summaryrefslogtreecommitdiff
path: root/Applied_Physics_by_S._Mani_Naidu/Chapter8_nXYTfh3.ipynb
diff options
context:
space:
mode:
authorkinitrupti2017-05-12 18:40:35 +0530
committerkinitrupti2017-05-12 18:40:35 +0530
commit64d949698432e05f2a372d9edc859c5b9df1f438 (patch)
tree012fd5b4ac9102cdcf5bc56305e49d6714fa5951 /Applied_Physics_by_S._Mani_Naidu/Chapter8_nXYTfh3.ipynb
parent9c6ab8cbf3e1a84c780386abf4852d84cdd32d56 (diff)
downloadPython-Textbook-Companions-64d949698432e05f2a372d9edc859c5b9df1f438.tar.gz
Python-Textbook-Companions-64d949698432e05f2a372d9edc859c5b9df1f438.tar.bz2
Python-Textbook-Companions-64d949698432e05f2a372d9edc859c5b9df1f438.zip
Revised list of TBCs
Diffstat (limited to 'Applied_Physics_by_S._Mani_Naidu/Chapter8_nXYTfh3.ipynb')
-rw-r--r--Applied_Physics_by_S._Mani_Naidu/Chapter8_nXYTfh3.ipynb784
1 files changed, 0 insertions, 784 deletions
diff --git a/Applied_Physics_by_S._Mani_Naidu/Chapter8_nXYTfh3.ipynb b/Applied_Physics_by_S._Mani_Naidu/Chapter8_nXYTfh3.ipynb
deleted file mode 100644
index 2069ff01..00000000
--- a/Applied_Physics_by_S._Mani_Naidu/Chapter8_nXYTfh3.ipynb
+++ /dev/null
@@ -1,784 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 8: Semiconductors and Physics of Semiconductor Devices"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 1, Page number 8-55"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- " resistivity is 0.41667 ohm m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(c)\n",
- "ni=2.5*10**19; #particle density(per m**3)\n",
- "mew_n=0.40; #electron mobility(m**2/Vs)\n",
- "mew_p=0.20; #hole mobility(m**2/Vs)\n",
- "\n",
- "#Calculation\n",
- "rhoi=1/(ni*e*(mew_n+mew_p)); #resistivity(ohm m)\n",
- "\n",
- "#Result\n",
- "print \"resistivity is\",round(rhoi,5),\"ohm m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 2, Page number 8-56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "number of donor atoms is 8.333 *10**19 per m**3\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(c)\n",
- "mew_n=0.3; #electron mobility(m**2/Vs)\n",
- "rho=0.25; #resistivity(ohm m)\n",
- "\n",
- "#Calculation\n",
- "n=1/(rho*e*mew_n); #number of donor atoms per m**3\n",
- "\n",
- "#Result\n",
- "print \"number of donor atoms is\",round(n/10**19,3),\"*10**19 per m**3\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 3, Page number 8-56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "diffusion coefficient is 54.34 *10**-4 m**2/s\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(c)\n",
- "mewn=0.21; #electron mobility(m**2/Vs)\n",
- "T=300; #temperature(K)\n",
- "KB=1.38*10**-23; #boltzmann constant\n",
- "\n",
- "#Calculation\n",
- "Dn=mewn*KB*T/e; #diffusion coefficient(m**2/sec)\n",
- "\n",
- "#Result\n",
- "print \"diffusion coefficient is\",round(Dn*10**4,2),\"*10**-4 m**2/s\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 4, Page number 8-56"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "hole concentration is 19.4 *10**21 m-3\n",
- "hole mobility is 0.03788 m**2/Vs\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(c)\n",
- "RH=3.22*10**-4; #hall coefficient(m**3C-1)\n",
- "rho=8.5*10**-3; #resistivity(ohm m)\n",
- "\n",
- "#Calculation\n",
- "p=1/(RH*e); #hole concentration(m-3)\n",
- "mewp=RH/rho; #hole mobility(m**2/Vs)\n",
- "\n",
- "#Result\n",
- "print \"hole concentration is\",round(p/10**21,1),\"*10**21 m-3\"\n",
- "print \"hole mobility is\",round(mewp,5),\"m**2/Vs\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 5, Page number 8-57"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "intrinsic concentration is 556.25 *10**16 per m**3\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(c)\n",
- "mew_e=0.36; #electron mobility(m**2/Vs)\n",
- "mew_h=0.17; #hole mobility(m**2/Vs)\n",
- "rhoi=2.12; #resistivity(ohm m)\n",
- "\n",
- "#Calculation\n",
- "ni=1/(rhoi*e*(mew_e+mew_h)); #intrinsic concentration(per m**3)\n",
- "\n",
- "#Result\n",
- "print \"intrinsic concentration is\",round(ni/10**16,2),\"*10**16 per m**3\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 6, Page number 8-57"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "resistivity is 0.449 ohm m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(c)\n",
- "mew_e=0.39; #electron mobility(m**2/Vs)\n",
- "mew_h=0.19; #hole mobility(m**2/Vs)\n",
