diff options
author | hardythe1 | 2014-08-13 11:41:01 +0530 |
---|---|---|
committer | hardythe1 | 2014-08-13 11:41:01 +0530 |
commit | 7e82f054d405211e1e8760524da8ad7c9fd75286 (patch) | |
tree | 1790cf5a7460b48582da6c35417a85f3a1389a81 /Applied_Thermodynamics/Chapter17.ipynb | |
parent | 98bff1c301dd3b8b14983037a8a483e3eae1796d (diff) | |
download | Python-Textbook-Companions-7e82f054d405211e1e8760524da8ad7c9fd75286.tar.gz Python-Textbook-Companions-7e82f054d405211e1e8760524da8ad7c9fd75286.tar.bz2 Python-Textbook-Companions-7e82f054d405211e1e8760524da8ad7c9fd75286.zip |
adding book
Diffstat (limited to 'Applied_Thermodynamics/Chapter17.ipynb')
-rwxr-xr-x | Applied_Thermodynamics/Chapter17.ipynb | 591 |
1 files changed, 591 insertions, 0 deletions
diff --git a/Applied_Thermodynamics/Chapter17.ipynb b/Applied_Thermodynamics/Chapter17.ipynb new file mode 100755 index 00000000..897d24a0 --- /dev/null +++ b/Applied_Thermodynamics/Chapter17.ipynb @@ -0,0 +1,591 @@ +{ + "metadata": { + "name": "", + "signature": "sha256:1c2e3038adc30a476d490492d6ffb75ea411a368f94f9012a25719b295c63337" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 17: Introduction to Internal Combustion Engines" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 1, page no. 790" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "\n", + "from math import pi\n", + "\n", + "#Variable Declaration: \n", + "r1 = 1.2 #L/D ratio:\n", + "D = 0.12 #Cylinder diameter(in m):\n", + "A = 30*10**(-4) #Area of indicated diagram(in m**2):\n", + "k = 20*10**3 #Spring constant(in kN/m**2):\n", + "N = 2000 #Rpm of engine:\n", + "r = 0.10 #Percentage power lost:\n", + "\n", + "#Calculations:\n", + "L = r1*D #Stroke length(in m):\n", + "l = L/2 #Length of indicator diagram(in m):\n", + "mep = A*k*10**3/l #Mep(in N/m**2):\n", + "A2 = pi*D**2/4 #Cross-sectional area of piston(in m**2):\n", + "IP = 4*mep*A2*L*N/(2*60) #Total indicated power for 4 cylinders(in W):\n", + "FP = r*IP #Fricitional loss(in W):\n", + "BP = IP-FP #Brake power available(in W):\n", + "nm = BP/IP*100 #Mechanical efficiency:\n", + "\n", + "#Results: \n", + "print \"Indicated power: \",round(IP,1),\"W\"\n", + "print \"Mechanical efficiency: \",round(nm,2),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Indicated power: 90477.9 W\n", + "Mechanical efficiency: 90.0 %\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 2, page no. 791" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "\n", + "from math import pi\n", + "\n", + "#Variable Declaration: \n", + "A = 40*10**(-4) #Indicator diagram area & length(in m**2 & m):\n", + "l = 0.08\n", + "D = 0.15 #Bore(in m):\n", + "L = 0.20 #Stroke(in m):\n", + "N = 100 #Rpm of motor:\n", + "\n", + "#Calculations:\n", + "k = 1.5*10**8 #Spring constant(in Pa/m):\n", + "mep = A*k/l #Mep(in Pa):\n", + "IP = (pi*D**2/4*L*mep*N/60*2)/10**3 #Indicated power(in kW):\n", + "\n", + "#Results: \n", + "print \"Power required to drive: \",round(IP,2),\"kW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Power required to drive: 88.36 kW\n" + ] + } + ], + "prompt_number": 4 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 3, page no. 791" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + " \n", + "#Variable Declaration: \n", + "nm = 0.90 #Mechanical efficiency:\n", + "BP = 38 #Rating(in kW):\n", + "\n", + "#Calculations:\n", + "IP = BP/nm #Indicated power(in kW):\n", + "FP = IP-BP #Fricitional loss(in kW):\n", + "BP1 = 0.25*BP #Brake power at quater load(in kW):\n", + "nm1 = BP1/(BP1+FP)*100 #Mechanical efficiency:\n", + "\n", + "#Results: \n", + "print \"Indicated power: \",round(IP,2),\"W\"\n", + "print \"Fricitonal power loss: \",round(FP,2),\"kw\"\n", + "print \"Mechanical efficiency: \",round(nm1,2),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Indicated power: 42.22 W\n", + "Fricitonal power loss: 4.22 kw\n", + "Mechanical efficiency: 69.23 %\n" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 4, page no. 792" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "\n", + "from math import pi\n", + "\n", + "#Variable Declaration: \n", + "m1 = 0.25 #Specific fuel consumption(in kg/kW.h):\n", + "pbmep = 1.5*10**3 #Brake mean effective pressure(in kPa):\n", + "N = 100 #Speed of engine(in rpm):\n", + "D = 0.85 #Bore of cylinder(in m):\n", + "L = 2.20 #Stroke(in m):\n", + "C = 43*10**3 #Calorific value of diesel(in kJ/kg):\n", + "BP = pbmep*L*(pi*D**2/4)*N/60 #Brake power of engine(in kW):\n", + "m = m1*BP #Fuel consumption(in kg/hr):\n", + "q = m*C/3600 #Heat from fuel(in kJ/s):\n", + "nb = BP/q*100 #Brake thermal efficiency:\n", + "\n", + "#Results: \n", + "print \"Brake power: \",round(BP/100,2),\"MW\"\n", + "print \"Fuel consumption rate: \",round(m,2),\"kg/hr\"\n", + "print \"Brake thermal efficiency: \",round(nb,2),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Brake power: 31.21 MW\n", + "Fuel consumption rate: 780.24 kg/hr\n", + "Brake thermal efficiency: 33.49 %\n" + ] + } + ], + "prompt_number": 9 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 5, page no. 792" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "\n", + "from math import pi\n", + "\n", + "#Variable Declaration: \n", + "pb = 6*10**2 #Effective pressure(in kPa):\n", + "N = 600 #Speed:\n", + "m1 = 0.25 #Specific fuel consumption(in kg/kW.h)\n", + "D = 0.20 #BOre(in m):\n", + "L = 0.30 #Stroke length(in m):\n", + "r = 26 #Air fuel ratio:\n", + "C = 43*10**3 #Calorific value(in kJ/kg):\n", + "R = 0.287 #Gas constant(in kJ/kg.K):\n", + "p = 1*10**2 #kPa #Ambient conditions:\n", + "T = 300 #K\n", + "\n", + "#Calculation:\n", + "nb = 3600/(m1*C)*100 #Brake thermal efficiency:\n", + "BP = 4*pb*L*(pi*D**2/4)*N/60 #Brake power(in kW):\n", + "ma = m1*BP*r/60 #Air consumption rate(in kg/min):\n", + "Va = ma*R*T/p #Volume(in m**3/min):\n", + "Vs = pi*(0.3)**2*0.4/4 #Swept volume(in m**3):\n", + "nv = Va/(Vs*N/2*4)*100 #Volumetric efficiency:\n", + "\n", + "#Results: \n", + "print \"Brake thermal efficiency: \",round(nb,2),\"%\"\n", + "print \"Brake power: \",round(BP,2),\"kW\"\n", + "print \"Volumetric efficiency: \",round(nv,2),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Brake thermal efficiency: 33.49 %\n", + "Brake power: 226.19 kW\n", + "Volumetric efficiency: 62.18 %\n" + ] + } + ], + "prompt_number": 12 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6, page no. 793" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "\n", + "from math import pi,sqrt\n", + "\n", + "#Variable Declaration: \n", + "n = 0.7 #Volumetric efficiency\n", + "r = 19 #Air fuel ratio:\n", + "N = 3000 #Speed(in rpm):\n", + "m = 5 #Fuel consumption rate(in litres/hr):\n", + "sg = 0.7 #Specific gravity:\n", + "s = 500 #Piston speed(in m/min):\n", + "p = 6*10**2 #Mep(in kPa):\n", + "R = 0.287 #Gas constant(in kJ/kg.K):\n", + "nm = 0.8 #Mechanical efficiency:\n", + "\n", + "#Calculations:\n", + "L = s/(2*N) #Stroke length(in m):\n", + "ma = r*m*sg/60 #Air requirement(in kg/min):\n", + "Va = ma*R*288/(1.013*10**2) #Volume of air sucked(in m**3/min):\n", + "D = sqrt(Va*4/(pi*L*N*2*n)) #Bore diameter(in m):\n", + "IP = p*L*(pi*D**2/4*N*2)/60 #Indicated power(in kW):\n", + "BP = IP*nm #Brake power(in kW):\n", + "\n", + "#Results: \n", + "print \"Brake power: \",round(BP,2),\"KW\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Brake power: 10.34 KW\n" + ] + } + ], + "prompt_number": 15 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 7, page no. 794" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "\n", + "from math import pi\n", + "\n", + "#Variable Declaration: \n", + "FP = 5 #Friction power(in kW):\n", + "N = 3000 #Rpm:\n", + "D = 0.20 #Bore(in m):\n", + "L = 0.30 #Stroke(in m):\n", + "m = 0.15 #Fuel supplied at rate(in kg/min):\n", + "F = 20 #Load(in kg):\n", + "r = 0.5 #Radius(in m):\n", + "C = 43000 #Calorific value of fuel(in kJ/kg):\n", + "g = 9.81 #Acceleration due to gravity(in m/s**2):\n", + "\n", + "#Calculations:\n", + "BP = 2*pi*N*(F*g*r*10**(-3))/60 #Brake power(in kW):\n", + "IP = BP+FP #Indicated power(in kW):\n", + "nm = BP/IP #Mechanical efficiency:\n", + "BSFC = m*60/BP #BSFC(in kg/kW.hr):\n", + "nbth = 3600/(BSFC*C)*100 #Brake thermal efficiency:\n", + "nith = nbth/nm #Indicated thermal efficiency:\n", + "Pimep = IP/(L*(pi*D**2/4)*N/60) #Indicated mep(in kPa):\n", + "Pbmep = Pimep*nm #Brake mep(in kPa):\n", + "\n", + "#Results: \n", + "print \"Brake power: \",round(BP,2),\"KW\"\n", + "print \"Indicated power: \",round(IP,2),\"KW\"\n", + "print \"Mechanical efficiency: \",round(nm*100,2),\"%\"\n", + "print \"Brake thermal efficiency: \",round(nbth,2),\"%\"\n", + "print \"Indicated thermal efficiency: \",round(nith,2),\"%\"\n", + "print \"Brake mean effective pressure: \",round(Pbmep,2),\"kPa\"\n", + "print \"Indicated mean effective pressure: \",round(Pimep,2),\"kPa\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Brake power: 30.82 KW\n", + "Indicated power: 35.82 KW\n", + "Mechanical efficiency: 86.04 %\n", + "Brake thermal efficiency: 28.67 %\n", + "Indicated thermal efficiency: 33.32 %\n", + "Brake mean effective pressure: 65.4 kPa\n", + "Indicated mean effective pressure: 76.01 kPa\n" + ] + } + ], + "prompt_number": 17 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 8, page no. 795" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "\n", + "from math import pi\n", + "\n", + "#Variable Declaration: \n", + "N = 300 #Speed(in rpm):\n", + "BP = 250 #Brake power(in kW):\n", + "D = 0.30 #Bore diameter(in m):\n", + "L = 0.25 #Stroke length(in m):\n", + "m = 1 #Fuel consumption rate(in kg/min):\n", + "r = 10 #Air fuel ratio:\n", + "C = 43000 #Calorific value of fuel(in kJ/kg):\n", + "\n", + "#Calculations:\n", + "Pimep = 0.8*10**3 #Indicated mep(in kPa):\n", + "R = 0.287 #Gas constant(in kJ/kg.K):\n", + "IP = Pimep*L*(pi*D**2/4)*N*4/60\t#Indicated power(in kW):\n", + "nm = BP/IP #Mechanical efficiency:\n", + "BSFC = m*60/BP #BSFC(in kg/kW.hr):\n", + "nbth = 3600/(BSFC*C)*100 #Brake thermal efficiency:\n", + "Vs = pi*D**2*L/4 #Swept volume(in m**3):\n", + "ma = round(1.013*10**2*Vs/(R*300),2)#Mass of air(in kg):\n", + "nv = m*r/(ma*4*N/2)*100\t#Volumetric efficiency:\n", + "\n", + "#Results: \n", + "print \"Indicated power: \",round(IP,2),\"kW\"\n", + "print \"Mechanical efficiency: \",round(nm*100,2),\"%\"\n", + "print \"Brake thermal efficiency: \",round(nbth,2),\"%\"\n", + "print \"Volumetric efficiency: \",round(nv,2),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Indicated power: 282.74 kW\n", + "Mechanical efficiency: 88.42 %\n", + "Brake thermal efficiency: 34.88 %\n", + "Volumetric efficiency: 83.33 %\n" + ] + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 9, page no. 796" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + " \n", + "from math import pi\n", + "\n", + "#Variable Declaration: \n", + "k = 25 #Indicator constant(in kN/m**2):\n", + "N = 300 #Rpm:\n", + "Vs = 1.5*10**(-2) #Swept volume(in m**3):\n", + "F = 60 #Load(in kg):\n", + "r = 0.5 #Radius(in m):\n", + "C = 43000 #Calorific value of fuel(in kJ/kg):\n", + "g = 9.81 #Acceleration due to gravity(in m/s**2):\n", + "m = 0.12 #Fuel supplied at rate(in kg/min):\n", + "Pimep = 10*k #Indicatedmep(in kPa):\n", + "IP = Pimep*Vs*N/(2*60) #Indicated power(in kW):\n", + "BP = 2*pi*N/(2*60)*(F*g*r)*10**(-3)\t#Brake power(in kW):\n", + "nm = BP/IP #Mechanical efficiency:\n", + "\n", + "#Results:\n", + "print \"Indicated power: \",round(IP,2),\"kW\"\n", + "print \"Brake power: \",round(BP,2),\"W\"\n", + "print \"Mechanical efficiency: \",round(nm*100,2),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Indicated power: 9.38 kW\n", + "Brake power: 4.62 W\n", + "Mechanical efficiency: 49.31 %\n" + ] + } + ], + "prompt_number": 21 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 9, page no. 796" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "\n", + "from math import pi\n", + "\n", + "#Variable Declaration: \n", + "k = 25 #Indicator constant(in kN/m**2):\n", + "N = 300 #Rpm:\n", + "Vs = 1.5*10**(-2) #Swept volume(in m**3):\n", + "F = 60 #Load(in kg):\n", + "r = 0.5 #Radius(in m):\n", + "C = 43000 #Calorific value of fuel(in kJ/kg):\n", + "g = 9.81 #Acceleration due to gravity(in m/s**2):\n", + "m = 0.12 #Fuel supplied at rate(in kg/min):\n", + "Pimep = 10*k #Indicatedmep(in kPa):\n", + "IP = Pimep*Vs*N/(2*60) #Indicated power(in kW):\n", + "BP = 2*pi*N/(2*60)*(F*g*r)*10**(-3)\t#Brake power(in kW):\n", + "nm = BP/IP #Mechanical efficiency:\n", + "\n", + "#Results:\n", + "print \"Indicated power: \",round(IP,2),\"kW\"\n", + "print \"Brake power: \",round(BP,2),\"W\"\n", + "print \"Mechanical efficiency: \",round(nm*100,2),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Indicated power: 9.38 kW\n", + "Brake power: 4.62 W\n", + "Mechanical efficiency: 49.31 %\n" + ] + } + ], + "prompt_number": 23 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 10, page no. 797" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from __future__ import division\n", + "\n", + "from math import pi\n", + "\n", + "#Variable Declaration: \n", + "N = 1500 #Speed of engine(in rpm):\n", + "T = 300 #Brake torque(in Nm):\n", + "m = 4 #Fuel consumed(in kg):\n", + "m1 = 15 #Cooling water circulated(in kg/min):\n", + "C = 42000 #Calorific value of fuel(in kJ/kg):\n", + "nm = 0.90 #Mechanical efficiency:\n", + "\n", + "#Calculations:\n", + "BP = 2*pi*N*T/(60*10**3) #Brake power(in kW):\n", + "BSFC = m*60/(m1*BP) #BSFC(in kg/kW.hr):\n", + "IP = BP/nm #Indicated power(in kW):\n", + "nith = IP/(m*C/(m1*60))*100#Indicated thermal efficiency:\n", + "\n", + "#Results: \n", + "print \"Brake power: \",round(BP,2),\"W\"\n", + "print \"Brake specific fuel consumption: \",round(BSFC,2),\"kg/kW.hr\"\n", + "print \"Indicated thermal efficiency: \",round(nith,2),\"%\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "Brake power: 47.12 W\n", + "Brake specific fuel consumption: 0.34 kg/kW.hr\n", + "Indicated thermal efficiency: 28.05 %\n" + ] + } + ], + "prompt_number": 25 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |