diff options
author | Trupti Kini | 2016-10-12 23:31:00 +0600 |
---|---|---|
committer | Trupti Kini | 2016-10-12 23:31:00 +0600 |
commit | f500cd01e78f67301a8a76fb559d8d81de2880a8 (patch) | |
tree | 90d889c44ac39f4a4a92763699dcd84ed0a25c86 /Applied_Physics_by_S._Mani_Naidu/Chapter8.ipynb | |
parent | c7edb0b503ba053a705552cb38d42d9fb7e203fb (diff) | |
download | Python-Textbook-Companions-f500cd01e78f67301a8a76fb559d8d81de2880a8.tar.gz Python-Textbook-Companions-f500cd01e78f67301a8a76fb559d8d81de2880a8.tar.bz2 Python-Textbook-Companions-f500cd01e78f67301a8a76fb559d8d81de2880a8.zip |
Added(A)/Deleted(D) following books
A Applied_Physics_by_S._Mani_Naidu/Chapter1.ipynb
A Applied_Physics_by_S._Mani_Naidu/Chapter10.ipynb
A Applied_Physics_by_S._Mani_Naidu/Chapter11.ipynb
A Applied_Physics_by_S._Mani_Naidu/Chapter13.ipynb
A Applied_Physics_by_S._Mani_Naidu/Chapter2.ipynb
A Applied_Physics_by_S._Mani_Naidu/Chapter3.ipynb
A Applied_Physics_by_S._Mani_Naidu/Chapter4.ipynb
A Applied_Physics_by_S._Mani_Naidu/Chapter5.ipynb
A Applied_Physics_by_S._Mani_Naidu/Chapter6.ipynb
A Applied_Physics_by_S._Mani_Naidu/Chapter7.ipynb
A Applied_Physics_by_S._Mani_Naidu/Chapter8.ipynb
A Applied_Physics_by_S._Mani_Naidu/Chapter9.ipynb
A Applied_Physics_by_S._Mani_Naidu/screenshots/11.png
A Applied_Physics_by_S._Mani_Naidu/screenshots/22.png
A Applied_Physics_by_S._Mani_Naidu/screenshots/33.png
A "sample_notebooks/ravindra m gowda/Chapter_1_Basics_of_thermodynamics_Rudramani.ipynb"
Diffstat (limited to 'Applied_Physics_by_S._Mani_Naidu/Chapter8.ipynb')
-rw-r--r-- | Applied_Physics_by_S._Mani_Naidu/Chapter8.ipynb | 784 |
1 files changed, 784 insertions, 0 deletions
diff --git a/Applied_Physics_by_S._Mani_Naidu/Chapter8.ipynb b/Applied_Physics_by_S._Mani_Naidu/Chapter8.ipynb new file mode 100644 index 00000000..2069ff01 --- /dev/null +++ b/Applied_Physics_by_S._Mani_Naidu/Chapter8.ipynb @@ -0,0 +1,784 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 8: Semiconductors and Physics of Semiconductor Devices" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 1, Page number 8-55" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " resistivity is 0.41667 ohm m\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(c)\n", + "ni=2.5*10**19; #particle density(per m**3)\n", + "mew_n=0.40; #electron mobility(m**2/Vs)\n", + "mew_p=0.20; #hole mobility(m**2/Vs)\n", + "\n", + "#Calculation\n", + "rhoi=1/(ni*e*(mew_n+mew_p)); #resistivity(ohm m)\n", + "\n", + "#Result\n", + "print \"resistivity is\",round(rhoi,5),\"ohm m\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 2, Page number 8-56" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "number of donor atoms is 8.333 *10**19 per m**3\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(c)\n", + "mew_n=0.3; #electron mobility(m**2/Vs)\n", + "rho=0.25; #resistivity(ohm m)\n", + "\n", + "#Calculation\n", + "n=1/(rho*e*mew_n); #number of donor atoms per m**3\n", + "\n", + "#Result\n", + "print \"number of donor atoms is\",round(n/10**19,3),\"*10**19 per m**3\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 3, Page number 8-56" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "diffusion coefficient is 54.34 *10**-4 m**2/s\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(c)\n", + "mewn=0.21; #electron mobility(m**2/Vs)\n", + "T=300; #temperature(K)\n", + "KB=1.38*10**-23; #boltzmann constant\n", + "\n", + "#Calculation\n", + "Dn=mewn*KB*T/e; #diffusion coefficient(m**2/sec)\n", + "\n", + "#Result\n", + "print \"diffusion coefficient is\",round(Dn*10**4,2),\"*10**-4 m**2/s\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 4, Page number 8-56" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "hole concentration is 19.4 *10**21 m-3\n", + "hole mobility is 0.03788 m**2/Vs\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(c)\n", + "RH=3.22*10**-4; #hall coefficient(m**3C-1)\n", + "rho=8.5*10**-3; #resistivity(ohm m)\n", + "\n", + "#Calculation\n", + "p=1/(RH*e); #hole concentration(m-3)\n", + "mewp=RH/rho; #hole mobility(m**2/Vs)\n", + "\n", + "#Result\n", + "print \"hole concentration is\",round(p/10**21,1),\"*10**21 m-3\"\n", + "print \"hole mobility is\",round(mewp,5),\"m**2/Vs\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 5, Page number 8-57" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "intrinsic