+ "\n",
+ "#Variable Declaration:\n",
+ "R=500e03 #Resistance across which voltmeter is connected(in Ohms)\n",
+ "Rm=10e06 #Internal resistance of voltmeter(in Ohms)\n",
+ "\n",
+ "\n",
+ "#Calculations:\n",
+ "V_a=10.0*(R/(R+800e03))\n",
+ "R_Th=1.0/((1/R)+(1/800e03))\n",
+ "V_Th=V_a\n",
+ "V_b=V_Th*(Rm/(Rm+R_Th))\n",
+ "\n",
+ "\n",
+ "#Result:\n",
+ "print \"(a)The reading of the voltmeter if it assumed to be ideal is %.2f V.\" %(V_a)\n",
+ "print \"(b)The reading of the voltmeter if it has an internal resistance of 10 M Ohms is %.2f V.\" %(V_b)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a)The reading of the voltmeter if it assumed to be ideal is 3.85 V.\n",
+ "(b)The reading of the voltmeter if it has an internal resistance of 10 M Ohms is 3.73 V.\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.21,Page number: 125"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Question:\n",
+ "\"\"\"Finding the load resistance for receiving maximum power.\"\"\"\n",
+ "\n",
+ "#Variable Declaration:\n",
+ "R_L=3e03 #Load resistance(in Ohms)\n",
+ "\n",
+ "\n",
+ "#Calculations:\n",
+ "\"\"\"First, we remove R_L and then find Voc=V_Th. We transform the 5-mA current source into voltage source.\"\"\"\n",
+ "Voc=(60.0-40.0)*((6e03)/((6e03)+(12e03+18e03)))\n",
+ "V_Th=Voc\n",
+ "R_Th=1.0/((1.0/6e03)+(1.0/(12e03+18e03)))\n",
+ "Vab_b=V_Th*(R_L/(R_L+R_Th))\n",
+ "R_L_c=R_Th\n",
+ "\"\"\" The current required through 6 kilo Ohms resistor is 0.1 mA.\"\"\"\n",
+ "Vab_d=(0.1e-03)*(6e03)\n",
+ "V_30k=20-Vab_d\n",
+ "I_30k=V_30k/(30e03)\n",
+ "I_L=I_30k-(0.1e-03)\n",
+ "R_L_d=Vab_d/I_L\n",
+ "\n",
+ "\n",
+ "#Result:\n",
+ "print \"(a)The Thevenin's equivalent voltage is %.2f V and the Thevenin's resistance is %.2f kilo Ohms.\" %(V_Th,(R_Th/1000.0))\n",
+ "print \"(b)The Vab for R_L=3 kilo Ohms is %.3f V.\" %(Vab_b)\n",
+ "print \"(c)The value of R_L which receives maximum power from the circuit is %.2f kilo Ohms.\" %(R_L_c/1000.0)\n",
+ "print \"(d)The value of R_L which makes the current in the 6 kilo Ohms resistor to be 0.1 mA is %.3f kilo Ohms.\" %(R_L_d/1000.0) "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a)The Thevenin's equivalent voltage is 3.33 V and the Thevenin's resistance is 5.00 kilo Ohms.\n",
+ "(b)The Vab for R_L=3 kilo Ohms is 1.250 V.\n",
+ "(c)The value of R_L which receives maximum power from the circuit is 5.00 kilo Ohms.\n",
+ "(d)The value of R_L which makes the current in the 6 kilo Ohms resistor to be 0.1 mA is 1.098 kilo Ohms.\n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.22,Page number: 127"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Question:\n",
+ "\"\"\"Finding the value of resistance.\"\"\"\n",
+ "\n",
+ "#Variable Declaration:\n",
+ "V=12.0 #Supply voltage(in Volts)\n",
+ "\n",
+ "\n",
+ "#Calculations:\n",
+ "\"\"\" To receive maximum power,the resistance R should be equal to the output resistance of the remaining circuit,which is same as \n",
+ " Thevenin's resistance.\"\"\"\n",
+ "R_Th=1.0/((1.0/2.0)+(1.0/6.0))\n",
+ "R=R_Th\n",
+ "\"\"\" Mesh equations to find loop currents I1 and I2, \n",
+ " \n",
+ " (8*I1)-(6*I2)=4 and -(6*I1)+(7.5*I2)=8. Solving these equations, we get I1=3.25 A. \"\"\"\n",
+ "I1=((4*7.5)+(8*6))/((8*7.5)-(6*6))\n",
+ "P=V*I1\n",
+ "\n",
+ "\n",
+ "#Result:\n",
+ "print \"(a)The value of R to receive maximum power from the circuit is %.2f Ohms.\" %(R)\n",
+ "print \"(b)The power supplied by the 12 V source is %.2f W.\" %(P) "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a)The value of R to receive maximum power from the circuit is 1.50 Ohms.\n",
+ "(b)The power supplied by the 12 V source is 39.00 W.\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.23,Page number: 127"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Question:\n",
+ "\"\"\"Finding the current Is.\"\"\"\n",
+ "\n",
+ "#Calculations:\n",
+ "I1=12.0/(80.0+120)\n",
+ "\"\"\" I2=Is*(80/(80+120)); I1+I2=0;\"\"\"\n",
+ "Is=-I1/(80.0/(80+120))\n",
+ "\n",
+ "\n",
+ "#Result:\n",
+ "print \"The current Is such that the current through 120 Ohms resistor is zero is %.2f A.\" %(Is)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The current Is such that the current through 120 Ohms resistor is zero is -0.15 A.\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4.24,Page number: 128"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Question:\n",
+ "\"\"\"Finding the Thevenin equivalent circuit.\"\"\"\n",
+ "\n",
+ "#Variable Declaration:\n",
+ "Vs=12.0 #Supply voltage(in Volts)\n",
+ "\n",
+ "\n",
+ "#Calculations:\n",
+ "\"\"\"The circuit has no independent source.So,the current I in the 12 Ohms resistor will be zero and hence the dependent voltage source\n",
+ " (8*I) will also be zero. Obviously,Thevenin's voltage V_Th=0 V. \"\"\"\n",
+ "V_Th=0.0\n",
+ "I=12.0/12.0\n",
+ "V=8*I\n",
+ "\"\"\"Applying KCL to node a,\"\"\"\n",
+ "Is=(12.0/12.0)+(12.0/6.0)+((12.0-8.0)/4.0)\n",
+ "R_Th=Vs/Is\n",
+ "\n",
+ "\n",
+ "#Result:\n",
+ "print \"The Thevenin's equivalent resistance is %.2f Ohms and the Thevenin's equivalent voltage is %.2f V.\" %(R_Th,V_Th)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Thevenin's equivalent resistance is 3.00 Ohms and the Thevenin's equivalent voltage is 0.00 V.\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file