diff options
author | hardythe1 | 2015-01-28 14:31:21 +0530 |
---|---|---|
committer | hardythe1 | 2015-01-28 14:31:21 +0530 |
commit | 9add422993fb2649287260bc91d429a07d1810d5 (patch) | |
tree | ef48c2b2579e65b982d3f700c4fa76b81d2496c1 /Applied_Physics_for_Engineers/Chapter_6.ipynb | |
parent | 6e3407ba85ae84e1cee1ae0c972fd32c5504d827 (diff) | |
download | Python-Textbook-Companions-9add422993fb2649287260bc91d429a07d1810d5.tar.gz Python-Textbook-Companions-9add422993fb2649287260bc91d429a07d1810d5.tar.bz2 Python-Textbook-Companions-9add422993fb2649287260bc91d429a07d1810d5.zip |
added books
Diffstat (limited to 'Applied_Physics_for_Engineers/Chapter_6.ipynb')
-rwxr-xr-x | Applied_Physics_for_Engineers/Chapter_6.ipynb | 376 |
1 files changed, 376 insertions, 0 deletions
diff --git a/Applied_Physics_for_Engineers/Chapter_6.ipynb b/Applied_Physics_for_Engineers/Chapter_6.ipynb new file mode 100755 index 00000000..2e0b3f8c --- /dev/null +++ b/Applied_Physics_for_Engineers/Chapter_6.ipynb @@ -0,0 +1,376 @@ +{ + "metadata": { + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "heading", + "level": 1, + "metadata": {}, + "source": [ + "Chapter 6: X-rays" + ] + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.1, Page 369" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import *\n", + "\n", + "#Variable declaration\n", + "i = 2e-003; # Current through X-ray tube, A\n", + "e = 1.6e-019; # Charge on an electron, C\n", + "V = 12.4e+003; # Potential difference applied across X-ray tube, V \n", + "m0 = 9.1e-031; # Rest mass of the electron, Kg \n", + "\n", + "#Calculations&Results\n", + "n = i/e; # Number of electrons striking the target per second\n", + "print \"The number of electrons striking the target per sec = %4.2e electrons\"%n\n", + "v = sqrt(2*e*V/m0); # Velocity of the electrons, m/s\n", + "print \"The speed with which electrons strike the target = %4.2e m/s\"%v\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The number of electrons striking the target per sec = 1.25e+16 electrons\n", + "The speed with which electrons strike the target = 6.60e+07 m/s\n" + ] + } + ], + "prompt_number": 1 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.2, Page 370" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import *\n", + "\n", + "#Variable declaration\n", + "e = 1.6e-019; # Charge on an electron, C\n", + "V = 13.6e+003; # Potential difference applied across X-ray tube, V \n", + "m0 = 9.1e-031; # Rest mass of the electron, Kg \n", + "\n", + "#Calculations\n", + "v = sqrt(2*e*V/m0); # Velocity of the electron, m/s \n", + "\n", + "#Result\n", + "print \"The maximum speed with which the electrons strike the target = %4.2e m/s\"%v\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The maximum speed with which the electrons strike the target = 6.92e+07 m/s\n" + ] + } + ], + "prompt_number": 2 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.3, Page 370" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import *\n", + "\n", + "#Variable declaration\n", + "d = 2.82e-010; # Spacing of the rock-salt, m \n", + "n = 2; # Order of diffraction\n", + "\n", + "#Calculations\n", + "theta = pi/2; # Angle of diffraction, radian\n", + "# Braggs equation for X-rays of wavelength lambda is n*lambda = 2*d*sin(theta), solving for lambda\n", + "lamda = 2*d*sin(theta)/n; # Wavelength of X-ray using Bragg's law, m\n", + "\n", + "#Result\n", + "print \"The longest wavelength that can be analysed by a rock-salt crystal = %4.2f angstrom\"%(lamda/1e-010)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The longest wavelength that can be analysed by a rock-salt crystal = 2.82 angstrom\n" + ] + } + ], + "prompt_number": 3 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.4, Page 371" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import *\n", + "\n", + "#Variable declaration\n", + "lamda = 3e-011; # Wavelength of the X-ray, m\n", + "d = 5e-011; # Lattice spacing, m \n", + "\n", + "#Calculations&Results\n", + "# Bragg's equation for X-rays of wavelength lambda is n*lambda = 2*d*sin(theta), solving for thetas\n", + "for n in range(2,4):\n", + " theta = degrees(asin((n*lamda)/(2*d))); \n", + " print \"For n = %d, theta = %.1f degrees\"%(n, theta)\n", + "\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "For n = 2, theta = 36.9 degrees\n", + "For n = 3, theta = 64.2 degrees\n" + ] + } + ], + "prompt_number": 18 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.5, Page 371" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import *\n", + "\n", + "#Variable declaration\n", + "lamda = 3.6e-011; # Wavelength of X-rays, m\n", + "n = 1; # Order of diffraction\n", + "theta = 4.8; # Angle of diffraction, degrees\n", + "\n", + "#Calculations\n", + "# Braggs equation for X-rays is n*lambda = 2*d*sin(theta), solving for d\n", + "d = n*lamda/(2*sin(theta*pi/180)); # Interplanar spacing, m\n", + "\n", + "#Result\n", + "print \"The interplanar separation of atomic planes in the crystal = %4.2f angstrom\"%(d/1e-010)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The interplanar separation of atomic planes in the crystal = 2.15 angstrom\n" + ] + } + ], + "prompt_number": 19 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.6, Page 371" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "#Variable declaration\n", + "lambda1 = 0.71; # Wavelength of k alpha line in molybdenum, angstrom\n", + "Z1 = 42; # Atomic number of Mo\n", + "Z2 = 29; # Atomic number of Cu\n", + "\n", + "#Calculations\n", + "# Wavelength of characteristic X-ray for K-alpha spectral line is given by \n", + "# 1/lambda = 3/4*R*(Z-1)^2 then\n", + "lambda2 = lambda1*(Z1-1)**2/(Z2-1)**2; # The wavelength of K alpha radiation in copper, m\n", + "\n", + "#Result\n", + "print \"The wavelength of K-alpha radiation in copper = %4.2f angstrom\"%lambda2\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The wavelength of K-alpha radiation in copper = 1.52 angstrom\n" + ] + } + ], + "prompt_number": 20 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.7, Page 372" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import *\n", + "\n", + "#Variable declaration\n", + "phi = pi/2; # Scattering angle, degrees\n", + "m0 = 9.1e-031; # Rest mass of an electron, kg\n", + "h = 6.62e-034; # Planck's constant, J-s\n", + "c = 3e+008; # Speed of light in vacuum, m/s \n", + "E = 8.16e-014; # Energy of gamma radiation, J\n", + "\n", + "#Calculations\n", + "lamda = h*c/(E*1e-010); # Wavelength of incident photon, angstrom \n", + "lambda_prime = lamda+h*(1-cos(phi*pi/180))/(m0*c*1e-010); # Wavelength of scattered photon, angstrom\n", + "\n", + "#Result\n", + "print \"The wavelength of radiation at 90 degrees = %6.4f angstrom\"%(lambda_prime+lamda)\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The wavelength of radiation at 90 degrees = 0.0487 angstrom\n" + ] + } + ], + "prompt_number": 56 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.8, Page 372" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import *\n", + "\n", + "#Variable declaration\n", + "phi = 90; # Scattering angle, radian\n", + "m0 = 9.1e-031; # Rest mass of the electron, kg\n", + "h = 6.62e-034; # Planck's constant, J-s\n", + "c = 3e+008; # Speed of light in vacuum, m/s \n", + "lamda = 1.00 ; # Wavelength of incident photon,in angstrom\n", + "\n", + "#Calculations\n", + "del_lambda = (h*(1-round(cos(degrees(phi))))/(m0*c))/10**-10; # Compton shift, angstrom\n", + "\n", + "#Result\n", + "print \"The Compton shift = %.4f angstrom\"%del_lambda\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The Compton shift = 0.0242 angstrom\n" + ] + } + ], + "prompt_number": 54 + }, + { + "cell_type": "heading", + "level": 2, + "metadata": {}, + "source": [ + "Example 6.9, Page 373" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "from math import *\n", + "\n", + "#Variable declaration\n", + "phi = pi/2; # Scattering angle, radian\n", + "m0 = 9.1e-031; # Rest mass of the electron, kg\n", + "h = 6.62e-034; # Planck's constant, J-s\n", + "c = 3e+008; # Speed of light in vacuum, m/s \n", + "\n", + "#Calculations\n", + "# As Compton shift = del_lambda = lambda, so\n", + "lamda = h*(1-cos(phi))/(m0*c*1e-010); # Wavelength of incident photon, angstrom\n", + "\n", + "#Result\n", + "print \"The wavelength of incident radiation = %6.4f angstrom\"%lamda\n" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "The wavelength of incident radiation = 0.0242 angstrom\n" + ] + } + ], + "prompt_number": 55 + } + ], + "metadata": {} + } + ] +}
\ No newline at end of file |