concentration is 556.25 *10**16 per m**3\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(c)\n", + "mew_e=0.36; #electron mobility(m**2/Vs)\n", + "mew_h=0.17; #hole mobility(m**2/Vs)\n", + "rhoi=2.12; #resistivity(ohm m)\n", + "\n", + "#Calculation\n", + "ni=1/(rhoi*e*(mew_e+mew_h)); #intrinsic concentration(per m**3)\n", + "\n", + "#Result\n", + "print \"intrinsic concentration is\",round(ni/10**16,2),\"*10**16 per m**3\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 6, Page number 8-57" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "resistivity is 0.449 ohm m\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(c)\n", + "mew_e=0.39; #electron mobility(m**2/Vs)\n", + "mew_h=0.19; #hole mobility(m**2/Vs)\n", + "ni=2.4*10**19; #intrinsic concentration(per m**3)\n", + "\n", + "#Calculation\n", + "rhoi=1/(ni*e*(mew_e+mew_h)); #resistivity(ohm m)\n", + "\n", + "#Result\n", + "print \"resistivity is\",round(rhoi,3),\"ohm m\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 7, Page number 8-57" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "hole concentration is 2.25 *10**9 per m**3\n", + "conductivity is 2.16 *10**3 per ohm m\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "ni=1.5*10**16; #charge carriers(per m**3)\n", + "e=1.6*10**-19; #charge(c)\n", + "mew_e=0.135; #electron mobility(m**2/Vs)\n", + "mew_h=0.048; #hole mobility(m**2/Vs)\n", + "N=10**23; #number of atoms(per m**3)\n", + "\n", + "#Calculation\n", + "sigma=ni*e*(mew_e+mew_h); \n", + "p=ni**2/N; #hole concentration(per m**3) \n", + "sigman=N*e*mew_e; #conductivity(per ohm m)\n", + "\n", + "#Result\n", + "print \"hole concentration is\",p/10**9,\"*10**9 per m**3\"\n", + "print \"conductivity is\",sigman/10**3,\"*10**3 per ohm m\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 8, Page number 8-58" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "hole concentration is 1.7 *10**22 m-3\n", + "hole mobility is 4.099 *10**-2 m**2/Vs\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(c)\n", + "RH=3.66*10**-4; #hall coefficient(m**3C-1)\n", + "rho=8.93*10**-3; #resistivity(ohm m)\n", + "\n", + "#Calculation\n", + "p=1/(RH*e); #hole concentration(m-3)\n", + "mew=RH/rho; #hole mobility(m**2/Vs)\n", + "\n", + "#Result\n", + "print \"hole concentration is\",round(p/10**22,1),\"*10**22 m-3\"\n", + "print \"hole mobility is\",round(mew*10**2,3),\"*10**-2 m**2/Vs\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 9, Page number 8-58" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "conductivity is 4.32 *10**-4 per ohm m\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(c)\n", + "ni=1.5*10**16; #particle density(per m**3)\n", + "mew_e=0.13; #electron mobility(m**2/Vs)\n", + "mew_h=0.05; #hole mobility(m**2/Vs)\n", + "\n", + "#Calculation\n", + "sigma=ni*e*(mew_e+mew_h); #conductivity(per ohm m)\n", + "\n", + "#Result\n", + "print \"conductivity is\",sigma*10**4,\"*10**-4 per ohm m\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 10, Page number 8-58" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "conductivity is 11.2 per ohm m\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(c)\n", + "ni=1.5*10**16; #particle density(per m**3)\n", + "mew_e=0.14; #electron mobility(m**2/Vs)\n", + "mew_h=0.05; #hole mobility(m**2/Vs)\n", + "D=2.33*10**3; #density(kg/m**3)\n", + "A=28.09; #atomic weight(kg)\n", + "NA=6.025*10**26; #avagadro number \n", + "\n", + "#Calculation\n", + "N=NA*D/A; #number of atoms\n", + "n=N/10**8; #electron concentration(per m**3)\n", + "p=ni**2/n; #hole concentration(per m**3)\n", + "sigma=e*((n*mew_e)+(p*mew_h)); #conductivity(per ohm m)\n", + "\n", + "#Result\n", + "print \"conductivity is\",round(sigma,1),\"per ohm m\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 11, Page number 8-59" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "resistivity is 4.13 *10**-4 per ohm m\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(c)\n", + "ni=2.5*10**19; #particle density(per m**3)\n", + "mew_e=0.36; #electron mobility(m**2/Vs)\n", + "mew_h=0.18; #hole mobility(m**2/Vs)\n", + "N=4.2*10**28; #number of atoms\n", + "A=28.09; #atomic weight(kg)\n", + "NA=6.025*10**26; #avagadro number \n", + "\n", + "#Calculation\n", + "n=N/10**6; #electron concentration(per m**3)\n", + "p=ni**2/n; #hole concentration(per