summaryrefslogtreecommitdiff
path: root/Applied_Physics_for_Engineers/Chapter_6.ipynb
diff options
context:
space:
mode:
authorhardythe12015-01-28 14:31:21 +0530
committerhardythe12015-01-28 14:31:21 +0530
commit9add422993fb2649287260bc91d429a07d1810d5 (patch)
treeef48c2b2579e65b982d3f700c4fa76b81d2496c1 /Applied_Physics_for_Engineers/Chapter_6.ipynb
parent6e3407ba85ae84e1cee1ae0c972fd32c5504d827 (diff)
downloadPython-Textbook-Companions-9add422993fb2649287260bc91d429a07d1810d5.tar.gz
Python-Textbook-Companions-9add422993fb2649287260bc91d429a07d1810d5.tar.bz2
Python-Textbook-Companions-9add422993fb2649287260bc91d429a07d1810d5.zip
added books
Diffstat (limited to 'Applied_Physics_for_Engineers/Chapter_6.ipynb')
-rwxr-xr-xApplied_Physics_for_Engineers/Chapter_6.ipynb376
1 files changed, 376 insertions, 0 deletions
diff --git a/Applied_Physics_for_Engineers/Chapter_6.ipynb b/Applied_Physics_for_Engineers/Chapter_6.ipynb
new file mode 100755
index 00000000..2e0b3f8c
--- /dev/null
+++ b/Applied_Physics_for_Engineers/Chapter_6.ipynb
@@ -0,0 +1,376 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 6: X-rays"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.1, Page 369"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import *\n",
+ "\n",
+ "#Variable declaration\n",
+ "i = 2e-003; # Current through X-ray tube, A\n",
+ "e = 1.6e-019; # Charge on an electron, C\n",
+ "V = 12.4e+003; # Potential difference applied across X-ray tube, V \n",
+ "m0 = 9.1e-031; # Rest mass of the electron, Kg \n",
+ "\n",
+ "#Calculations&Results\n",
+ "n = i/e; # Number of electrons striking the target per second\n",
+ "print \"The number of electrons striking the target per sec = %4.2e electrons\"%n\n",
+ "v = sqrt(2*e*V/m0); # Velocity of the electrons, m/s\n",
+ "print \"The speed with which electrons strike the target = %4.2e m/s\"%v\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The number of electrons striking the target per sec = 1.25e+16 electrons\n",
+ "The speed with which electrons strike the target = 6.60e+07 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.2, Page 370"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import *\n",
+ "\n",
+ "#Variable declaration\n",
+ "e = 1.6e-019; # Charge on an electron, C\n",
+ "V = 13.6e+003; # Potential difference applied across X-ray tube, V \n",
+ "m0 = 9.1e-031; # Rest mass of the electron, Kg \n",
+ "\n",
+ "#Calculations\n",
+ "v = sqrt(2*e*V/m0); # Velocity of the electron, m/s \n",
+ "\n",
+ "#Result\n",
+ "print \"The maximum speed with which the electrons strike the target = %4.2e m/s\"%v\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum speed with which the electrons strike the target = 6.92e+07 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.3, Page 370"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import *\n",
+ "\n",
+ "#Variable declaration\n",
+ "d = 2.82e-010; # Spacing of the rock-salt, m \n",
+ "n = 2; # Order of diffraction\n",
+ "\n",
+ "#Calculations\n",
+ "theta = pi/2; # Angle of diffraction, radian\n",
+ "# Braggs equation for X-rays of wavelength lambda is n*lambda = 2*d*sin(theta), solving for lambda\n",
+ "lamda = 2*d*sin(theta)/n; # Wavelength of X-ray using Bragg's law, m\n",
+ "\n",
+ "#Result\n",
+ "print \"The longest wavelength that can be analysed by a rock-salt crystal = %4.2f angstrom\"%(lamda/1e-010)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The longest wavelength that can be analysed by a rock-salt crystal = 2.82 angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.4, Page 371"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import *\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda = 3e-011; # Wavelength of the X-ray, m\n",
+ "d = 5e-011; # Lattice spacing, m \n",
+ "\n",
+ "#Calculations&Results\n",
+ "# Bragg's equation for X-rays of wavelength lambda is n*lambda = 2*d*sin(theta), solving for thetas\n",
+ "for n in range(2,4):\n",
+ " theta = degrees(asin((n*lamda)/(2*d))); \n",
+ " print \"For n = %d, theta = %.1f degrees\"%(n, theta)\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "For n = 2, theta = 36.9 degrees\n",
+ "For n = 3, theta = 64.2 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.5, Page 371"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import *\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda = 3.6e-011; # Wavelength of X-rays, m\n",
+ "n = 1; # Order of diffraction\n",
+ "theta = 4.8; # Angle of diffraction, degrees\n",
+ "\n",
+ "#Calculations\n",
+ "# Braggs equation for X-rays is n*lambda = 2*d*sin(theta), solving for d\n",
+ "d = n*lamda/(2*sin(theta*pi/180)); # Interplanar spacing, m\n",
+ "\n",
+ "#Result\n",
+ "print \"The interplanar separation of atomic planes in the crystal = %4.2f angstrom\"%(d/1e-010)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The interplanar separation of atomic planes in the crystal = 2.15 angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.6, Page 371"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable declaration\n",
+ "lambda1 = 0.71; # Wavelength of k alpha line in molybdenum, angstrom\n",
+ "Z1 = 42; # Atomic number of Mo\n",
+ "Z2 = 29; # Atomic number of Cu\n",
+ "\n",
+ "#Calculations\n",
+ "# Wavelength of characteristic X-ray for K-alpha spectral line is given by \n",
+ "# 1/lambda = 3/4*R*(Z-1)^2 then\n",
+ "lambda2 = lambda1*(Z1-1)**2/(Z2-1)**2; # The wavelength of K alpha radiation in copper, m\n",
+ "\n",
+ "#Result\n",
+ "print \"The wavelength of K-alpha radiation in copper = %4.2f angstrom\"%lambda2\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The wavelength of K-alpha radiation in copper = 1.52 angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.7, Page 372"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import *\n",
+ "\n",
+ "#Variable declaration\n",
+ "phi = pi/2; # Scattering angle, degrees\n",
+ "m0 = 9.1e-031; # Rest mass of an electron, kg\n",
+ "h = 6.62e-034; # Planck's constant, J-s\n",
+ "c = 3e+008; # Speed of light in vacuum, m/s \n",
+ "E = 8.16e-014; # Energy of gamma radiation, J\n",
+ "\n",
+ "#Calculations\n",
+ "lamda = h*c/(E*1e-010); # Wavelength of incident photon, angstrom \n",
+ "lambda_prime = lamda+h*(1-cos(phi*pi/180))/(m0*c*1e-010); # Wavelength of scattered photon, angstrom\n",
+ "\n",
+ "#Result\n",
+ "print \"The wavelength of radiation at 90 degrees = %6.4f angstrom\"%(lambda_prime+lamda)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The wavelength of radiation at 90 degrees = 0.0487 angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 56
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.8, Page 372"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import *\n",
+ "\n",
+ "#Variable declaration\n",
+ "phi = 90; # Scattering angle, radian\n",
+ "m0 = 9.1e-031; # Rest mass of the electron, kg\n",
+ "h = 6.62e-034; # Planck's constant, J-s\n",
+ "c = 3e+008; # Speed of light in vacuum, m/s \n",
+ "lamda = 1.00 ; # Wavelength of incident photon,in angstrom\n",
+ "\n",
+ "#Calculations\n",
+ "del_lambda = (h*(1-round(cos(degrees(phi))))/(m0*c))/10**-10; # Compton shift, angstrom\n",
+ "\n",
+ "#Result\n",
+ "print \"The Compton shift = %.4f angstrom\"%del_lambda\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Compton shift = 0.0242 angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 54
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.9, Page 373"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import *\n",
+ "\n",
+ "#Variable declaration\n",
+ "phi = pi/2; # Scattering angle, radian\n",
+ "m0 = 9.1e-031; # Rest mass of the electron, kg\n",
+ "h = 6.62e-034; # Planck's constant, J-s\n",
+ "c = 3e+008; # Speed of light in vacuum, m/s \n",
+ "\n",
+ "#Calculations\n",
+ "# As Compton shift = del_lambda = lambda, so\n",
+ "lamda = h*(1-cos(phi))/(m0*c*1e-010); # Wavelength of incident photon, angstrom\n",
+ "\n",
+ "#Result\n",
+ "print \"The wavelength of incident radiation = %6.4f angstrom\"%lamda\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The wavelength of incident radiation = 0.0242 angstrom\n"
+ ]
+ }
+ ],
+ "prompt_number": 55
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file