- "ni=2.4*10**19; #intrinsic concentration(per m**3)\n",
- "\n",
- "#Calculation\n",
- "rhoi=1/(ni*e*(mew_e+mew_h)); #resistivity(ohm m)\n",
- "\n",
- "#Result\n",
- "print \"resistivity is\",round(rhoi,3),\"ohm m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 7, Page number 8-57"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "hole concentration is 2.25 *10**9 per m**3\n",
- "conductivity is 2.16 *10**3 per ohm m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "ni=1.5*10**16; #charge carriers(per m**3)\n",
- "e=1.6*10**-19; #charge(c)\n",
- "mew_e=0.135; #electron mobility(m**2/Vs)\n",
- "mew_h=0.048; #hole mobility(m**2/Vs)\n",
- "N=10**23; #number of atoms(per m**3)\n",
- "\n",
- "#Calculation\n",
- "sigma=ni*e*(mew_e+mew_h); \n",
- "p=ni**2/N; #hole concentration(per m**3) \n",
- "sigman=N*e*mew_e; #conductivity(per ohm m)\n",
- "\n",
- "#Result\n",
- "print \"hole concentration is\",p/10**9,\"*10**9 per m**3\"\n",
- "print \"conductivity is\",sigman/10**3,\"*10**3 per ohm m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 8, Page number 8-58"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "hole concentration is 1.7 *10**22 m-3\n",
- "hole mobility is 4.099 *10**-2 m**2/Vs\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(c)\n",
- "RH=3.66*10**-4; #hall coefficient(m**3C-1)\n",
- "rho=8.93*10**-3; #resistivity(ohm m)\n",
- "\n",
- "#Calculation\n",
- "p=1/(RH*e); #hole concentration(m-3)\n",
- "mew=RH/rho; #hole mobility(m**2/Vs)\n",
- "\n",
- "#Result\n",
- "print \"hole concentration is\",round(p/10**22,1),\"*10**22 m-3\"\n",
- "print \"hole mobility is\",round(mew*10**2,3),\"*10**-2 m**2/Vs\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 9, Page number 8-58"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 24,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "conductivity is 4.32 *10**-4 per ohm m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(c)\n",
- "ni=1.5*10**16; #particle density(per m**3)\n",
- "mew_e=0.13; #electron mobility(m**2/Vs)\n",
- "mew_h=0.05; #hole mobility(m**2/Vs)\n",
- "\n",
- "#Calculation\n",
- "sigma=ni*e*(mew_e+mew_h); #conductivity(per ohm m)\n",
- "\n",
- "#Result\n",
- "print \"conductivity is\",sigma*10**4,\"*10**-4 per ohm m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 10, Page number 8-58"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 26,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "conductivity is 11.2 per ohm m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(c)\n",
- "ni=1.5*10**16; #particle density(per m**3)\n",
- "mew_e=0.14; #electron mobility(m**2/Vs)\n",
- "mew_h=0.05; #hole mobility(m**2/Vs)\n",
- "D=2.33*10**3; #density(kg/m**3)\n",
- "A=28.09; #atomic weight(kg)\n",
- "NA=6.025*10**26; #avagadro number \n",
- "\n",
- "#Calculation\n",
- "N=NA*D/A; #number of atoms\n",
- "n=N/10**8; #electron concentration(per m**3)\n",
- "p=ni**2/n; #hole concentration(per m**3)\n",
- "sigma=e*((n*mew_e)+(p*mew_h)); #conductivity(per ohm m)\n",
- "\n",
- "#Result\n",
- "print \"conductivity is\",round(sigma,1),\"per ohm m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 11, Page number 8-59"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "resistivity is 4.13 *10**-4 per ohm m\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(c)\n",
- "ni=2.5*10**19; #particle density(per m**3)\n",
- "mew_e=0.36; #electron mobility(m**2/Vs)\n",
- "mew_h=0.18; #hole mobility(m**2/Vs)\n",
- "N=4.2*10**28; #number of atoms\n",
- "A=28.09; #atomic weight(kg)\n",
- "NA=6.025*10**26; #avagadro number \n",
- "\n",
- "#Calculation\n",
- "n=N/10**6; #electron concentration(per m**3)\n",
- "p=ni**2/n; #hole concentration(per m**3)\n",
- "rhoi=1/(e*((n*mew_e)+(p*mew_h))); #resistivity(per ohm m)\n",
- "\n",
- "#Result\n",
- "print \"resistivity is\",round(rhoi*10**4,2),\"*10**-4 per ohm m\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 12, Page number 8-60"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 31,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "hole concentration is 1.2 *10**9 m-3\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "np=2.4*10**9; #carrier concentration(m-3)\n",
- "\n",
- "#Calculation\n",
- "p=np/2; #hole concentration(m-3)\n",
- "\n",
- "#Result\n",
- "print \"hole concentration is\",p/10**9,\"*10**9 m-3\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 13, Page number 8-60"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 34,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "density of donor atoms is 8.92 *10**19 electron/m**3\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "rho=0.2; #resistivity(ohm m)\n",
- "e=1.602*10**-19; #charge(c)\n",
- "mewn=0.35; #mobility of charge carriers(m**2/Vs)\n",
- "\n",
- "#Calculation\n",
- "n=1/(rho*mewn*e); #density of donor atoms(electrons/m**3)\n",
- "\n",
- "#Result\n",
- "print \"density of donor atoms is\",round(n/10**19,2),\"*10**19 electron/m**3\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 14, Page number 8-60"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 36,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy gap is 0.573 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "KB=1.38*10**-23; #boltzmann constant\n",
- "e=1.602*10**-19; #charge(c)\n",
- "rho1=5;\n",
- "rho2=2.5;\n",
- "T1=300; #temperature(K)\n",
- "T2=320; #temperature(K)\n",
- "\n",
- "#Calculation\n",
- "Eg=2*KB*math.log(rho1/rho2)/((1/T1)-(1/T2)); #energy gap(J)\n",
- "Eg=Eg/e; #energy gap(eV) \n",
- "\n",
- "#Result\n",
- "print \"energy gap is\",round(Eg,3),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 15, Page number 8-61"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 37,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "diffusion coefficient is 4.92 *10**-3 m**2/sec\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "e=1.6*10**-19; #charge(c)\n",
- "mew_e=0.19; #electron mobility(m**2/Vs)\n",
- "T=300; #temperature(K)\n",
- "KB=1.38*10**-23; #boltzmann constant\n",
- "\n",
- "#Calculation\n",
- "Dn=mew_e*KB*T/e; #diffusion coefficient(m**2/sec)\n",
- "\n",
- "#Result\n",
- "print \"diffusion coefficient is\",round(Dn*10**3,2),\"*10**-3 m**2/sec\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 16, Page number 8-61"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 39,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "energy gap is 1.04 eV\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "KB=1.38*10**-23; #boltzmann constant\n",
- "e=1.602*10**-19; #charge(c)\n",
- "rho1=4.5;\n",
- "rho2=2.0;\n",
- "T1=293; #temperature(K)\n",
- "T2=305; #temperature(K)\n",
- "\n",
- "#Calculation\n",
- "Eg=2*KB*math.log(rho1/rho2)/((1/T1)-(1/T2)); #energy gap(J)\n",
- "Eg=Eg/e; #energy gap(eV) \n",
- "\n",
- "#Result\n",
- "print \"energy gap is\",round(Eg,2),\"eV\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 17, Page number 8-62"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 43,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "peak current is 37.8 mA\n",
- "peak output voltage is 18.9 V\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Vm=20; #voltage(V)\n",
- "RL=500; #load resistance(ohm)\n",
- "rf=10; #forward resistance(ohm)\n",
- "VB=0.7; #bias voltage(V) \n",
- "\n",
- "#Calculation\n",
- "Im=(Vm-VB)*10**3/(rf+RL); #peak current(mA)\n",
- "Vo=Im*RL/10**3; #peak output voltage(V)\n",
- "\n",
- "#Result\n",
- "print \"peak current is\",round(Im,1),\"mA\"\n",
- "print \"peak output voltage is\",round(Vo,1),\"V\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example number 18, Page number 8-62"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 48,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "peak current is 0.2828 A\n",
- "average DC current is 0.18 A\n",
- "dc voltage is 180 V\n",
- "ripple factor is 87.178 V\n"
- ]
- }
- ],
- "source": [
- "#importing modules\n",
- "import math\n",
- "from __future__ import division\n",
- "\n",
- "#Variable declaration\n",
- "Vrms=200; #voltage(V)\n",
- "RL=1000; #load resistance(ohm)\n",
- "\n",
- "#Calculation\n",
- "Im=Vrms*math.sqrt(2)/RL; #peak current(A)\n",
- "Idc=2*Im/math.pi; #average DC current(A)\n",
- "Vdc=int(Idc*RL); #dc voltage(V)\n",
- "x=(Vrms/Vdc)**2;\n",
- "gama=math.sqrt(x-1)*Vdc; #ripple factor(V)\n",
- "\n",
- "#Result\n",
- "print \"peak current is\",round(Im,4),\"A\"\n",
- "print \"average DC current is\",round(Idc,2),\"A\"\n",
- "print \"dc voltage is\",Vdc,\"V\"\n",
- "print \"ripple factor is\",round(gama,3),\"V\""
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.11"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}