m**3)\n", + "rhoi=1/(e*((n*mew_e)+(p*mew_h))); #resistivity(per ohm m)\n", + "\n", + "#Result\n", + "print \"resistivity is\",round(rhoi*10**4,2),\"*10**-4 per ohm m\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 12, Page number 8-60" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "hole concentration is 1.2 *10**9 m-3\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "np=2.4*10**9; #carrier concentration(m-3)\n", + "\n", + "#Calculation\n", + "p=np/2; #hole concentration(m-3)\n", + "\n", + "#Result\n", + "print \"hole concentration is\",p/10**9,\"*10**9 m-3\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 13, Page number 8-60" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "density of donor atoms is 8.92 *10**19 electron/m**3\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "rho=0.2; #resistivity(ohm m)\n", + "e=1.602*10**-19; #charge(c)\n", + "mewn=0.35; #mobility of charge carriers(m**2/Vs)\n", + "\n", + "#Calculation\n", + "n=1/(rho*mewn*e); #density of donor atoms(electrons/m**3)\n", + "\n", + "#Result\n", + "print \"density of donor atoms is\",round(n/10**19,2),\"*10**19 electron/m**3\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 14, Page number 8-60" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "energy gap is 0.573 eV\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "KB=1.38*10**-23; #boltzmann constant\n", + "e=1.602*10**-19; #charge(c)\n", + "rho1=5;\n", + "rho2=2.5;\n", + "T1=300; #temperature(K)\n", + "T2=320; #temperature(K)\n", + "\n", + "#Calculation\n", + "Eg=2*KB*math.log(rho1/rho2)/((1/T1)-(1/T2)); #energy gap(J)\n", + "Eg=Eg/e; #energy gap(eV) \n", + "\n", + "#Result\n", + "print \"energy gap is\",round(Eg,3),\"eV\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 15, Page number 8-61" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "diffusion coefficient is 4.92 *10**-3 m**2/sec\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(c)\n", + "mew_e=0.19; #electron mobility(m**2/Vs)\n", + "T=300; #temperature(K)\n", + "KB=1.38*10**-23; #boltzmann constant\n", + "\n", + "#Calculation\n", + "Dn=mew_e*KB*T/e; #diffusion coefficient(m**2/sec)\n", + "\n", + "#Result\n", + "print \"diffusion coefficient is\",round(Dn*10**3,2),\"*10**-3 m**2/sec\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 16, Page number 8-61" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "energy gap is 1.04 eV\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "KB=1.38*10**-23; #boltzmann constant\n", + "e=1.602*10**-19; #charge(c)\n", + "rho1=4.5;\n", + "rho2=2.0;\n", + "T1=293; #temperature(K)\n", + "T2=305; #temperature(K)\n", + "\n", + "#Calculation\n", + "Eg=2*KB*math.log(rho1/rho2)/((1/T1)-(1/T2)); #energy gap(J)\n", + "Eg=Eg/e; #energy gap(eV) \n", + "\n", + "#Result\n", + "print \"energy gap is\",round(Eg,2),\"eV\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 17, Page number 8-62" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "peak current is 37.8 mA\n", + "peak output voltage is 18.9 V\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "Vm=20; #voltage(V)\n", + "RL=500; #load resistance(ohm)\n", + "rf=10; #forward resistance(ohm)\n", + "VB=0.7; #bias voltage(V) \n", + "\n", + "#Calculation\n", + "Im=(Vm-VB)*10**3/(rf+RL); #peak current(mA)\n", + "Vo=Im*RL/10**3; #peak output voltage(V)\n", + "\n", + "#Result\n", + "print \"peak current is\",round(Im,1),\"mA\"\n", + "print \"peak output voltage is\",round(Vo,1),\"V\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 18, Page number 8-62" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "peak current is 0.2828 A\n", + "average DC current is 0.18 A\n", + "dc voltage is 180 V\n", + "ripple factor is 87.178 V\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "Vrms=200; #voltage(V)\n", + "RL=1000; #load resistance(ohm)\n", + "\n", + "#Calculation\n", + "Im=Vrms*math.sqrt(2)/RL; #peak current(A)\n", + "Idc=2*Im/math.pi; #average DC current(A)\n", + "Vdc=int(Idc*RL); #dc voltage(V)\n", + "x=(Vrms/Vdc)**2;\n", + "gama=math.sqrt(x-1)*Vdc; #ripple factor(V)\n", + "\n", + "#Result\n", + "print \"peak current is\",round(Im,4),\"A\"\n", + "print \"average DC current is\",round(Idc,2),\"A\"\n", + "print \"dc voltage is\",Vdc,\"V\"\n", + "print \"ripple factor is\",round(gama,3),\"V\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |